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Abstract

We discuss formulations of integer programs with a huge number of variables

and their solution by column generation methods, i.e., implicit pricing of nonbasic

variables to generate new columns or to prove LP optimality at a node of the branch-

and-bound tree. We present classes of models for which this approach decomposes

the problem, provides tighter LP relaxations, and eliminates symmetry. We then

discuss computational issues and implementation of column generation, branch-and-

bound algorithms, including special branching rules and e�cient ways to solve the

LP relaxation. We also discuss the relationship with Lagrangian duality.

1 Introduction

The successful solution of large-scale mixed integer programming (MIP) problems re-
quires formulations whose linear programming (LP) relaxations give a good approxima-
tion to the convex hull of feasible solutions. In the last decade, a great deal of attention
has been given to the "branch-and-cut" approach to solving MIPs. Ho�man and Padberg
[1985], and Nemhauser and Wolsey [1988] give general expositions of this methodology.
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The basic idea of branch-and-cut is simple. Classes of valid inequalities, preferably
facets of the convex hull of feasible solutions, are left out of the LP relaxation because
there are too many constraints to handle e�ciently and most of them will not be binding
in an optimal solution anyway. Then, if an optimal solution to an LP relaxation is infea-
sible, a subproblem, called the separation problem, is solved to try to identify violated
inequalities in a class. If one or more violated inequalities are found, some are added to
the LP to cut o� the infeasible solution. Then the LP is reoptimized. Branching occurs
when no violated inequalities are found to cut o� an infeasible solution. Branch-and-cut,
which is a generalization of branch-and-bound with LP relaxations, allows separation
and cutting to be applied throughout the branch-and-bound tree.

The philosophy of branch-and-price is similar to that of branch-and-cut except that
the procedure focuses on column generation rather than row generation. In fact, pricing
and cutting are complementary procedures for tightening an LP relaxation. We will
describe algorithms that include both, but we emphasize column generation.

In branch-and-price, sets of columns are left out of the LP relaxation because there
are too many columns to handle e�ciently and most of them will have their associated
variable equal to zero in an optimal solution anyway. Then to check the optimality of
an LP solution, a subproblem, called the pricing problem, which is a separation problem
for the dual LP, is solved to try to identify columns to enter the basis. If such columns
are found, the LP is reoptimized. Branching occurs when no columns price out to enter
the basis and the LP solution does not satisfy the integrality conditions. Branch-and-
price, which is a generalization of branch-and-bound with LP relaxations, allows column
generation to be applied throughout the branch-and-bound tree.

We have several reasons for considering formulations with a huge number of variables.

� A compact formulation of a MIP may have a weak LP relaxation. Frequently the
relaxation can be tightened by a reformulation that involves a huge number of
variables.

� A compact formulation of a MIP may have a symmetric structure that causes
branch-and-bound to perform poorly because the problem barely changes after
branching. A reformulation with a huge number of variables can eliminate this
symmetry.

� Column generation provides a decomposition of the problem into master and sub
problems. This decomposition may have a natural interpretation in the contextual
setting allowing for the incorporation of additional important constraints.

� A formulation with a huge number of variables may be the only choice.
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At �rst glance, it may seem that branch-and-price involves nothing more than combin-
ing well-known ideas for solving linear programs by column generation with branch-and-
bound. However, as Appelgren [1969] observed 25 years ago, it is not that straightfor-
ward. There are fundamental di�culties in applying column generation techniques for
linear programming in integer programming solution methods [Johnson 1989]. These
include:

� Conventional integer programming branching on variables may not be e�ective
because �xing variables can destroy the structure of the pricing problem.

� Solving these LPs to optimality may not be e�cient, in which case di�erent rules
will apply for managing the branch-and-price tree.

Recently, several specialized branch-and-price algorithms have appeared in the litera-
ture. Our paper attempts to unify this literature by presenting a general methodology for
branch-and-price and describing applications. It is by no means an extensive survey, but
does develop some general ideas that have only appeared in very special contexts. Rout-
ing and scheduling has been a particularly fruitful application area of branch-and-price,
see Desrosiers et al. [1994] for a survey of these results.

Section 2 presents the types of MIPs for which branch-and-price can be advanta-
geous. Section 3 analyzes the similarities and di�erences between branch-and-price and
Lagrangian duality. Section 4 presents the special types of branching that are required
for branch-and-price to be e�ective. Section 5 discusses the e�cient solution of LPs
in branch-and-price algorithms. Section 6 considers the implementation of branch-and-
price in mixed-integer programming codes. Section 7 summarizes computational expe-
rience with branch-and-price algorithms for binary cutting stock problems, generalized
assignment problems, urban transit crew scheduling problems and bandwidth packing
problems.

2 Suitable Models for Column Generation

2.1 General Models

The general problem P we consider is of the form

max cx

Ax � b;

x 2 S; (1)

x integer;
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where S is a bounded polyhedron. The boundedness assumption is not necessary and is
made purely for simplicity of exposition.

The fundamental construct of column generation is that the set

S� = fx 2 S : x integerg

is represented by the extreme points y1; :::; yp of its convex hull. Note that if x is binary,
then S� coincides with the extreme points of conv(S�).

Any point y in conv(S�) can be represented as

y =
X

1�k�p

yk�k;

subject to the convexity constraintX
1�k�p

�k = 1;

�k � 0 k = 1; :::; p:

This yields the column generation form of P given by

max
X

1�k�p

(cyk)�k

X
1�k�p

(Ayk)�k � b;

X
1�k�p

yk�k integer; (2)

X
1�k�p

�k = 1;

�k � 0 k = 1; :::; p:

When x is binary, the condition
P

1�k�p yk�k integer is equivalent to �k 2 f0; 1g for
k = 1; :::; p. If the null vector is an extreme point of conv(S�), it may not be explicitly
included in the formulation, in which case the convexity constraint can be written as an
inequality, i.e.,

P
1�k�p �k � 1.

If S can be decomposed, i.e., S = [1�j�nSj , we can represent each set

S�j = fxj 2 Sj : xj integerg

by the extreme points yj1; :::; y
j
pj
of its convex hull, i.e., any point yj in conv(S�j ) can be

represented as

yj =
X

1�k�pj

yjk�
j
k;
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subject to the convexity constraintX
1�k�pj

�jk = 1;

�jk � 0 k = 1; :::; pj:

This yields a column generation form of P with separate convexity constraints for each
Sj given by

max
X

1�j�n

X
1�k�pj

(cyjk)�
j
k

X
1�j�n

X
1�k�pj

(Ayjk)�
j
k � b;

X
1�k�pj

yjk�
j
k integer j = 1; :::; n; (3)

X
1�k�pj

�jk = 1 j = 1; :::; n;

�jk � 0 j = 1; :::; n; k = 1; :::; pj:

If the subsets in the decomposition are identical, i.e., Sj = S for j = 1; :::; n, then
they can be combined into one subset S with the convexity constraintsX

1�k�p

�jk = 1; j = 1; :::; n

replaced by an aggregated convexity constraintX
1�k�p

�k = n:

This results in the column generation form

max
X

1�k�p

(cyk)�k

X
1�k�p

(Ayk)�k � b;

X
1�k�p

yk�k integer, (4)

X
1�k�p

�k � n;

�k � 0 k = 1; :::; p;
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where y1; :::; yp are the extreme points of conv(S
�
). Here we have chosen the inequality

form of the aggregated convexity constraint because in most applications no elements
are assigned to some subsets. Moreover, if n is not �xed as part of the input, then the
aggregated convexity constraint can be omitted altogether.

