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Abstract In the first part of this work, we presented a global optimization algorithm, Branch-
and-Sandwich, for optimistic bilevel programming problems that satisfy a regularity condi-
tion in the inner problem (Kleniati and Adjiman in J Glob Optim, 2014). The proposed
approach can be interpreted as the exploration of two solution spaces (corresponding to the
inner and the outer problems) using a single branch-and-bound tree, where two pairs of lower
and upper bounds are computed: one for the outer optimal objective value and the other for
the inner value function. In the present paper, the theoretical properties of the proposed algo-
rithm are investigated and finite ε-convergence to a global solution of the bilevel problem is
proved. Thirty-four problems from the literature are tackled successfully.

Keywords Bilevel programming · Nonconvex inner problem · Branch and bound

1 Introduction

A bilevel programming problem is a two-person, hierarchical optimization problem having a
second optimization problem as part of its constraints. In this work, the following nonlinear
bilevel programming problem is considered:

min
x,y

F(x, y)

s.t. G(x, y) ≤ 0,

x ∈ X,

y ∈ arg min
y∈Y

{ f (x, y) s.t. g(x, y) ≤ 0},
(1)

where the n-dimensional vector x denotes the outer (leader) variables and the m-dimensional
vector y denotes the inner (follower) variables. Functions F, f : IRn × IRm → IR, G :
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IRn × IRm → IRp and g : IRn × IRm → IRr denote the outer/inner objective and outer/inner
constraint functions, all assumed to be twice continuously differentiable. Finally, the host
sets for the continuous variables are closed and bounded: X = [xL, xU] ⊂ IRn and Y =
[yL, yU] ⊂ IRm .

Notice that due to the nonconvexity of the inner problem in (1), we adopt the so-called
optimistic formulation of the bilevel problem that implies some cooperation between the
leader and the follower. In particular, for different globally optimal solutions of the inner
problem to which the follower is indifferent, we optimize in favor of the leader’s (outer)
objective and constraints; hence, the outer minimization in (1) is with respect to the whole set
of variables. For more details about the optimistic formulation and its alternative pessimistic
formulation, the interested reader is referred to [5,9] and [17,28], respectively.

Problem (1) has been tackled extensively for specific classes of the participating functions.
For instance, the linear and the nonlinear but convex bilevel programming problems have
been addressed in [4,5,9,12,13,26,27]. A thorough bibliographic review can be found in
[10]. On the other hand, general bilevel programming problems with a nonconvex inner
problem have received much less attention due to their intrinsic difficulties and currently
are only addressed in [21,23]. The proposed methods therein are for very general nonlinear
bilevel problems, restricted solely by the absence of inner equality constraints.

In our work starting from Part I [16], we also address the most general bilevel programming
problem for which we assume only continuity and twice differentiability of the participating
functions, compactness of the host sets and the satisfaction of a constraint qualification in
the inner problem for all values of x . We assume neither a special class nor convexity of
the functions involved. Furthermore, we allow outer and inner equality constraints; but, we
subsume those within the set of inequality constraints in both the outer and the inner problems
for the sake of a simpler presentation. The use of inner equality constraints in the context of
such a general formulation is, to the best of our knowledge, considered for the first time in
our proposed method, Branch-and-Sandwich. Its theoretical development was introduced in
the first part of this work [16]. Briefly, we remind the reader that problem (1) can be written
equivalently as follows [11,16]:

min
x,y

F(x, y)

s.t. G(x, y) ≤ 0,

g(x, y) ≤ 0,

f (x, y) ≤ w(x),

x ∈ X, y ∈ Y,

(2)

where w(x) is the optimal value function of the inner (nonconvex) problem:

w(x) = min
y

{ f (x, y) s.t. g(x, y) ≤ 0, y ∈ Y }. (3)

Remark 1 Observe that by reformulation (2) and particularly by the third constraint, i.e.,

f (x, y) ≤ w(x),

a restriction of problem (3), i.e., an upper bound on w(x), yields a relaxation of (2); conse-
quently, a relaxation of (1). Similarly, a relaxation of (3) gives a restriction of (2) [19].

Part of the Branch-and-Sandwich algorithm is based on the property of Remark 1. For
instance, we compute a constant upper bound on w(x) for all the x values over the domain
under consideration and then using this upper bound on w(x) in formulation (2), we derive
a relaxation of the overall problem. This relaxation plays the role of our proposed lower
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bounding problem. In order to compute a valid upper bound on w(x) for all the x values, we
employ a semi-infinite formulation for the proposed inner upper bounding problem which
we tackle via its tractable KKT relaxation. For this reason, a regularity condition is imposed
for all the x values. Then, it is possible to employ the inner KKT conditions where necessary,
e.g., in the inner upper bounding problem and in the overall lower bounding problem.

In the present article, we focus on analyzing the theoretical properties of the algorithm
and testing its application on suitable numerical test problems. In particular, we prove its
finite ε-convergence to a global solution of the bilevel problem and we present the numerical
results from its application to thirty-four test problems from the literature. We also illustrate
in detail the step-by-step application of the proposed algorithm on two test problems.

The paper is organized as follows. In Sect. 2, we recapitulate all the necessary notation
introduced in [16]. In Sect. 3, we present a complete analysis of the convergence properties of
the Branch-and-Sandwich algorithm along with our main convergence result. An additional
theoretical result regarding the exhaustiveness of our partitioning scheme follows in Sect. 4.
Illustrative examples and numerical results are presented in Sect. 5. Concluding remarks are
discussed in Sect. 6. Finally, the Appendix complements Sect. 5.

2 Notation

The following assumptions, definitions and nomenclature are used throughout the paper. At
the end of this section, we also provide a brief statement of the proposed algorithm.

2.1 Assumptions

In addition to common assumptions, such as continuity, twice differentiability of the par-
ticipating functions and compactness of the host sets, we also make the assumption below.

Assumption 1 A constraint qualification holds for the inner problem (3) for all values of x .

2.2 Definitions and nomenclature

In this work, our aim is to compute ε-optimal solutions as defined below.

Definition 1 (ε-optimal solution [21]) Let εF and ε f be given and fixed optimality tolerances
for the outer and the inner problems, respectively. Then, a pair (x∗, y∗) ∈ X × Y is called an
ε-feasible solution of problem (1) if it satisfies the constraints of the inner and outer problems,
as well as ε f -optimality in the inner problem:

G(x∗, y∗) ≤ 0, (4)

g(x∗, y∗) ≤ 0, (5)

f (x∗, y∗) ≤ w(x∗) + ε f . (6)

An ε-feasible point is called ε-optimal if it satisfies εF -optimality in the outer problem:

F(x∗, y∗) ≤ F∗ + εF , (7)

where F∗ denotes the outer optimal objective value, i.e., the optimal objective value of the
bilevel problem (1) and of its equivalent single-level problem (2).
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Definition 1 implies that we apply ε f -optimality in the inner problem throughout the
paper. Next, we remind the reader of all essential definitions relevant to our branching and
bounding schemes, while a full exposition can be found in Part I [16].

