
Branc
Netwo
Manag

Jardar A
Roar Gr
Marielle
Teodor

Decemb

CIRREL

ch-and-P
ork Desi
gement

Andersen
rønhaug
e Christians
Gabriel Cr

ber 2007

LT-2007-55

Price for
gn with
Constra

sen
rainic

r Service
Asset

aints

e

Branch-and-Price for Service Network Design
with Asset Management Constraints

Jardar Andersen1,* , Roar Grønhaug1, Marielle Christiansen1,

Teodor Gabriel Crainic2

1 Department of Industrial Economics and Technology Management, Norwegian University of

Science and Technology, 7491 Trondheim, Norway
2 Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation

(CIRRELT), and NSERC Industrial Research Chair on Logistics Management, Université du
Québec à Montréal, C.P. 8888, succursale Centre-ville, Montréal, Canada H3C 3P8

Abstract. We present a branch-and-price algorithm for solving the service network design

problem with asset management constraints, SNDAM. The asset management constraints

may result from vehicle management in applications from transportation. The problem is a

multicommodity network design problem with additional constraints restricting and

connecting the integer design variables. As a result of these constraints, design variables

are cycles in a cyclic time-space network, while the flow variables are paths in the same

network. Separate subproblems generate design cycles and paths for commodity flows to

the restricted master problem. The computational study shows that we are able to find

near-optimal solutions for large network instances.

Keywords. Service network design, branch-and-price, column generation, vehicle

management, asset management.

Acknowledgements. This work has received financial support from The Norwegian

Research Council through the Polcorridor Logchain project. Partial funding has also been

supplied by the Natural Sciences and Engineering Research Council of Canada (NSERC)

through its Discovery and Industrial Research Chair programs.

Results and views expressed in this publication are the sole responsibility of the authors and do not
necessarily reflect those of CIRRELT.

Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du
CIRRELT et n'engagent pas sa responsabilité.

* Corresponding author: jardar.andersen@iot.ntnu.no

Dépôt légal – Bibliothèque nationale du Québec,
 Bibliothèque nationale du Canada, 2007

© Copyright Andersen, Grønhaug, Christiansen, Crainic and CIRRELT, 2007

Introduction
Improvements in solution techniques and computational capacity continuously increase the range of
tractable optimization problems. Simultaneously, real-world planning problems challenge the OR
community to study increasingly larger and more complex optimization problems. New
requirements from practical applications result in new constraints that have to be modeled, and this
also encourages development of solution methods that can solve the new models. In particular, there
has recently been an increase in new service network design models for planning problems in
transportation. What these models have in common is an increased focus on utilization and
management of vehicles in addition to the traditional decisions on service selection and flow routing.
One issue that has been studied in the literature is ensuring that there is an equal number of vehicles
entering and leaving each node in the network. Constraints ensuring this are referred to as design
balance constraints (Pedersen and Crainic, 2007). Design balance constraints have been modeled for
various modes of transportation, see e.g. (Smilowitz et al., 2003), (Lai and Lo, 2004), (Barnhart and
Schneur, 1996) and (Kim et al., 1999). Andersen et al. (2007a) introduce more aspects of vehicle
management in network design, including fleet sizing and -management.

Andersen et al. (2007b) present a framework for Service Network Design with Asset
Management constraints (SNDAM), which is a richer problem than the problem studied in (Pedersen
and Crainic, 2007). Asset is a generic term for something a person or an organization owns. In carrier
terms, it refers to what we usually call resources. It may be a power unit (a tractor or a locomotive),
a carrying unit (a railcar, a trailer, a truck, a ship, etc.), a loading/unloading unit (cranes in
terminals), a crew, etc. The term asset management reflects that assets have to be managed
intelligently in order to obtain efficient operations.

The SNDAM model of (Andersen et al., 2007b) addresses the case when only one asset is
controlled, and to increase readability we refer to the assets as “vehicles”. The SNDAM model
allows for cycles as design variables corresponding to vehicle rotations in time-space networks, and
the computational study of (Andersen et al., 2007b) indicates that cycle variables contribute to
efficient model solving. Cycle variables have also been implemented for other problems. For
instance, Sigurd et al. (2005) work on a cycle representation of ship schedules in a pickup and
delivery problem, and use column generation to generate schedules. Agarwal and Ergun (2006)
introduce cycle variables for a cargo routing problem in liner shipping, where cycles represent ship
schedules. They report promising computational results based on column generation and benders
decomposition.

The focus in (Andersen et al., 2007b) was on model development, as the main objective was to
compare alternative SNDAM formulations. The computational study was based on a priori
enumeration of cycles and paths, which imposes huge memory requirements for larger instances, and
the enumeration of cycles is impractical for large problems. There is thus a need for more advanced
solution strategies that can solve realistically-sized problems of this character.

The purpose of this paper is to address the need for advanced solution methods for the SNDAM
problem that was presented in (Andersen et al., 2007b), and we therefore develop a tailormade
branch-and-price algorithm for the SNDAM problem. A variable-fixing technique is introduced to
enhance the performance of the algorithm. We are able to find good integer solutions for problems
that are considerably larger than what was solved in (Andersen et al., 2007b).

Branch-and-Price for Service Network Design with Asset Management Constraints

CIRRELT-2007-55 1

The contribution of the paper is a tailormade solution approach for the SNDAM problem that can
solve realistically-sized problems. The computational study indicates that the algorithms are able to
produce good integer solutions within reasonable computational time. The algorithms thus lay the
ground for improved planning of problems where these additional constraints occur, for instance in
service network design studies where fleet management is considered.

The outline of this paper is as follows. In Section 1, we recall the SNDAM formulation. In
Section 2, we propose a branch-and-price algorithm for solving SNDAM. The computational study
is presented in Section 3, while concluding remarks follow in Section 4.

1 Service Network Design with Asset Management
In this section we recall the service network design problem with asset management constraints,
SNDAM, that was presented in (Andersen et al., 2007b). A problem description follows in Section
1.1, while we in Section 1.2 recall two SNDAM formulations from (Andersen et al., 2007b).

1.1 Problem description
In the classical service network design formulation (see e.g. (Crainic, 2000)) we consider a set of
services that may be opened to accommodate a demand for flow through the system. Major decisions
are selection of services and routing of the flow on services. Crainic (2000) differentiated between
frequency and dynamic service network design models. Frequency models address strategic/tactical
issues like what services to operate and how often to operate them. Dynamic models target planning
of schedules and are typically concerned with when services depart. The SNDAM model is
developed within a dynamic service network design setting. A given planning horizon is assumed,
and the services have to be operated in a repetitive manner representing fixed schedules of real-
world transportation services.

Demand in the system is defined in terms of commodities (products) requiring transport through
the network. Each commodity has an associated volume that has to be transported from the
commodity’s origin node to its destination node. The commodities have specific times where they
become available, but they may arrive at their destinations at any time, as long as they are
transported to their destinations within the length of the planning horizon.

Operation of services requires vehicles, which are available in a limited quantity. There is thus a
need to consider a set of vehicle management issues when the services are designed, which extend
the formulations in (Crainic, 2000). Firstly, we have to make sure that for all terminals, there is an
equal number of vehicles entering and leaving, referred to as vehicle balance or design balance.
Moreover, there may not be more simultaneous activities taking place than the given fleet of vehicles
allow for. A third issue from (Andersen et al., 2007b) is the existence of lower and upper bounds on
the number of occurrences of each service, for instance that a service should be operated at least 3
times and at most 7 times each week.

