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In this paper, we consider the Time-Dependent Vehicle Routing Problem with Time Windows (TDVRPTW).
Travel times are time-dependent, meaning that depending on the departure time from a customer a different
travel time is incurred. Because of time-dependency, vehicles’ dispatch times from the depot are crucial as
road congestion might be avoided. Due to its complexity, all existing solutions to the TDVRPTW are based
on (meta-) heuristics and no exact methods are known for this problem. In this paper, we propose the first
exact method to solve the TDVRPTW. The MIP formulation is decomposed into a master problem that is
solved by means of column generation, and a pricing problem. To insure integrality, the resulting algorithm
is embedded in a Branch and Cut framework. We aim to determine the set of routes with the least total
travel time. Furthermore, for each vehicle, the best dispatch time from the depot is calculated.

Key words : vehicle routing problem; column generation; time-dependent travel times; branch and cut
History :

1. Introduction
The vehicle routing problem with time windows (VRPTW) concerns the determination of a set of
routes starting and ending at a depot, in which the demand of a set of geographically scattered
customers is fulfilled. Each route is traversed by a vehicle with a fixed and finite capacity, and
each customer must be visited exactly once. The total demand delivered in each route should not
exceed the vehicle’s capacity. At customers time windows are imposed, meaning that service at a
customer is only allowed to start within its time window. The solution to the VRPTW consists of
the set of routes with the least traveled distance.

Due to its practical relevance, the VRPTW has been extensively studied in the literature (Toth
and Vigo 2002). Consequently, many (meta-) heuristics and exact methods have been successfully
developed to solve it. However, most of the existing models are time-independent, meaning that a
vehicle is assumed to travel with constant speed throughout its operating period. Because of road
congestion, vehicles hardly travel with constant speed. Obviously, solutions derived from time-
independent models to the VRPTW could be infeasible when implemented in real-life. In fact, in
real-life road congestion results in tremendous delays. Consequently, it is unlikely that a vehicle
respects customers’ time windows. Therefore, it is highly important to consider time-dependent
travel times when dealing with the VRPTW.

In this paper, we consider the time-dependent vehicle routing problem with time windows
(TDVRPTW). We take road congestion into account by assuming time-dependent travel times:

1



Author: Branch and Cut and Price for the TDVRPTW
2 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

depending on the departure time at a customer a different travel time is incurred. We divide the
planning horizon into time zones (e.g. morning, afternoon, etc.) where a different speed is asso-
ciated with each of these zones. The resulting stepwise speed function is translated into travel
time functions that satisfy the First-In First-Out (FIFO) principle (see also Ichoua et al. (2003)).
Because of the time-dependency, the vehicles’ dispatch times from the depot are crucial. In fact,
a later dispatch time from the depot might result in a reduced travel time as congestion might
be avoided. In this paper, we aim to determine the set of routes with the least total travel time.
Furthermore, for each vehicle, the best dispatch time from the depot is calculated.

Despite numerous publications dealing with the vehicle routing problem, very few addressed
the inherent time-dependent nature of this problem. Additionally, to our knowledge, all existing
algorithms are based on (meta-) heuristics, and no exact approach has been provided for the
TDVRPTW. In this paper, we solve the TDVRPTW exactly. We use the flow arc formulation
of the VRPTW which is decomposed into a master problem (set partitioning problem) and a
pricing problem. While the master problem remains unchanged, compared to that of the VRPTW
(as time-dependency is implicitly included in the set of feasible solutions) the pricing problem
is translated into a time-dependent elementary shortest path problem with resource constraints
(TDESPPRC), where time windows and capacity are the constrained resources. The relaxation of
the master problem is solved by means of column generation. To guarantee integrality, the resulting
column generation algorithm is embedded in a branch-and-bound framework. Furthermore, in each
node, we use cutting planes in the pricing problem to obtain better lower bounds and hence reduce
the size of branching trees. This results in a branch-and-cut-and-price (BCP) algorithm. Time-
dependency in travel times increases the complexity of the pricing problem. In fact, the set of
feasible solutions increases as the cost of a generated column (i.e. route) does not depend only
on the visited customers, but also on the vehicles’ dispatch time from the depot. The pricing
problem in case of the VRPTW is usually solved by means of a labeling algorithm (Desrochers
1986). However, the labeling algorithm designed for the VRPTW is incapable to deal with time-
dependency in travel times and needs to be adapted. In this paper, we develop a time-dependent
labeling (TDL) algorithm such that in each label the arrival time function (i.e. function of the
departure time from the depot) of the corresponding partial path is stored. the TDL generates
columns that have negative reduced cost together with their best dispatch time from the depot.
To accelerate the BCP algorithm, two heuristics based on the TDL algorithm are designed to
quickly find columns with negative reduced cost. Moreover, new dominance criteria are introduced
to discard labels that do not lead to routes in the final optimal solution. Furthermore, we relax
the pricing problem by allowing non-elementary paths. The resulting pricing problem is a time-
dependent shortest path problem with resource constraints (TDSPPRC). Although the TDSPPRC
results in worse lower bounds, it is easier to solve and integrality is still guaranteed by branch-and-
bound. Moreover, TDSPPRC should work well for instances with tight time windows. The pricing
problem is explained in more details in section 5. Over the last decades, BCP proved to be the
most successful exact method for the VRPTW. Hence, our choice for a BCP framework to solve
the TDVRPTW is well motivated.

