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Abstract. We present a branch-and-price algorithm for solving the service network design 

problem with asset management constraints, SNDAM. The asset management constraints 

may result from vehicle management in applications from transportation. The problem is a 

multicommodity network design problem with additional constraints restricting and 

connecting the integer design variables. As a result of these constraints, design variables 

are cycles in a cyclic time-space network, while the flow variables are paths in the same 

network. Separate subproblems generate design cycles and paths for commodity flows to 

the restricted master problem. The computational study shows that we are able to find 

near-optimal solutions for large network instances. 
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Introduction 
Improvements in solution techniques and computational capacity continuously increase the range of 
tractable optimization problems. Simultaneously, real-world planning problems challenge the OR 
community to study increasingly larger and more complex optimization problems. New 
requirements from practical applications result in new constraints that have to be modeled, and this 
also encourages development of solution methods that can solve the new models. In particular, there 
has recently been an increase in new service network design models for planning problems in 
transportation. What these models have in common is an increased focus on utilization and 
management of vehicles in addition to the traditional decisions on service selection and flow routing. 
One issue that has been studied in the literature is ensuring that there is an equal number of vehicles 
entering and leaving each node in the network. Constraints ensuring this are referred to as design 
balance constraints (Pedersen and Crainic, 2007). Design balance constraints have been modeled for 
various modes of transportation, see e.g. (Smilowitz et al., 2003), (Lai and Lo, 2004), (Barnhart and 
Schneur, 1996) and (Kim et al., 1999). Andersen et al. (2007a) introduce more aspects of vehicle 
management in network design, including fleet sizing and -management. 

Andersen et al. (2007b) present a framework for Service Network Design with Asset 
Management constraints (SNDAM), which is a richer problem than the problem studied in (Pedersen 
and Crainic, 2007). Asset is a generic term for something a person or an organization owns. In carrier 
terms, it refers to what we usually call resources. It may be a power unit (a tractor or a locomotive), 
a carrying unit (a railcar, a trailer, a truck, a ship, etc.), a loading/unloading unit (cranes in 
terminals), a crew, etc. The term asset management reflects that assets have to be managed 
intelligently in order to obtain efficient operations.  

The SNDAM model of (Andersen et al., 2007b) addresses the case when only one asset is 
controlled, and to increase readability we refer to the assets as “vehicles”. The SNDAM model 
allows for cycles as design variables corresponding to vehicle rotations in time-space networks, and 
the computational study of (Andersen et al., 2007b) indicates that cycle variables contribute to 
efficient model solving. Cycle variables have also been implemented for other problems. For 
instance, Sigurd et al. (2005) work on a cycle representation of ship schedules in a pickup and 
delivery problem, and use column generation to generate schedules. Agarwal and Ergun (2006) 
introduce cycle variables for a cargo routing problem in liner shipping, where cycles represent ship 
schedules. They report promising computational results based on column generation and benders 
decomposition.  

The focus in (Andersen et al., 2007b) was on model development, as the main objective was to 
compare alternative SNDAM formulations. The computational study was based on a priori 
enumeration of cycles and paths, which imposes huge memory requirements for larger instances, and 
the enumeration of cycles is impractical for large problems. There is thus a need for more advanced 
solution strategies that can solve realistically-sized problems of this character. 

The purpose of this paper is to address the need for advanced solution methods for the SNDAM 
problem that was presented in (Andersen et al., 2007b), and we therefore develop a tailormade 
branch-and-price algorithm for the SNDAM problem. A variable-fixing technique is introduced to 
enhance the performance of the algorithm. We are able to find good integer solutions for problems 
that are considerably larger than what was solved in (Andersen et al., 2007b).  
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The contribution of the paper is a tailormade solution approach for the SNDAM problem that can 
solve realistically-sized problems. The computational study indicates that the algorithms are able to 
produce good integer solutions within reasonable computational time. The algorithms thus lay the 
ground for improved planning of problems where these additional constraints occur, for instance in 
service network design studies where fleet management is considered. 

The outline of this paper is as follows. In Section 1, we recall the SNDAM formulation. In 
Section 2, we propose a branch-and-price algorithm for solving SNDAM. The computational study 
is presented in Section 3, while concluding remarks follow in Section 4. 

1 Service Network Design with Asset Management  
In this section we recall the service network design problem with asset management constraints, 
SNDAM, that was presented in (Andersen et al., 2007b).  A problem description follows in Section 
1.1, while we in Section 1.2 recall two SNDAM formulations from (Andersen et al., 2007b).  

1.1 Problem description  
In the classical service network design formulation (see e.g. (Crainic, 2000)) we consider a set of 
services that may be opened to accommodate a demand for flow through the system. Major decisions 
are selection of services and routing of the flow on services. Crainic (2000) differentiated between 
frequency and dynamic service network design models. Frequency models address strategic/tactical 
issues like what services to operate and how often to operate them. Dynamic models target planning 
of schedules and are typically concerned with when services depart. The SNDAM model is 
developed within a dynamic service network design setting. A given planning horizon is assumed, 
and the services have to be operated in a repetitive manner representing fixed schedules of real-
world transportation services. 

Demand in the system is defined in terms of commodities (products) requiring transport through 
the network. Each commodity has an associated volume that has to be transported from the 
commodity’s origin node to its destination node. The commodities have specific times where they 
become available, but they may arrive at their destinations at any time, as long as they are 
transported to their destinations within the length of the planning horizon.  

Operation of services requires vehicles, which are available in a limited quantity. There is thus a 
need to consider a set of vehicle management issues when the services are designed, which extend 
the formulations in (Crainic, 2000). Firstly, we have to make sure that for all terminals, there is an 
equal number of vehicles entering and leaving, referred to as vehicle balance or design balance. 
Moreover, there may not be more simultaneous activities taking place than the given fleet of vehicles 
allow for. A third issue from (Andersen et al., 2007b) is the existence of lower and upper bounds on 
the number of occurrences of each service, for instance that a service should be operated at least 3 
times and at most 7 times each week.  

A fourth aspect from (Andersen et al., 2007b) is limited durations of vehicle routes, which may 
be captured by a route length requirement. The idea is that vehicles should not have longer routes 
than the planning horizon considered, as illustrated in Figure 1. In Figure 1, we have three vehicles 
operating in a cyclic time-space network, which is representing five terminals and a planning 
horizon divided into seven time periods. In Figure 1, design balance is satisfied for all nodes. 
However, we observe that the vehicles represented with dotted arcs interchange the arcs they cover 
in every second realization of the planning horizon. It thus takes two repetitions of the planning 
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horizon for a vehicle to return to its initial pattern. The operations in Figure 1 represented with 
dotted arcs will not be feasible if we impose route length requirements. However, the combination of 
solid arcs in Figure 1 represents an operation of a vehicle that satisfies the route length requirements.  