Definition 2 (Node) A node k represents (sub)domain

X (k) × Y (k) ⊆ X × Y.

The root node is the node with k = 1 and corresponds to the whole domain X × Y .

At every node k we formulate bounding problems, which we sometimes modify to obtain
tractable approximations. All the bounds resulting from the (original or approximate) for-
mulations that we consider at a node k are summarized in Table 1. The definitions of these
bounds can be found in [16, Sect. 4].

Based on the bounds computed at a node k, we may decide to fully fathom or outer fathom
the node (cf. Sect. 4.6 in [16]). If the node is not fully fathomed, then we need to continue
exploring it further via branching. Thus, consider that we branch at node k using bisection
(cf. Sect. 4.2 in [16]). This results in two child nodes, e.g., k1 and k2. The replacement of the
old node k by the new nodes k1 and k2 in the tree is managed using appropriate lists of nodes.
All the lists of nodes that we use in the Branch-and-Sandwich algorithm are summarized in
Tables 2 and 3 and a detailed description can be found in [16, Sect. 4.1]. In Table 3, note that
every independent list L p , p ∈ P , consists of a collection of sublists:

L p = {
L

p
1 , . . . , L

p
sp

}
, (8)

Table 1 Summary of bounds

Description Symbol Problem
name [16]

(Nonconvex) inner lower bound f (k),L (ILB)

(Convex) relaxed inner lower
bound

f (k) (RILB)

(Nonconvex) inner upper bound f (k),U (IUB)

(Nonconvex) relaxed inner
upper bound

f̄ (k) (RIUB)

(Nonconvex) inner subproblem
at given x

w(k)(x) (ISP)

(Convex) relaxed inner
subproblem at given x

w(k)(x) (RISP)

(Nonconvex) outer lower bound F(k) (LB)

(Nonconvex) outer upper bound F̄(k) (UB)

Table 2 Summary of core lists of nodes. L ∩ LIn = ∅
Description Symbol Comment

List of open nodes w.r.t.
the overall problem

L

List of open nodes w.r.t.
the inner problem only

LIn Also called list of
outer-fathomed nodes
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Table 3 Summary of auxiliary (pairwise disjoint) lists of nodes. {Xp ⊆ X : p ∈ P} is a partition of X

Description Symbol Comment

Independent list for partition set X1 L 1 Contains nodes in L ∪ LIn corresponding to X1 × Y
.
.
.

.

.

.

Independent list for partition set Xp L p Contains nodes in L ∪ LIn corresponding to Xp × Y

and has an associated best inner upper bound:

f UB,p = max

{

min
j∈L

p
1

{
f̄ ( j)

}
, . . . , min

j∈L
p

sp

{
f̄ ( j)

}
}

. (9)

Remark 2 A node that has not yet been fully fathomed belongs either to list L or to list
LIn. It must also belong to an independent list L p for some p ∈ P , i.e., there must exist at
least one sublist L

p
s ∈ L p such that k ∈ L

p
s . For simplicity, we use the shorthand notation

k ∈ L p . As a result, we have

∃p ∈ P : k ∈ (L ∪ LIn) ∩ Lp (10)

for any node k in the branch-and-bound tree that has not yet been fully fathomed.

Finally, in order to branch at the most promising nodes among all the ones that have not
yet fully fathomed, i.e., the nodes in L ∪ LIn, we apply the following selection rule.

Definition 3 (Selection operation [16, Sect. 4.8]) The selection rule of the Branch-and-
Sandwich algorithm is:

(i) find a node in L with lowest overall lower bound: kLB = arg min j∈L {F ( j)};
(ii) find the corresponding Xp subdomain, p ∈ P , such that kLB ∈ L p;

(iii) select a node k ∈ L ∩ L p and a node kIn ∈ LIn ∩ L p , if non empty, based on

k := arg min
i

{ f (i) | i := arg min
j∈L p

{l( j)}}. (ISR)

2.3 Algorithm

To end this section a brief statement of the Branch-and-Sandwich algorithm is given below.

Algorithm 1 Branch-and-Sandwich [16, Sect. 5]

Step 0: Initialize.
Step 1: Compute inner and outer bounds at the root node.
Step 2: If L = ∅, stop; otherwise, select a list L p , a node k ∈ L p ∩L and, if relevant,

a node kIn ∈ L p ∩ LIn.
Step 3: Branch on selected node(s) to create child nodes & amend the lists of nodes (list

management).
Steps 4–5: Compute inner bounds at child nodes in L ∪ LIn. Apply full fathoming, if

needed.
Steps 6–7: Compute outer bounds at child nodes in L . Apply outer fathoming, if needed.

Goto Step 2.
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3 Proof of convergence

A general theory concerning the convergence of branch-and-bounds methods can be found
in [14,15]. In this section, we apply this theory to both branch-and-bound schemes, inner and
outer, of the Branch-and-Sandwich algorithm introduced in [16] in order to set the foundations
for its overall convergence, proved in Theorem 6, to an ε-optimal solution of problem (1). It
is assumed throughout that an exhaustive partitioning scheme is used. In Sect. 4, we show
that this is true for the partitioning scheme used in the algorithm. We first recapitulate some
relevant definitions used in our theoretical results.

Definition 4 (Node diameter) The diameter δ(k) of node k (measured by the Euclidean
distance) is:

δ(k) = {max ‖t ′ − t ′′‖2 : t ′, t ′′ ∈ X (k) × Y (k)}
=

√
(xU

1 − xL
1 )2 + · · · + (xU

n − xL
n )2 + (yU

1 − yL
1 )2 + · · · + (yU

m − yL
m)2.

Definition 5 [14, Def. 2.4.] Let {kq}, q = 0, 1, . . ., be an infinite decreasing nested sequence
of nodes such that any kq+1 is a child of kq via a certain subdivision process. If the subdivision
process is exhaustive, then

lim
q→∞ δ(kq) = 0, (11)

or

lim
q→∞ kq =

⋂

q

kq = {(x̄, ȳ)}, (x̄, ȳ) ∈ X × Y. (12)

Definition 6 [15, Def. IV.8.] The “fathom-by-infeasibility” rule is called certain in the limit
if every infinite decreasing nested sequence {kq} of successively refined nodes converges to
a feasible singleton.

Definition 7 [15, Def. IV.4.] A bounding scheme is called consistent if at every iteration
any unfathomed node can be further refined and, if any infinite decreasing sequence {kq} of
successively refined nodes satisfies:

lim
q→∞(FUB − F (kq )) = 0

or the more practical condition below:

lim
q→∞(F̄ (kq ) − F (kq )) = 0. (13)

Definition 8 [15, Def. IV.6.] A selection operation is said to be bound improving if, at least
each time after a finite number of iterations, at least one node where the actual lower bound
is attained is selected for further partition.