A fourth aspect from (Andersen et al., 2007b) is limited durations of vehicle routes, which may
be captured by a route length requirement. The idea is that vehicles should not have longer routes
than the planning horizon considered, as illustrated in Figure 1. In Figure 1, we have three vehicles
operating in a cyclic time-space network, which is representing five terminals and a planning
horizon divided into seven time periods. In Figure 1, design balance is satisfied for all nodes.
However, we observe that the vehicles represented with dotted arcs interchange the arcs they cover
in every second realization of the planning horizon. It thus takes two repetitions of the planning

Branch-and-Price for Service Network Design with Asset Management Constraints

CIRRELT-2007-55 2

horizon for a vehicle to return to its initial pattern. The operations in Figure 1 represented with
dotted arcs will not be feasible if we impose route length requirements. However, the combination of
solid arcs in Figure 1 represents an operation of a vehicle that satisfies the route length requirements.

Figure 1. Time-space network with two two-horizon cycles and one 1-horizon cycle.

In traditional service network design studies, one considers service selection cost associated with
operation of services, and flow costs associated for commodities utilizing services (Crainic, 2000). In
the SNDAM problem of (Andersen et al., 2007b), it is assumed that there are high fixed costs
associated with vehicles, and that these costs dominate the service selection costs. This is based on a
planning problem in the rail freight industry, where the acquisition costs for locomotives appeared to
be the dominant cost factor. Inclusion of service selection costs would however not introduce any
structural changes to the SNDAM models that we recall in the next subsection.

1.2 SNDAM models
We assume that we have a static network ' (', ')=G N A with nodes representing terminals and
intersections, and arcs representing connections. The planning horizon is divided into a set of time
periods { }1,.., MAXT=T= , and we introduce the graph (,)=G NxA for the time-space network. A node

' 'i ∈ N in the static network has MAXT realizations in the time-space network. Each of these nodes
i ∈ N in the time-space network has an associated time period, iT ∈T , and represents a physical
node 'iODN ∈ N . The arcs (', ') 'i j ∈ A in the static network are also available in MAXT realizations,
one for each time period. We consider one repetition of the planning horizon with time period MAXT
preceding time period 1, giving a cyclic time-space network.

In time-space networks, holding arcs are required when modeling real-world planning problems.
Holding arcs represent vehicles or flow units kept at a static node from one time period to the next.
In the following we assume that the models always have holding arcs for the flow, so that flow units
may be kept at a physical node from one time period to the next. Thus, the holding arcs link
consecutive representations in time of the same physical node. Holding arcs are assumed to have
infinite capacity both for vehicles and for flow. We do not complicate the model formulation with
notation and variables for the holding arcs.

6 5 4 3 2 1 TMAX Time

N
od

es
 in

 p
hy

si
ca

l n
et

w
or

k

Branch-and-Price for Service Network Design with Asset Management Constraints

CIRRELT-2007-55 3

Without loss of generality we assume that all service arcs (,)i j ∈ A are design arcs. To simplify
the presentation, we assume that the arcs (', ') 'i j ∈ A represent services, hence we do not consider
services consisting of multiple arcs. The different time realizations (,)i j ∈ A represent alternative
departure times of the service connections (', ') 'i j ∈ A . Lower and upper bounds on the number of
occurrences of each service are labeled ' 'i jL and ' 'i jU , respectively. For the demand, we define for

each commodity p ∈ P the volume pw to be transported from the commodity’s origin node po to its
destination node pd .

In order to model the asset management constraints, we introduce vehicles v ∈ V , available in a
quantity of | |MAXV = V |. Any service arc that is opened has to utilize one of these vehicles. For each
vehicle v ∈ V we introduce a binary decision variable vδ , which is 1 if vehicle v is utilized, and 0
otherwise. The cost for utilizing a vehicle is f .

In classical service network design formulations, there are binary variables indicating whether a
service arc is opened or not. In order to satisfy the route length requirements, these variables have to
be indexed by vehicle in the SNDAM formulation, and are labeled ijvy . Flow variables p

ijx are
nonnegative real numbers. Each design arc ijvy has an associated capacity iju . For each unit of

commodity p there is a flow cost p
ijc for traversing arc (,)i j ∈ A . For each node we define sets

{ }() : (,)i j i j+ = ∈ ∈N N A and { }() : (,)i j j i− = ∈ ∈N N A of outward and inward neighbors. We

also define { }min ,p p
ij ijb w u= . The SNDAM model is recalled in (1) – (11):

(,)

p p
ij ij v

i j p v

Min z c x f δ
∈ ∈ ∈

 = +∑ ∑ ∑
A P V

 (1)

(,) :

0,
i j

ijv v
i j T t T

y δ
∈ ≤ <

− =∑
A :

 ,t v∀ ∈ ∈T V, (2)

() ()

0,ijv jiv
j i j i

y y
+ −∈ ∈

− =∑ ∑
N N

 ,i v∀ ∈ ∈Nv V , (3)

1,ijv
v

y
∈

≤∑
V

 (,) ,i j∀ ∈ A v (4)

' ' ' '
(,) : ' 'OD ODi j

i j ijv i j
i j N i N j v

L y U
∈ = = ∈

≤ ≤∑ ∑
UA V

, (', ') 'i j∀ ∈ A v, (5)

Branch-and-Price for Service Network Design with Asset Management Constraints

CIRRELT-2007-55 4

() ()

,
,

0, ,

p p

p p p p
ij ji

j i j i

w i o
x x w i d

otherwise
+ −∈ ∈

⎧ =
⎪

− = − =⎨
⎪
⎩

∑ ∑
N N

 ,p i∀ ∈ ∈P Nv, (6)

0p
ij ij ijv

p v

x u y
∈ ∈

− ≤∑ ∑
P V

, (,) ,i j∀ ∈ A v (7)

0p p
ij ij ijv

v

x b y
∈

− ≤∑
V

, (,) ,i j p∀ ∈ ∈Av P , (8)

0p
ijx ≥ , (,) ,i j p∀ ∈ ∈Av P , (9)

{ }0,1ijvy ∈ , (,) ,i j v∀ ∈ ∈A V , (10)

{ }0,1vδ ∈ , v∀ ∈ V . (11)

The objective function (1) minimizes the sum of flow costs and costs associated with use of
vehicles. Constraints (2) state that for each time period, if a vehicle is utilized, it should be engaged
in one and only one activity, corresponding to the route length requirements. Constraints (3) are the
vehicle balance constraints, stating that for each node, there is an equal number of vehicles entering
and leaving. In constraints (4) we ensure that only one vehicle can operate an arc (,)i j ∈ A , which
reflects the property that design arcs in traditional network design formulations are binary variables.
In (5) we present the lower and upper bounds on the number of occurrences of services while flow
balance, as found in traditional network design formulations, is ensured in (6). Constraints (7) and
(8) are weak and strong forcing constraints, respectively, where we need to aggregate over all
vehicles used. Finally, variable-type constraints are given in (9) – (11).