 
Figure 1. Time-space network with two two-horizon cycles and one 1-horizon cycle. 

In traditional service network design studies, one considers service selection cost associated with 
operation of services, and flow costs associated for commodities utilizing services (Crainic, 2000). In 
the SNDAM problem of (Andersen et al., 2007b), it is assumed that there are high fixed costs 
associated with vehicles, and that these costs dominate the service selection costs. This is based on a 
planning problem in the rail freight industry, where the acquisition costs for locomotives appeared to 
be the dominant cost factor. Inclusion of service selection costs would however not introduce any 
structural changes to the SNDAM models that we recall in the next subsection. 

  

1.2 SNDAM models 
We assume that we have a static network ' ( ', ')=G N A with nodes representing terminals and 
intersections, and arcs representing connections. The planning horizon is divided into a set of time 
periods { }1,.., MAXT=T= , and we introduce the graph ( , )=G NxA  for the time-space network. A node 

' 'i ∈ N  in the static network has MAXT  realizations in the time-space network. Each of these nodes 
i ∈ N in the time-space network has an associated time period, iT ∈T , and represents a physical 
node 'iODN ∈ N . The arcs ( ', ') 'i j ∈ A in the static network are also available in MAXT realizations, 
one for each time period. We consider one repetition of the planning horizon with time period MAXT
preceding time period 1, giving a cyclic time-space network.  

In time-space networks, holding arcs are required when modeling real-world planning problems. 
Holding arcs represent vehicles or flow units kept at a static node from one time period to the next. 
In the following we assume that the models always have holding arcs for the flow, so that flow units 
may be kept at a physical node from one time period to the next. Thus, the holding arcs link 
consecutive representations in time of the same physical node. Holding arcs are assumed to have 
infinite capacity both for vehicles and for flow. We do not complicate the model formulation with 
notation and variables for the holding arcs. 
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Without loss of generality we assume that all service arcs ( , )i j ∈ A are design arcs. To simplify 
the presentation, we assume that the arcs ( ', ') 'i j ∈ A represent services, hence we do not consider 
services consisting of multiple arcs. The different time realizations ( , )i j ∈ A represent alternative 
departure times of the service connections ( ', ') 'i j ∈ A . Lower and upper bounds on the number of 
occurrences of each service are labeled ' 'i jL and ' 'i jU , respectively. For the demand, we define for 

each commodity p ∈ P  the volume pw to be transported from the commodity’s origin node po to its 
destination node pd .   

In order to model the asset management constraints, we introduce vehicles v ∈ V , available in a 
quantity of | |MAXV = V |. Any service arc that is opened has to utilize one of these vehicles. For each 
vehicle v ∈ V we introduce a binary decision variable vδ , which is 1 if vehicle v  is utilized, and 0 
otherwise. The cost for utilizing a vehicle is f . 

In classical service network design formulations, there are binary variables indicating whether a 
service arc is opened or not. In order to satisfy the route length requirements, these variables have to 
be indexed by vehicle in the SNDAM formulation, and are labeled ijvy . Flow variables p

ijx are 
nonnegative real numbers. Each design arc ijvy has an associated capacity iju . For each unit of 

commodity p there is a flow cost p
ijc for traversing arc ( , )i j ∈ A . For each node we define sets 

{ }( ) : ( , )i j i j+ = ∈ ∈N N A  and { }( ) : ( , )i j j i− = ∈ ∈N N A  of outward and inward neighbors. We 

also define { }min ,p p
ij ijb w u= . The SNDAM model is recalled in (1) – (11): 

( , )

p p
ij ij v

i j p v

Min z c x f δ
∈ ∈ ∈

 = +∑ ∑ ∑
A P V

  (1) 

( , ) :

0,
i j

ijv v
i j T t T

y δ
∈ ≤ <

− =∑
A :

 ,t v∀ ∈ ∈T V, (2) 

( ) ( )

0,ijv jiv
j i j i

y y
+ −∈ ∈

− =∑ ∑
N N

 ,i v∀ ∈ ∈Nv V , (3) 

1,ijv
v

y
∈

≤∑
V

 ( , ) ,i j∀ ∈ A v (4) 

' ' ' '
( , ) : ' 'OD ODi j

i j ijv i j
i j N i N j v

L y U
∈ = = ∈

≤ ≤∑ ∑
UA V

, ( ', ') 'i j∀ ∈ A v, (5) 
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( ) ( )

,
,

0, ,

p p

p p p p
ij ji

j i j i

w i o
x x w i d

otherwise
+ −∈ ∈

⎧ =
⎪

− = − =⎨
⎪
⎩

∑ ∑
N N

 ,p i∀ ∈ ∈P Nv, (6) 

0p
ij ij ijv

p v

x u y
∈ ∈

− ≤∑ ∑
P V

, ( , ) ,i j∀ ∈ A v (7) 

0p p
ij ij ijv

v

x b y
∈

− ≤∑
V

, ( , ) ,i j p∀ ∈ ∈Av P , (8) 

0p
ijx ≥ , ( , ) ,i j p∀ ∈ ∈Av P , (9) 

{ }0,1ijvy ∈ , ( , ) ,i j v∀ ∈ ∈A V , (10)

{ }0,1vδ ∈ , v∀ ∈ V . (11)

 

The objective function (1) minimizes the sum of flow costs and costs associated with use of 
vehicles. Constraints (2) state that for each time period, if a vehicle is utilized, it should be engaged 
in one and only one activity, corresponding to the route length requirements. Constraints (3) are the 
vehicle balance constraints, stating that for each node, there is an equal number of vehicles entering 
and leaving. In constraints (4) we ensure that only one vehicle can operate an arc ( , )i j ∈ A , which 
reflects the property that design arcs in traditional network design formulations are binary variables. 
In (5) we present the lower and upper bounds on the number of occurrences of services while flow 
balance, as found in traditional network design formulations, is ensured in (6). Constraints (7) and 
(8) are weak and strong forcing constraints, respectively, where we need to aggregate over all 
vehicles used. Finally, variable-type constraints are given in (9) – (11). 