The main contributions of this paper are summarized as follows. First, we present an exact
method for the TDVRPTW. We propose a branch-and-cut-and price algorithm to determine the
set of routes with the least total travel time. Contrary to the VRPTW, the pricing problem is
translated into a TDESPPRC and solved by a time-dependent labeling algorithm. Second, we
capture road congestion by incorporating time-dependent travel times. Because of time dependency,
vehicles’ dispatch times from the depot are crucial. In this paper, dispatch times from the depot are
also optimized. In the literature as well as in practice, dispatch time optimization is approached as
a post-processing step, i.e. given the routes, the optimal dispatch times are determined (Kok et al.
2007). In this paper, the scheduling (dispatch time optimization) and routing are simultaneously
performed. Third, ...
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The paper is organized as follows...

2. Literature Review
An abundant number of publications is devoted to the vehicle routing problem (see Laporte (1992),
Toth and Vigo (2002), and Laporte (2007) for good reviews). Specifically, the VRPTW has been
extensively studied. For good reviews on the VRPTW, the reader is referred to Bräysy and Gen-
dreau (2005a), and Bräysy and Gendreau (2005b). The majority of these publications assume a
time-independent environment where vehicles travel with a constant speed throughout their oper-
ating period. Perceiving that vehicles operate in a stochastic and dynamic environment, more
researchers moved their effort towards the optimization of the time-dependent vehicle routing
problems. Nevertheless, literature on this subject remains scarce.

In the context of dynamic vehicle routing, we mention the work of Bertsimas and Simchi-Levi
(1996), Bertsimas and Ryzin (1991) and Bertsimas and Ryzin (1993a) where a probabilistic analysis
of the vehicle routing problem with stochastic demand and service time is provided. Malandraki
and Dial (1996), Hill and Benton (1992) and Ichoua et al. (2003) tackle the vehicle routing problem
where vehicles’ travel time depends on the time of the day, and Malandraki and Daskin (1992)
considers a time-dependent traveling salesman problem. Time-dependent travel times has been
modeled by dividing the planning horizon into a number of zones, where a different speed is
associated with each of these time zones (see Ichoua et al. (2003) and Jabali et al. (2009)). In
Van Woensel et al. (2008), traffic congestion is captured using a queuing approach. Malandraki and
Dial (1996) and Malandraki and Daskin (1992) models travel time using stepwise function, such
that different time zones are assigned different travel times. Fleischmann et al. (2004) emphasized
that modeling travel times as such leads to the undesired effect of passing. That is, a later start
time might lead to an earlier arrival time. As in Ichoua et al. (2003), we consider travel time
functions that adhere to the FIFO principle. Such travel time functions does not allow passing.

While several successful (meta-) heuristics and exact algorithms have been developed to solve
the VRPTW, algorithms designed to deal with the TDVRPTW are somewhat limited to (meta-)
heuristics. In fact, most of the existing algorithms are based on tabu search (Ichoua et al. (2003),
Van Woensel et al. (2008), Jabali et al. (2009) and Maden et al. (2010)). In Malandraki and Dial
(1996) mixed integer linear formulations the time-dependent vehicle routing problem are presented
and several heuristics based on nearest neighbor and cutting planes are provided. Donati et al.
(2008) proposes an algorithm based on a multi ant colony system and Haghani and Jung (2005)
presents a genetic algorithm. In Hashimoto et al. (2008) a local search algorithm for the TDVRPTW
is developed and a dynamic programming is embedded in the local search to determine the optimal
starting for each route. Androutsopoulos and Zografos (2009) considers a multi-criteria routing
problem, they propose an approach based on the decomposition of the problem into a sequence of
elementary itinerary subproblems that are solved by means of dynamic programming. Malandraki
and Daskin (1992) presents a restricted dynamic programming for the time-dependent traveling
salesman problem. In each iteration of the dynamic programming, only a subset with a predefined
size and consisting of the best solutions is kept and used to compute solutions in the next iteration.
Tang (2008) emphasizes the difficulty of implementing route improvement procedures in case of
time-dependent travel times and proposes efficient ways to deal with that issue. In this paper,
we attempt to solve the TDVRPTW to optimality using column generation. To the best of our
knowledge, this is the first time an exact method for the TDVRPTW is presented.

Column generation has been successfully implemented for the VRPTW. For a overview of col-
umn generation algorithms, the reader is referred to Lübbecke and Desrosiers (2005). in the context
of the VRPTW, Kohl et al. (1999) designed an efficient column generation algorithm where they
applied subtour elimination constraints and 2-path cuts. This has been improved by Cook and
Rich (1999) by applying k-path cuts. Jespen et al. (2008) proposes a column generation algorithm
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by applying subset-row inequalities to the master problem (set partitioning). Although, adding
subset-row inequalities to the master problem increases the complexity of the pricing problem,
Jespen et al. (2008) shows that better lower bounds can be obtained from the linear relaxation of
the master problem. To accelerate the pricing problem solution, Desaulniers et al. (2008) proposes
a tabu search heuristic for the ESPPRC. Furthermore, elmentarity is relaxed for a subset of nodes
and generalized k-inequalities are introduced. Recently, Baldacci et al. (2010) introduce a new
route relaxation, called ng-route, used to solve the pricing problem. Their framework proves to be
very effective in solving difficult instances of the VRPTW with wide time windows. Fleischmann
et al. (2004) argued that existing algorithms for the VRPTW fail to solve the TDVRPTW. One
major drawback of the existing algorithms is the incapability to deal with the dynamic nature of
travel times. Therefore, existing algorithms for the VRPTW can not be applied to the TDVRPTW
without a radical modification of their structure. In this paper, a branch-and-cut-and-price frame-
work is modified such that time-dependent travel times can be incorporated.