The essential di�erence between P and its column generation form is that S has
been replaced by the extreme point representation of its convex hull. We see that any
fractional solution to the linear programming relaxation of P is a feasible solution to
the linear programming relaxation of its column generation form if and only if it can
be represented by a convex combination of extreme points of conv(S�). In particular,
Geo�rion [1974] has shown that if the polyhedron S does not have all integral extreme
points, then the linear programming relaxation of the column generation form of P will
be tighter than that of P for some objective functions.

However, since the column generation form frequently contains a huge number of
columns, it may be necessary to work with restricted versions that contain only a subset
of its columns, and to generate additional columns only as they are needed. The column
generation form is called the master problem (MP) and when it does not contain all of
its columns it is called a restricted master problem (RMP). Column generation is done
by solving pricing problems of the form

maxfdx : x 2 S�g or maxfdx : x 2 conv(S�)g

where d is determined from optimal dual variables of an RMP.

2.2 Partitioning models

Many interesting optimization problems can be formulated as set partitioning problems,
see Balas and Padberg [1976]. Since most of the branch-and-price algorithms we are
aware of have been developed for set partitioning based formulations, they will be em-
phasized. In the general set partitioning problem, we have a ground set of elements and
rules for generating feasible subsets and their costs, and we wish to �nd the minimum
cost partitioning of the ground set into feasible subsets. Let zij = 1 if element i is in
subset j, and 0 otherwise, and let zj denote the characteristic vector of subset j, i.e., a
vector with entries zij for each element i. Similarly, let cij denote the pro�t associated
with having element i in subset j and let cj denote the corresponding pro�t vector. The
general partitioning problem is of the form

max
X

1�j�n

cjzj

X
1�j�n

zij = 1 i = 1; :::; m;
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zj 2 S; (5)

zj binary;

where m is the number of elements in the ground set, n is the number of subsets, and S
is the set of feasible subsets.

2.2.1 Enumerated subsets

One important class of partitioning problems for which column generation is desirable
occurs when we do not know a description of S by linear inequalities, but we do know
a way of enumerating S. Hopefully, the enumeration can be done cleverly, but even a
brute force approach may su�ce.

This structure occurs, for example, in crew pairing problems, where a sequence of

ights, called a pairing, has to be constructed and assigned to a crew. The �rst 
ight
in the sequence must depart from the crew's base, each subsequent 
ight departs from
the station where the previous 
ight arrived and the last 
ight must return to the base.
The sequence can represent several days of 
ying. Pairings are subject to a number of
constraints resulting from safety regulations and labor contract terms. These constraints
dictate restrictions such as the maximum number of hours a pilot can 
y in a day, the
maximum number of days before returning to the base and minimum overnight rest
times. The main point is that these restrictions are not e�ciently described by linear
inequalities. In addition, the cost of pairings is a messy function of several attributes of
the sequence.

Although enumerating pairings is complex because of all the rules that must be
checked, it can be accomplished by �rst enumerating all feasible possibilities for one
day of 
ying and then combining the one-day schedules to form pairings. The major
di�culty is the total number of pairings, which grows exponentially with the number of

ights. For example, in a typical problem with 253 
ights, there are 5,833,004 pairings
[Vance 1993]. However, it is possible to represent pairings as paths in a graph, and to
evaluate their costs with a multilabel shortest path or dynamic programming algorithm,
see Desrochers and Soumis [1989], Barnhart et al. [1993], and Vance [1993].

The enumeration yields the following column generation form

max
X

1�k�p

(cky
k)�k

X
1�k�p

yki �k = 1 i = 1; :::; m;

�k 2 f0; 1g; k = 1; :::; p;
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where each yk is an element of S. This column generation form corresponds to the
`standard' formulation of the set partitioning problem.

2.2.2 Linearly constrained subsets

Now we suppose that the rules on feasible subsets in a set partitioning problem can be
described by linear inequalities.

Di�erent restrictions on subsets
First, we assume that the feasible subsets have di�erent requirements. Assume the
requirements are given by

Sj = fzj : Djzj � dj j = 1; :::; n; zj binaryg: (6)

More explicitly, problem P is given by

max
X

1�j�n

cjzj

X
1�j�n

zij = 1 i = 1; :::; m; (7)

Djzj � dj j = 1; :::; n;

z binary;

and its column generation form by

max
X

1�j�n

X
1�k�pj

(cjy
j
k)�

j
k

X
1�j�n

X
1�k�pj

yjik�
j
k = 1 i = 1; :::; m; (8)

X
1�k�pj

�jk � 1 j = 1; :::; n;

�
j

k 2 f0; 1g j = 1; :::; n; k = 1; :::; pj;

where the fyjkg, 1 � k � pj are the extreme points of conv(S�j ) with elements yjik for
i = 1; :::; m. We have chosen to write the convexity constraint as an inequality, since in
many of these applications we may not assign any elements to a given subset.

To illustrate, consider the generalized assignment problem (GAP). In the GAP the
objective is to �nd a maximum pro�t assignment of m tasks to n machines such that
each task is assigned to precisely one machine subject to capacity restrictions on the
machines.
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The standard integer programming formulation of GAP is

max
X

1�i�m

X
1�j�n

pijzij

X
1�j�n

zij = 1 i = 1; :::; m;

X
1�i�m

wijzij � dj j = 1; :::; n;

zij 2 f0; 1g i = 1; :::; m; j = 1; :::; n;

where pij is the pro�t associated with assigning task i to machine j, wij is the claim
on the capacity of machine j by task i, dj is the capacity of machine j, and zij is a 0-1
variable indicating whether task i is assigned to machine j.

The column generation form is

max
X

1�j�n

X
1�k�Kj

(
X

1�i�m

pijy
j
ik)�

j
k

X
1�j�n

X
1�k�Kj

yjik�
j
k = 1 i = 1; :::; m;

X
1�k�Kj

�jk � 1 j = 1; :::; n;

�
j

k 2 f0; 1g j = 1; :::; n; k = 1; :::; Kj;

where the �rst m entries of a column, given by yjk = (yj1k; y
j
2k; :::; y

j
mk), form a feasible

solution to the knapsack problemX
1�i�m

wijy
j
i � dj ;

yji 2 f0; 1g i = 1; :::; m:

In other words, a column represents a feasible assignment of tasks to a machine. Note
that by replacing the knapsack constraint by its feasible solutions, we have improved the
quality of the linear programming relaxation.

Identical restrictions on subsets
Now, we assume that the feasible subsets have identical requirements. Then (6) is
replaced by the single set of inequalities

S = fzj : Dzj � d j = 1; :::; n; zj binaryg: (9)
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More explicitly, problem P is given by

max
X

1�j�n

cjzj

X
1�j�n

zij = 1 i = 1; :::; m; (10)

Dzj � d j = 1; :::; n;

z binary;

and its column generation form by

max
X

1�k�p

(cyk)�k

X
1�k�p

yik�k = 1 i = 1; :::; m; (11)

�k 2 f0; 1g k = 1; :::; p:

Here we have chosen to omit the convexity constraint because it is common in these
applications for n not to be �xed.