In (Andersen et al., 2007b), four different formulations of the SNDAM model were presented In 
this section we recall the formulation with design cycles and flow paths as decision variables, which 
in (Andersen et al., 2007b) produced the most promising computational results, and which was 
significantly faster solved than (1) – (11). A design cycle consists of a set of design arcs satisfying 
design balance constraints (3) and covering each time period exactly once. The latter is a necessary 
condition for avoiding multi-planning-horizon cycles, which would violate the route length 
requirements. The design variable kg for cycle k ∈ Kv is 1 if cycle k  is in the solution and 0 
otherwise. Moreover, parameter k

ijm vis 1 if arc ( , )i j ∈ A  is in cycle k . The cycles have to cover all 
time periods in the time-space representation, as exemplified with the cycle indicated with solid arcs 
in Figure 1. As is frequently done in network design (see e.g. (Ahuja et al., 1993)), we further define 
the set of paths pL that commodity p  may use from its origin node to its destination node. For 

these paths, we define parameters pl
ija =1 if arc ( , )i j ∈ A belongs to path pl ∈L  for commodity p , 

0 otherwise. The flow of commodity p on path l is plh , while the flow cost for transporting 
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commodity p  on path l is plk , 
( , )

pl p pl
ij ij

i j

k c a
∈

= ∑
A

. The SNDAM model with cycle and path 

variables is recalled in (12) – (20):  

p

pl pl k

p kl

Min z k h f g
∈ ∈∈

 = +∑ ∑ ∑
P KL

  (12)

,k

k

MAXg V
∈

≤∑
K

  (13)

1k k
ij

k

m g
∈

≤∑
K

, ( , )i j∀ ∈ A , (14)

' ' ' '
( , ) : ' 'OD ODi j

k k
i j ij i j

k i j N i N j

L m g U
∈ ∈ = =

≤ ≤∑ ∑
UK A

, ( ', ') 'i j∀ ∈ A v, (15)

,
p

pl p

l

h w
∈

=∑
L

 p∀ ∈ P , (16)

0
p

pl pl k k
ij ij ij

p kl

a h u m g
∈ ∈∈

− ≤∑ ∑ ∑
P KL

, ( , ) ,i j∀ ∈ A v (17)

0
p

pl pl p k k
ij ij ij

kl

a h b m g
∈∈

− ≤∑ ∑
KL

, ( , ) ,i j p∀ ∈ ∈Av P , (18)

0plh ≥ , , pp l∀ ∈ ∈LP v , (19)

{ }0,1kg ∈ , k∀ ∈ Kv. (20)

 

The objective function (12) minimizes the sum of flow costs on paths and fixed costs for vehicles 
that are utilized. The structurally new constraint compared to model (1) – (11) is (13). This 
constraint restricts the cycle selection, stating that the number of selected cycles is limited by the 
fleet of vehicles. This property was ensured by the size of set { }1,.., MAXV=V =in model (1) – (11). 
Constraints (14) state that each arc ( , )i j ∈ A can be chosen by at most one cycle, analogous to (4). 
Lower and upper bounds on the number of realizations of static arcs are formulated in (15), and 
demand satisfaction is ensured in (16). Weak and strong forcing constraints are found in (17) and 
(18), while variable-type constraints appear in (19) – (20). Note that the introduction of cycles and 
paths has removed the need for design balance constraints (3) and flow balance constraints (6). 
Moreover, because each cycle corresponds to a vehicle and fleet size is accounted for in (13), we no 
longer need the binary vδ variables. 

Magnanti and Wong (1984) show that the uncapacitated fixed charge network design problem is 
NP-hard. As the capacitated version is even harder (Balakrishnan et al., 1997), this problem also 
belongs to the class of NP-hard problems. There is no reason to believe that the problem becomes 
easier to solve when additional asset management constraints are introduced.  
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2 Solving SNDAM with branch-and-price 
Among four formulations of the SNDAM model in (Andersen et al., 2007b), formulation (12) – (20) 
appeared to be more easily solved than the other formulations. However, the computational study 
was limited to instances that could be handled with a priori enumeration of cycles and paths. For 
real-world planning problems, complete enumeration is impracticable. In this section we develop a 
branch-and-price algorithm for the SNDAM problem, consisting of a column generation algorithm 
embedded in a branch-and-bound framework.  The algorithm is based on formulation (12) – (20), 
and the columns that are generated are design cycles and flow paths. This branch-and-price 
framework addresses the need for an exact solution algorithm that may solve real-world instances of 
the SNDAM problem. Several topics in column generation are covered in (Desaulniers et al., 2005), 
and general introductions to branch-and-price and column generation can be found in (Barnhart et 
al., 1998) and (Lübbecke and Desrosiers, 2005). 

We recall basic principles of column generation and branch-and-price in Section 2.1. Sections 
2.2-2.4 are devoted to the solution of the linear relaxation of the problem; we define the restricted 
master problem in Section 2.2 and subproblems in Section 2.3 and 2.4, respectively. Aspects of the 
branch-and-price algorithm for the integer problem are presented in Sections 2.5-2.7. Branching 
strategies are discussed in Section 2.5, while strategies for obtaining lower and upper bounds are 
presented in Sections 2.6 and 2.7, respectively. 

2.1 Branch-and-price 
Column generation usually refers to the solution of a linear problem, and for (mixed) integer 
problems this may correspond to solving the linear relaxation of the underlying problem. To obtain 
integer solutions, the column generation is embedded in a branch-and-bound framework. Because of 
the pricing of columns within the column generation at each branch-and-bound node, we refer to the 
overall approach as branch-and-price. In this subsection we recall the fundamentals of column 
generation and branch-and-price. 

2.1.1 Column generation 
Column generation is a powerful tool for solving optimization problems with a huge number of 
variables. The basic principle is to work on a restricted version of the problem including all the rows, 
but only a subset of the variables. This restricted problem is referred to as the Restricted Master 
Problem (RMP). The variables that are not explicitly represented in the RMP are considered 
implicitly by evaluation of one or more subproblems (pricing problems) that evaluate what impact it 
would have to include new variables in the RMP given the current solution of the RMP, and add 
variables to the RMP if that contributes to an improved solution of the RMP. If no new variables will 
contribute to an improved solution of the RMP, we can conclude that the existing solution of the 
RMP is the optimal (linear) solution of the original formulation. Because the variables occur as 
columns in the master problem, this process is referred to as column generation. We sketch the 
column generation process in Figure 2. We first have to initialize the RMP with a feasible basis, and 
then dual prices are transferred to the subproblems. If the subproblems identify columns that would 
improve the solution of the RMP, these columns are added to the RMP and the process is repeated. 
Otherwise, the process is ended and the current solution to the RMP is the optimal one. 
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Figure 2. Flow chart for linear column generation. 

2.1.2 Branch-and-price algorithm 
We present a branch-and-price flowchart in Figure 3. We start by adding the linear relaxation of the 
initial problem to a pool of unexplored nodes, this is the root node problem. In a major iteration of 
the algorithm, one node is extracted from this pool and solved. If the solution is worse than the 
current upper bound, we fathom the node and extract a new node from the pool. Otherwise, we 
check whether the solution is integral. If so, we have a new upper bound, otherwise we have to 
branch to create new problems that are added to the pool of unexplored nodes.  