Remark 3 In view of Definition 5 and Theorem 7 in the next section (cf. Theorem 1 in
[16]), any infinite decreasing sequence of successively refined nodes {kq} in the Branch-and-
Sandwich method converges to a singleton as in (12). For the sequence of associated lists
L pq such that kq ∈ L pq , we also have that Xpq ⊂ X converges to a singleton in X in view
of the X exhaustive subdivision process (bisection) alone, i.e.,:

lim
q→∞ Xpq = {x̄}, x̄ ∈ X. (14)
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3.1 Inner convergence properties

Theorem 1 Let {kq} be an infinite decreasing nested sequence of refined nodes. For the
sequence of associated lists L pq such that kq ∈ L pq , we have that Xpq ⊂ X converges to
a singleton in X as in (14). Then, for the associated sequence of best inner upper bounds (9)
we have:

lim
q→∞ f UB,pq = w(x̄).

Proof In the limit, i.e., as q goes to infinity, the independent list L pq covers a single x value,
as opposed to an X subdomain. This implies that no matter how much Y subdomain it may
still cover, it can include one sublist only, i.e., the sublist corresponding to that x value. Thus,
L pq = {L pq

1 }. Then, based on Eq. (9), the best inner upper bound of L pq is:

lim
q→∞ f UB,pq = min

j∈L
pq

1

{ f̄ ( j)}, (15)

where each f̄ ( j) is obtained by solving a KKT relaxation (RIUB) of the inner upper bounding
problem (IUB). Notice that as soon as there is only one distinct inner objective value at a
stationary point over each subset Y ( j), j ∈ L pq , the relaxation (RIUB) yields an exact
solution of (IUB) over Y ( j). Thus,

f̄ ( j) = max
x∈{x̄} min

y∈Y ( j)
{ f (x, y) s.t. g(x, y) ≤ 0}. (16)

Combining (15) with (16), we have that:

lim
q→∞ f UB,pq = min

j∈L
pq

1

{ f̄ ( j)} = min
j∈L

pq
1

min
y∈Y ( j)

{ f (x̄, y) s.t. g(x̄, y) ≤ 0}.

Finally, by using Ypq = ⋃
j∈L

pq
1

Y ( j), we can conclude that:

lim
q→∞ f UB,pq = min

y∈Ypq

{ f (x̄, y) s.t. g(x̄, y) ≤ 0} = w(x̄),

where the last equality holds by Lemma 2 in [16]. ��

Corollary 1 The lowest inner lower bound in L pq is convergent to w(x̄) as Xpq converges
to singleton x̄ .

Theorem 2 The inner branch-and-bound scheme has the following properties:

(i) a consistent bounding scheme;
(ii) a bound-improving selection operation;

(iii) it is finite ε f -convergent.1

Proof (i) By Corollary 1; (ii) the inner selection rule (ISR) is bound-improving; (iii) by (i)
and (ii) based on [15, Th. IV.3.]. ��

1 Given a convergence tolerance ε > 0, a procedure is said to be finite ε-convergent if it converges after a
finite number of steps to an ε-optimal solution of the problem being solved [7, p. 291].
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3.2 Outer convergence properties

Recall by Definition 1 that we are concerned with computing ε-optimal solutions in the
overall problem, which imply ε f -optimality in the inner problem. For this reason, let us
define the set below:

Oε f (x) = {y | y ∈ Y (x), f (x, y) ≤ w(x) + ε f } (17)

as the set of ε f -optimal solutions to the inner problem.

Theorem 3 The fathoming rule by outer infeasibility of the Branch-and-Sandwich algorithm
is certain in the limit.

Proof We prove the theorem by contradiction. Assume that some infinite sequence {kq}
converges to an infeasible point (x̄, ȳ) in (1). There is no need to address infeasibility of
(x̄, ȳ) with respect to the inner and outer constraints since these constraints are included
intact in the outer lower bounding problem F (kq ). Thus, assume that (x̄, ȳ) is infeasible with
respect to ε f -global optimality in the inner problem, i.e., ȳ �∈ Oε f (x̄). By feasibility of (x̄, ȳ)

in F (kq ), we have:

f (x̄, ȳ) ≤ f UB,pq . (18)

However, Theorem 1 ensures that in the limit, the inner upper bound is as tight as possible:

lim
q→∞ f UB,pq = w(x̄). (19)

In other words, there exists some finite q ′, for which the inner upper bound meets the specified
tolerance, and the following holds:

| f UB,pq − w(x̄)| ≤ ε f ∀ q ≥ q ′, (20)

or, from (18):

f (x̄, ȳ) ≤ w(x̄) + ε f .

But, ȳ /∈ Oε f (x̄) implies that

f (x̄, ȳ) > w(x̄) + ε f , (21)

which is a contradiction. Hence, F (kq ) is infeasible for q ≥ q ′ and a node containing (x̄, ȳ)

will be fathomed at iteration q ′. As a result, no infinite decreasing sequence {kq} of refined
regions can converge to an infeasible point. ��
Remark 4 Notice that a decreasing sequence of successively refined nodes becomes infea-
sible as soon as it contains inner suboptimal KKT points only and the inner upper bound has
met the specified tolerance. In particular, let

�Global := {(x, y, μ, λ, ν) ∈ �KKT | y ∈ Oε f (x)},
and consider a node kq at which there only exist (x, y, μ, λ, ν) ∈ IRn+3m+r such that

(x, y) ∈ X (kq ) × Y (kq ) and (x, y, μ, λ, ν) ∈ �KKT \ �Global.

Then, Eq. (20) implies that

f (x, y) > f UB,pq′ for all (x, y) ∈ X (kq′ ) × Y (kq′ ), (x, y, μ, λ, ν) ∈ �KKT \ �Global,

which makes F (kq′ ) infeasible.
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Finally, we can show that the Branch-and-Sandwich algorithm is convergent based on [15,
Th. IV.3.]. In particular, we show that the bounding scheme is consistent (cf. Definition 7)
and the selection operation is bound improving (cf. Definition 8).

Theorem 4 The bounding scheme of the Branch-and-Sandwich algorithm is consistent.

Proof The first requirement of Definition 7 is satisfied by construction of the algorithm.
To prove that the second requirement, i.e., condition (13), is also satisfied, note first that a
decreasing sequence {kq} of successively refined nodes converges to a feasible limit set based
on Theorem 3. Then, notice that by exhaustive partitioning of domain X , in the limit where
e.g., x = x̄ , the outer lower and the outer upper bounding problems are identical with the
exception of the constraint on the inner objective function:

f (x̄, y) ≤ f UB,pq ; (22)

f (x̄, y) ≤ w(x̄) + ε f . (23)

By Theorem 1, we know that there exists some finite q ′, for which:

| f UB,pq − w(x̄)| ≤ ε f ∀ q ≥ q ′.