Consider the 0-1 cutting stock problem where item i has length di, the demand for
each item is 1, the length of each stock roll is d and the objective is to meet demand
using the minimum number of stock rolls. An integer programming formulation is

min
X

1�j�n

wj

X
1�j�n

zij = 1 i = 1; :::; m;

X
1�i�m

dizij � dwj j = 1; :::; n;

zij ; wj 2 f0; 1g i = 1; :::; m; j = 1; :::; n;

where wj = 1 if roll j is selected and zij = 1 if item i is assigned to roll j.
The column generation formulation is

min
X

1�k�p

�k

X
1�k�p

yik�k = 1; i = 1; :::; m;

�k 2 f0; 1g k = 1; :::; p;
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where each yk is a binary solution to the knapsack inequalityX
1�i�m

diyik � d:

That is, each yk represents a feasible pattern for cutting one of the stock rolls into some
subset of the items. MP replaces the knapsack inequality by all of its 0-1 solutions. The
resulting problem has an LP relaxation which very frequently provides a bound whose
round up equals the value of an optimal solution, Marcotte [1985]. On the other hand,
the LP relaxation of the formulation P yields the trivial bound of d(

P
1�i�m di)=de.

Another major advantage of MP for these problems with identical subset rules is
that it eliminates some of the inherent symmetry of P that causes branch-and-bound
to perform very poorly. By this we mean that any solution to P or its LP relaxation
has an exponential number of representations as a function of the number of subsets.
Therefore branching on a variable zij to remove a fractional solution will likely produce
the same fractional solution with zik equal to the old value of zij and vice-versa, unless
zij is fractional for all j. Formulation MP eliminates this symmetry and is therefore
much more amenable to branching rules in which meaningful progress in improving the
LP bound can be made as we go deeper in the tree.

Although the discussion above has focused on set partitioning type master problems,
in many applications the problem structure allows the master problem to be formulated
either as a set partitioning problem or as a set covering problem. Consider, for example,
vehicle routing and scheduling problems, where several vehicles are located at one or
more depots and must serve geographically dispersed customers. Each vehicle has a given
capacity and is available in a speci�ed time interval. Each customer has a given demand
and must be served within a speci�ed time window. The objective is to minimize the
total cost of travel. A solution to a vehicle routing and scheduling problem partitions
the set of customers into a set of routes for vehicles. This naturally leads to a set
partitioning formulation in which the columns correspond to feasible routes and the rows
correspond to the requirement that each customer is visited precisely once. Alternatively,
the problem can be formulated as a set covering problem in which the columns correspond
to feasible routes and the rows correspond to the requirement that each customer is
visited at least once. Since deleting a customer from a route, i.e., not visiting that
customer, results in another shorter less costly feasible route, it is easy to verify that an
optimal set covering solution will be an optimal set partitioning.

In general, if any subcolumn of a feasible column de�nes another feasible column
with lower cost, an optimal solution to the set covering problem will be an optimal set
partitioning and we can work with either one of the formulations. When there is a choice,
the set covering formulation is preferred since

11



� Its linear programming relaxation is numerically far more stable and thus easier to
solve.

� It is trivial to construct a feasible integer solution from a solution to the linear
programming relaxation.

2.3 Nondecomposable models

Column generation is also used for very large nondecomposable models. Here it may
be the only practical approach. If a model contains so many variables that the storage
requirements are enormous, then it is usually impossible to solve the LP relaxation
directly and a column generation approach may be the only alternative.

This approach has been used to solve large instances of the traveling salesman prob-
lem, see Junger, Reinelt, and Rinaldi [1994]. To handle the enormous number of variables
(for a thousand city instance there are a million variables) only variables associated with
a small subset of the edges, the k shortest edges associated with each vertex, are main-
tained. When the LP is solved for this reduced edge set, it is necessary to price out all
the edges not in this set to verify that the true optimum has been found. If edges with
favorable reduced costs are identi�ed, they are added to the reduced edge set and the
process is repeated.

A related approach, called SPRINT, has proven very successful for huge set parti-
tioning problems. The SPRINT approach solves subproblems consisting of a subset of
the columns, e.g. 10,000 out of 5 million. A new subproblem is formed by retaining the
columns in the optimal basis of the old subproblem and collecting a set of good columns
based on the reduced costs. This is repeated until all columns have been considered and
then �nally, and only once, the full problem is optimized. Using the SPRINT approach
a linear programming relaxation of a set partitioning problem with nearly 6 million vari-
ables was solved in less than an hour on an IBM 3090E vector facility, see Anbil, Tanga,
and Johnson [1992], and even more quickly using a combined interior point/simplex
sprint approach by Bixby et al. [1992].

Note that in both cases standard simplex pricing is used to price out the variables
that are initially left out of the formulation. This can be done because the total number
of variables is polynomial in the size of the input, in contrast to the other formulations
we have discussed where the number of variables grows exponentially.

3 Lagrangian duality

Lagrangian duality is an alternative to column generation for getting improved relax-
ations of MIPs. In fact, a standard dualization gives the identical bound to the one
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obtained from column generation, see Brooks and Geo�rion [1966] and Geo�rion [1974].
The idea is to consider the Lagrangian relaxation of (1) given by

g(�) = max [cx� �(b�Ax)]

x 2 S (12)

x integer

where � � 0, and the Lagrangian dual given by

g = minfg(�) : � � 0g: (13)

Using linear programming duality, Geo�rion [1974] proved that the maximum value of
the linear programming relaxation of (2) equals g. Moreover, the Lagrangian relaxation
(12) is exactly of the form of the column generation subproblem that is used in the
solution of the linear programming relaxation of (2). Also the Lagrange multiplier vector
� corresponds to the dual variables for the constraintsX

k

(Ayk)�k � b

in the linear programming relaxation of the restricted master problem.
Thus the choice between Lagrangian duality and column generation rests largely

on the issue of which approach produces an optimal � more e�ciently. In Lagrangian
duality, the standard approach is to solve (13) by subgradient optimization, see Held et
al. [1974]. Here, given a solution to (12), we determine a subgradient direction by the
magnitude of violation of Ax � b and a new � vector by

�t+1i = �ti � #t[Aix
t � bi]

+

where u+ = max(0; u) and #t is the step size. With an appropriate choice of step size,
the subgradient algorithm converges in the limit but the sequence g(�t) is not monotone.

In the column generation approach, �t is an optimal solution to the tth restricted lin-
ear programming relaxation of the restricted master problem. This procedure converges
�nitely and monotonically, although column generation linear programs are known to
stall near termination.

Since both methods produce the same theoretical bounds and solve subproblems
of the same form, other criteria are needed to choose between them. There are clear
tradeo�s:

� The subgradient algorithm is much simpler than the simplex algorithm with column
generation and therefore is much easier to code.
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� Linear programming uses global information, i.e. x1; : : : ; xt to determine �t+1,
while the subgradient algorithm uses only local information (�t; xt).

� The subgradient algorithm is faster per iteration but generally requires many more
iterations and practical implementations are not �nitely convergent.

Only extensive empirical tests may settle the issue, but here are some observations.
Over the past 25 years the Lagrangian approach has been used much more extensively.
We believe the reasons were the absence of e�cient simplex codes with column generation
capabilities and the lack of su�cient computer memory. While it is di�cult to implement
an e�cient simplex procedure, a subgradient optimization program only requires a few
lines of code. However, the situation has changed dramatically with the modern simplex
codes, see Section 6. With these capabilities in LP-based branch-and-bound codes, it is
now feasible to take advantage of the global information used by the simplex codes to
speed up the convergence of �. One can see this in comparing the results of Savelsbergh
[1993] and Guignard and Rosenwein [1989] on the generalized assignment problem, see
Section 7 on computational experience. This is in contrast with the results obtained by
Held and Karp [1970, 1971] on the traveling salesman problem more than twenty years
ago where the limitations of LP solving with column generation led to the conclusion
that the subgradient algorithm was preferred.