In (Andersen et al., 2007b), four different formulations of the SNDAM model were presented In
this section we recall the formulation with design cycles and flow paths as decision variables, which
in (Andersen et al., 2007b) produced the most promising computational results, and which was
significantly faster solved than (1) – (11). A design cycle consists of a set of design arcs satisfying
design balance constraints (3) and covering each time period exactly once. The latter is a necessary
condition for avoiding multi-planning-horizon cycles, which would violate the route length
requirements. The design variable kg for cycle k ∈ Kv is 1 if cycle k is in the solution and 0
otherwise. Moreover, parameter k

ijm vis 1 if arc (,)i j ∈ A is in cycle k . The cycles have to cover all
time periods in the time-space representation, as exemplified with the cycle indicated with solid arcs
in Figure 1. As is frequently done in network design (see e.g. (Ahuja et al., 1993)), we further define
the set of paths pL that commodity p may use from its origin node to its destination node. For

these paths, we define parameters pl
ija =1 if arc (,)i j ∈ A belongs to path pl ∈L for commodity p ,

0 otherwise. The flow of commodity p on path l is plh , while the flow cost for transporting

Branch-and-Price for Service Network Design with Asset Management Constraints

CIRRELT-2007-55 5

commodity p on path l is plk ,
(,)

pl p pl
ij ij

i j

k c a
∈

= ∑
A

. The SNDAM model with cycle and path

variables is recalled in (12) – (20):

p

pl pl k

p kl

Min z k h f g
∈ ∈∈

 = +∑ ∑ ∑
P KL

 (12)

,k

k

MAXg V
∈

≤∑
K

 (13)

1k k
ij

k

m g
∈

≤∑
K

, (,)i j∀ ∈ A , (14)

' ' ' '
(,) : ' 'OD ODi j

k k
i j ij i j

k i j N i N j

L m g U
∈ ∈ = =

≤ ≤∑ ∑
UK A

, (', ') 'i j∀ ∈ A v, (15)

,
p

pl p

l

h w
∈

=∑
L

 p∀ ∈ P , (16)

0
p

pl pl k k
ij ij ij

p kl

a h u m g
∈ ∈∈

− ≤∑ ∑ ∑
P KL

, (,) ,i j∀ ∈ A v (17)

0
p

pl pl p k k
ij ij ij

kl

a h b m g
∈∈

− ≤∑ ∑
KL

, (,) ,i j p∀ ∈ ∈Av P , (18)

0plh ≥ , , pp l∀ ∈ ∈LP v , (19)

{ }0,1kg ∈ , k∀ ∈ Kv. (20)

The objective function (12) minimizes the sum of flow costs on paths and fixed costs for vehicles
that are utilized. The structurally new constraint compared to model (1) – (11) is (13). This
constraint restricts the cycle selection, stating that the number of selected cycles is limited by the
fleet of vehicles. This property was ensured by the size of set { }1,.., MAXV=V =in model (1) – (11).
Constraints (14) state that each arc (,)i j ∈ A can be chosen by at most one cycle, analogous to (4).
Lower and upper bounds on the number of realizations of static arcs are formulated in (15), and
demand satisfaction is ensured in (16). Weak and strong forcing constraints are found in (17) and
(18), while variable-type constraints appear in (19) – (20). Note that the introduction of cycles and
paths has removed the need for design balance constraints (3) and flow balance constraints (6).
Moreover, because each cycle corresponds to a vehicle and fleet size is accounted for in (13), we no
longer need the binary vδ variables.

Magnanti and Wong (1984) show that the uncapacitated fixed charge network design problem is
NP-hard. As the capacitated version is even harder (Balakrishnan et al., 1997), this problem also
belongs to the class of NP-hard problems. There is no reason to believe that the problem becomes
easier to solve when additional asset management constraints are introduced.

Branch-and-Price for Service Network Design with Asset Management Constraints

CIRRELT-2007-55 6

2 Solving SNDAM with branch-and-price
Among four formulations of the SNDAM model in (Andersen et al., 2007b), formulation (12) – (20)
appeared to be more easily solved than the other formulations. However, the computational study
was limited to instances that could be handled with a priori enumeration of cycles and paths. For
real-world planning problems, complete enumeration is impracticable. In this section we develop a
branch-and-price algorithm for the SNDAM problem, consisting of a column generation algorithm
embedded in a branch-and-bound framework. The algorithm is based on formulation (12) – (20),
and the columns that are generated are design cycles and flow paths. This branch-and-price
framework addresses the need for an exact solution algorithm that may solve real-world instances of
the SNDAM problem. Several topics in column generation are covered in (Desaulniers et al., 2005),
and general introductions to branch-and-price and column generation can be found in (Barnhart et
al., 1998) and (Lübbecke and Desrosiers, 2005).

We recall basic principles of column generation and branch-and-price in Section 2.1. Sections
2.2-2.4 are devoted to the solution of the linear relaxation of the problem; we define the restricted
master problem in Section 2.2 and subproblems in Section 2.3 and 2.4, respectively. Aspects of the
branch-and-price algorithm for the integer problem are presented in Sections 2.5-2.7. Branching
strategies are discussed in Section 2.5, while strategies for obtaining lower and upper bounds are
presented in Sections 2.6 and 2.7, respectively.

2.1 Branch-and-price
Column generation usually refers to the solution of a linear problem, and for (mixed) integer
problems this may correspond to solving the linear relaxation of the underlying problem. To obtain
integer solutions, the column generation is embedded in a branch-and-bound framework. Because of
the pricing of columns within the column generation at each branch-and-bound node, we refer to the
overall approach as branch-and-price. In this subsection we recall the fundamentals of column
generation and branch-and-price.

2.1.1 Column generation
Column generation is a powerful tool for solving optimization problems with a huge number of
variables. The basic principle is to work on a restricted version of the problem including all the rows,
but only a subset of the variables. This restricted problem is referred to as the Restricted Master
Problem (RMP). The variables that are not explicitly represented in the RMP are considered
implicitly by evaluation of one or more subproblems (pricing problems) that evaluate what impact it
would have to include new variables in the RMP given the current solution of the RMP, and add
variables to the RMP if that contributes to an improved solution of the RMP. If no new variables will
contribute to an improved solution of the RMP, we can conclude that the existing solution of the
RMP is the optimal (linear) solution of the original formulation. Because the variables occur as
columns in the master problem, this process is referred to as column generation. We sketch the
column generation process in Figure 2. We first have to initialize the RMP with a feasible basis, and
then dual prices are transferred to the subproblems. If the subproblems identify columns that would
improve the solution of the RMP, these columns are added to the RMP and the process is repeated.
Otherwise, the process is ended and the current solution to the RMP is the optimal one.

Branch-and-Price for Service Network Design with Asset Management Constraints

CIRRELT-2007-55 7

Figure 2. Flow chart for linear column generation.

2.1.2 Branch-and-price algorithm
We present a branch-and-price flowchart in Figure 3. We start by adding the linear relaxation of the
initial problem to a pool of unexplored nodes, this is the root node problem. In a major iteration of
the algorithm, one node is extracted from this pool and solved. If the solution is worse than the
current upper bound, we fathom the node and extract a new node from the pool. Otherwise, we
check whether the solution is integral. If so, we have a new upper bound, otherwise we have to
branch to create new problems that are added to the pool of unexplored nodes.

The box in Figure 3 with thick bold frame contains the column generation algorithm illustrated
in Figure 2. In other words, the column generation is run for each branch-and-bound node. If the
pool of unexplored nodes is empty or if the lower bound is equal to the upper bound, the search is
terminated. If the upper bound has been updated during the search, this is the optimal integer
solution. Otherwise, no feasible integer solution exists.

The lower bound is based on solution of the linear problem, and the lower bound is initially set
to the solution value of the first problem solved (corresponding to the root node). Updates depend on
the search strategy; with a best-first search the lower bound can be updated at each node. In contrast,
with a depth-first strategy, the lower bound can only be updated each time the current top of the tree
is reached after backtracking.