Thus, constraint (22) in the lower-bounding problem is written equivalently:

f (x̄, y) ≤ w(x̄) + ε f , (24)

namely it is the same as constraint (23) in the upper-bounding problem, making both problems
identical. This, along with Theorem 3 and the partitioning of the Y space, implies condition
(13). ��
Theorem 5 The selection operation of the Branch-and-Sandwich algorithm (cf. Definition
3) is bound improving.

Proof From Definition 3, recall that (i) kLB ∈ L is such that kLB = arg min j∈L {F ( j)},
(ii) Xp , p ∈ P , is such that kLB ∈ L p , and (iii) k ∈ L is such that k ∈ L p satisfying
(ISR). If k = kLB then the node with the lowest overall bound is selected and our proof is
complete. Let us now examine the case where k �= kLB. Observe that the pair (l(k), f (k))

dominates the pair (l(k
LB), f (kLB)), since otherwise node kLB would have been selected. In

other words, we have that either l(k) < l(k
LB) or f (k) < f (kLB) ≤ f UB,p . The branching

strategy (cf. [16, Def. 6]) and the inner bounding scheme imply that the values l(k), f (k) are

non-decreasing, while Lemma 1 in [16] implies that f UB,p is non-increasing, over refined
host sets. Hence, node kLB will eventually be either fathomed by inner value dominance,
i.e., f (kLB) > f UB,p , in which case another node will hold the lowest overall lower bound

and then the same arguments apply, or selected for exploration based on l(k
LB) ≤ l(k) and/or

f (kLB) ≤ f (k) being satisfied. The node with the lowest overall lower bound is guaranteed
to be selected after finitely many iterations due to the finite ε f -convergence of the inner
branch-and-bound scheme shown in Theorem 2. ��

Our main result regarding the convergence of Branch-and-Sandwich is now stated.

Theorem 6 The Branch-and-Sandwich algorithm is ε-convergent, such that at termina-
tion we have FUB − FLB ≤ εF , where FLB = mink∈L F (k), and the incumbent solution
(xUB, yUB) is an ε-optimal solution of problem (1).
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Proof The finite ε-convergence property of Branch-and-Sandwich follows from Theorem
IV.3. in [15] and Theorems 4–5. Furthermore, termination of the algorithm implies that
FLB ≥ FUB −εF , i.e., condition (7) of outer εF -optimality is true. Using Theorem 3 in [16],
this implies that point (xUB, yUB) is ε-optimal in (1) (cf. Definition 1). ��

4 Proof of exhaustiveness

This section concerns the exhaustiveness of our subdivision process (c.f. Branch-and-
Sandwich subdivision process [16, Sect. 4.2, Def. 6]) and complements Sect. 3 above. Prior
to our proof of exhaustiveness, we state below a well-known preliminary lemma.

Lemma 1 (Basic Subdivision Lemma [24, Lemma 5.1]) Let {kq}, q = 0, 1, . . . , be an
infinite decreasing nested sequence of nodes such that any kq+1 is a child of kq via a certain
subdivision process. Assume that:

(i) for infinitely many q the subdivision of kq is a bisection;
(ii) there exists a constant ρ ∈ (0, 1) such that for every q:

δ(kq+1) ≤ ρδ(kq).

Then, the subdivision process is exhaustive.

Theorem 7 (Theorem 1 in [16]) The subdivision process of the Branch-and-Sandwich algo-
rithm is exhaustive.

Proof To prove our claim, we employ Lemma 1. In particular, requirement (ii) of this lemma
is satisfied due to bisection (cf. [16, Def. 4]). Thus, it suffices to show requirement (i) of the
lemma, i.e., that for infinitely many q the subdivision of kq is a bisection. Let kq express
domain X (kq ) × Y (kq ). Without loss of generality assume that (i) k0 is the root node; (ii) the
set of variables is ordered as follows:

(y1, . . . , ym, x1, . . . , xn);
and (iii) all edges have equal length at k0. This can be imposed with appropriate variable
scaling if necessary. Then, for q = 1 to q = m, variables y1, . . . , ym are selected for
branching, resulting in one independent list:

L p0 =
{

X (k0) × Y (k0)

2m
, . . . , X (k0) × Y (k0)

2m

}

,

where p0 ∈ P . Next, for q = m + 1, x1 is selected for branching at all the nodes of list L p0 ,
resulting in two independent lists:

L p1 =
{

X (k1) × Y (k0)

2m
, . . . , X (k1) × Y (k0)

2m

}

,

L p′
1 =

{

X (k′
1) × Y (k0)

2m
, . . . , X (k′

1) × Y (k0)

2m

}

,

where X (k1) and X (k′
1) is a partition of X (k0) using bisection. Consider next list L p1 and keep

branching on the x-variables. At q = m + n, list L p1 has been replaced by the list L pm+n

covering smaller X subdomain:
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Fig. 1 Subdivision process with variable ordering (y1, x1, y2, x2, . . .)

L pm+n =
{

X (km+n) × Y (k0)

2m
, . . . , X (km+n) × Y (k0)

2m

}

,

where X (km+n) ⊂ X (km+n−1) . . . ⊂ X (k1) ⊂ X (k0) and X (km+n) = X (k0)/2n . Variables
y1, . . . , ym are then selected again for branching, resulting in further subdivision of the
Y space, i.e.,

L pm+n =
{

X (km+n) × Y (k0)

22m
, . . . , X (km+n) × Y (k0)

22m

}

.

At the next step, namely after m +n +1 steps in total, x1 is selected again for branching at all
nodes of list L pm+n and so forth. Hence, after every m+n steps, kq is subdivided with respect
to the X domain using bisection n-times and with respect to the Y domain using bisection
m-times. As q goes to infinity, this results in infinitely many bisections for the sequence
{kq}. ��

Remark 5 Observe that if the variables are ordered as follows:

(y1, x1, y2, x2, . . . , ym, xm, xm+1 . . . , xn) if m < n,

(y1, x1, y2, x2, . . . , ym, xm) if m = n,

(y1, x1, y2, x2, . . . , yn, xn, yn+1, . . . , ym) if m > n,

then kq is subdivided with respect to the X × Y domain using bisection after every two steps
(e.g., cf. Fig. 1).

5 Numerical results and examples

In this section, we report the application of the Branch-and-Sandwich algorithm to 34 liter-
ature problems. In the first two columns of Table 4 the problem number, the original name
and the source of all the instances on which Branch-and-Sandwich was tested are shown.
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Table 4 Problem instances and their statistics

No. Example in
[source]

Example in
this work
(Part I or Part II)

NC Inner
Problem?