4 Branching

An LP relaxation solved by column generation is not necessarily integral and applying a
standard branch-and-bound procedure to the restricted master problem with its existing
columns will not guarantee an optimal (or feasible) solution. After branching, it may be
the case that there exists a column that would price out favorably, but is not present in
the master problem. Therefore, to �nd an optimal solution we must generate columns
after branching. Nonetheless, many problems have been solved successfully, but not to
proven optimality, by the heuristic of limiting the column generation to the root node of
the branch-and-bound tree.

Consider a branch-and-bound algorithm that has the possibility of generating columns
at any node of the tree. In particular, suppose using the conventional branching rule
based on variable dichotomy, we branch on fractional variable �k, and we are in the
branch in which �k is �xed to zero. In the column generation phase, it is possible (and
quite likely) that the optimal solution to the subproblem will be the set represented
by �k. In that case, it becomes necessary to generate the column with the 2nd highest
reduced cost. At depth l in the branch-and-bound tree we may need to �nd the column
with lth highest reduced cost. In order to prevent columns that have been branched on
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from being regenerated, we must choose a branching rule that is compatible with the
pricing problem. By compatible, we mean that we must be able to modify the pricing
problem so that columns that are infeasible due to the branching constraints will not be
generated and the pricing problem will remain tractable.

So the challenge in formulating a branching strategy is to �nd one that excludes
the current solution, validly partitions the solution space of the problem, and provides a
pricing problem that is still tractable. We need a guarantee that a feasible integer solution
will be found (or infeasibility proved) after a �nite number of branches and we need to
be able to encode the branching information into the pricing problem. In addition, a
branch-and-bound algorithm is more likely to be e�ective if the branching scheme divides
the feasible set of solutions to the problem evenly, i.e. each new subproblem created has
approximately the same number of feasible solutions.

4.1 Set partitioning master problems

Ryan and Foster [1981] suggested a branching strategy for set partitioning problems
based on the following proposition.

Proposition 1 If Y is a 0{1 matrix, and a basic solution to Y � = 1 is fractional, then
there exist two rows r and s of the master problem such that

0 <
X

k:yrk=1;ysk=1

�k < 1:

Proof Consider fractional variable �k0 . Let row r be any row with yrk0 = 1. SinceP
1�k�p yrk�k = 1 and �k0 is fractional, there must exist some other basic column k00

with 0 < �k00 < 1 and yrk00 = 1 as illustrated by the submatrix in Figure 1. Since there

k k'

r 1 1
s 0 1

Figure 1: Submatrix Present in Candidate Branching Pairs

are no duplicate columns in the basis, there must exist a row s such that either ysk0 = 1
or ysk00 = 1 but not both. This leads to the following sequence of relations:

1 =
X

1�k�p

yrk�k
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=
X

k:yrk=1

�k

>
X

k:yrk=1;ysk=1

�k

where the inequality follows from the fact that the last summation includes either �k0 or
�k00 but not both. 2

The pair r; s gives the pair of branching constraintsX
k:yrk=1;ysk=1

�k = 1 and
X

k:yrk=1;ysk=1

�k = 0:

This branching is analogous to requiring that rows r and s be covered by the same
column on the �rst (left) branch and by di�erent columns on the second (right) branch,
i.e., elements r and s belong to the same subset on the left branch and to di�erent
subsets on the right branch. Thus on the left branch, all feasible columns must have
yrk = ysk = 0 or yrk = ysk = 1, while on the right branch all feasible columns must have
yrk = ysk = 0 or yrk = 0, ysk = 1 or yrk = 1, ysk = 0. Rather than adding the branching
constraints to the master problem explicitly, the infeasible columns in the master problem
can be eliminated. On the left branch, this is identical to combining rows r and s in the
master problem giving a smaller set partitioning problem. On the right branch, rows
r and s are restricted to be disjoint, which may yield an easier master problem since
set partitioning problems with disjoint rows (sets) are more likely to be integral. Not
adding the branching constraints explicitly has the advantage of not introducing new
dual variables that have to be dealt with in the pricing problem.

Usually, enforcing the branching constraints in the pricing problem, i.e., forcing two
elements to be in the same subset on one branch and forcing two elements to be in
di�erent subsets on the other branch, is fairly easy to accomplish. However, the pricing
problem on one branch may be more complicated than on the other branch; see Section
7.

Proposition 1 implies that if no branching pair can be identi�ed, then the solution to
the master problem must be integer. The branch and bound algorithm must terminate
after a �nite number of branches since there are only a �nite number of pairs of rows.
The number of branches necessary will generally be considerably fewer than would be
necessary if individual variables were branched on since there are in general many fewer
pairs of rows than variables. In addition, each branching decision eliminates a large
number of variables from consideration.

A theoretical justi�cation for this branching rule is that the submatrix shown in
Figure 1 is precisely the excluded submatrix in the characterization of totally balanced
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matrices, see Ho�man, Kolen, and Sakarovitch [1985]. Total balanceness of the coe�cient
matrix is a su�cient condition for the LP relaxation of a set partitioning problem to have
only integral extreme points and the branching rule eventually gives totally balanced
matrices.

Applications of this branching rule can be found for urban transit crew scheduling in
Desrochers and Soumis [1989]; for airline crew scheduling in Anbil, Tanga and Johnson
[1992], Barnhart et al. [1993] and Vance [1993]; for vehicle routing in Dumas, Desrosiers
and Soumis [1989], for graph coloring in Mehrotra and Trick [1993]; and for the binary
cutting stock problem in Vance et al. [1994].

Di�erent requirements on subsets
Now consider the situation where the rules on feasible subsets can be described by
linear inequalities and where di�erent subsets may have di�erent requirements, i.e., the
formulation for P has the block diagonal structure given by (7) and the associated explicit
column generation form, with separate convexity constraints for each subset, is given by
(8).

In this situation, if we apply the branching rule discussed above but always select
one partitioning row, say row r, and one convexity row, say s, we obtain a special
branching scheme that has a natural interpretation in the original formulation and some
nice computational properties. The pair of branching constraints that results is given byX

1�k�ps:ysrk=1

�sk = 1 and
X

1�k�ps:ysrk=1

�sk = 0: (14)

This branching rule corresponds to requiring element r to be in subset s on the left
branch and requiring element r to be in any subset but s on the right branch. This
branching strategy has a very natural interpretation based on the following proposition.

Proposition 2 Let � be a feasible solution to the LP-relaxation of (8) and let zij =P
1�k�pj y

j
ik�

j
k, then z constitutes a feasible solution to the LP-relaxation of (7) and z is

integral if and only if � is integral.

Proof As z is a convex combination of extremal solutions it is feasible. If � is integral,
then z is integral. Thus zj is integral for all j. Consider any element i of zj with zij = 1.

Consequently,
P

1�k�pj y
j
ik�

j
k = zij = 1. Since

P
1�k�pj �

j
k � 1, we must have yjik = 1

for all k = 1; :::; pj with �jk > 0. Therefore, all columns associated with variables with
positive values are identical. Since there are no duplicate columns in the basis, there can
be only one positive variable, which implies that � is integral. 2

Consequently, the branching strategy given by (14) corresponds precisely to performing
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standard branching in (7), sinceX
1�k�ps:ysrk=1

�sk = 1)
X

1�k�ps

ysrk�
s
k = 1) zrs = 1

and X
1�k�ps:ysrk=1

�sk = 0)
X

1�k�ps

ysrk�
s
k = 0) zrs = 0:

Furthermore, this branching strategy does not increase the di�culty of solving the pricing
problem. In fact, Sol and Savelsbergh [1994] show that any algorithm for the pricing
problem used in the root node can also be used in subsequent nodes. To prevent an
element from being in a generated solution, we just ignore it altogether.