3. Problem Description
We consider a graph G(V,A) on which the problem is defined. V = {0,1, ..., n,n+1} is the set of all
nodes such that Vc = V/{0, n+1} represents the set of customers that need to be served. Moreover,
0 is the start deport and n+1 is the end depot. A = {(i, j) : i 6= j and i, j ∈ V } is the set of all arcs
between the nodes. Let K be the set of homogeneous vehicles such that each vehicle has a finite
capacity Q and qi demand of customer i∈ Vc. We assume q0 = qn+1 = 0 and |K| is unbounded. Let
ai and bi be respectively the opening and closing time of node’s i time window. At node i, a service
time si is needed. We denote ti departure time from node i ∈ V and τij(ti) travel time from node
i to node j which depend on the departure time at node i. Table 1 summarizes the notation used
in this paper.

Table 1 Notation used in this paper.

Variable Description

V : Set of nodes
Vc : Set of customers
K : Set of vehicles
Q : Capacity of a vehicle
ti : Departure time at node i

tl
i(L) : Latest possible departure time at a node i visited on the partial path represented by L

qi : Demand at nodei
si : Service time at node i
xijk : Binary variable. Is one if and only if arc (i, j) is traversed by vehicle k
γ+(S) : Arcs originating from the set S ⊆ V . We write γ+(i) instead of γ+({i})
γ−(S) : Arcs ending in the set S ⊆ V . We write γ−(i) instead of γ−({i})
τij(ti) : Travel time from node i to node j when departure time at i is ti

δv(L)(tj) : Piecewise linear function measuring the arrival at the current node v(L) of the partial path
represented by L when departure at the start node j is tj

Ω : Set of all feasible routes
sp : Start time of route p∈Ω
ep : End time of route p∈Ω
cp : cost of route p∈Ω. It is defined as as ep− sp

aip : Is one if node i is visited by path p and zero otherwise
πi : Dual variable associated with row i of the master problem
c̄p : Reduced cost of route p∈Ω
[ai, bi] : Time window at node i
|X| : Size of the set X
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3.1. Travel Time and Arrival Time Functions
We divide the planning horizon into time zones where a different speed is associated with each
of these zones. The resulting stepwise speed function is translated into travel time functions that
satisfy the First-In First-Out (FIFO) principle. Usually traffic networks have a morning and an
afternoon congestion period. Therefore, we consider speed profiles that have two periods with
relatively low speeds. In the rest of the planning horizon, speeds are relatively high. This complies
with data collected for a Belgian highway (Van Woensel and Vandaele (2006)). Figure 1 depicts the
speed profile for each start time for an arbitrary link. Moreover, it shows how the speed profile is
translated into a travel time function. We call the points a, b, c, d and e where speeds change speed
breakpoints. Speed breakpoints are also breakpoints in the travel time function. The other travel
time breakpoints are determined as the start time to arrive exactly at a speed breakpoint (e.g, a’ is
the start time to exactly arrive at time a) using the procedure as described in Ichoua et al. (2003).
While the slopes in the travel time function mean that the traveled distance is traversed using

Figure 1 Speed and travel time functions.

several speeds, the horizontal segments mean that it is traversed using only one speed. Clearly,
for large distances we might have travel time functions without any horizontal segments. Travel
time functions are stepwise linear functions in which every two consecutive travel time breakpoints
define a zone. Given any start time within a zone, travel time can easily be computed using the
breakpoints defining that zone. Therefore, travel time functions can be completely represented by
their breakpoints.
Given a partial path Pi starting at the depot 0 and ending at some node i, the arrival time at
i depends on the dispatch time t0 at the depot. Due to the FIFO property of the travel time
functions, a later dispatch at the depot will result in a later arrival at node i. Therefore, if route
Pi is unfeasible for some dispatch time t0 at the depot (i.e. time windows are violated), Pi will be
unfeasible for any dispatch time at the depot that is later than t0. Moreover, If we define δi(t0)
as the arrival time function at node i given a dispatch time t0 at the depot, δi(t0) will be non-
decreasing in t0. We call the parent node j of node i, the node that is visited directly before node
i on route Pi. δj(t0) is the arrival time at j given a dispatch time t0 at the depot, and τji(δj(t0)) is
the incurred travel time from j to i. Consequently, for every i ∈ V , δi(t0) is recursively calculated
as follows:

δ0(t0) = t0 and δi(t0) = δj(t0)+ τji(δj(t0)) (1)

Where δ0(t0) is a sort of dummy function representing the arrival time at the depot given a dispatch
time t0 at the same depot. Formula (1) shows that an arrival time function is the sum of two
linear stepwise functions (travel time function and arrival time function of the parent node), hence
it is also a linear stepwise function. Figure 2 depicts the recursive calculation of the arrival time
functions using equation (1). Again, we can completely represent an arrival time function using
the arrival time function breakpoints resulting from either breakpoints of travel time functions,
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breakpoints of the arrival time function of the parent node, or from time windows. The cost of a
path is equal to its duration δi(t0)− t0. Clearly, the departure time t∗0 from the depot that results
in the shortest path duration belongs to a breakpoint. That is:

t∗0 = min
t0∈Bi

{δi(t0)− t0} (2)

Figure 2 Arrival time functions.

Bi is the set of breakpoints of the arrival time function δi(t0).