#Outer
var. (n)

#Inner
var. (m)

#Outer
con. (o)

#Inner
con. (r )

1 4.2 [19] Yes 0 1 0 0

2 3.1 [20] No 0 1 0 0

3 3.2 [20] No 0 1 1 0

4 3.3 [20] Yes 0 1 0 1

5 3.4 [20] Yes 0 1 0 0

6 3.5 [20] 1 [16] Yes 0 1 0 0

7 3.6 [20] Yes 0 1 0 0

8 3.7 [20] No 0 1 1 0

9 3.8 [20] No 1 1 2 0

10 3.9 [20] Yes 1 1 1 0

11 3.10 [20] 2 Yes 1 1 0 0

12 3.11 [20] Yes 1 1 0 0

13 3.12 [20] Yes 1 1 0 0

14 3.13 [20] Yes 1 1 0 0

15 3 Yes 1 1 0 0

16 3.14 [20] Yes 1 1 0 0

17 3.15 [20] 1 Yes 1 1 0 0

18 3.16 [20] Yes 1 1 0 0

19 3.17 [20] Yes 1 1 0 0

20 3.18 [20] Yes 1 1 0 0

21 3.19 [20] Yes 1 1 0 0

22 3.20 [20] Yes 1 1 0 0

23 3.21 [20] 2 [16] Yes 1 1 0 0

24 3.22 [20] Yes 1 1 0 1

25 3.24 [20] Yes 1 1 0 0

26 4.1 [18] Yes 1 1 0 0

27 5.6 [8] Yes 1 1 0 2

28 7.1.1 [5] Yes 1 1 0 3

29 1 [25] No 1 1 0 3

30 4.5 [20] Yes 1 2 0 2

31 2 [6] No 2 2 0 3

32 1 [6] No 2 3 0 3

33 3.26 [20] Yes 2 3 3 0

34 4 Yes 5 5 3 1

These include a few literature problems from [5,6,8,18,19,25] and all the test problems from
[20] for which Assumption 1 is satisfied.2 The two problem instances that appear to have
no source in Table 4, i.e., problem No. 15 and problem No. 34, are variants of Example
3.13 and Example 3.28, respectively, from [20], and are stated in the Appendix. Both satisfy

2 Branch-and-Sandwich was applicable to all problem instances in [20] except for Examples 3.23, 3.25, 3.27
and 3.28.
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Assumption 1; the former thanks to the Abadie constraint qualification and the latter thanks
to the linear/concave constraint qualification. While all problems are solved in this paper, in
the third column of Table 4, we state the example numbers for the few problems selected for
a more detailed discussion.

Next, from left to right, starting with the fourth column of Table 4, we report whether
or not the inner problem is nonconvex (NC), the dimension of the outer variable vector, the
dimension of the inner variable vector, the number of constraints in the outer problem, and
the number of constraints in the inner problem.

In order to tackle problem No. 30, we first reformulated it by replacing variable y2 ∈
[0.1, 10] with a new variable y′

2 = 1/y2 with the consistent bounds. This transformation was
proposed in [20, Example 4.5] to ensure the satisfiability of the Abadie constraint qualification
since it yields linear constraints for the inner problem. Therefore, Assumption 1 is satisfied
and our algorithm applies.

The global solution was identified successfully for all problem instances and the numerical
results are summarized in Table 5. In particular, next to each problem number we report the
best known optimal objective value as found in the literature (cf. Table 4). In the third column,
we report the optimal objective value obtained with the Branch-and-Sandwich algorithm. This
is the incumbent value FUB obtained at termination; notice that the corresponding lowest
outer lower bound computed at termination was within εF = 10−3 absolute difference for
all problem instances except for No. 19–20, where εF = 10−1. The inner objective tolerance
was ε f = 10−5 for all problem instances. The fourth column shows the number of outer
upper bounding problems solved before the optimal solution was computed for the first time
(Nopt). The fifth and sixth columns include the total number of outer-upper and outer-lower
bounding problems, (#UBD and #LBD) respectively, solved for each problem instance. The
seventh column contains the number of nodes required for termination for the given outer
and inner objective tolerances. Finally, the last three columns report the metrics Nopt, #UBD
and #LBD for the Mitsos et al. approach [21].

In problems No. 1–10, 12 and 18, the Branch-and-Sandwich algorithm achieved higher
accuracy in the outer objective value than required to meet the convergence tolerance, e.g.,
εF = 10−5, for the same number of nodes. There were also many instances for which
convergence was achieved at the root node, such as problems No. 1–3, 5, 8–9, 12, 18, 25–29,
31–34. For instance, consider problem 12, which despite being a variation of No. 11, requires
one node only for termination. For this example, the lower bounding problem computes the
optimal solution of the bilevel problem at the root node; then, the convex relaxation of
the inner problem for the obtained x yields the actual optimal objective value of the inner
problem for this x value and, as a result, a feasible outer upper bounding problem. On the other
hand, No. 19–20 were the slowest to converge because their convergence was dependent on
eliminating KKT inner suboptimal points that were yielding an outer objective value lower
than the actual optimal value. For instance, No. 20 terminated with FUB = F∗ = 0.25, but
with a lower bound of FLB = 0.19.

The number of nodes reported in Table 5 is based on using the proposed subdivision
process of Branch-and-Sandwich (cf. [16, Def. 6]) and on solving the inner upper bounding
and outer lower bounding problems, respectively (RIUB) and (LB), to global optimality,
as required, using the αBB solver [1–3]. The outer upper bounding problem (UB), although
nonconvex, does not need to be solved to global optimality. Hence, for all the examples tested,
all (UB) subproblems were solved with the local solver MINOS [22]. Finally, the inner lower
bounding problems (ILB) and the inner subproblems (ISP) were solved using the proposed
convex relaxed problems (RILB) and (RISP), respectively. These problems were derived by
employing the αBB convexifications techniques [2,3] and then solved with MINOS.
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Table 5 Preliminary numerical results with ε f = 10−5 and εF = 10−3 for all problems, except No. 19–20

where εF = 10−1. Nopt is the number of outer upper bounding problems solved before the optimal solution
is computed for the first time

No. Branch-and-Sandwich method Mitsos et al. method [21]