To force an element to be in the solution, we modify the dual variables such that
every solution that does not use the element has a nonpositive reduced cost. Let u be
the dual vector associated with the partitioning constraints, v the dual vector associated
with the convexity constraints, and w the dual variable associated with constraintX

1�k�p
ĵ

(1� yĵ
îk
)�ĵk +

X
1�j 6=ĵ�n

X
1�k�pj

yj
îk
�jk � 0

which forces element î to be in subset ĵ.

Proposition 3 Let (u; v; w) be an optimal dual solution to the extended restricted master
problem and let � > 0, then (u0; v0; w0) with u0 := u� �e

î
; v0 := v+ �e

ĵ
, and w0 := w+ �,

where ek denotes the kth unit vector, is an alternative optimal dual solution.

Proof When the extended restricted master problem is solved the reduced costs satisfy

cjk = cjk �
X
i

yjikui � vj � yj
îk
w � 0 1 � j 6= ĵ � n; k = 1; :::; pj;

and

cĵk = cĵk �
X
i

yĵikui � v
ĵ
� (1� yĵ

îk
)w � 0 k = 1; :::; p

ĵ
:

To see that the alternative dual solution is feasible for the case yĵ
îk
= 1, we have

c0jk = cjk �
X
i

yjiku
0
i � v0j � yj

îk
w0 =

cjk �
X
i6=î

yjikui � yj
îk
(u

î
� �)� vj � yj

îk
(w+ �) = cjk 1 � j 6= ĵ � n; k = 1; :::; pj
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and

c0ĵk = cĵk �
X
i

yĵiku
0
i � v0

ĵ
� (1� yĵ

îk
)w0 =

cĵk �
X
i6=î

yĵikui � yĵ
îk
(u

î
� �)� (v

ĵ
+ �)� (1� yĵ

îk
)(w+ �) = cĵk k = 1; :::; p

ĵ
:

For the case yĵ
îk
= 0, we have

c0ĵk = cĵk �
X
i

yĵiku
0
i � v0

ĵ
� (1� yĵ

îk
)w0 =

cĵk �
X
i6=î

yĵikui � yĵ
îk
(u

î
� �)� (v

ĵ
+ �)� (1� yĵ

îk
)(w+ �) = cĵk � 2� k = 1; :::; p

ĵ
:

It is optimal because
P

i u
0
i +
P

j v
0
j =
P

i ui +
P

j vj . 2

Now by Proposition 3, it follows that by choosing � large enough, we can always ensure

that cĵk � 0 if yĵ
îk
= 0.

Applications of this branching strategy are presented for crew scheduling in Vance
[1993]; for generalized assignment in Savelsbergh [1993]; for multi-commodity 
ow in
Barnhart, Hane, Johnson and Sigismondi [1991] and Parker and Ryan [1993]; for vehicle
routing in Desrosiers, Soumis and Desrochers [1984] and Desrochers, Desrosiers and
Solomon [1992]; and for pickup and delivery problems in Sol and Savelsbergh [1994].

4.2 General mixed integer master problems

So far, we have discussed branching strategies for set partitioning master problems. A
branching strategy for general mixed integer master problems with di�erent requirements
on subsets can be derived directly from (3) as follows [Johnson 1989]. The optimal
solution to the linear programming relaxation is infeasible if and only ifX

1�k�pj

yjk�
j
k

has a fractional component r for some j, say with value �. This suggests the following
branching rule: on one branch we requireX

1�k�pj

yjrk�
j
k � b�c
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and on the other branch we requireX
1�k�pj

yjrk�
j
k � d�e:

This implies that when a new extreme point is generated an upper bound of b�c on
component r has to be enforced on the �rst branch and a lower bound of d�e on the
second branch. Note that each pricing problem di�ers only in the lower and upper
bounds on the components.

General models with identical restrictions on subsets
Developing a branching strategy for general mixed integer master problems with identical
restrictions on subsets is more complex. If the solution to (2) is fractional, we may be
able to identify a single row r and an integer �r such thatX

k:(Ayk)r��r

�k = �r

and �r is fractional. We can then branch on the constraintsX
k:(Ayk)r��r

�k � b�rc and
X

k:(Ayk)r��r

�k � d�re:

These constraints place upper and lower bounds on the number of columns with (Ayk)r �
�r that can be present in the solution. In general, these constraints will not eliminate
variables and have to be added to the formulation explicitly. Each branching constraint
will contribute an additional dual variable to the reduced cost of any new column with
(Ayk)r � �r. This may complicate the pricing problem.

It is easy to see that a single row may not be su�cient to de�ne a branching rule.
Consider a set partitioning master problem that has a fractional solution. The only
possible value for �r is 1. However,

P
k:ykr�1 �k = 1 for every row. Thus we may have

to branch on multiple rows.
Assume thatX

k:(Ayk)r��r

�k = �r

and �r is integer for every row r and integer �r. Pick an arbitrary row, say r, and branch
on the constraintsX

k:(Ayk)r��r

�k � �r � 1 and
X

k:(Ayk)r��r

�k � �r:
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Because, the current fractional solution is still feasible in the latter branch, we look for
a row s such thatX

k:(Ayk)r��r^(Ayk)s��s

�k = �s

and �s is fractional. If such a row exists, we branch on the constraintsX
k:(Ayk)r��r^(Ayk)s��s

�k � b�sc and
X

k:(Ayk)r��r^(Ayk)s��s

�k � d�se:

Otherwise we seek a third row. We note that if the solution is fractional it is always
possible to �nd a set of rows to branch on and that a set of l rows gives rise to l + 1
branches.

The branching scheme presented above applied to set partitioning master problems
gives precisely the branching scheme of Ryan and Foster [1981] discussed in Section 4.1.
To see this, note that by Proposition 1 we can always branch on two rows, say r and s,
that the �rst branch de�ned byX

k:yrk�1

�k � 0

is empty, and that the other two branches de�ned byX
k:yrk�1^ysk�1

�k � 0 and
X

k:yrk�1^ysk�1

�k � 1

are exactly those de�ned by the branching scheme of Ryan and Foster.

5 LP solution

The computationally most intensive component of a branch-and-price algorithm is the
solution of the linear programs. Therefore, we have to concentrate on solving these
linear programs e�ciently to obtain e�cient branch-and-price algorithms. We consider
two alternatives to accomplish this

� Employ specialized simplex procedures that exploit the problem structure.

� Alter the master problem formulation to reduce the number columns.
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5.1 Key Formulations

Again consider the master problem given by (8), but with an equality convexity con-
straint.

max
X

1�j�n

X
1�k�pj

(cjy
j
k)�

j
k

X
1�j�n

X
1�k�pj

yjik�
j
ik = 1; i = 1; :::; m; (15)

X
1�k�pj

�jk = 1; j = 1; :::; n;

�jk 2 f0; 1g; j = 1; :::; n; k = 1; :::; pj:

Since the column generation form of P has the Dantzig-Wolfe master program structure,
it can be solved using specialized solution procedures such as the generalized upper
bounding procedure of Dantzig and Van Slyke [1967] or the partitioning procedure of
Rosen [1964]. Both of these procedures exploit the block-diagonal problem structure of
(15) and perform all steps of the simplex method on a reduced working basis of dimension
m. Both methods transform the MP problem formulation by selecting a key extreme
point solution �j and substituting ��j = 1 �

P
1�k�pj;k 6=�j

�j
k
for each subproblem j.