The box in Figure 3 with thick bold frame contains the column generation algorithm illustrated 
in Figure 2. In other words, the column generation is run for each branch-and-bound node. If the 
pool of unexplored nodes is empty or if the lower bound is equal to the upper bound, the search is 
terminated. If the upper bound has been updated during the search, this is the optimal integer 
solution. Otherwise, no feasible integer solution exists.  

The lower bound is based on solution of the linear problem, and the lower bound is initially set 
to the solution value of the first problem solved (corresponding to the root node). Updates depend on 
the search strategy; with a best-first search the lower bound can be updated at each node. In contrast, 
with a depth-first strategy, the lower bound can only be updated each time the current top of the tree 
is reached after backtracking. 

We infer from the branch-and-price literature (see e.g. (Lübbecke and Desrosiers, 2005)), that 
branching directly on the integer variables is not likely to succeed in branch-and-price. If we for 
instance branch on the binary cycle variables in (12) – (20), we fix the cycle to 1 in one branch and 0 
in the other branch. In the branch with the cycle fixed to 0, that same column will immediately be 
regenerated, and we will not have reached further towards an integer solution. In addition, the search 
tree will be unbalanced. The standard branching technique in branch-and-price is to branch on the 
underlying network structure, which for the SNDAM problem means branching on network arcs. We 
elaborate on branching strategies in Section 2.5. 

Stop 

Improving 
columns 
found? 

yes 

no Initialize with a 
feasible basis 

Solve restricted 
master problem 

Transfer dual 
prices to 

subproblems 
Solve 

subproblems 

Add columns to 
restricted master 

problem 

Branch-and-Price for Service Network Design with Asset Management Constraints

CIRRELT-2007-55 8



 

 

Figure 3. Flow-chart for branch-and-price algorithm. 

2.2 Restricted master problem 
The restricted master problem (RMP) is a linear relaxation of the SNDAM problem with cycle and 
path variables, formulated in (12) – (20). However, in order to reduce the size of the matrix, we 
initially exclude the strong forcing constraints (18) from the formulation. For cycles and paths, we 

work on subsets from the total amount of cycles and paths; ⊆%K K and p p⊆%L L , respectively. To 
obtain the linear relaxation we replace integrality constraints (20) with (20b). We also reformulate 
(15) to (15b) by introducing slack variables ' ' ( ', ') 'i js i j∀ ∈ A , ' ' ' ' ' '0 ( )i j i j i js U L≤ ≤ − . The RMP can 
be solved with commercial LP-solvers, but the solution times may be substantial for large instances. 
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We associate dual variables α , ijβ , ' 'i jθ , pσ , ijη  and p
ijρ with constraints (13) – (14), (15b) and 

(16) – (18). From the solution of the RMP, we transfer the dual information to subproblems for 
generation of design cycles and flow paths. There is one subproblem for each commodity generating 
flow paths, and one subproblem for design cycles. If the subproblems identify variables with 
negative reduced costs, these are added to the RMP which is resolved. Otherwise, the current 
solution of the RMP is an optimal solution for the linear problem. 

Because we have two different subproblem categories, there are basically two different 
approaches of the column generation. The first approach is to solve both cycle and path generation 
subproblems for a given set of dual multipliers before resolving the RMP. The second approach is to 
generate either paths or cycles first, and then resolve the RMP before solving the other 
subproblem(s). Presumably, the second approach would perform relatively better if the RMP is 
solved efficiently. In the next two subsections we define the two categories of subproblems. 

2.3 Subproblem for design cycle generation 
A design cycle consists of a set of arcs satisfying the design balance constraints, and not covering a 
time period more than once. In the subproblem for generation of design cycles, we need to make 
sure that these properties are maintained. The reduced cost of a cycle is calculated in (21), and a 
negative reduced cost implies that inclusion of the cycle in the RMP would improve the objective 
function value of the current RMP. The subproblem identifies the design cycle with smallest reduced 
cost, and this cycle is added to the RMP if its associated reduced cost is negative. The subproblem 
for cycle generation is formulated in (21) – (24): 

' ' ' '( , ) OD ODi j

p p
C ij ij ij ij ij iji j i N j Ni j p

Min z f u b yα β η ρ θ
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0,ij ji
j i j i

y y
+ −∈ ∈

− =∑ ∑
N N

 i∀ ∈ N , (23)

{ }0,1ijy ∈ , ( , )i j∀ ∈ A . (24)

 

We use binary variables ijy representing whether an arc ( , )i j ∈ A in the underlying network is 
selected to be in the cycle or not. The objective function (21) minimizes the sum of fixed vehicle 
costs f  and all dual cost of the arcs constituting a cycle. Constraints (22) ensure that cycles do not 
cover multiple planning horizons by stating that at most one arc can be opened in each time period. 
Constraints (23) are the design balance constraints, while (24) restrict the ijy ’s to take binary values.  

We solve the cycle generation problem with shortest path calculations using a label-correcting 
algorithm. We extend the time-space network beyond the planning horizon by the duration of the 
longest arc in the network. With the new network, we are able to produce any feasible cycle by one 
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traversal of the network. The construction of cycles can be handled by two different phases that 
together capture all potential cycles. 

Firstly, if we start from all nodes in time period 1 and create paths through the network, we 
obtain cycles when we find arcs that have their destination node in the origin node of that path, i.e. 
crossing the planning horizon. If all arcs have duration of one time period, this approach would be 
sufficient to generate all possible cycles. 

However, for arcs with longer duration, we may have the case that arcs “pass by” time period 1, 
for instance if an arc has its origin in the last time period, passes the end of the planning horizon and 
has its destination node in time period 2. This arc will not be evaluated with the approach described 
above. In order to capture such arcs, we identify with the second approach all arcs having the 
property that they pass by time period 1. We illustrate these ideas in Figure 4.  

 

Figure 4. Illustration of cycle generation based on arcs originating in the first time period (solid arcs) and on 
cross-horizon arcs (dotted arcs) 

In Figure 4, solid arcs form cycles that are established from nodes in the first time period, while 
dotted arcs form cycles that are established based on the cross-horizon arcs that pass by time period 
1. Because of constraints (22) we do not continue on the extension of a path if the time period 
representing the origin node of the path has been reached or passed.  

In the cycle generation, we have to be careful with applying dominance rules. The calculation of 
reduced costs in (21) includes all arcs constituting a cycle, including the last arc that closes a cycle, 
and we are therefore not able to apply dominance rules between paths with different origins. We 
therefore keep one label for each node belonging to time period 1, and one additional label for each 
node that has at least one arc emanating from it that passes by time period 1. In the end, this 
approach is very well suited for producing several cycles simultaneously. 