We infer from the branch-and-price literature (see e.g. (Lübbecke and Desrosiers, 2005)), that
branching directly on the integer variables is not likely to succeed in branch-and-price. If we for
instance branch on the binary cycle variables in (12) – (20), we fix the cycle to 1 in one branch and 0
in the other branch. In the branch with the cycle fixed to 0, that same column will immediately be
regenerated, and we will not have reached further towards an integer solution. In addition, the search
tree will be unbalanced. The standard branching technique in branch-and-price is to branch on the
underlying network structure, which for the SNDAM problem means branching on network arcs. We
elaborate on branching strategies in Section 2.5.

Stop

Improving
columns
found?

yes

no Initialize with a
feasible basis

Solve restricted
master problem

Transfer dual
prices to

subproblems
Solve

subproblems

Add columns to
restricted master

problem

Branch-and-Price for Service Network Design with Asset Management Constraints

CIRRELT-2007-55 8

Figure 3. Flow-chart for branch-and-price algorithm.

2.2 Restricted master problem
The restricted master problem (RMP) is a linear relaxation of the SNDAM problem with cycle and
path variables, formulated in (12) – (20). However, in order to reduce the size of the matrix, we
initially exclude the strong forcing constraints (18) from the formulation. For cycles and paths, we

work on subsets from the total amount of cycles and paths; ⊆%K K and p p⊆%L L , respectively. To
obtain the linear relaxation we replace integrality constraints (20) with (20b). We also reformulate
(15) to (15b) by introducing slack variables ' ' (', ') 'i js i j∀ ∈ A , ' ' ' ' ' '0 ()i j i j i js U L≤ ≤ − . The RMP can
be solved with commercial LP-solvers, but the solution times may be substantial for large instances.

' ' ' '
(,) : ' 'OD ODi j

k k
ij i j i j

k i j N i N j

m g s U
∈ ∈ = =

+ =∑ ∑
UK A

, (', ') 'i j∀ ∈ A v, (15b)

0 1kg≤ ≤ , k∀ ∈ %k K . (20b)

Solve linear relax-
ation by column
generation and

update lower bound

no

yes

Integer
solution?

Fathom
node

yes Update upper
bound

Pool of
nodes empty?

no Branch to create
child nodes and add
them to node pool

no

yes

Stop

upper bound
< ∞ ?

No integer
solution

no

Optimal integer
solution =

upper bound

yes

Add initial problem
to node pool

lower
bound=upper

bound? yes

Solution <
upper bound?

no

Select a node from
the pool

Branch-and-Price for Service Network Design with Asset Management Constraints

CIRRELT-2007-55 9

We associate dual variables α , ijβ , ' 'i jθ , pσ , ijη and p
ijρ with constraints (13) – (14), (15b) and

(16) – (18). From the solution of the RMP, we transfer the dual information to subproblems for
generation of design cycles and flow paths. There is one subproblem for each commodity generating
flow paths, and one subproblem for design cycles. If the subproblems identify variables with
negative reduced costs, these are added to the RMP which is resolved. Otherwise, the current
solution of the RMP is an optimal solution for the linear problem.

Because we have two different subproblem categories, there are basically two different
approaches of the column generation. The first approach is to solve both cycle and path generation
subproblems for a given set of dual multipliers before resolving the RMP. The second approach is to
generate either paths or cycles first, and then resolve the RMP before solving the other
subproblem(s). Presumably, the second approach would perform relatively better if the RMP is
solved efficiently. In the next two subsections we define the two categories of subproblems.

2.3 Subproblem for design cycle generation
A design cycle consists of a set of arcs satisfying the design balance constraints, and not covering a
time period more than once. In the subproblem for generation of design cycles, we need to make
sure that these properties are maintained. The reduced cost of a cycle is calculated in (21), and a
negative reduced cost implies that inclusion of the cycle in the RMP would improve the objective
function value of the current RMP. The subproblem identifies the design cycle with smallest reduced
cost, and this cycle is added to the RMP if its associated reduced cost is negative. The subproblem
for cycle generation is formulated in (21) – (24):

' ' ' '(,) OD ODi j

p p
C ij ij ij ij ij iji j i N j Ni j p

Min z f u b yα β η ρ θ
= =∈ ∈

⎛ ⎞
 = − − − − +⎜ ⎟

⎝ ⎠
∑ ∑

UA P
 (21)

(,) :

1,
i j

ij
i j T t T

y
∈ ≤ <

≤∑
A :

 t∀ ∈ T , (22)

() ()

0,ij ji
j i j i

y y
+ −∈ ∈

− =∑ ∑
N N

 i∀ ∈ N , (23)

{ }0,1ijy ∈ , (,)i j∀ ∈ A . (24)

We use binary variables ijy representing whether an arc (,)i j ∈ A in the underlying network is
selected to be in the cycle or not. The objective function (21) minimizes the sum of fixed vehicle
costs f and all dual cost of the arcs constituting a cycle. Constraints (22) ensure that cycles do not
cover multiple planning horizons by stating that at most one arc can be opened in each time period.
Constraints (23) are the design balance constraints, while (24) restrict the ijy ’s to take binary values.

We solve the cycle generation problem with shortest path calculations using a label-correcting
algorithm. We extend the time-space network beyond the planning horizon by the duration of the
longest arc in the network. With the new network, we are able to produce any feasible cycle by one

Branch-and-Price for Service Network Design with Asset Management Constraints

CIRRELT-2007-55 10

traversal of the network. The construction of cycles can be handled by two different phases that
together capture all potential cycles.

Firstly, if we start from all nodes in time period 1 and create paths through the network, we
obtain cycles when we find arcs that have their destination node in the origin node of that path, i.e.
crossing the planning horizon. If all arcs have duration of one time period, this approach would be
sufficient to generate all possible cycles.

However, for arcs with longer duration, we may have the case that arcs “pass by” time period 1,
for instance if an arc has its origin in the last time period, passes the end of the planning horizon and
has its destination node in time period 2. This arc will not be evaluated with the approach described
above. In order to capture such arcs, we identify with the second approach all arcs having the
property that they pass by time period 1. We illustrate these ideas in Figure 4.

Figure 4. Illustration of cycle generation based on arcs originating in the first time period (solid arcs) and on
cross-horizon arcs (dotted arcs)

In Figure 4, solid arcs form cycles that are established from nodes in the first time period, while
dotted arcs form cycles that are established based on the cross-horizon arcs that pass by time period
1. Because of constraints (22) we do not continue on the extension of a path if the time period
representing the origin node of the path has been reached or passed.

In the cycle generation, we have to be careful with applying dominance rules. The calculation of
reduced costs in (21) includes all arcs constituting a cycle, including the last arc that closes a cycle,
and we are therefore not able to apply dominance rules between paths with different origins. We
therefore keep one label for each node belonging to time period 1, and one additional label for each
node that has at least one arc emanating from it that passes by time period 1. In the end, this
approach is very well suited for producing several cycles simultaneously.