3.2. The Mathematical Formulation
If ωik is the departure time of vehicle k at customer i and xijk is a binary variable that takes the
value 1 if and only if arc (i, j) is traversed by vehicle k, the objective function for the TDVRPTW
is as follows: ∑

k∈K

∑

(i,j)∈A

τij(ωik)xijk (3)

For every arc (i, j), we denote Zij as the set of zones of the corresponding travel function τij(ti).
A zone Zm ∈ Zij, is defined by two consecutive travel time breakpoints, Zm = [rm, rm+1[. A slope
θm and an intersection ηm with the y-axis can be calculated using rm, rm+1, τij(rm) and τij(rm+1).
Therefore, for some Zm ∈Zij, the travel time τij(ωik) from i to j given departure time ωik at i is:

τij(ωik) = θmωik + ηm (4)

The objective function can be re-written as follows:

∑
k∈K

∑

(i,j)∈A

|Zij |∑
m=1

(θmωik + ηm)xm
ijk (5)

Where, xm
ijk is a binary variable that takes the value 1 if and only arc (i, j) is traversed by vehicle

k and departure time from customer i is within zone Zm. Obviously, the non-linear term ωikx
m
ijk

will appear in the objective function. However, if we define the variable:

ωm
ik =

{
ωik if xm

ijk = 1
0 otherwise (6)

ωikx
m
ijk can be replaced by ωm

ik. Furthermore, we denote Z+
ij and Z−

ij respectively as the set of zones
with positive slope and the set of zones with absolutely negative slope. The MIP formulation for
TDVRPTW can be written as follows:

minz =
∑
k∈K

∑

(i,j)∈A

|Zij |∑
m=1

(θmωm
ik + ηmxm

ijk) (7)
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subject to:
∑
k∈K

xk(γ+(i)) = 1 ∀i∈ V/{n+1} (8)

xk(γ+(0)) = 1 ∀k ∈K (9)
xk(γ+(j)) = xk(γ−(j)) ∀k ∈K,∀j ∈ V/{n+1} (10)

xk(γ−(n+1)) = 1 ∀k ∈K (11)
(1+ θm)ωm

ik − si + ηm ≤ ωm
jk− sj +(1−xm

ijk)M ∀k ∈K,∀(i, j)∈A,∀m∈ |Zij| (12)
ωm

ik ≥ ωik− (1−xm
ijk)M ∀k ∈K,∀(i, j)∈A,∀m∈ |Z+

ij | (13)
ωm

ik ≤min(ωik,Mxm
ijk) ∀k ∈K,∀(i, j)∈A,∀m∈ |Z−

ij | (14)
ai + si ≤ ωm

ik ≤ bi + si ∀k ∈K,∀i∈ V (15)∑
i∈N

qix
k(γ+(i))≤Q ∀k ∈K (16)

xm
ijk ∈ {0,1} ∀k ∈K,∀(i, j)∈A,∀m∈ |Zij| (17)
rm ≤ ωm

ik < rm+1 ∀k ∈K,∀i∈ V,∀m∈ |Zij| (18)

When departure time is within a zone with positive slope, wm
ik will appear with a positive sign in

the objective function (7), and the optimization will attempt to set it as low as possible to reduce
travel time. This is taken care of by means of constraint (13). However, when departure time is
within a zone with a negative slope, wm

ik will appear with negative sign in the objective function,
and the optimization will attempt to set it as large as possible through constraint (14).
Obviously, the number of decision variable has increased. However, we don’t have to decide on
all of them. In fact, due to the FIFO assumption, waiting at customers will not result in better
solutions. Therefore, we only have to decide on departure time at the depot. Departure times at
customers take place immediately after finishing service which is computable given the sequence
of visited customers.

4. Column Generation
To derive the set partitioning formulation for the TDVRPTW, we define Ω as the set of feasible
paths satisfying constraints (9)-(18) (the index k is dropped since we are considering a homogeneous
fleet). A feasible path is defined by the sequence of customers visited along it and the dispatch
time at the depot. To each path p∈Ω, we associate the cost cp which is simply its duration. Hence:

cp = ep− sp (19)

Where ep and sp are respectively the end time and the start time of path p. Furthermore, if yp is
a binary variable that takes the value 1 if and only if the path p is included in the solution, the
TDVRPTW is formulated as the following set partitioning problem:

minzM =
∑
p∈Ω

cpyp (20)

subject to:
∑
p∈Ω

aipyp = 1 ∀i∈ V (21)

yp ∈ {0,1} ∀p∈Ω. (22)

The objective function (20) minimize the duration of the chosen routes. Constraint (21) guarantees
that each node is visited only once. Solving the LP-relaxation , resulting from relaxing the inte-
grality constraints of the variables yp, of the master problem provides a lower bound on its optimal
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value. The set of feasible paths Ω is usually very large making it hard to solve the LP-relaxation
of the master problem. Therefore, we have recourse to column generation. In column generation, a
restricted master problem is solved by considering only a subset Ω′ ⊆Ω of feasible paths. Additional
paths with negative reduced cost are generated after solving a pricing subproblem. The pricing
problem for the TDVRPTW is (the index k is dropped):

minzP =
∑

(i,j)∈A

τ ij(ωi)xij (23)

subject to constraints (9)-(18). Furthermore, τ ij(ωi) = τij(ωi)− πi is the arc reduced cost, where
πi is the dual variable associated with servicing node i. In the master problem, πi results from
the constraint corresponding to node i in the set of constraints (21). The objective function of the
pricing problem can be expressed as:

zP = ep− sp−
∑
i∈Vc

aipπi (24)

or in the variables xij as:

zP = ep− sp−
∑
i∈Vc


πi

∑

j∈γ+(i)

xij


 (25)

The problem with the objective function (24) and constraints (9)-(18) is called the time-dependent
elementary shortest path problem with resource constraints (TDESPPRC). In this paper the only
resources we consider are time windows. Capacity is relaxed in the pricing problem and handled
using valid inequalities. Therefore, a feasible solution to the pricing problem must only respect
time windows.In the next section the pricing problem is addressed in more details and it is shown
how it is solved by means of a time-dependent labeling algorithm.