2.4 Subproblems for flow path generation 
The flow path subproblems generate paths that contribute to improved solutions of the current RMP. 
Requirements to paths are that they have their origins in the commodity’s unique origin node in the 
time-space network, node balance has to be ensured, and the paths have to end in one of the time 
realizations of the commodity’s given physical destination node. The subproblem for flow path 
generation finds the origin-destination path with smallest reduced cost, as defined in (25). This path 
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is added to the RMP if the associated reduced cost is negative. The subproblem for generation of 
commodity paths for commodity p is defined in (25) – (27): 

( )
( , )

p p p p p
P ij ij ij ij

i j
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 i∀ ∈ Nv, (26)

{ }0,1p
ijx ∈ , ( , )i j∀ ∈ Av. (27)

 

The p
ijx variables are now binary variables representing flow on service arcs in the underlying 

network, and 1p
ijx =  indicates that arc ( , )i j ∈ A is in the path. The objective function (25) minimizes 

the sum of dual cost of the demand satisfaction constraints (16) and reduced costs for all arcs 
constituting the path. Constraints (26) are flow balance constraints, while we in (27) restrict the p

ijx
variables to take binary values.  

Paths are established by shortest-path computations using label-correcting algorithms. Shortest 
paths are created from the commodity’s unique origin node to the nodes in the time-space network 
corresponding to the commodity’s physical destination node. In principle, all these time realizations 
need to be examined in order to find the path with the most negative reduced cost. However, as the 
costs on the arcs are positive, we can terminate if the cost at any stage is higher than the computed 
cost of reaching the current best destination node. Moreover, if path costs exceed pσ , we can stop 
evaluating that path because it cannot result in a path with negative reduced costs. 

2.5 Branching strategies for the integer problem 
In order to obtain integer solutions for the SNDAM problem, we embed the column generation in a 
branch-and-bound framework, where the solution obtained from the linear relaxation of the problem 
represents the root node of a search tree. In this subsection we present branching strategies for the 
problem. As described in Section 2.1, it is not desirable to branch directly on the cycle variables. 
Instead we consider four alternative branching strategies. 

The first approach (BB-1) is to branch on service arcs in the underlying network structure, i.e. 
arcs in the time-space network. In evaluating the solutions of the RMP, we choose the arc with 
fractional value closest to 0.5, and fix this arc to 1 in one branch and to 0 in the other branch. The 
interpretation of this branching is that fixing an arc to 1 means that the sum of the cycle variables 
using this arc is 1. In the 0-branch, all cycles using this arc have to be 0.   

The second approach (BB-2) is an adaptation of constraint branching (Ryan and Foster, 1981), 
where the basic principle is to branch on two arcs, letting at most one of them be 1 in one branch, 
and both or none of them be 1 in the other branch.  
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The third branching strategy (BB-3) is to use the slack variables ' 'i js  from (15b). For integer 

solutions to (12)-(20), integrality of ' 'i jU and of all k
ijr also ensures integrality of the ' 'i js variables. 

When we obtain fractional ' 'i js variables in the linear solution, we branch by identifying the ' 'i js
variable with fractional value closest to 0.5 and round it down to the nearest integer in one branch 
and round it up to the nearest integer in the other branch. However, even if all ' 'i js are integer, we do 
not necessarily have integer values on the cycles. We therefore need to switch branching entity if all 

' 'i js are integer, but the solution is not integer in the kg variables. In such cases, we branch on the 
arcs in the underlying network structure, which was the first approach.  

The last branching strategy (BB-4) is a cycle-based greedy heuristic. We select a fractional cycle 
and fix all the arcs in the cycle to 1, this allows for more flexibility than fixing the cycle itself to 1. 
This approach is not a proper branching, because we would never consider cycles with a subset of 
the arcs that have been fixed further up in the tree, and would thus not cover the complete solution 
space. We refer to this approach as heuristic branching. 

2.6 Lower bounds 
Capacitated multicommodity network design problems have in general poor linear relaxations. For 
SNDAM, it was shown in (Andersen et al., 2007b) that the introduction of cycle variables improved 
the tightness of the linear relaxations. We therefore use the linear relaxation as the lower bound in 
the branch-and-price approach. However, in contrast to many other problems that have been solved 
with column generation, even solving the linear problem constitutes a significant challenge when the 
dimensions increase. 

The lower bounds for the SNDAM problem are significantly tighter when they are based on the 
strong linear relaxation including strong forcing constraints (18), compared to the weak linear 
relaxation that is obtained when only weak forcing constraints (17) are included. For large networks 
with many arcs and commodities, the number of strong forcing constraints would grow extremely 
large if all of them were included explicitly in the problem. In order to overcome this difficulty, we 
generate dynamically those strong forcing constraints that are violated in the optimal solution of the 
RMP. To do this, we first solve the weak linear relaxation to optimality with column generation. 
Then, we verify whether strong forcing constraints are violated in the optimal linear solution, and if 
so, these are added to the formulation. Then the new problem is solved to optimality with column 
generation, and the process is repeated if additional strong forcing constraints are needed. When no 
new strong forcing constraints are needed, we have obtained the strong linear relaxation. The 
drawback of this approach is that we spend time on testing if these constraints are violated and on 
reoptimization after new constraints have been added. For large instances, these reoptimizations may 
become computationally expensive, and an important issue is thus to which degree strong forcing 
constraints should be generated. These constraints may be generated at all branch-and-bound nodes, 
at the root node only, each time the lower bound is updated, or none of these.  

To strengthen the bound, we introduce the following idea from a vehicle routing setting in 
(Dumas et al., 1991): The number of vehicles used has to be integer in an integer solution. If the 
linear solution has a fractional sum of design cycles, we round this fractional value up to the nearest 
integer, captured in (28) with m being the sum of cycle variables in the current LP solution. In 
addition, we introduce the complement of (28) in (29), and round the fractional sum of cycle 
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variables down to the nearest integer. The effect of the strengthening with (28) and (29) is most 
significant if introduction of (29) implies an infeasible problem. 
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g m
∈
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  (28) 
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g m
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  (29) 

 

2.7 Upper bounds 
The upper bound is updated each time a new best integer solution is found. In order to encourage 
fathoming, it is of high importance to obtain good integer solutions early in the traversal of the tree. 
We introduce an accelerating technique with the aim of finding integer solutions quickly and thus 
improve the performance of the branch-and-price algorithm.  

From the solution of the linear RMP, we fix to 1 cycle variables kg with fractional values above a 
threshold. Then, new columns are generated until the solution of the RMP cannot be further 
improved. Again, the fractional kg variables with values above the threshold are fixed to 1, and this 
procedure is repeated until an integer solution has been found, the solution is worse than the current 
best integer solution, or the problem becomes infeasible.  