2.4 Subproblems for flow path generation
The flow path subproblems generate paths that contribute to improved solutions of the current RMP.
Requirements to paths are that they have their origins in the commodity’s unique origin node in the
time-space network, node balance has to be ensured, and the paths have to end in one of the time
realizations of the commodity’s given physical destination node. The subproblem for flow path
generation finds the origin-destination path with smallest reduced cost, as defined in (25). This path

6 5 4 3 2 1 7

Time

N
od

es
 in

 p
hy

si
ca

l n
et

w
or

k

1 7 6

Planning horizon

Branch-and-Price for Service Network Design with Asset Management Constraints

CIRRELT-2007-55 11

is added to the RMP if the associated reduced cost is negative. The subproblem for generation of
commodity paths for commodity p is defined in (25) – (27):

()
(,)

p p p p p
P ij ij ij ij

i j

Min z c xσ η ρ
∈

 = − + − −∑
A

 (25)

() ()

1,
1,

0, ,

p

p p p
ij ji

j i j i

i o
x x i d

otherwise
+ −∈ ∈

⎧ =
⎪

− = − =⎨
⎪
⎩

∑ ∑
N N

 i∀ ∈ Nv, (26)

{ }0,1p
ijx ∈ , (,)i j∀ ∈ Av. (27)

The p
ijx variables are now binary variables representing flow on service arcs in the underlying

network, and 1p
ijx = indicates that arc (,)i j ∈ A is in the path. The objective function (25) minimizes

the sum of dual cost of the demand satisfaction constraints (16) and reduced costs for all arcs
constituting the path. Constraints (26) are flow balance constraints, while we in (27) restrict the p

ijx
variables to take binary values.

Paths are established by shortest-path computations using label-correcting algorithms. Shortest
paths are created from the commodity’s unique origin node to the nodes in the time-space network
corresponding to the commodity’s physical destination node. In principle, all these time realizations
need to be examined in order to find the path with the most negative reduced cost. However, as the
costs on the arcs are positive, we can terminate if the cost at any stage is higher than the computed
cost of reaching the current best destination node. Moreover, if path costs exceed pσ , we can stop
evaluating that path because it cannot result in a path with negative reduced costs.

2.5 Branching strategies for the integer problem
In order to obtain integer solutions for the SNDAM problem, we embed the column generation in a
branch-and-bound framework, where the solution obtained from the linear relaxation of the problem
represents the root node of a search tree. In this subsection we present branching strategies for the
problem. As described in Section 2.1, it is not desirable to branch directly on the cycle variables.
Instead we consider four alternative branching strategies.

The first approach (BB-1) is to branch on service arcs in the underlying network structure, i.e.
arcs in the time-space network. In evaluating the solutions of the RMP, we choose the arc with
fractional value closest to 0.5, and fix this arc to 1 in one branch and to 0 in the other branch. The
interpretation of this branching is that fixing an arc to 1 means that the sum of the cycle variables
using this arc is 1. In the 0-branch, all cycles using this arc have to be 0.

The second approach (BB-2) is an adaptation of constraint branching (Ryan and Foster, 1981),
where the basic principle is to branch on two arcs, letting at most one of them be 1 in one branch,
and both or none of them be 1 in the other branch.

Branch-and-Price for Service Network Design with Asset Management Constraints

CIRRELT-2007-55 12

The third branching strategy (BB-3) is to use the slack variables ' 'i js from (15b). For integer

solutions to (12)-(20), integrality of ' 'i jU and of all k
ijr also ensures integrality of the ' 'i js variables.

When we obtain fractional ' 'i js variables in the linear solution, we branch by identifying the ' 'i js
variable with fractional value closest to 0.5 and round it down to the nearest integer in one branch
and round it up to the nearest integer in the other branch. However, even if all ' 'i js are integer, we do
not necessarily have integer values on the cycles. We therefore need to switch branching entity if all

' 'i js are integer, but the solution is not integer in the kg variables. In such cases, we branch on the
arcs in the underlying network structure, which was the first approach.

The last branching strategy (BB-4) is a cycle-based greedy heuristic. We select a fractional cycle
and fix all the arcs in the cycle to 1, this allows for more flexibility than fixing the cycle itself to 1.
This approach is not a proper branching, because we would never consider cycles with a subset of
the arcs that have been fixed further up in the tree, and would thus not cover the complete solution
space. We refer to this approach as heuristic branching.

2.6 Lower bounds
Capacitated multicommodity network design problems have in general poor linear relaxations. For
SNDAM, it was shown in (Andersen et al., 2007b) that the introduction of cycle variables improved
the tightness of the linear relaxations. We therefore use the linear relaxation as the lower bound in
the branch-and-price approach. However, in contrast to many other problems that have been solved
with column generation, even solving the linear problem constitutes a significant challenge when the
dimensions increase.

The lower bounds for the SNDAM problem are significantly tighter when they are based on the
strong linear relaxation including strong forcing constraints (18), compared to the weak linear
relaxation that is obtained when only weak forcing constraints (17) are included. For large networks
with many arcs and commodities, the number of strong forcing constraints would grow extremely
large if all of them were included explicitly in the problem. In order to overcome this difficulty, we
generate dynamically those strong forcing constraints that are violated in the optimal solution of the
RMP. To do this, we first solve the weak linear relaxation to optimality with column generation.
Then, we verify whether strong forcing constraints are violated in the optimal linear solution, and if
so, these are added to the formulation. Then the new problem is solved to optimality with column
generation, and the process is repeated if additional strong forcing constraints are needed. When no
new strong forcing constraints are needed, we have obtained the strong linear relaxation. The
drawback of this approach is that we spend time on testing if these constraints are violated and on
reoptimization after new constraints have been added. For large instances, these reoptimizations may
become computationally expensive, and an important issue is thus to which degree strong forcing
constraints should be generated. These constraints may be generated at all branch-and-bound nodes,
at the root node only, each time the lower bound is updated, or none of these.

To strengthen the bound, we introduce the following idea from a vehicle routing setting in
(Dumas et al., 1991): The number of vehicles used has to be integer in an integer solution. If the
linear solution has a fractional sum of design cycles, we round this fractional value up to the nearest
integer, captured in (28) with m being the sum of cycle variables in the current LP solution. In
addition, we introduce the complement of (28) in (29), and round the fractional sum of cycle

Branch-and-Price for Service Network Design with Asset Management Constraints

CIRRELT-2007-55 13

variables down to the nearest integer. The effect of the strengthening with (28) and (29) is most
significant if introduction of (29) implies an infeasible problem.

,k

k

g m
∈

≥ ⎡ ⎤⎢ ⎥∑
K

 (28)

.k

k

g m
∈

≤ ⎢ ⎥⎣ ⎦∑
K

 (29)

2.7 Upper bounds
The upper bound is updated each time a new best integer solution is found. In order to encourage
fathoming, it is of high importance to obtain good integer solutions early in the traversal of the tree.
We introduce an accelerating technique with the aim of finding integer solutions quickly and thus
improve the performance of the branch-and-price algorithm.

From the solution of the linear RMP, we fix to 1 cycle variables kg with fractional values above a
threshold. Then, new columns are generated until the solution of the RMP cannot be further
improved. Again, the fractional kg variables with values above the threshold are fixed to 1, and this
procedure is repeated until an integer solution has been found, the solution is worse than the current
best integer solution, or the problem becomes infeasible.

3 Computational study
In this section we present a computational study based on the branch-and-price algorithm that was
introduced in Section 2 for the SNDAM problem. We have programmed the algorithms in C++, and
the models have been solved on computers with 3 GHz processor and 8 GB RAM running on Rock
Cluster v 4.2.1 operating system. The restricted master problems are solved with the LP-solver of
XPRESS Optimizer v 17.1. We first discuss implementation and calibration issues in Section 3.1,
before giving an introduction to the data sets used in Section 3.2. Computational results appear in
Section 3.3.

3.1 Implementation and calibration
In the computational study, we explore three different approaches “A”, “B” and “C”, which are
targeted at different instance sizes. One important difference between the approaches is the role of
strong forcing constraints. These constraints improve the bound and may also contribute to better
branching decisions, so it is desirable to include them. However, for large problems, it is time-
consuming to solve even the linear version of the problem if many constraints are added to the
problem. The rationale underlying implementations A-C is that strong forcing constraints are
generated more often for small instances.