With this substitution, the key formulation of (15) becomes

max
X

1�j�n

X
1�k�pj

(cj(y
j
k � y�j ))�

j
k +

X
1�j�n

cjy�j

X
1�j�n

X
1�k�pj ;k 6=�j

(yjik � yi�j)�
j
k = 1�

X
1�j�n

yi�j i = 1; :::m; (16)

X
1�k�pj ;k 6=�j

�jk � 1 j = 1; : : : ; n;

�jk 2 f0; 1g j = 1; : : : ; n; k = 1; : : : ; pj :

The variable �jk indicates whether the key extreme point �j of subproblem j should be

transformed into extreme point k of subproblem j (�jk = 1) or not (�jk = 0). To enforce

nonnegativity of ��j , the key nonnegativity constraints
P

1�k�pj ;k 6=�j �
j

k � 1 are required.
They can be added explicitly, but in both the Dantzig-Van Slyke and Rosen procedures,
the key nonnegativity constraints are handled implicitly by changing the key extreme
point.

To illustrate, consider the multi-commodity network 
ow problem. In a column
generation formulation of the multi-commodity 
ow problem, the variables represent
origin-destination 
ows of commodities. In the associated key formulation, a speci�c
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origin-destination path p�j is selected for each commodity j to serve as a key path. Any
other origin-destination path pj for commodity j will be represented by a column with

+1 for each arc in pj and not in p�j ;

-1 for each arc in p�j and not in pj ;

0 for each arc in both or neither pj and p�j ; and

+1 for the key path nonnegativity constraint for j.

The variables of the key formulation represent the symmetric di�erence between the
key path for a commodity and some other origin-destination path for that commodity.
Since the symmetric di�erence of two paths that share a common origin and destination
is a set of cycles, we can think of these variables as representing 
ow shifts around these
cycles, i.e., 
ow is removed from the key path and placed on an alternative path. (A
detailed description is provided in Barnhart et al. [1991].)

Although the Dantzig-Van Slyke and Rosen procedures will improve LP solution
times, because of the smaller working basis, they do not prevent tailing-o�, i.e., slow
convergence to LP optimality, which is a major e�ciency issue for column generation
procedures. To reduce the tailing-o� e�ect, an alternate key formulation having far fewer
columns may be used. The idea behind the alternate key formulation is to allow columns
to be represented as a combination of simpler columns.

Consider the multi-commodity 
ow problem again. In the key formulation for the
multi-commodity 
ow problem, each column corresponds to sets of disjoint cycles. Refer
to a column containing a single cycle as a simple cycle and to one containing multiple
cycles as a compound cycle. Since every compound cycle can be represented as the sum
of simple cycles, every possible multi-commodity 
ow solution can be represented with
just simple cycles. In the column generation framework, each column generated by the
pricing problem has to be decomposed into simple cycles and only the simple cycles not
already present in the restricted simple cycle master problem are added.

Since several simple cycles can be chosen, the key path nonnegativity constraints
have to be modi�ed. The nonnegativity constraint for each key path p�j can be replaced
by a set of constraints, one for each key path arc, ensuring that the 
ow on the arc is
nonnegative. As above these constraints can be handled implicitly. As will be explained
later, the LP relaxations of the original key formulation and this alternate simple cycle
formulation have equal optimal objective function values.

The idea presented above for the multi-commodity 
ow problem generalizes to any
problem with the master program structure of (8). As before, the key formulation is
obtained by selecting a key column �j for subproblem j and substituting it out, i.e.,
replacing all other columns k of subproblem j by a column with
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+1 for each element in k and not in �j ;

-1 for each element in k and not in j ;

0 for each element in both or neither k and �j ; and

+1 for the key column nonnegativity constraint for j.

These columns are referred to as exchanges since one or more elements in the key col-
umn �j may be removed from the solution and replaced by new elements in column k.
Similar to the concept of simple cycles in the multi-commodity 
ow context, a column
in the key formulation that cannot be represented as the sum of other columns is called
an elementary exchange. In a column generation procedure, if recognizing elementary
exchanges is di�cult, a column generated by the pricing problem can be added as is.
This will result in additional columns but will not a�ect the validity of the formulation.

To satisfy the key column nonnegativity constraints, we can add a constraint for each
element in a key column that ensures that at most one elementary exchange contains it,
i.e., X

k: i2k

�jk � 1 i 2 �j ; j = 1; :::; n: (17)

For example, if the key column contains elements 1,2,3 and exchanges 1 and 2 remove
element 1, exchanges 1 and 3 remove element 2, and exchanges 2 and 3 remove element
3, then (17) yields

�j1+ �j2 � 1

�j1+ �j3 � 1

�j2+ �j3 � 1:

While the key formulation (16) is equivalent to the elementary exchange formulation, the
linear programming relaxation of the elementary exchange formulation may be weaker.
To see this, note that in the above example �1 = �2 = �3 = 1

2 is feasible to (17) but
would be excluded by the nonnegativity constraints of (16). However, in the case of
multi-commoddity 
ows, the constraints of (17) are totally unimodular and the linear
programming relaxations give the same bound. To see this, observe that any simple
cycle meets a set of consecutive arcs on a key path and therefore the rows of (17) can be
organized to have the consecutive ones property.

Fractional solutions to the elementary exchange formulation can be removed by the
addition of cutting planes derived from the node packing polytope or by branching.
The computational advantage of working with a key formulation based on elementary
exchanges can be substantial, as demonstrated by Vance [1993].

24



5.2 Column management

In a maximization linear program, any column with positive reduced cost is a candidate
to enter the basis. The pricing problem �nds the column with highest reduced cost.
Therefore, if a column with positive reduced cost exists the pricing problem will always
identify it. This guarantees that the optimal solution to the linear program will be found.

However, it is not necessary to select the column with the highest reduced cost; any
column with a positive reduced cost will do. Using this observation can improve the
overall e�ciency when the pricing problem is computationally intensive.

Various column generation schemes can be developed based on using approximation
algorithms to solve the pricing problem. To guarantee optimality, a two-phase approach
is applied. As long as an approximation algorithm for the pricing problem produces a
column with positive reduced cost, that column will be added to the restricted master.
If the approximation algorithm fails to produce a column with positive reduced cost, an
optimization algorithm for the pricing problem is invoked to prove optimality or produce
a column with positive reduced cost. Such a scheme reduces the computation time per
iteration. However, the number of iterations may increase, and it is not certain that the
overall e�ect is positive. Depending on the pricing problem, it may even be possible to
generate more than one column with positive reduced cost per iteration without a large
increase in computation time. Such a scheme increases the time per iteration, since a
larger restricted master has to be solved, but it may decrease the number of iterations.

During the column generation process, the restricted master problem keeps growing.
It may be advantageous to delete nonbasic columns with very negative reduced cost from
the restricted master problem in order to reduce the time per iteration.

These ideas can be combined into the following general column generation scheme:

1. Determine an initial feasible restricted master problem.

2. Initialize the column pool to be empty.

3. Solve the current restricted master problem.

4. Delete nonbasic columns with high negative reduced costs from the restricted mas-
ter problem.

5. If the column pool still contains columns with positive reduced costs, select a subset
of them, add them to the restricted master, and go to 3.