3 Computational study 
In this section we present a computational study based on the branch-and-price algorithm that was 
introduced in Section 2 for the SNDAM problem. We have programmed the algorithms in C++, and 
the models have been solved on computers with 3 GHz processor and 8 GB RAM running on Rock 
Cluster v 4.2.1 operating system.  The restricted master problems are solved with the LP-solver of 
XPRESS Optimizer v 17.1. We first discuss implementation and calibration issues in Section 3.1, 
before giving an introduction to the data sets used in Section 3.2. Computational results appear in 
Section 3.3.  

3.1 Implementation and calibration 
In the computational study, we explore three different approaches “A”, “B” and “C”, which are 
targeted at different instance sizes. One important difference between the approaches is the role of 
strong forcing constraints. These constraints improve the bound and may also contribute to better 
branching decisions, so it is desirable to include them.  However, for large problems, it is time-
consuming to solve even the linear version of the problem if many constraints are added to the 
problem. The rationale underlying implementations A-C is that strong forcing constraints are 
generated more often for small instances.  

There are a significant number of parameter settings and issues that could be explored in a 
computational study, but we have kept a focus on the role of the strong forcing constraints in the 
implementations. The three solution approaches A-C are developed through extensive testing in a 
calibration phase, and the parameter selections are based on what has been observed to give 
reasonable performance over a set of instances. It was however not possible to perform full-scale 
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testing of all combinations of the different parameters and issues.  We summarize significant 
implementation issues and parameter selections in Table 1.  

Table 1.Implementation issues and parameter selections. 

Issues and parameters Solution approach A Solution approach B Solution approach C 
Search strategy Depth first 
Maximum search time 36000 seconds 

How often is the master problem solved All subproblems are solved for given dual information before the master 
problem is resolved 

Strategy for solving RMP at each BB-node Save basis before adding columns, and reoptimize with dual simplex 
from this basis when columns have been added to the problem 

Max number of paths generated in each iteration One per commodity 

Branching strategies BB-3 (slack variables) BB-3 (slack variables) / 
BB-4 (heuristic) BB-4 (heuristic) 

Max and min values for fixing cycles to 1 in acc. technique 0.7 and 0.55 0.6 and 0.55 
Max number of cycles generated in each iteration 5* 10*/20*/30* 

How often are strong forcing constraints generated All nodes Nodes where lower 
bounds are updated 

Nodes where lower 
bounds are updated 

How long do we keep on generating strong forcing 
constraints at a node? As long as they are violated 

No new iterations after 
18000 seconds or if 
improvement < 0.1% 

Keep strong forcing constraints in problem after generation? Yes No   
*In the accelerating technique at most one cycle may be added in each iteration 
 

For the three approaches, we implemented a depth-first strategy in branch-and-price, and we 
have set a maximum running time of 10 hours (36000 seconds). In the computations it appeared to 
be more efficient to solve all subproblems before reoptimizing the RMP, so we do not report results 
for the second approach described in Section 2.2. In solving the RMP, we save the basis before 
adding columns, and when columns have been added, we reoptimize with dual simplex from the 
saved basis. As pointed out in Sections 2.3 and 2.4, it is computationally cheap to add more than one 
cycle or path when the subproblems are solved. There is a trade-off between the gains of saving 
iterations as a consequence of adding multiple columns, versus the increased computational time 
from having more columns in the master problem. There are a significant amount of commodities in 
our data sets, and we therefore allow inclusion of at most one path for each commodity in an 
iteration of the column generation. However, because of the many commodities, it makes sense to 
include multiple cycles in each iteration if there are several cycles with negative reduced costs. We 
allow most cycles in solution approach C, which is targeted at the instances with the largest number 
of commodities.   

For branching, the calibration phase indicated that branching on service arcs in the underlying 
network (BB-1) and constraint branching (BB-2) was outperformed by branching on slack variables 
(BB-3). The computational study is therefore limited to branching strategies BB-3 and BB-4, where 
BB-4 is applied to the largest instances. 

For solution approach A, we use branching strategy BB-3. For the variable fixing technique 
described in Section 2.7, the limit for fixing cycles is initially set to 0.7, and sequentially reduced to 
0.55. In each iteration of the column generation, at most 5 cycles may be added. Strong forcing 
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constraints are generated on all nodes, and we keep generating them as long as they are violated. The 
strong forcing constraints are also kept in the problem at subsequent nodes. 

Solution approach B may be used either with BB-3 or BB-4. The additional difference from 
solution approach A is that strong forcing constraints are only generated at nodes where the lower 
bounds are updated during branch-and-bound. This allows exploration of more nodes within the time 
limit. 

Solution approach C is targeted at very large problem instances, and it utilizes branching strategy 
BB-4. The variable fixing technique starts with a limit for fixing cycles at 0.6, and to facilitate 
instances with several hundred commodities, we test inclusion of at most 10, 20 and 30 cycles in one 
iteration of the column generation algorithm. Strong forcing constraints are only generated when the 
lower bound is updated, and because the reoptimizations are time-consuming, we include the 
opportunity to stop this process if the time exceeds 18000 seconds or if the improvement in objective 
function value in the last iteration was below 0.1%. Moreover, the strong forcing constraints are 
removed from the matrix as soon as the bound is updated, to facilitate faster exploration of the 
search tree.  

3.2 Data sets 
In (Andersen et al., 2007b) the SNDAM problem with cycle and path variables was solved directly 
with the MIP-solver in CPLEX for problem instances where all design cycles and commodity paths 
were generated a priori. We test the branch-and-price algorithm on a few of the instances from 
(Andersen et al., 2007b), but the computational study is focused on instances that are significantly 
larger than what could be solved with full a priori generation. In Table 2 we present the dimensions 
of the problems that are tested in the computational study. The first three columns of Table 2 present 
number of nodes and arcs in the static network, as well as number of time periods. In the fourth 
column we present the corresponding number of service and holding arcs, and number of 
commodities appears in the sixth column. In the seventh column a size indicator for problem 
dimension is presented, computed as the product of number of service arcs and number of 
commodities and divided by 1000. This measure gives a fair description of the relative dimensions 
of the instances. In the last column we indicate which of the solution approaches of Section 3.1 we 
apply to each instance. 

The instances are inspired by a real-world case in rail transportation planning. Instances 1-5 are 
extracted from (Andersen et al., 2007b), while instances 6-15 are significantly larger than what could 
be handled with total enumeration of cycles and paths. We observe that there are significant 
differences in problem size between the instances. As pointed out in Section 3.1, initial testing has 
suggested that different approaches should be applied depending on the sizes of the instances. 