F∗ FUB Nopt #UBD #LBD #Nodes Nopt #UBD #LBD

1 −1 −1 1 1 1 1 – – –

2 1 1 1 1 1 1 1 1 3

3 ∞ ∞ 0 0 1 1 0 1 3

4 −1 −1 2 2 3 3 1 1 3

5 1 1 1 1 1 1 1 1 3

6 0.5 0.5 6 6 11 11 1 1 3

7 −1 −1 2 2 2 3 1 1 1

8 ∞ ∞ 0 0 1 1 0 1 3

9 0 0 1 1 1 1 2 2 2

10 −1 −1 2 2 2 3 1 1 1

11 0.5 0.5 5 5 7 11 1 1 3

12 −0.8 −0.8 1 1 1 1 1 1 1

13 0 0 3 4 11 11 14 10 17

14 −1 −1 4 7 15 27 2 2 3

15 −1 −1 4 7 15 23 – – –

16 0.25 0.25 5 5 10 15 1 3 7

17 0 0 2 5 8 13 1 1 3

18 −2 −2 7 7 13 19 1 1 3

19 0.1875 0.1875 4 7 35 55 2 18 37

20 0.25 0.25 13 13 25 49 3 2 3

21 −0.258 −0.259 4 4 7 11 18 14 27

22 0.3125 0.3125 5 11 26 39 3 3 5

23 0.2095 0.2094 2 2 3 3 1 2 5

24 0.2095 0.2094 2 2 3 3 8 5 11

25 −1.755 −1.755 5 5 10 11 19 14 27

26 0 0 1 1 1 1 – – –

27 0 0 1 1 1 1 – – –

28 17 17 1 1 1 1 – – –

29 22.5 22.5 1 1 1 1 – – –

30 0.193616 0.193616 2 2 2 3 1 1 1

31 1.75 1.75 1 1 1 1 – – –

32 29.2 29.2 1 1 1 1 – – –

33 −2.35 −2.35 1 1 1 1 2 2 5

34a −10 −10 1 2 3 3 2a 2a 2a

a Note that for problem No. 34, our test case is a variant of Example 3.28 [20] (shown as Example 4 in
“Appendix”), while the statistics in the last three columns correspond to the original Example 3.28 from [20].
The modification was introduced with the aim to satisfy the inner regularity assumption. It does not affect the
optimal outer objective value or the problem size. Hence, we report the Mitsos et al. results for this test case
as an indication for comparison of a medium-scale example
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Before comparing the performance of our approach and the Mitsos et al. approach, we
note that a direct comparison of performance is difficult because the formulation and size of
the subproblems solved in both approaches are different. This is compounded by the fact that
only some subproblems are solved to global optimality in Branch-and-Sandwich whereas all
subproblems are solved to global optimality in the Mitsos et al. approach. Thus, one must be
cautious in drawing conclusions from the early analysis presented here. It can be seen from
Table 5 that in many cases, the numbers of subproblems in both algorithms are comparable.
For example, fewer subproblems are solved with the Mistos et al. approach in problems
16, 17, 18, and fewer subproblems are solved with the Branch-and-Sandwich algorithm for
problems 13, 21 and 25. These results indicate that the partitioning of the Y space can prove
very beneficial. This preliminary comparison is very encouraging and motivates the further
development of the Branch-and-Sandwich algorithm.

In the remainder of this section, the Branch-and-Sandwich algorithm is demonstrated in
detail for two examples, problem No. 11 and problem No. 17. The computed values in the
worked examples are displayed with up to two significant digits.

Example 1 (Problem No. 17 in Table 5, [20, Example 3.15])

min
x,y

x + y

s.t. y ∈ arg min
y∈[−1,1]

xy2

2 − y3

3

x ∈ [−1, 1] , y ∈ [−1, 1] .

Example 1 has a unique optimal solution at (x∗, y∗) = (−1, 1) yielding F∗ = 0 and
f ∗ = −0.83. During the course of the algorithm, 13 (RILB), 9 (RIUB), 8 (LB), 5 (RISP)
and 5 (UB) problems were solved. The branch-and-bound tree for this problem is shown in
Fig. 2.

Fig. 2 Complete branch-and-bound tree for Example 1. For clarity, not all the computed values are present
in the diagram. Light-gray nodes denote nodes that are first outer fathomed, i.e., moved to the list LIn, and
dark-gray nodes denote those that are fathomed due to inner-fathoming rules. All gray nodes are eventually
(fully) fathomed. Notice also that the outer-fathomed node 9 was replaced by the outer-fathomed nodes 12
and 13 within the branching framework. These two nodes were also fully fathomed in the end
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Step 0: Iter = 0 and we set L = LIn = ∅, FUB = ∞, (xUB, yUB) = ∅.
Step 1: We set nnode = 1 and compute f (1) = −2.50 and f̄ (1) = 0.17. The latter value sets

f UB
X = 0.17. Next, we compute F (1) = −2 at (x (1), y(1)) = (−1,−1). Since the

outer lower bounding is feasible, we add node 1 to the list L with all the computed
information:

L = {1 : −2.50 0.17 −2 −1 0 },

where the last field is the level of node 1: l(1) = 0. Also, we set p = 1 and

X1 = [−1, 1] , L 1 = {1}, f UB,1 = f UB
X = 0.17.

We then compute w(−1) = −1.50, which yields F̄ (1) = ∞.
Step 2: Iter = 1 (since L �= ∅). We select node 1 ∈ L ∩ L 1 and remove it from L . As a

result, at this point L = ∅ and L 1 = {1}.
Step 3: We branch on y = 0, i.e., the midpoint of variable y, and create nodes:

2 := {(x, y) ∈ IR2 | −1 ≤ x ≤ 1, −1 ≤ y ≤ 0},
3 := {(x, y) ∈ IR2 | −1 ≤ x ≤ 1, 0 ≤ y ≤ 1}.

This results in L 1 = {2, 3} corresponding to X1 = [−1, 1].
Step 4: We compute f (2) = −0.60 and f (3) = −0.96 and add both nodes to L :

L = {2 : −0.60 0.17 −2 −1 1
3 : −0.96 0.17 −2 −1 1}.

The first and last properties, i.e., f (i) and l(i), i = 1, 2, where l(2) = l(3) = 1, are
set based on the new nodes 2 and 3; the other values are inherited from node 1.

Step 5: We compute f̄ (2) = 0 and f̄ (3) = 0.17. The former value updates f̄ (2) in L , as
well as the best inner upper bound for list L 1: f UB,1 = 0.

Step 6: We compute F (2) = −2 at (−1,−1) and F (3) = −1 at (−1, 0).
Step 7: For i = 2, we set x̄ = x (2) = −1 and compute w(2)(x̄) = −0.24 and w(3)(x̄) =

−0.83. The lowest value is given at node 3, where we compute F̄ (3) = 0 at (−1, 1)

and, as a result, we update the incumbent value to FUB = 0. For i = 3, we set
x̄ = x (3) = −1, but we already have computed w(2)(x̄), w(3)(x̄) and F̄ (3) for
x̄ = −1; hence, no further computation is made. Set nnode = 3.

Step 2: Iter = 2. The selection rule of Definition 3 initially chooses node 2 ∈ L , which
then points to the domain X1 via list L 1, since 2 ∈ L ∩ L 1. Node 3 ∈ L ∩ L 1 is
then selected due to (ISR) and removed from L . As a result, at this point L = {2}
and L 1 = {2, 3}.

Step 3: We branch on x = 0, resulting in L 1 = {{2, 4}, {2, 5}} corresponding to X1 =
[−1, 1].