6. Empty the column pool.

7. Invoke an approximation algorithm for the pricing problem to generate one or
more columns with positive reduced cost. If columns are generated, add them to
the column pool and go to 5.
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8. Invoke an optimization algorithm for the pricing problem to prove optimality or
generate one or more columns with positive reduced costs. If columns are gener-
ated, add them to the column pool and go to 5.

9. Stop.

A very fast and promising approach to generate columns with positive reduced costs is
to use improvement algorithms that take existing columns with reduced cost equal to
zero (at least all basic columns satisfy this requirement) and try to construct columns
with a positive reduced cost by performing some simple changes [Sol and Savelsbergh
1994].

Notice the similarity between the column management functions performed in branch-
and-price algorithms and the row management functions performed in branch-and-cut
algorithms.

5.3 Alternative bounds

The branch-and-bound framework has some inherent 
exibility that can be exploited in
branch-and-price algorithms. Observe that branch-and-bound is essentially an enumer-
ation scheme that is enhanced by fathoming based substantially on bound comparisons.
To control the size of the branch-and-bound tree it is best to work with strong bounds,
however the method will work with any bound. Clearly, there is a tradeo� between the
computational e�orts associated with computing strong bounds and evaluating small
trees and computing weaker bounds and evaluating bigger trees. In the case of lin-
ear programming based branch-and-bound algorithms in which the linear programs are
solved by column generation, there is a very natural way to explore this tradeo�, espe-
cially when the pricing problem is hard to solve. Instead of solving the linear program
to optimality, i.e., generating columns as long as pro�table columns exist, we can choose
to prematurely end the column generation process and work with nonoptimal linear
programming solutions.

In some situations prematurely ending the column generation process will not even
a�ect the size of the branch-and-bound tree. Suppose we have an upper bound on the
optimal value of the unrestricted master LP. If the objective function value of the integer
program is known to be integer, column generation can be stopped once the optimal value
of the restricted master problem exceeds the round down of this upper bound.

Lasdon [1970] and Farley [1990] describe simple and easy to compute bounds on the
�nal LP value based on the LP value of the current restricted master problem and the
current reduced costs. Vance et al. [1993] used Farley's observation to prematurely end
the column generation process in the root node in their algorithm for the cutting stock
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problem. At nodes deeper in the tree, the LP bound of the parent can be used as an
upper bound.

In many situations, the pricing problem is extremely hard to solve and it is only
feasible, computationally, to solve it approximately. Obviously, in that situation, we
cannot guarantee optimality of the current LP solution when we cannot identify any
pro�table columns, but we can branch anyway.

5.4 Combining column generation and row generation

Combining column and row generation can yield very strong LP relaxations. However,
synthesizing the two generation processes is nontrivial. The principle di�culty is their
incompatibility. That is, the pricing (separation) problem can be much harder after
additional rows (columns) are added, because the new rows (columns) can destroy the
structure of the pricing (separation) problem.

One remedy is to dualize the additional constraints using Lagrangian relaxation.
Another is to do the pricing only over the original rows, i.e., assuming that the new
columns have 0 coe�cients in the additional rows. But then it may be necessary to
update the columns coe�cients over the additional rows in order to maintain validity,
see Mehrotra [1992], or it may be desirable to lift the coe�cients to increase the strength
of the valid inequality. Then after the lifting is done, it may be the case that the column
no longer prices out favorably.

Despite these di�culties, there have been some successful applications of combined
row and column generation. In problem situations where the objective is to partition the
ground set into a minimum number of feasible subsets, such as minimizing the number
of vehicles required to satisfy customer demands in routing and scheduling problems,
an LP solution with fractional objective function value v can be cut o� by adding a
constraint that bounds the LP solution from above by bvc. Because every column has a
coe�cient 1 in this additional constraint, the constraint does not complicate the pricing
problem and can easily be handled.

The most successful optimization algorithms for the traveling salesman problem use
branch-and-cut, see Junger, Reinelt and Rinaldi [1994] for a recent survey. However,
these algorithms only maintain columns for a small subset of the edges. Consequently,
when the LP is solved for this reduced edge set, it is necessary to price out all the edges
not in this set to verify that a true lower bound has been found. If edges with favorable
reduced costs are identi�ed, they are added to the reduced edge set and the process is
repeated.

Nemhauser and Park [1991] combine column and row generation in an LP based algo-
rithm for the edge coloring problem. No branching in the master problem is required on
the instances they solve. The edge coloring problem requires a partitioning of the edges
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of a graph into a minimum cardinality set of matchings. Therefore, it can naturally be
formulated as a set partitioning problem in which the columns correspond to matchings
of the graph. Consequently, the pricing problem is a weighted matching problem. How-
ever, to strengthen the linear programming relaxation, they add odd-circuit constraints
to the restricted master, which destroys the pure matching structure of the pricing prob-
lem. The pricing problem now becomes a matching problem with an additional variable
for each odd circuit constraint, and an additional constraint for each odd circuit variable
which relates the odd circuit variable to the edge variables in the circuit. This problem
is solved by branch-and-cut. The approach points out the need for recursive calling of
integer programming systems for the solution of complex problems.

6 Implementation

Although implementing branch-and-price algorithms (or branch-and-cut algorithms) is
still a nontrivial activity, the availability of 
exible linear and integer programming
systems has made it a less formidable task than it would have been three years ago.

Modern simplex codes, such as CPLEX [CPLEX Optimization, 1990] and OSL [IBM
Corporation, 1990] not only permit column generation while solving an LP but also
allow the embedding of column generation LP solving into a general branch-and-bound
structure for solving MIPs.

The use of MINTO [Nemhauser, Savelsbergh, and Sigismondi 1994, Savelsbergh and
Nemhauser 1993] may reduce the implementation e�orts even further. MINTO (Mixed
INTeger Optimizer) is based on the belief that to solve large mixed-integer programs
e�ciently, without having to develop a full-blown special purpose code in each case,
you need an e�ective general purpose mixed integer optimizer that can be customized
through the incorporation of application functions. Its strength is that it allows users to
concentrate on problem speci�c aspects rather than data structures and implementation
details such as linear programming and branch-and-bound.

Figures 2 and 3 give the basic 
ow of control in MINTO and the associated appli-
cation functions. A call to an application function temporarily transfers control to the
application program, which can either accept control or decline control. If control is
accepted, the application program performs the associated task. If control is declined,
MINTO performs a default action, which in many cases will be \do nothing". To di�eren-
tiate between actions carried out by the system and those carried out by the application
program, there are di�erent \boxes". System actions are in solid line boxes and appli-
cation program actions are in dashed line boxes. A solid line box with a dashed line
box enclosed is used whenever an action can be performed by both the system and the
application program. Finally, to indicate that an action has to be performed by either
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Figure 2: The underlying algorithm
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the system or the application program, but not both, a box with one half in solid lines
and the other half in dashed lines is used. If an application program does not carry out
an action, but one is required, the system falls back to a default action. For instance, if
an application program does not provide a division scheme for the branching task, the
system will apply the default branching scheme.

The 
ow-chart shows two main loops: an inner loop to allow column generation and
an outer loop to allow row generation. Column management can be done using the
functions appl delvars, appl vars, appl terminatelp and row management can be
done using the functions appl delcons, appl cons, appl terminatenode. Developing
a special branching scheme can be done using the function appl divide.