Instances 1-5 have size indicators in the range 4-45, and for these problems we apply solution 
approaches A and B. However, for solution approach B we only apply the branching on slack 
variables (BB-3). For instances 6 to 12, the size indicator is in the range 120-450, which is 
significantly larger than for instances 1-5. For these cases, solution approach A is left out, as it for 
these instances appeared to be disadvantageous to generate strong forcing constraints on all nodes of 
the search tree. Finally, for instances 13-15, the size indicator exceeds 1000, and these instances are 
so large that we only apply solution approach C. 
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Table 2.Dimensions of problem instances. 

Problem 
id # Static nodes 

Static service 
arcs Time periods 

Service + 
holding arcs Commodities Size indicator 

Solution 
approaches 

1 5 10 20 200 + 100 20 4 A and B 
2 5 15 20 300 + 100 25 8 A and B 
3 5 15 25 375 + 125 25 9 A and B 
4 5 15 15 225 + 75 100 23 A and B 
5 5 15 15 225 + 75 200 45 A and B 
6 5 15 40 600 + 200 200 120 B 
7 5 15 50 750 + 250 400 300 B 
8 7 30 30 900 + 210 200 180 B 
9 7 30 30 900 + 210 400 360 B 
10 7 30 50 1500 + 350 300 450 B 
11 10 40 30 1200 + 300 200 240 B 
12 10 50 30 1500 + 300 100 150 B 
13 7 30 60 1800 + 420 800 1440 C 
14 10 50 30 1500 + 300 1000 1500 C 
15 10 50 50 2500 + 500 400 1000 C 

 

3.3 Results 
In this section we present results from model runs for the problem instances that were defined in 
Table 2. We allow a maximum CPU time of 10 hours in all cases. In Section 3.3.1 we present results 
for problems that have been solved with a priori generation of columns, while we in Section 3.3.2 
present results for the problems that have not been solved earlier.  

3.3.1 Instances solved with a priori generation of columns 
Results from model runs for instances 1-5 can be found in Table 3. For each scenario, there is one 
row with results obtained with solution approach A, and one row with results obtained with solution 
approach B. In each case, we report lower bound at termination and best MIP solution at 
termination. Termination either refers to that 10 hours of CPU time has been reached, or that the 
algorithm has found a proven optimal integer solution. Thereafter the solution time in seconds for 
finding proven optimal solution is returned, or alternatively the remaining optimality gap after 10 
hours of CPU time.  In the last two columns of Table 3, we present the best integer solution that was 
obtained with a priori enumeration of cycles and paths in (Andersen et al., 2007b) and the 
corresponding solution time. The a priori enumeration was implemented on different computers but 
with comparable specifications and a maximum running time of 10 hours. 

The results reported in Table 3 are very similar for approaches A and B. For instances 1-3, the 
branch-and-price algorithm returns proven optimal integer solutions with both solution approaches. 
For instances 1 and 3, the solutions are obtained reasonably quickly, while instance 2 requires 
around 25000 and 20000 seconds with the two approaches. The a priori enumeration was more 
efficient for instances 1 and 2, while instance 3 was solved faster with branch-and-price. The a priori 
enumeration utilized the advantages of a standard MIP-solver with advanced heuristics and more 
advanced search algorithms than we have implemented. It is nevertheless good news that the branch-
and-price algorithm returns proven optimal integer solutions for problems where these optimal 
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solutions are known. For instances 4 and 5, neither a priori enumeration nor branch-and-price 
returned proven optimal solutions within 10 hours. For instance 4, the integer solutions obtained 
were slightly better with a priori enumeration, and the gap also smaller in this case due to more 
advanced bounding. For instance 5, the branch-and-price algorithm returns better integer solutions 
than what was obtained with a priori enumeration. However, the remaining optimality gap after 10 
hours is smaller with a priori enumeration; this reflects the stronger focus on bounding in a 
commercial MIP-solver compared to the branch-and-price algorithm presented in this paper. The 
encouraging news from Table 3 is however that the branch-and-price algorithm solves small 
instances to proven optimality, and that both approaches A and B return better integer solutions than 
what was obtained with a priori enumeration for the largest instance. 
Table 3. Results from model runs for instances that have been computed with a priori generation of columns. 

Instance 
Solution 

approach 
Lower bound at 

termination 
MIP solution at 

termination 
Solution time (sec) / 

Optimality gap  
Best MIP with a priori 

enumeration 

Time use a priori 
enumeration (sec) / 

Optimality gap 

1 
A 48 838 48 838 98 48 838 9 B 48 838 48 838 129 

2 
A 52 156 52 156 25 134 52 156 1235 B 52 156 52 156 19 799 

3 
A 47 805 47 805 68 47 805 143 B 47 805 47 805 69 

4 
A 171 532 174 697 1.8 % 174 233* 0.7% B 171 532 174 697 1.8 % 

5 
A 378 347 380 848 0.66 % 381 533* 0.5% B 378 347 381 002 0.70 % 

*For these instances, the a priori approach did not return a proven optimal solution within 10 hours. 

3.3.2 Larger instances 
We present results from model runs for problem instances 6-12 in Table 4. In these model runs, all 
integer solutions have been obtained by use of the accelerating technique presented in Section 2.7. 
No problems are solved to proven optimum within 10 hours of CPU time. Again, there are two rows 
for each instance, representing branching on slack variables (BB-3) and heuristic branching (BB-4). 

In Table 4, the first column of results presents the lower bounds at termination, which in all cases 
corresponds to the lower bound obtained at the root node, because the depth-first search does not 
return to the root node within 10 hours for any of the instances. Then best integer solutions obtained 
and optimality gaps are reported. The next two columns elaborate on the best integer solutions that 
were obtained, and report node number where the best integer solution was found and the elapsed 
time, respectively. In the last two columns we report number of branch-and-price nodes visited 
during the tree search, and time needed to solve the root node. For each branching strategy, we 
present average results from instances 6-12 in the last two rows. 
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Table 4. Results from model runs for instances 6-12. Maximum computational time is 10 hours. 