Step 4: We compute f (4) = −0.83 and f (5) = −0.49. Both are added to L :

L = {2 : −0.60 0 −2 −1 1
4 : −0.83 0.17 −1 −1 2
5 : −0.49 0.17 −1 −1 2}.

Step 5: We compute f̄ (4) = 0 and f̄ (5) = 0.17.
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Step 6: We compute F (4) = −1 and F (5) = 0, with the latter value leading to the outer
fathoming of node 5, namely:

L = {2 : −0.60 0 −2 −1 1
4 : −0.83 0 −1 −1 2};

LIn = {5 : −0.49 0.17 − − 2}.
Also, recall L 1 = {{2, 4}, {2, 5}}, with f UB,1 = 0 and X1 = [−1, 1].

Step 7: For i = 4, we compute w(4)(x̄) = −0.83 (we already know w(2)(x̄) = −0.24 for
x̄ = −1). The lowest value of w( j)(x̄), j ∈ L 1, being at node 4 leads to computing
F̄ (4) = 0 and no update of the incumbent is needed. For i = 5, the upper bounding
procedure does not apply because 5 is no longer in L . Set nnode = 5.

Step 2: Iter = 3. Node 2 is selected based on Definition 3 and removed from L .
Step 3: At node 2, we branch on x = 0, resulting in L 1 = {4, 6} and L 2 = {5, 7} with

X1 = [−1, 0] and X2 = [0, 1], respectively. The corresponding best inner upper
bounds are set to f UB,1 = f UB,2 = 0.

Step 4: We compute f (6) = −0.41 and f (7) = −0.20. Both nodes are added to L .

Step 5: We compute f̄ (6) = f̄ (7) = 0.
Step 6: We compute F (6) = −2 and F (7) = 0, with 7 being outer fathomed:

L = {4 : −0.83 0 −1 −1 2
6 : −0.41 0 −2 −1 2};

LIn = {5 : −0.49 0.17 − − 2
7 : −0.20 0 − − 2}.

Recall L 2 = {5, 7}, with f UB,2 = 0 and X2 = [0, 1]. This independent list can
now be discarded as it no longer holds any node from L (cf. List-deletion fathoming
rules [16, Definition 10]). Thus:

L = {4 : −0.83 0 −1 −1 2
6 : −0.41 0 −2 −1 2};

LIn = ∅.

One independent list remains: L 1 = {4, 6}, with f UB,1 = 0 and X1 = [−1, 0].
Step 7: For i = 6, we compute w(6)(x̄) = −0.24 for x̄ = −1 and compare it with w(4)(x̄) =

−0.83; no extra computation needs to be made since the lowest value is at node 4,
where F̄ (4) for x̄ = −1 has been computed. Set nnode = 7.

Step 2: Iter = 4 and node 4 ∈ L ∩ L 1 is selected.
Step 3: At node 4, we branch on y = 0.5 and create nodes 8 and 9:

L 1 = {6, 8, 9} with f UB,1 = 0 and X1 = [−1, 0].
Step 4: We compute f (8) = −0.17, f (9) = −0.83 and add both nodes to L .

Step 5: We compute f̄ (8) = 0, f̄ (9) = −0.33. The latter value updates the best inner upper
bound of L 1, i.e., f UB,1 = −0.33. This update causes the full fathoming of node 8
since f (8) > f UB,1 (i.e., node 8 is removed from all the lists).

Step 6: We compute F (9) = 0 that leads to the outer fathoming of node 9. Then the lists are:

L = {6 : −0.41 0 −2 −1 2 };
LIn = {9 : −0.83 −0.33 − − 3 },

and L 1 = {6, 9}, with f UB,1 = −0.33 and X1 = [−1, 0].
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Step 7: The upper bounding procedure does not apply since none of the new nodes are in
L anymore. Set nnode = 9 and go back to Step 2.

Step 2: Iter = 5 and nodes 6 ∈ L ∩ L 1 and 9 ∈ LIn ∩ L 1 are selected.
Step 3: At node 6, we branch on y = −0.5 and create nodes 10 and 11. This gives L 1 =

{9, 10, 11}. At node 9, we branch on x = −0.5 and create nodes 12 and 13. This
gives the final form of the remaining independent list:

L 1 = {{10, 11, 12}, {10, 11, 13}} with f UB,1 = 0 and X1 = [−1, 0].
Step 4: We compute f (10) = −0.20, f (11) = −0.11, f (12) = −0.83 and f (13) = −0.58.

The first two nodes are not added to L since f (10), f (11) > f UB,1; the other two
nodes are added to LIn:

L = ∅;
LIn = {12 : −0.83 −0.33 − − 4

{13 : −0.58 −0.33 − − 4}.
Full fathoming of nodes 10 and 11 invokes the list deletion procedure, which deletes
list L 1 = {{12}, {13}} and results in LIn = ∅.

Step 5: There is no new node in L or LIn; thus, we return to Step 2.
Step 2: L = ∅; terminate with FUB = 0 at (−1, 1).

Remark 6 In the example above, branching on outer-fathomed nodes (here, node 9) is not
strictly necessary. However, in the majority of the examples considered it is essential to ensure
convergence of the bounds on the inner problem objective function.

Flexibility arises with respect to how the inner lower bounding problems (ILB) and the
inner subproblems (ISP) for fixed x values are tackled. For instance, in the following example,
we solve these two problems to global optimality, rather than using their relaxations, problems
(RILB) and (RISP), respectively. To explore this option, we consider the application of the
Branch-and-Sandwich algorithm to problem No. 11, where problems (ILB) and (ISP) are
solved with αBB. Notice that the use of problem (ISP)—instead of problem (RISP)—implies
that in (UB), w(k′)(x̄) is used rather than w(k′)(x̄), and k′ is selected based on:

k′ := arg min
j∈L p

{w( j)(x̄)}.

Example 2 (Problem No. 11 in Table 5, Example 3.10 in [20])

min
x,y

y

s.t. y ∈ arg min
y∈[−1,1]

x(16y4 + 2y3 − 8y2 − 1.5y + 0.5)

x ∈ [0.1, 1] , y ∈ [−1, 1] .

This problem has an infinite number of optimal solutions at x∗ ∈ [0.1, 1] and y∗ = 0.5,
yielding F∗ = 0.5 and f ∗ ∈ [−1,−0.10] [20]. Overall, 3 (ILB), 3 (RIUB), 2 (LB), 1 (ISP)
and 1 (UB) problems were solved. The branch-and-bound tree is in Fig. 3.