4.1. Capacity Cuts
5. The Pricing Problem
Solving the pricing problem involves finding columns (i.e. routes) with negative reduced cost that
improve the objective function of master problem. In case of the TDVRPTW, this corresponds to
solving the TDESPPRC and finding paths with negative cost. The TDESPPRC is a generalization
of the ESPPRC in which costs are time-dependent. In this paper, we solve the pricing problem
by means of a time-dependent labeling (TDL) algorithm which is a modification of the labeling
algorithm applied to the ESPPRC. To speed up the TDL algorithm , a bi-directional search is
performed in which labels are extended both forward from the depot (i.e. node 0) to its successors,
and backward from the depot (i.e. node n+1) to its predecessors. While forward labels are extended
to some fixed time tm (e.g. the middle of the planning horizon) but not further, backward labels are
extended to, but are allowed to directly cross, tm. Forward and backward labels are finally merged
to construct complete tours. The running time of a labeling algorithm depends on the length of
partial paths associated with its labels. A bi-directional search avoids generating long paths and
therefore limits running times.

5.1. The Forward TDL Algorithm
In the forward TDL algorithm, labels are extended from the depot (i.e. node 0) to its successors.
The extension to a node is allowed if it is feasible and if the earliest arrival time (including waiting
and service time) at that node is no further than tm. We associate the following components to a
Label Lf :

The set of feasible extensions E(Lf) of Lf is the set of partial paths that when departing at
node v(Lf) at time δv(Lf )(0), they reach the depot (i.e. node n+1) without violating time windows.
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v(Lf) the current node visited on the partial path represented by Lf

c(Lf) the sum of the dual variables associated with nodes visited along the partial path
represented by Lf

δv(Lf )(t0) arrival time at v(Lf) through the partial path represented by Lf when the departure time
at the depot is t0. It includes both waiting time and service time at v(Lf )

S(Lf ) set of nodes visited along the partial path represented by Lf

If L ∈E(Lf), we denote Lf ⊕L as the label resulting from extending Lf by L. If label L′f is the
parent label of label Lf , the arrival time function associated with label Lf is extended as follows:

δv(Lf )(t0) = δv(L′
f
)(t0)+ τv(L′

f
)v(Lf )(δv(L′

f
)(t0)) (26)

Furthermore, we have:

S(Lf) = S(L′f)
⋃
{v(Lf)} and c(Lf ) = c(L′f)−πv(Lf ) (27)

Where πv(Lf ) is the dual variable corresponding to visiting node v(Lf ). Given the FIFO assumption,
the earliest arrival time at v(Lf) corresponds to the earliest possible dispatch time at the depot,
t0 = 0:

δv(Lf )(0) = δv(L′
f
)(0)+ τv(L′

f
)v(Lf )(δv(L′

f
)(0)) (28)

The extension of label L′f to label Lf is feasible if:

δv(Lf )(0)≤min(tm, bv(Lf ) + sv(Lf )) (29)

In case of the ESPPRC, only the arrival time corresponding to a departure time t0 = 0 from the
depot is stored. Obviously, in case of the TDESPPRC, computing and storing arrival time func-
tions is more complicated. The TDL algorithm is a complete enumeration in which, for every label,
all possible extensions are derived and stored. It ends when all labels are processed. However, the
number of labels that can be processed might be very large. Consequently, the labeling algorithm
might be computationally very expensive. To reduce the number of labels, dominance criteria are
introduced. In case of the forward TDL algorithm, dominance is defined as follows:

Definition 1. Label L2
f is dominated by label L1

f if:

1. E(L2
f)⊆E(L1

f )

2. c(L1
f ⊕L)≤ c(L2

f ⊕L),∀L∈E(L2
f)

Definition 1 states that any feasible extension of label L2
f is also feasible for label L1

f . Furthermore,
extending L1

f should always result in a better route. However, it is not straightforward to verify the
conditions of Definition 1 as it requires the computation and the evaluation of all feasible extensions
of both labels L1

f and L2
f . Therefore, sufficient dominance criteria that that are computationally less

expensive are desirable. In Proposition 1, the sufficient conditions (3.), (4.) and (5.) are introduced.
Condition (3.) is needed because of the elementarity of paths. Condition (4.), in addition to the
FIFO assumption, guarantees that time windows of nodes visited along any feasible extension of
L2

f are respected when reached through L1
f . Conditions (5.) ensures that no cheaper route can be

obtained by extending L2
f regardless of departure time at the depot. If we denote tl

0(Lf) as the
latest feasible start time at the depot of the partial path represented by label Lf , Proposition 1 is
formally stated as follows:



Author: Branch and Cut and Price for the TDVRPTW
10 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

Proposition 1. Label L2
f is dominated by label L1

f if:

1. v(L1
f) = v(L2

f )
2. c(L1

f)≤ c(L2
f )

3. S(L1
f)⊆ S(L2

f)
4. δv(L1

f
)(t0)≤ δv(L2

f
)(t0), ∀t0 ∈ [0, tl

0(L2
f )]

5. tl
0(L2

f)≤ tl
0(L1

f)

Proof of Proposition1: First we prove that E(L2
f)⊆E(L1

f).
Let L∈E(L2

f ), then S(L)
⋂

S(L2
f) = ∅. As S(L1

f)⊆ S(L2
f ), we should also have S(L)

⋂
S(L1

f) = ∅.
Now we will show that customers’ time windows along the partial path represented by L are
respected when reached trough L1

f .
Let i be a node visited on the parrtial path represented by L, and Li ⊆L be the partial path with
i as the current node and the same start node as L. Furthermore, let t0 ≤ tl

0(L2
f) be some start

time at the depot.