Instance Branching strategy Lower bound 
Best MIP- 
solution 

Optimality 
gap 

Best MIP- 
node 

Best MIP- 
time Nodes visited Root time 

6 Slack variables 334 026 338 314 1.3 % 3 115 1 143 67 
Heuristic 334 026 339 198 1.5 % 217 7 373 3 828 85 

7 Slack variables 465 997 482 250 3.4 % 14 29 020 19 15 558 
Heuristic 465 997 482 427 3.4 % 12 28 706 18 15 306 

8 Slack variables 360 466 376 049 4.1 % 11 1 853 1 905 381 
Heuristic 360 466 374 804 3.8 % 6 1 173 912 379 

9 Slack variables 363 332 381 307 4.7 % 21 23 968 34 2 522 
Heuristic 363 332 377 775 3.8 % 69 29 597 129 2 525 

10 Slack variables 504 792 528 755 4.5 % 11 27 026 15 6 791 
Heuristic 504 792 524 450 3.7 % 10 26 114 14 6 775 

11 Slack variables 412 463 434 118 5.0 % 10 12 235 35 2 156 
Heuristic 412 463 439 179 6.1 % 10 11 528 30 2 157 

12 Slack variables 284 211 292 223 2.7 % 32 4 706 416 219 
Heuristic 284 211 291 677 2.6 % 163 15 745 300 218 

Average 
Slack variables 389 327 404 717 3.7 % 15 14 132 510 3 956 

Heuristic 389 327 404 216 3.6 % 70 17 177 747 3 921 
 

From Table 4 we observe that the optimality gaps range from 1.3% to 6.1%, and the averages 
over all the instances are 3.7% and 3.6% with the two branching strategies. The optimal integer 
solutions are not known for these problems, but from similar problem types in (Andersen et al., 
2007b) we observed that the gaps between strong linear relaxation of the root node and optimal 
integer solutions were in the ranges 0-9%, with an average of about 3%. It is thus likely that the 
integer solutions reported in Table 4 represent near-optimal solutions to the instances. This 
assumption is supported by reviews of computational studies of similar problems, for instance 
reported in (Ghamlouche et al., 2004) and (Pedersen et al., 2007). 

We observe from Table 4 that there are significant differences between the instances in root time 
and number of nodes visited. The computed averages reveal that the two branching strategies are 
very different when it comes to “Best MIP-node”. The average optimality gaps are about similar in 
the two cases, but the searches based on heuristic branching continue finding integer solutions later 
than the searches based on slack variable branching.  

In Table 5 we report results that were obtained for instances 13-15. For each instance, solution 
approach C is tested with three alternative maximum number of cycles that may be added in each 
iteration of the column generation. The columns of Table 5 are identical to those of Table 4, except 
that one new column is added with an indication of whether the improvements from weak to strong 
linear relaxations in the root node were stopped because the time limit was exceeded, because there 
was no significant improvements, or not stopped at all. We observe from Table 5 that bounding was 
stopped in all model runs. 
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Table 5. Results from model runs for instances 13-15. Maximum computational time is 10 hours. 

Instance 
Max no 

of cycles 
Bounding     

stopped by 
Lower 
bound 

Best MIP- 
solution 

Optimality 
gap 

Best MIP- 
node 

Best MIP- 
time 

Nodes 
visited Root time 

13 
10 No improvement 733 310 850 732 13.8% 3 16 375 21 13 825 
20 No improvement 733 373 849 862 13.7% 5 14 509 31 10 519 
30 No improvement 733 373 850 921 13.8% 24 30 081 32 9 681 

14 
10 Time 630 828 708 283 10.9% 11 32 725 12 19 269 
20 No improvement 631 294 727 652 13.2% 4 18 628 13 15 633 
30 No improvement 631 304 705 243 10.5% 9 30 725 11 13 760 

15 
10 Time 633 392 n.a. n.a. n.a. n.a. 1 36 112 
20 Time 633 416 792 926 20.1% 3 32 107 5 26 524 
30 Time 633 626 773 617 18.1% 3 31 560 5 26 225 

  
For all instances, integer solutions were found. The only approach that did not return an integer 

solution was when at most 10 cycles could be generated in each iteration for instance 15. In this case 
only the root node could be explored within the time limit, and the accelerating technique did not 
return a feasible integer solution in that single attempt. The optimality gaps reported in Table 5 are 
larger than those of Table 4. Fewer nodes are visited in the searches because the solution time of the 
linear problem at each node of branch-and-price is more time-consuming. In addition, it might be 
that the bound could have been tightened more if we allowed more time for generation of strong 
forcing constraints and reoptimizations. This applies to instance 15 which has the largest gaps. 
Despite this, it is promising that the algorithm returns fairly good integer solutions for these large 
instances. 

The results for the large instances indicate that we are able to find good integer solutions also for 
these. However, the computational study has demonstrated the need for different adaptations of the 
branch-and-price algorithm based on the sizes of the instances considered.  

4 Concluding remarks 
In this paper we have developed a branch-and-price algorithm for solving the service network design 
problem with asset management constraints (SNDAM). Such problems arise for instance when 
decisions on vehicle management are considered jointly with service network design, and represent a 
potential for improved planning of transportation systems.  

We have compared the branch-and-price algorithm to earlier work based on a priori enumeration 
of columns. The branch-and-price algorithm gives comparable solutions to those obtained with a 
priori enumeration of columns, but the smallest instances are solved more efficiently with 
commercial code. However, the branch-and-price algorithm is able to find near-optimal solutions for 
instances that are significantly larger than what could be solved with a priori enumeration of 
columns. An accelerating technique that is introduced within branch-and-price contributes to finding 
good integer solutions fast. The promising results from the computational study indicate that the 
presented algorithm may contribute to improved planning of large-scale operations.  

However, there is still a need for improvements of the methodology that is developed to solve 
even larger instances of the problem. One interesting way forward would be to improve the 
accelerating technique that is introduced to enhance the performance of the algorithm. This 
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technique can be made more advanced, for instance by reversing earlier decisions on variable fixing 
during the accelerating technique in order to obtain diversity. Ideas from other heuristics may also be 
introduced in this environment. One challenge for the solution approach presented in this paper is 
that the solution time for the linear problem is significant, in particular due to multiple 
reoptimizations when strong forcing constraints are generated within the column generation process. 
Moreover, network design problems suffer in general from weak lower bounds, and even if the true 
optimal integer solution was obtained during branch-and-price, the search may continue for a 
considerable time if the lower bound is weak. Introduction of cuts may be an interesting way 
forward to obtain smaller optimality gaps also for the problem studied in this paper.  

Due to the potential savings that can be achieved by closer integration of service network design 
and vehicle management, we strongly encourage further research on these issues. The formulation 
based on cycles also can be used for problems without requirements for a maximum vehicle route 
length corresponding to the length of the planning horizon. In such cases, the model must allow for 
cycles covering multiple planning horizons, in the worst case with a number of periods 
corresponding to the fleet size. However, the major ideas of the formulation and the solution 
algorithm still apply. We also suggest that the ideas that are brought forward with design cycles 
could be introduced for other problems. Grouping design arcs into design paths could be an 
interesting idea even for problems without a time-space representation and for general network 
design formulations. 
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