To start the column generation scheme, an initial restricted master problem has to
be provided by appl mps. This initial restricted master problem must have a feasible
LP relaxation to ensure that proper dual information is passed to the pricing problem
(appl vars). Depending on the application, it is not always obvious how to construct
such an initial restricted master. However, if it exists, such an initial restricted master
can always be found using a two-phase method similar in spirit to the two-phase method
incorporated in simplex algorithms to �nd an initial basic feasible solution: either by
adding a single arti�cial variable with a large negative cost and associated column con-
sisting of all ones or by adding a set of arti�cial variables with large negative costs and
associated columns that form an identity matrix. The arti�cial variables ensure that a
feasible solution to the LP relaxation exists. The arti�cial variables are kept at all nodes
of the branch-and-bound tree for the same reason.

7 Computational Experience

7.1 The Binary Cutting Stock Problem

Vance et al. [1993] solve binary cutting stock problems using a branch-and-price algo-
rithm. Columns are generated by solving a binary knapsack problem with the optimal
dual prices from the rows of the master problem as the prices on the items. The branch-
ing rule is identical to the Ryan and Foster rule presented earlier. In cutting stock terms,
this rule requires two items to be contained in the same pattern on one branch and dif-
ferent patterns on the other branch. On the branch where the two items must be in the
same pattern, the resulting knapsack pricing problem has a new super item replacing
those two items. Thus, on this branch, the column generation problem is a knapsack
problem with one fewer item. On the other branch a constraint is added to the knapsack
problem that allows at most one of the items to be chosen. While this pricing problem is
somewhat more di�cult than a knapsack problem, it can still be solved quickly if there
are not too many additional constraints.
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Computational results are reported for randomly generated test problems. The
branch-and-price algorithm was able to solve in seconds problems that could not be
solved using a standard branch-and-bound procedure on an explicit formulation. Stan-
dard branch-and-bound procedures were unable to solve problems with more than 70
items. The largest problems solved using the branch-and-price algorithm had 500 items
and they were solved in less than an hour on an IBM RS/6000.

7.2 The Generalized Assignment Problem

Savelsbergh [1993] develops a branch-and-price algorithm for the generalized assignment
problem discussed in Section 2. The pricing problem is given by

max
1�j�n

fz(KPj)� vjg;

where vj is the optimal dual price from the solution to the restricted master problem
associated with the convexity constraint of machine j and z(KPj) is the value of the
optimal solution to the knapsack problem

max
X

1�i�m

(pij � ui)y
j
i

subject toX
1�i�m

wijy
j
i � dj

yji 2 f0; 1g j = 1; :::; n

with ui being the optimal dual price from the solution to the restricted master problem
associated with the partitioning constraint of task i. A column prices out to enter the
basis if its reduced cost is positive. Consequently, if the objective value of the pricing
problem is less than or equal to zero, then the current optimal solution for the restricted
master problem is also optimal for the (unrestricted) master problem. The branching
rule described in Section 4 for master problems with several convexity rows is used. This
rule assigns task i to machine j on one branch and forbids machine j to perform task
i on the other. In both cases, the size of the pricing problem for machine j is reduced
by one task. Furthermore, on the branch where task i must be performed by machine j,
task i may also be deleted from the pricing problem for each of the other machines.

Computational results indicate that the branch-and-price algorithm clearly outper-
forms existing algorithms and is able to solve much larger instances. In one of the com-
putational experiments the average number of nodes required by the branch-and-price
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algorithm was compared with the average number of nodes required by the dual ascent
algorithm of Guignard and Rosenwein [1989] for ten randomly generated instances in
four di�erent problem classes. The results are given in Table 1. Although in theory both
algorithms use the same bounds, the branch-and-price algorithm clearly does better.
Possible explanations for this phenomenon have been discussed in Section 3.

Table 1: Dual ascent versus branch-and-price

Dual ascent branch-and-price

problem class #nodes #nodes

A,5,50 7. 1.0
B,10,50 101. 1.6
C,10,50 156. 5.7
D,5,30 102. 40.0

7.3 The Urban Transit Crew Scheduling Problem

Desrochers and Soumis [1989] use a branch-and-price algorithm to solve the urban tran-
sit crew scheduling problem (UTCS). An instance of UTCS is de�ned by a bus schedule
and the collective agreement between the drivers and management. The schedule de�nes
a set of tasks that must be performed and the collective agreement places restrictions
on feasible workdays for the drivers and dictates the cost of those workdays. The agree-
ment may also place global restrictions on the types of workdays included in the schedule.
The master problem is a set covering problem with additional constraints. There is a
set covering constraint for each task to be performed, and columns representing feasible
workdays for a bus driver. The set covering constraints ensure that at least one driver is
assigned to each task. The additional constraints enforce any global restrictions on the
characteristics of the �nal solution. For example, the number of workdays in the solu-
tion whose total elapsed time is less than a given threshold may be limited to a certain
percentage of the total number of workdays. Columns are generated by solving a con-
strained shortest path problem on a specially constructed network. The branching rule
is similar to the Ryan and Foster rule presented earlier except that instead of branching
on whether two tasks are executed in the same workday, they branch on whether two
tasks are executed consecutively in the same workday. This rule is more easily enforced
in the constrained shortest path procedure than the more general rule.

The authors present computational results for two real-world problems. In both
cases, the branch-and-price algorithm constructed solutions with lower cost than the
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best known solutions.

7.4 The Bandwidth Packing Problem

The bandwidth packing problem is to decide which calls on a list of requests should
be chosen to route on a capacitated network. An example is the routing of video data
for teleconferencing within a private network. The objective is to minimize the costs of
routing the selected calls plus the revenue lost from unrouted calls. Parker and Ryan
[1994] formulate this problem as an integer program as follows.

Let Pi denote a set of feasible paths for call i. Let ri denote the revenue of call i, di
the demand of call i in units of bandwidth, ue denote the capacity of link e in bandwidth,
and ce denote the usage cost of transmitting one bandwidth on link e. Let L be the set
of all links. There are two types of variables

xij =

(
1 if call i uses path j
0 otherwise

and

yi =

(
1 if call i is not routed
0 otherwise

:

Let �ej be the indicator that is 1 if link e is in path j and 0 otherwise and assume
that there are n calls to be routed. The problem formulation is

min
X
e2L

ce

nX
i=1

X
j2Pi

�ejdixij +
nX
i=1

riyi

subject to X
j2Pi

xij + yi = 1 for each call i

nX
i=1

X
j2Pi

�ejdixij � ue for each link e.

The �rst set of constraints ensures that each call is either routed or not, and the
second set ensures the satisfaction of link capacities. The solution method uses column
generation to solve the LP relaxations within a branch and bound scheme. The LP
relaxations are similar to multi-commodity network 
ow problems and are solved using
standard column generation solution techniques. To obtain integer solutions, Parker and
Ryan use a hybrid branching strategy. Speci�cally, they �rst create one branch setting
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xij to 1. This rule is easy to enforce in the pricing subproblem by deleting call i from the
problem, and removing di from the capacity of all links on path j. Since forcing xij to
0 is di�cult to enforce in the pricing subproblem, xij = 0 is satis�ed by creating several
branches, one for each link of path j. If the links of path j are e1; e2; : : : ; ek, k new
branches are created. At the `th branch, they delete the column corresponding to xij ,
and any other column in which call i uses link e`. The pricing subproblem is prevented
from generating any of the deleted paths by removing link e` from the network.

Parker and Ryan tested their algorithm on 14 problems ranging in size from 14 to
30 nodes and 23 to 93 calls. They report running times to �nd optimal solutions from 8
seconds to over 8 hours on a VAX 8800, and conclude that the algorithm is a practical
procedure for solving a class of real world problem. Further investigations are proposed
to use cutting planes at selected nodes in the branch and bound tree to reduce the
computational e�ort.
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