δv(L1
f
⊕Li)

(t0) = δv(L1
f
)(t0)+ δv(Li)(δv(L1

f
)(t0))

≤ δv(L2
f
)(t0)+ δv(Li)(δv(L2

f
)(t0))

= δv(L2
f
⊕Li)

(t0)
≤ bi

Now we will show that c(L1
f ⊕L)≤ c(L2

f ⊕L)

δv(L1
f
⊕L)(t0) = δv(L1

f
)(t0)+ δv(L)(δv(L1

f
)(t0))

≤ δv(L2
f
)(t0)+ δv(L)(δv(L2

f
)(t0))

= δv(L2
f
⊕L)(t0)

Furthermore, we know that: c(L1
f )≤ c(L2

f). Hence,

c(L1
f ⊕L) = c(L1

f)+ c(L)
≤ c(L2

f)+ c(L)
= c(L2

f ⊕L)

We conclude that for all t0 ≤ tl
0(L2

f):

δv(L1
f
⊕L)(t0)− t0 + c(L1

f ⊕L)≤ δv(L2
f
⊕L)(t0)− t0 + c(L2

f ⊕L)

Hence, and since tl
0(L2

f )≤ tl
0(L1

f),

min
t0≤tl0(L1

f )

{
δv(L1

f
⊕L)(t0)− t0

}
+ c(L1

f ⊕L)≤ min
t0≤tl0(L2

f )

{
δv(L2

f
⊕L)(t0)− t0

}
+ c(L2

f ⊕L)

Dominance as introduced in Proposition 1 is weak and will probably not sufficiently reduce the
number of labels processed by the TDL algorithm. In fact, S(L1

f )⊆ S(L2
f) implies c(L1

f)≥ c(L2
f)

which contradicts the second condition. Hence, conditions (2.) and (3.) are only both true in case
of equality. Furthermore, very cheap labels representing partial paths with a very long duration,
that does not lead to a route in the optimal solution will probably not be dominated. In Figure 3,
the numbers associated with the arcs represent travel times and the numbers associated with the
nodes represents dual variables. Because of Condition (2.), the label representing partial path P2

will not be dominated by the one representing partial path P1. However, a path’s reduced cost is
equal to its duration reduced by the sum of the dual variables corresponding to the nodes visited
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along that path. Therefore, extending P1 clearly results in a better final route. Another pitfall of
Proposition 1 is that cheap labels are not able to dominate more expensive labels with, for some
departure time at the depot, a shorter duration. In Figure 4, because of Condition (4.), the label
representing partial path P2, with cost -100, will not be dominated by the one representing partial
path P1 with cost -3000. The range of dispatch times at the depot, in which partial path P2 has a
shorter duration, has a width of 500 time units. Clearly, for any starting time at the depot in this
range, it is possible to find an earlier (but no more than 500 time units earlier) starting time at
the depot that results in the same arrival time at the end node for both P1 and P2. Leaving the
depot earlier might increase P1’s duration. However, given P1’s new start time, its duration will be
no more than 500 time units longer than P2’s duration. Therefore, the extension of P1 will result
in a better final route.

Figure 3

Figure 4
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In Proposition 2, we improve dominance in two directions. First, for every label Lf , we extend
S(Lf) to the set S̃(Lf ) by adding nodes that are unreachable from v(Lf). The triangle inequality
is not satisfied for time varying travel times as traveling directly to a node is not necessarily the
shortest path. Consequently, a node that can not be directly reached from the end node might
be indirectly reached via a diverted route. However, if we calculate the earliest arrival time to
all nodes as in formula (28) and take the minimum, all nodes with a close time smaller than
that minimum will not be reachable from v(Lf). This can be done quickly, although we might
fail to find all unreachable nodes. Second, we relax Condition (2.) by adding the quantity φf to
the cost c(L2

f) of label L2
f . φf is a real number related to how much the start time of the partial

path represented by label L1
f , can be postponed (in case φf is positive) or expedited (in case φf

is negative) and still arrive at the end node at the same time as when reaching the end node
through the partial path represented by label L2

f . φf is illustrated in Figure 4. For every label
Lf , let δ−1

v(Lf )(ta) = max{t≤ tl
0(Lf) : δv(Lf )(t) = ta}. The function δ−1

v(L)(ta) is defined on the domain
Aδ−1

v(Lf )
= {ta ∈R : ∃t≤ tl

0(Lf) : δv(L)(t) = ta}. Proposition 2 is stated as follows:

Proposition 2. Label L2
f is dominated by label L1

f if:

1. v(L1
f) = v(L2

f )
2. c(L1

f)≤ c(L2
f )+φf

3. S(L1
f)⊆ S̃(L2

f)
4. δv(L1

f
)(0)≤ δv(L2

f
)(0)

φf = min

{
tl
0(L

1
f)− tl

0(L
2
f),min

t∈A

{
δ−1

v(L1
f
)
(t)− δ−1

v(L2
f
)
(t)

}}
and A = Aδ−1

v(L1
f
)

⋂
Aδ−1

v(L2
f
)

Proof of Proposition 2: We will prove Proposition 2 for the case φf ≥ 0.
Similarly to Proposition 1, and by using the fact that δv(L1

f
)(0)≤ δv(L2

f
)(0) and S(L1

f )⊆ S̃(L2
f ), we

can prove that any feasible extension to L2
f is also feasible for L1

f .
Let L∈E(L2

f ), and t0 ≤ tl
0(L2

f ) be some start time at the depot.
Now, let t∗ be such that:

t∗ =

{
δ−1

v(L1
f
)
(t0)− t0 if δv(L2

f
)(t0)∈Aδ−1

v(L1
f
)

tl
0(L1

f )− tl
0(L2

f ) otherwise

t∗ is illustrated in Figure 5, and can also be written as:

t∗ =

{
δ−1

v(L1
f
)
(t0)− δ−1

v(L1
f
)
(δv(L1

f
)(t0)) if δv(L2

f
)(t0)∈Aδ−1

v(L1
f
)

tl
0(L1

f)− tl
0(L2

f) otherwise

Postponing the start time of L1
f at the depot by t∗ (i.e. the start time at the depot is t0 + t∗

instead of t0) results in a arrival time at the current node that is smaller than arrival time at the
same current node reached through L2

f , and when the start time at the depot is t0 . Furthermore,
t0 + t∗ ≤ tl

0(L1
f). Therefore:

δv(L2
f
)(t0)≥ δv(L1

f
)(t0 + t∗)

Consequently:

δv(L2
f
⊕L)(t0) = δv(L2

f
)(t0)+ δv(L)(δv(L2

f
)(t0))

≥ δv(L1
f
)(t0 + t∗)+ δv(L)(δv(L1

f
)(t0 + t∗))

= δv(L1
f
⊕L)(t0 + t∗)
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Figure 5

Now we will show that c(L1
f ⊕L)≤ c(L2

f ⊕L)
Obviously φf ≤ t∗, Hence,

δv(L1
f
⊕L)(t0 + t∗)− (t0 + t∗) ≤ δv(L2

f
⊕L)(t0)− t0− t∗

≤ δv(L2
f
⊕L)(t0)− t0−φf

Furthermore, we know that: φf ≥ c(L1
f)− c(L2

f).
Hence,

δv(L1
f
⊕L)(t0 + t∗)− (t0 + t∗)+ c(L1

f ⊕L)≤ δv(L2
f
⊕L)(t0)− t0 + c(L2

f ⊕L)

We conclude that for all t0 ≤ tl
0(L2

f), there exists t̃0 = t0 + t∗ ≤ tl
0(L1

f) such that:

δv(L1
f
⊕L)(t̃0)− (t̃0)+ c(L1

f ⊕L)≤ δv(L2
f
⊕L)(t0)− t0 + c(L2

f ⊕L)

Hence,

min
t0≤tl0(L1

f )

{
δv(L1

f
⊕L)(t0)− t0

}
+ c(L1

f ⊕L)≤ min
t0≤tl0(L2

f )

{
δv(L2

f
⊕L)(t0)− t0

}
+ c(L2

f ⊕L)

5.2. The Backward TDL Algorithm
In the backward TDL algorithm, labels are extended from the depot (i.e. node n + 1) to its
predecessors. The extension of a label is allowed if it is feasible and if the latest possible departure
time at the end node is no further than tm. To a Label Lb, we associate the following components:

v(Lb) the first node visited on the partial path represented by Lb

c(Lb) the sum of the dual variables associated with nodes visited along the partial path
represented by Lb

δn+1(tv(Lb)) arrival time at the depot through the partial path represented by Lb and when leaving
node v(Lb) at time tv(Lb)

S(Lb) set of nodes visited along the partial path represented by Lb

The set of feasible extensions E(Lb) of Lb is the set of partial paths departing at the depot
(i.e. node 0) at some time t0 ≥ 0 and reaching node v(Lb) at some time tv(Lb) > t0 (tv(Lb) includes
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waiting and service at v(Lb)) without violating time windows. Going back to the depot through
the partial path represented by label Lb should be feasible given that the departure time at v(Lb)
is tv(Lb). If label L′b is the parent label of label Lb, the arrival time function corresponding to label
Lb is computed as follows:

δn+1(tv(Lb)) = δn+1(tv(L′
b
) = tv(Lb) + τv(Lb)v(L′

b
)(tv(Lb))) (30)

Furthermore, we have:

S(Lb) = S(L′b)
⋃
{v(Lb)} and c(Lb) = c(L′b)−πv(Lb) (31)

The latest departure time tl
v(Lb)

at node v(Lb), such that the arrival at node v(L′b) is exactly its
latest possible departure time, can be calculated using the procedure as described in Ichoua et al.
(2003).

The extension of L′b with node v(Lb) is feasible if:

tl
v(Lb)

≤ av(Lb) + sv(Lb) and tl
v(L′

b
) ≥ tm (32)

Again, as illustrated in Figure 6, arrival time functions are non-decreasing linear stepwise func-
tions. Moreover, arrival time functions are completely defined by their breakpoints. Arrival time
function breakpoints result from travel time functions breakpoints, breakpoints calculated as depar-
ture time at the start node to hit a breakpoint on the arrival time function of the destination node,
or from time windows. Furthermore, dominance can be defined in the same way as in the case
of the forward TDL algorithm. To avoid redundancy, we only present the improved dominance
criteria as it is slightly different.

Figure 6 The arrival time function.

In Proposition 3, S̃(Lb) denotes the set of visited nodes along the partial path represented by
label Lb extended by nodes that are unreachable from v(Lb). In fact, the latest departure from
all nodes, such that arrival time at v(Lb) is its latest possible start time, is calculated using the
procedure as described in Ichoua et al. (2003), and the maximum is taken. All nodes with an
opening time (service time included) larger than that maximum will not be reachable from v(Lb).
Furthermore, we relax Condition (2.) by adding the quantity φb to the cost c(L2

b). φb is a real
number related to, given a departure time at node v(L1

b), how early (in case φb is negative) or late
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(in case φb is positive) arrival at the depot takes place when traversing the partial path represented
by label L1

b instead of the partial path represented by label L2
b . Note that φb is conceptually different

from φf as it is related to arrival time at the end node (i.e. the depot) instead of departure time at
the depot. In the forward search, we can not relate φf to the arrival time at the end node as this
might be different from the depot. Therefore, any gains in terms of arrival time does not guarantee
a gain in the final complete tour. In fact, gains can easily be lost by possible waiting time due to
time windows. If denote DδLb

as the definition domain of the arrival time function δv(Lf )(t0), we
state Proposition 3 as follows:

Proposition 3. Label L2
b is dominated by label L1

b if:

1. v(L1
b) = v(L2

b)
2. c(L1

b)≤ v(L2
b)+φb

3. S(L1
b)⊆ S̃(L2

b)
4. δ−1

n+1(tl
v(L1

b
)
)≤ δ−1

n+1(tl
v(L2

b
)
)

φb = min

{
δn+1(tl

v(L1
b
)
)− δn+1(tl

v(L2
b
)
),min

t∈D

{
δn+1(tv(L1

b
) = t)− δn+1(tv(L2

b
) = t)

}}
and D = Dδ

L1
b

⋂
Dδ

L2
b

Proof: see appendix

5.3. Merging Forward and backward Labels
After all forward and backward labels are processed, they are joined to construct feasible tours
with negative reduced cost. A forward label Lf and a backward label Lb are joined if v(Lf) = v(Lb),
S(Lf)

⋂
S(Lb)/{i} = ∅, and there exists at least one possible dispatch time t0 at the depot for

which δn+1(tv(Lb) = δv(Lf )(t0)) is defined.
The attributes of label L resulting from merging a forward Lf and a backward label Lb are calcu-
lated as follows:

• v(L) = n+1
• c(L) = c(Lf)+ c(Lb)
• S(L) = S(Lf)

⋃
S(Lb)

• BL = BLf

⋃
BL−1

b

BL is the set of breakpoints defining the arrival time function δv(L)(t0) associated with label L.
It is the union of the set BLf

corresponding the breakpoints of the arrival time function δv(Lt)(t0)
associated with label Lf , and BL−1

b
= {δ−1

v(Lf )(tv(Lb)) : tv(Lb) ∈ BLb
} where BLb

is the set of break-
points defining the arrival time function δn+1(tv(Lb)) associated with label Lb.

Proposition 4. For every route R in the optimal solution, there exist a forward path Pf and
backward path Pb such that the route R is obtained by merging Pf and Pb.

5.4. The Pricing Problem Heuristics
Branch-and-price algorithms can be accelerated using heuristics to solve the pricing problem. In
fact, the heuristic will search for paths with negative reduced cost and add them to the master
problem. When the heuristics fails to find any more paths with negative reduced cost, the exact
algorithm is called. Ideally, for every node in the branching tree, the exact algorithm is called only
once to check that no more paths with negative reduced cost exist. In our BCP framework, we use
two heuristics. First, a greedy heuristic that extend each label to the node with the smallest travel
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time. Second, a truncated labeling heuristic in which only a limited number of labels is stored.
Moreover, for the truncated heuristic, relaxed dominance criteria are used. In fact, we relax the
condition on the sets of visited customers. Furthermore, we dominate label L2 by label L1 if:

min
t0∈BL1

{
δv(L1)(t0)− t0

}≤ min
t0∈BL2

{
δv(L2)(t0)− t0

}
(33)

and

min
t0∈BL1

{
δv(L1)(t0)− t0

}
+ c(L1)≤ min

t0∈BL2

{
δv(L2)(t0)− t0

}
+ c(L2) (34)

Where BLi
is the set of breakpoints defining δv(Li)(t0), i = 1,2. mint0∈BLi

{
δv(Li)(t0)− t0

}
is the

minimum duration of the partial path represented by label Li, i = 1,2. The number of stored labels
can be increased each time the heuristic fails to find paths with negative reduced cost (e.g. we start
with 250, then we increase the number of labels to 500 labels and finally to 1000 labels).

6. Computational Results
The BCP algorithm is implemented on a (mention properties of the machine). The open
source framework COIN is used to solve the linear programming relaxation of the master problem.
For our numerical study, we use the well known Solomon’s data sets (Solomon (1987)) that follow
a naming convention of DTm.n. D is the geographic distribution of the customers which can be R
(Random), C (Clustered) or RC (Randomly Clustered). T is the instance type which can be either
1 (instances with tight time windows) or 2 (instances with wide time windows). m denotes the
number of the instance and n the number of customers that need to be served. Road congestion
is taken into account by assuming that vehicles travel through the network using different speed
profiles. We consider speed profiles with two congested periods. Speeds in the rest of the planning
horizon (i.e. the depot’s time window) are relatively high. We consider speed profiles that comply
with data from real life. Furthermore, we assume three types of links: fast, normal and slow. Slow
links might represent links within the city center, fast links might represent highways and normal
links might represent the transition from highways to city centers. Moreover, without loss of gener-
ality, we assume that breakpoints are the same for all speed profiles as congestion tends to happen
around the same time regardless of the link’s type (e.g. rush hours).The choice for a link type is
done randomly and remains the same for all instances. The following speed profiles are considered:

Table 2 Speed Profiles.

Zone1 Zone2 Zone3 Zone4 Zone5

Fast 1.5 1 1.67 1.17 1.33

Normal 1.17 0.67 1.33 0.83 1

Slow 1 0.33 0.67 0.5 0.83

Speed breakpoints are such that: a = 0.2bn+1, b = 0.3bn+1, c = 0.7bn+1, d = 0.8bn+1 and e = bn+1.
a, b, c, d and e are depicted in Figure 1, and bn+1 is the upper bound of the depot’s time window.
Travel time breakpoints are calculated using the procedure as described in Ichoua et al. (2003).
Figures 7 and 8 illustrate respectively two travel time functions for a link from an R instance and
a link from an RC instance.
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Figure 7 Travel time function for an R instance.

Figure 8 Travel time function for an RC instance.

6.1. TDESPPRC vs. TDSPPRC
6.2. Bi-directional TDL vs. Monodirectional TDL
7. Conclusions and Future Research
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