Step 0: Iter = 0 and we set L = LIn = ∅, FUB = ∞.
Step 1: nnode = 1 and we compute f (1) = −1, f̄ (1) = 0.57 and F (1) = −0.50 at

(x (1), y(1)) = (0.71,−0.50). We add node 1 to the list L with all the computed
information:

L = {1 : −1 0.57 −0.50 0.71 0},
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Fig. 3 Complete branch-and-bound tree for Example 2. Again, all gray nodes are eventually (fully) fathomed.
Light-gray nodes denote nodes that are first outer fathomed, i.e., moved to the list LIn, and dark-gray nodes
denote those that are fully fathomed due to inner fathoming

and set:

p = 1, X1 = [0.1, 1] , L 1 = {1}, f UB,1 = 0.57.

We then compute w(0.71) = −0.71, which yields F̄ (1) = 0.50 at (0.71, 0.50). This
updates the incumbent value: FUB = 0.50.

Step 2: Iter = 1 (no termination was achieved). We select node 1 ∈ L ∩ L 1 and remove
it from L .

Step 3: We branch on y = 0, resulting in L 1 = {2, 3}, where X1 = [0.1, 1].
Step 4: We compute f (2) = 0 and f (3) = −1 and add both nodes to L :

L = {2 : 0 0.57 −0.50 0.71 1
3 :−1 0.57 −0.50 0.71 1}.

Step 5: We compute f̄ (2) = 0.57 and f̄ (3) = −0.10 and update the best inner upper bound
for list L 1: f UB,1 = −0.10. This results in node 2 being fully fathomed.

Step 6: We compute F (3) = 0.50 at (0.65, 0.50). At this point list L is:

L = {3 : −1 −0.10 0.50 0.65 1}.
But node 3 is outer fathomed due to outer value dominance (cf. Outer fathoming
rules [16, Definition 9]) yielding:

L = ∅;
LIn = {3 : −1 −0.10 − − 1 },

and L 1 = {3} with f UB,1 = −0.10 and X1 = [0.1, 1]. It is clear that list L 1 no
longer holds nodes from L and can be discarded (cf. List-deletion fathoming rules
[16, Definition 10]).

Step 7: nnode = 3. There is no open node left, leading back to Step 2.
Step 2: L = ∅; terminate with FUB = 0.50 at (0.65, 0.50).

Observe that in this example, 3 nodes were required for termination, and compare with
the same problem instance, No. 11, in Table 5, where 11 nodes are reported. This happens
because in the latter case the convex relaxed problems (RILB) and (RISP) were solved. This
approach is illustrated in Fig. 4, where 11 (RILB), 11 (RIUB), 7 (LB), 11 (RISP) and 5
(UB) problems were solved overall. A few interesting points about the algorithm can be
highlighted here. With (RILB) and (RISP), we cannot (fully) fathom node 2 as inner-value
dominance no longer applies (the inner lower bound is too loose: f (2) = −24 and recall that

f UB,1 = −0.1, where X1 = [0.1, 1]).
However, node 2 can be outer-fathomed, i.e., moved to the list LIn, because F̄ (2) = ∞.

Branching on the outer-fathomed node 2 for another two levels leads to the creation of 4
descendants in total from node 2. Recall that fathoming based on the bounding information
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Fig. 4 Complete branch-and-bound tree for Example 2 with (RILB) and (RISP). Nodes in light gray were
outer fathomed. There is no inner fathoming in this case
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Fig. 5 Regions discarded due to inner fathoming. a Example 1, b Example 2

of the overall problem implies that the optimal solution of the bilevel problem cannot be
found in the fathomed region but does not imply anything for the optimal solution of the
inner problem (in the X subdomain under consideration). We have introduced the concept of
outer fathoming to recognize and make use of such situations. The fathoming-by-infeasibility
rule, for example, may be satisfied due to infeasible outer constraints, if present. In the case of
Problem No. 11, where no outer constraints are present, the infeasibility of the lower bounding
problem can only be due to inner information, which means that in this case full fathoming
of node 2 could have been detected. In general, if we were able to detect/check where
the infeasibility of the outer lower bounding comes from, then the Branch-and-Sandwich
algorithm in its most general form, i.e., using the convex relaxed problems (RILB) and
(RISP), would require 7 nodes for problem No. 11.

Finally, to highlight the effects of inner fathoming, we show the regions that are eliminated
due to inner fathoming as dark boxes in Fig. 5 for the two bilevel problems presented in
detail, i.e., problem No. 11 and problem No. 17. The optimal solutions of the two problems
are marked with stars. Observe that significant portions of the solution space are eliminated
from consideration thanks to inner fathoming and that no region where optimal solutions lie
is discarded.

6 Conclusions

The present paper constitutes the second part of our work on developing a branch-and-
bound scheme, the Branch-and-Sandwich algorithm, for the solution of optimistic bilevel
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programming problems that satisfy an appropriate regularity condition in the inner problem.
In this article, we explored the convergence properties of the Branch-and-Sandwich algorithm
and we proved finite convergence to an ε-optimal global solution.

We demonstrated our algorithm in detail for two test cases. With this detailed exposition,
we wanted to (i) illustrate the proposed branching scheme and the use of auxiliary lists; (ii)
highlight the flexibility that our method offers in how the proposed bounding problems are
tackled; and also, (iii) point out that with the inner bounding scheme and the corresponding
fathoming rules, it is possible to eliminate large portions of the inner space.

The Branch-and-Sandwich algorithm was tested on 34 small problems with promising
numerical results. The full implementation of the algorithm and computational performance
are the focus of current work. Alternative choices in the way each step of the proposed
algorithm is tackled, as well as different branching strategies, need to be explored. The
implementation of the proposed method will also allow us to evaluate its performance on
larger problems.
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7 Appendix: Additional test problems

Example 3 (Problem No. 15 in Table 5, Variant of Example 3.13 in [20])

min
x,y

x − y

s.t. y ∈ arg min
y∈[−1,1]

xy2

2 − xy3

x ∈ [−1, 1] , y ∈ [−1, 1] .

Example 3 has the unique optimal solution (x∗, y∗) = (0, 1) with F∗ = −1 and f ∗ = 0.
In particular, based on the inner KKT conditions: (i) y ∈ {−1, 0, 1

3 } for −1 ≤ x < 0, with
y = −1 being the unique global minimum for these x values; (ii) y ∈ [−1, 1] for x = 0,
with all y values being global minima; (iii) y ∈ {0, 1

3 , 1} for 0 < x ≤ 1, with y = 1 being
the unique global minimum.

Example 4 (Problem No. 34, Variant of Example 3.28 [20] with the same optimal objective
value of −10)

min
x,y

5∑

j=1
−x2

j − y2
j

s.t. y1 y2 − x1 ≤ 0
x2 y2

1 ≤ 0
x1 − exp(x2) + y3 ≤ 0
y ∈ arg min

y∈[−1,1]5

{
y3

1 + y2
2 x1 + y2

2 x2 + 0.1y3 + (y2
4 + y2

5 )x3x4x5 s.t. x1 − 0.2 − y2
3 ≤ 0

}

x ∈ [−1, 1]5, y ∈ [−1, 1]5.
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