There are a significant number of parameter settings and issues that could be explored in a
computational study, but we have kept a focus on the role of the strong forcing constraints in the
implementations. The three solution approaches A-C are developed through extensive testing in a
calibration phase, and the parameter selections are based on what has been observed to give
reasonable performance over a set of instances. It was however not possible to perform full-scale

Branch-and-Price for Service Network Design with Asset Management Constraints

CIRRELT-2007-55 14

testing of all combinations of the different parameters and issues. We summarize significant
implementation issues and parameter selections in Table 1.

Table 1.Implementation issues and parameter selections.

Issues and parameters Solution approach A Solution approach B Solution approach C
Search strategy Depth first
Maximum search time 36000 seconds

How often is the master problem solved All subproblems are solved for given dual information before the master
problem is resolved

Strategy for solving RMP at each BB-node Save basis before adding columns, and reoptimize with dual simplex
from this basis when columns have been added to the problem

Max number of paths generated in each iteration One per commodity

Branching strategies BB-3 (slack variables) BB-3 (slack variables) /
BB-4 (heuristic) BB-4 (heuristic)

Max and min values for fixing cycles to 1 in acc. technique 0.7 and 0.55 0.6 and 0.55
Max number of cycles generated in each iteration 5* 10*/20*/30*

How often are strong forcing constraints generated All nodes Nodes where lower
bounds are updated

Nodes where lower
bounds are updated

How long do we keep on generating strong forcing
constraints at a node? As long as they are violated

No new iterations after
18000 seconds or if
improvement < 0.1%

Keep strong forcing constraints in problem after generation? Yes No
*In the accelerating technique at most one cycle may be added in each iteration

For the three approaches, we implemented a depth-first strategy in branch-and-price, and we
have set a maximum running time of 10 hours (36000 seconds). In the computations it appeared to
be more efficient to solve all subproblems before reoptimizing the RMP, so we do not report results
for the second approach described in Section 2.2. In solving the RMP, we save the basis before
adding columns, and when columns have been added, we reoptimize with dual simplex from the
saved basis. As pointed out in Sections 2.3 and 2.4, it is computationally cheap to add more than one
cycle or path when the subproblems are solved. There is a trade-off between the gains of saving
iterations as a consequence of adding multiple columns, versus the increased computational time
from having more columns in the master problem. There are a significant amount of commodities in
our data sets, and we therefore allow inclusion of at most one path for each commodity in an
iteration of the column generation. However, because of the many commodities, it makes sense to
include multiple cycles in each iteration if there are several cycles with negative reduced costs. We
allow most cycles in solution approach C, which is targeted at the instances with the largest number
of commodities.

For branching, the calibration phase indicated that branching on service arcs in the underlying
network (BB-1) and constraint branching (BB-2) was outperformed by branching on slack variables
(BB-3). The computational study is therefore limited to branching strategies BB-3 and BB-4, where
BB-4 is applied to the largest instances.

For solution approach A, we use branching strategy BB-3. For the variable fixing technique
described in Section 2.7, the limit for fixing cycles is initially set to 0.7, and sequentially reduced to
0.55. In each iteration of the column generation, at most 5 cycles may be added. Strong forcing

Branch-and-Price for Service Network Design with Asset Management Constraints

CIRRELT-2007-55 15

constraints are generated on all nodes, and we keep generating them as long as they are violated. The
strong forcing constraints are also kept in the problem at subsequent nodes.

Solution approach B may be used either with BB-3 or BB-4. The additional difference from
solution approach A is that strong forcing constraints are only generated at nodes where the lower
bounds are updated during branch-and-bound. This allows exploration of more nodes within the time
limit.

Solution approach C is targeted at very large problem instances, and it utilizes branching strategy
BB-4. The variable fixing technique starts with a limit for fixing cycles at 0.6, and to facilitate
instances with several hundred commodities, we test inclusion of at most 10, 20 and 30 cycles in one
iteration of the column generation algorithm. Strong forcing constraints are only generated when the
lower bound is updated, and because the reoptimizations are time-consuming, we include the
opportunity to stop this process if the time exceeds 18000 seconds or if the improvement in objective
function value in the last iteration was below 0.1%. Moreover, the strong forcing constraints are
removed from the matrix as soon as the bound is updated, to facilitate faster exploration of the
search tree.

3.2 Data sets
In (Andersen et al., 2007b) the SNDAM problem with cycle and path variables was solved directly
with the MIP-solver in CPLEX for problem instances where all design cycles and commodity paths
were generated a priori. We test the branch-and-price algorithm on a few of the instances from
(Andersen et al., 2007b), but the computational study is focused on instances that are significantly
larger than what could be solved with full a priori generation. In Table 2 we present the dimensions
of the problems that are tested in the computational study. The first three columns of Table 2 present
number of nodes and arcs in the static network, as well as number of time periods. In the fourth
column we present the corresponding number of service and holding arcs, and number of
commodities appears in the sixth column. In the seventh column a size indicator for problem
dimension is presented, computed as the product of number of service arcs and number of
commodities and divided by 1000. This measure gives a fair description of the relative dimensions
of the instances. In the last column we indicate which of the solution approaches of Section 3.1 we
apply to each instance.

The instances are inspired by a real-world case in rail transportation planning. Instances 1-5 are
extracted from (Andersen et al., 2007b), while instances 6-15 are significantly larger than what could
be handled with total enumeration of cycles and paths. We observe that there are significant
differences in problem size between the instances. As pointed out in Section 3.1, initial testing has
suggested that different approaches should be applied depending on the sizes of the instances.

Instances 1-5 have size indicators in the range 4-45, and for these problems we apply solution
approaches A and B. However, for solution approach B we only apply the branching on slack
variables (BB-3). For instances 6 to 12, the size indicator is in the range 120-450, which is
significantly larger than for instances 1-5. For these cases, solution approach A is left out, as it for
these instances appeared to be disadvantageous to generate strong forcing constraints on all nodes of
the search tree. Finally, for instances 13-15, the size indicator exceeds 1000, and these instances are
so large that we only apply solution approach C.

Branch-and-Price for Service Network Design with Asset Management Constraints

CIRRELT-2007-55 16

Table 2.Dimensions of problem instances.

Problem
id # Static nodes

Static service
arcs Time periods

Service +
holding arcs Commodities Size indicator

Solution
approaches

1 5 10 20 200 + 100 20 4 A and B
2 5 15 20 300 + 100 25 8 A and B
3 5 15 25 375 + 125 25 9 A and B
4 5 15 15 225 + 75 100 23 A and B
5 5 15 15 225 + 75 200 45 A and B
6 5 15 40 600 + 200 200 120 B
7 5 15 50 750 + 250 400 300 B
8 7 30 30 900 + 210 200 180 B
9 7 30 30 900 + 210 400 360 B
10 7 30 50 1500 + 350 300 450 B
11 10 40 30 1200 + 300 200 240 B
12 10 50 30 1500 + 300 100 150 B
13 7 30 60 1800 + 420 800 1440 C
14 10 50 30 1500 + 300 1000 1500 C
15 10 50 50 2500 + 500 400 1000 C

3.3 Results
In this section we present results from model runs for the problem instances that were defined in
Table 2. We allow a maximum CPU time of 10 hours in all cases. In Section 3.3.1 we present results
for problems that have been solved with a priori generation of columns, while we in Section 3.3.2
present results for the problems that have not been solved earlier.

3.3.1 Instances solved with a priori generation of columns
Results from model runs for instances 1-5 can be found in Table 3. For each scenario, there is one
row with results obtained with solution approach A, and one row with results obtained with solution
approach B. In each case, we report lower bound at termination and best MIP solution at
termination. Termination either refers to that 10 hours of CPU time has been reached, or that the
algorithm has found a proven optimal integer solution. Thereafter the solution time in seconds for
finding proven optimal solution is returned, or alternatively the remaining optimality gap after 10
hours of CPU time. In the last two columns of Table 3, we present the best integer solution that was
obtained with a priori enumeration of cycles and paths in (Andersen et al., 2007b) and the
corresponding solution time. The a priori enumeration was implemented on different computers but
with comparable specifications and a maximum running time of 10 hours.

The results reported in Table 3 are very similar for approaches A and B. For instances 1-3, the
branch-and-price algorithm returns proven optimal integer solutions with both solution approaches.
For instances 1 and 3, the solutions are obtained reasonably quickly, while instance 2 requires
around 25000 and 20000 seconds with the two approaches. The a priori enumeration was more
efficient for instances 1 and 2, while instance 3 was solved faster with branch-and-price. The a priori
enumeration utilized the advantages of a standard MIP-solver with advanced heuristics and more
advanced search algorithms than we have implemented. It is nevertheless good news that the branch-
and-price algorithm returns proven optimal integer solutions for problems where these optimal

Branch-and-Price for Service Network Design with Asset Management Constraints

CIRRELT-2007-55 17

solutions are known. For instances 4 and 5, neither a priori enumeration nor branch-and-price
returned proven optimal solutions within 10 hours. For instance 4, the integer solutions obtained
were slightly better with a priori enumeration, and the gap also smaller in this case due to more
advanced bounding. For instance 5, the branch-and-price algorithm returns better integer solutions
than what was obtained with a priori enumeration. However, the remaining optimality gap after 10
hours is smaller with a priori enumeration; this reflects the stronger focus on bounding in a
commercial MIP-solver compared to the branch-and-price algorithm presented in this paper. The
encouraging news from Table 3 is however that the branch-and-price algorithm solves small
instances to proven optimality, and that both approaches A and B return better integer solutions than
what was obtained with a priori enumeration for the largest instance.
Table 3. Results from model runs for instances that have been computed with a priori generation of columns.

Instance
Solution

approach
Lower bound at

termination
MIP solution at

termination
Solution time (sec) /

Optimality gap
Best MIP with a priori

enumeration

Time use a priori
enumeration (sec) /

Optimality gap

1
A 48 838 48 838 98 48 838 9 B 48 838 48 838 129

2
A 52 156 52 156 25 134 52 156 1235 B 52 156 52 156 19 799

3
A 47 805 47 805 68 47 805 143 B 47 805 47 805 69

4
A 171 532 174 697 1.8 % 174 233* 0.7% B 171 532 174 697 1.8 %

5
A 378 347 380 848 0.66 % 381 533* 0.5% B 378 347 381 002 0.70 %

*For these instances, the a priori approach did not return a proven optimal solution within 10 hours.

3.3.2 Larger instances
We present results from model runs for problem instances 6-12 in Table 4. In these model runs, all
integer solutions have been obtained by use of the accelerating technique presented in Section 2.7.
No problems are solved to proven optimum within 10 hours of CPU time. Again, there are two rows
for each instance, representing branching on slack variables (BB-3) and heuristic branching (BB-4).

In Table 4, the first column of results presents the lower bounds at termination, which in all cases
corresponds to the lower bound obtained at the root node, because the depth-first search does not
return to the root node within 10 hours for any of the instances. Then best integer solutions obtained
and optimality gaps are reported. The next two columns elaborate on the best integer solutions that
were obtained, and report node number where the best integer solution was found and the elapsed
time, respectively. In the last two columns we report number of branch-and-price nodes visited
during the tree search, and time needed to solve the root node. For each branching strategy, we
present average results from instances 6-12 in the last two rows.

Branch-and-Price for Service Network Design with Asset Management Constraints

CIRRELT-2007-55 18

Table 4. Results from model runs for instances 6-12. Maximum computational time is 10 hours.

Instance Branching strategy Lower bound
Best MIP-
solution

Optimality
gap

Best MIP-
node

Best MIP-
time Nodes visited Root time

6 Slack variables 334 026 338 314 1.3 % 3 115 1 143 67
Heuristic 334 026 339 198 1.5 % 217 7 373 3 828 85

7 Slack variables 465 997 482 250 3.4 % 14 29 020 19 15 558
Heuristic 465 997 482 427 3.4 % 12 28 706 18 15 306

8 Slack variables 360 466 376 049 4.1 % 11 1 853 1 905 381
Heuristic 360 466 374 804 3.8 % 6 1 173 912 379

9 Slack variables 363 332 381 307 4.7 % 21 23 968 34 2 522
Heuristic 363 332 377 775 3.8 % 69 29 597 129 2 525

10 Slack variables 504 792 528 755 4.5 % 11 27 026 15 6 791
Heuristic 504 792 524 450 3.7 % 10 26 114 14 6 775

11 Slack variables 412 463 434 118 5.0 % 10 12 235 35 2 156
Heuristic 412 463 439 179 6.1 % 10 11 528 30 2 157

12 Slack variables 284 211 292 223 2.7 % 32 4 706 416 219
Heuristic 284 211 291 677 2.6 % 163 15 745 300 218

Average
Slack variables 389 327 404 717 3.7 % 15 14 132 510 3 956

Heuristic 389 327 404 216 3.6 % 70 17 177 747 3 921

From Table 4 we observe that the optimality gaps range from 1.3% to 6.1%, and the averages
over all the instances are 3.7% and 3.6% with the two branching strategies. The optimal integer
solutions are not known for these problems, but from similar problem types in (Andersen et al.,
2007b) we observed that the gaps between strong linear relaxation of the root node and optimal
integer solutions were in the ranges 0-9%, with an average of about 3%. It is thus likely that the
integer solutions reported in Table 4 represent near-optimal solutions to the instances. This
assumption is supported by reviews of computational studies of similar problems, for instance
reported in (Ghamlouche et al., 2004) and (Pedersen et al., 2007).

We observe from Table 4 that there are significant differences between the instances in root time
and number of nodes visited. The computed averages reveal that the two branching strategies are
very different when it comes to “Best MIP-node”. The average optimality gaps are about similar in
the two cases, but the searches based on heuristic branching continue finding integer solutions later
than the searches based on slack variable branching.

In Table 5 we report results that were obtained for instances 13-15. For each instance, solution
approach C is tested with three alternative maximum number of cycles that may be added in each
iteration of the column generation. The columns of Table 5 are identical to those of Table 4, except
that one new column is added with an indication of whether the improvements from weak to strong
linear relaxations in the root node were stopped because the time limit was exceeded, because there
was no significant improvements, or not stopped at all. We observe from Table 5 that bounding was
stopped in all model runs.

Branch-and-Price for Service Network Design with Asset Management Constraints

CIRRELT-2007-55 19

Table 5. Results from model runs for instances 13-15. Maximum computational time is 10 hours.

Instance
Max no

of cycles
Bounding

stopped by
Lower
bound

Best MIP-
solution

Optimality
gap

Best MIP-
node

Best MIP-
time

Nodes
visited Root time

13
10 No improvement 733 310 850 732 13.8% 3 16 375 21 13 825
20 No improvement 733 373 849 862 13.7% 5 14 509 31 10 519
30 No improvement 733 373 850 921 13.8% 24 30 081 32 9 681

14
10 Time 630 828 708 283 10.9% 11 32 725 12 19 269
20 No improvement 631 294 727 652 13.2% 4 18 628 13 15 633
30 No improvement 631 304 705 243 10.5% 9 30 725 11 13 760

15
10 Time 633 392 n.a. n.a. n.a. n.a. 1 36 112
20 Time 633 416 792 926 20.1% 3 32 107 5 26 524
30 Time 633 626 773 617 18.1% 3 31 560 5 26 225

For all instances, integer solutions were found. The only approach that did not return an integer

solution was when at most 10 cycles could be generated in each iteration for instance 15. In this case
only the root node could be explored within the time limit, and the accelerating technique did not
return a feasible integer solution in that single attempt. The optimality gaps reported in Table 5 are
larger than those of Table 4. Fewer nodes are visited in the searches because the solution time of the
linear problem at each node of branch-and-price is more time-consuming. In addition, it might be
that the bound could have been tightened more if we allowed more time for generation of strong
forcing constraints and reoptimizations. This applies to instance 15 which has the largest gaps.
Despite this, it is promising that the algorithm returns fairly good integer solutions for these large
instances.

The results for the large instances indicate that we are able to find good integer solutions also for
these. However, the computational study has demonstrated the need for different adaptations of the
branch-and-price algorithm based on the sizes of the instances considered.

4 Concluding remarks
In this paper we have developed a branch-and-price algorithm for solving the service network design
problem with asset management constraints (SNDAM). Such problems arise for instance when
decisions on vehicle management are considered jointly with service network design, and represent a
potential for improved planning of transportation systems.

We have compared the branch-and-price algorithm to earlier work based on a priori enumeration
of columns. The branch-and-price algorithm gives comparable solutions to those obtained with a
priori enumeration of columns, but the smallest instances are solved more efficiently with
commercial code. However, the branch-and-price algorithm is able to find near-optimal solutions for
instances that are significantly larger than what could be solved with a priori enumeration of
columns. An accelerating technique that is introduced within branch-and-price contributes to finding
good integer solutions fast. The promising results from the computational study indicate that the
presented algorithm may contribute to improved planning of large-scale operations.

However, there is still a need for improvements of the methodology that is developed to solve
even larger instances of the problem. One interesting way forward would be to improve the
accelerating technique that is introduced to enhance the performance of the algorithm. This

Branch-and-Price for Service Network Design with Asset Management Constraints

CIRRELT-2007-55 20

technique can be made more advanced, for instance by reversing earlier decisions on variable fixing
during the accelerating technique in order to obtain diversity. Ideas from other heuristics may also be
introduced in this environment. One challenge for the solution approach presented in this paper is
that the solution time for the linear problem is significant, in particular due to multiple
reoptimizations when strong forcing constraints are generated within the column generation process.
Moreover, network design problems suffer in general from weak lower bounds, and even if the true
optimal integer solution was obtained during branch-and-price, the search may continue for a
considerable time if the lower bound is weak. Introduction of cuts may be an interesting way
forward to obtain smaller optimality gaps also for the problem studied in this paper.

Due to the potential savings that can be achieved by closer integration of service network design
and vehicle management, we strongly encourage further research on these issues. The formulation
based on cycles also can be used for problems without requirements for a maximum vehicle route
length corresponding to the length of the planning horizon. In such cases, the model must allow for
cycles covering multiple planning horizons, in the worst case with a number of periods
corresponding to the fleet size. However, the major ideas of the formulation and the solution
algorithm still apply. We also suggest that the ideas that are brought forward with design cycles
could be introduced for other problems. Grouping design arcs into design paths could be an
interesting idea even for problems without a time-space representation and for general network
design formulations.

Acknowledgements
This work has received financial support from The Norwegian Research Council through the
Polcorridor Logchain project. Partial funding has also been supplied by the Natural Sciences and
Engineering Research Council of Canada (NSERC) through its Discovery and Industrial Research
Chair programs.

Branch-and-Price for Service Network Design with Asset Management Constraints

CIRRELT-2007-55 21

References
Agarwal, R., Ö. Ergun. 2006. Ship scheduling and network design for cargo routing in liner
shipping. Working paper, Georgia Institute of Technology.

Ahuja, R.K., T.L. Magnanti, J.B. Orlin. 1993. Network Flows. Prentice Hall, Upper Saddle River,
NJ.

Andersen, J., T.G. Crainic, M. Christiansen. 2007a. Service network design with management and
coordination of multiple fleets. To appear in European Journal of Operational Research.

Andersen, J., T.G. Crainic, M. Christiansen. 2007b. Service network design with asset management:
formulations and comparative analyzes. Report 2007-21, CIRRELT, Université de Montréal.

Balakrishnan, A., T.L. Magnanti, P. Mirchandani. 1997. Network Design. In Annotated
bibliographies in combinatorial optimization, Dell’Amico, M., F. Maffoli F, S. Martello (eds), John
Wiley & Sons: New York, NY.

Barnhart, C., R.R. Schneur. 1996. Air network design for express shipment service. Operations
Research 44, 852- 863.

Barnhart, C., E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, P.H. Vance. 1998. Branch-and-
price: Column generation for solving huge integer programs. Operations Research 46, 316–329.

Crainic, T.G. 2000. Service network design in freight transportation. European Journal of
Operational Research 122, 272-288.

Desaulniers, G., J. Desrosiers, M.M. Solomon. 2005. Column generation. GERAD 25th anniversary
series. GERAD 25th Anniversary Series. Springer.

Dumas, Y., J. Desrosiers, F. Soumis. 1991. The pickup and delivery problem with time windows.
European Journal of Operational Research 54, 7-22.

Ghamlouche, I., T.G. Crainic, M. Gendreau. 2004. Path relinking, cycle-based neighbourhoods and
capacitated multicommodity network design. Annals of Operations Research 131, 109-133.

Kim, D., C. Barnhart, K. Ware, G. Reinhardt. 1999. Multimodal express package delivery: a service
network design application. Transportation Science 33, 391-407.

Lai, M.F., H.K. Lo. 2004. Ferry service network design: optimal fleet size, routing and scheduling.
Transportation Research A 38, 305-328.

Lübbecke, M.E., J. Desrosiers. 2005. Selected topics in column generation. Operations Research 53,
1007-1023.

Magnanti, T.L., R.T. Wong. 1984. Network design and transportation planning: models and
algorithms. Transportation Science 18, 1-55.

Pedersen, M.B., T.G. Crainic. 2007. Optimization of intermodal freight train service schedules on
train canals. Publication CIRRELT-2007-51. CIRRELT, Université de Montréal.

Pedersen, M.B., T.G. Crainic, O.B.G. Madsen. 2007. Models and tabu search meta-heuristics for
service network design with asset-balance requirements. To appear in Transportation Science.

Ryan, D.M., B.A. Foster. 1981. An integer programming approach to scheduling. In Computer
Scheduling of Public Transport, Wren, A. (ed), North-Holland Publishing Company, 1981.

Branch-and-Price for Service Network Design with Asset Management Constraints

CIRRELT-2007-55 22

Sigurd, M., N.L. Ulstein, B. Nygreen, D.M. Ryan. 2005. Ship scheduling with recurring visits and
visit separation requirements. In Column generation, Desaulniers, G., J. Desrosiers, M.M. Solomon
(eds), GERAD 25th Anniversary Series. Springer.

Smilowitz, K.R., A. Atamtürk, C.F. Daganzo. 2003. Deferred item and vehicle routing within
integrated networks. Transportation Research E 39, 305-323.

Branch-and-Price for Service Network Design with Asset Management Constraints

CIRRELT-2007-55 23

