
INFORMS—New Orleans 2005 c© 2005 INFORMS | isbn 0000-0000
doi 10.1287/educ.1053.0000

Branch and Tree Decomposition Techniques for
Discrete Optimization

Illya V. Hicks
Department of Industrial Engineering, Texas A & M University, College Station, Texas
77843-3131, USA, ivhicks@tamu.edu

Arie M. C. A. Koster

Zuse Institute Berlin (ZIB), Takustraße 7, D-14195 Berlin, Germany, koster@zib.de

Elif Kolotoğlu
Department of Industrial Engineering, Texas A & M University, College Station, Texas
77843-3131, USA, elif@tamu.edu

Abstract This chapter gives a general overview of two emerging techniques for discrete optimiza-
tion that have footholds in mathematics, computer science, and operations research:
branch decompositions and tree decompositions. Branch decompositions and tree
decompositions along with their respective connectivity invariants, branchwidth and
treewidth, were first introduced to aid in proving the Graph Minors Theorem, a well-
known conjecture (Wagner’s conjecture) in graph theory. The algorithmic importance
of branch decompositions and tree decompositions for solving NP-hard problems mod-
elled on graphs was first realized by computer scientists in relation to formulating
graph problems in monadic second order logic. The dynamic programming techniques
utilizing branch decompositions and tree decompositions, called branch decomposi-
tion and tree decomposition based algorithms, fall into a class of algorithms known as
fixed-parameter tractable algorithms and have been shown to be effective in a practical
setting for NP-hard problems such as minimum domination, the travelling salesman
problem, general minor containment, and frequency assignment problems.

Keywords Branchwidth, Treewidth, Graph algorithms, Combinatorial Optimization

1. Introduction

The notions of branch decompositions and tree decompositions and their respective con-
nectivity invariants, branchwidth and treewidth, are two emerging techniques for discrete
optimization that also encompass the fields of graph theory, computer science, and oper-
ations research. The origins of branchwidth and treewidth are deeply rooted in the proof
of the Graph Minors Theorem, formally known as Wagner’s conjecture. Briefly, the Graph
Minors Theorem states that in an infinite list of graphs there would exist two graphs H and
G such that H is a minor of G. The algorithmic importance of the branch decomposition and
tree decomposition was not realized until Courcelle [50] and Arnborg et al. [13] showed that
several NP-hard problems posed in monadic second-order logic can be solved in polynomial
time using dynamic programming techniques on input graphs with bounded treewidth or
branchwidth. A problem which is NP-hard implies that as long as it is not proven that
P = NP we cannot expect to have a polynomial time algorithm for the problem. These
techniques are referred to as tree decomposition based algorithms and branch decomposition

1

2 INFORMS—New Orleans 2005, c© 2005 INFORMS

based algorithms, respectively. Branch decomposition and tree decomposition based algo-
rithms are important in discrete optimization because they have been shown to be effective
for combinatorial optimization problems like the ring-routing problem [47], the travelling
salesman problem [48], frequency assignment [87], general minor containment [73], and the
optimal branch decomposition problem [74].

The procedure to solve an optimization problem with bounded branchwidth or treewidth
involves two steps: (i) computation of a (good) branch/tree decomposition, and (ii) applica-
tion of an algorithm that solves instances of bounded branchwidth/treewidth in polynomial
time. Since the branchwidth or treewidth is considered to be a constant, not part of the
input, this value may occur in the exponent of the complexity of both running time and
space requirements. Hence, it is important to have a decomposition of width as small as
possible. The problem of minimizing this quantity is however NP-hard in itself.

Note that not every combinatorial problem defined on a graph of bounded branchwidth or
treewidth can be solved in polynomial time. An example is the bandwidth minimization
problem which is NP-hard even on ternary trees (every vertex has degree one or three) [59,
95]. Even if the problem is polynomial on trees, the problem need not to be polynomial
on graphs of bounded treewidth: L(2,1)-coloring is NP-complete for graphs with treewidth
2 [54]. For more information on L(2,1)-colorings, one is referred to the work of Chang and
Kuo [42] and the work of Bodlaender and Fomin [30].

Besides using the theory of monadic second-order logic, whether or not the problem can be
solved in polynomial time on graphs of bounded branchwidth or treewidth can be discovered
by investigating characteristics of the solution. Given a vertex cut set, one has to answer
the question what impact the solution on one side of the cut set has on the solution on the
other side. If the solutions only depend on the solution in the vertex cut, the problem likely
can be solved with a dynamic programming algorithm specialized for the problem.

This chapter gives a general overview of branchwidth and treewidth along with their connec-
tions to structural graph theory, computer science, and operations research. Section 2 offers
preliminary and relevant definitions in the subject area. Section 3 offers some interesting
background on the Graph Minors Theorem and its relation to branchwidth and treewidth.
Section 4 describes algorithms to construct branch decompositions as well as a blueprint
for branch decomposition based algorithms. Section 5 offers similar results for treewidth
with the addition of algorithms for computing relevant lower bounds to treewidth. Section 6
describes the extension of branchwidth and treewidth to matroids and Section 7 describes
relevant open problems in the area. It is our hope that this chapter will spark interest into
this fascinating area of research.

2. Definitions

2.1. Graph definitions

In this section we give basic definitions. The reader may skip this section and refer to it
when necessary.

A graph is an ordered pair (V,E) where V is a nonempty set, called the set of vertices or
nodes ; E, the set of edges, is an unordered binary relation on V . A graph is called complete
if all possible edges between the nodes of the graph are present in the graph. A hypergraph
is an ordered pair (V,E) of nodes and edges, and an incidence relationship between them
that is not restricted to two ends for each edge. Thus, edges of hypergraphs, also called
hyperedges, can have any number of ends.

INFORMS—New Orleans 2005, c© 2005 INFORMS 3

a

c

b

e

f

k

g

i

h

j

d

l

n

p

o

m

q

Figure 1. Example graph.

A graph Ḡ= (V̄ , Ē) is a subgraph of the graph G= (V,E) if V̄ ⊆ V and Ē ⊆E. For a subset
V ′ ⊆ V , G[V ′] denotes the graph induced by V ′, i.e., G[V ′] = (V ′,E ∩ (V ′ × V ′)). For a
subset E′ ⊆ E, the graph induced by these edges is denoted by G[E′]. Contraction of an
edge e means deleting that edge and identifying the ends of e into one node. Parallel edges
are identified as well. A graph H is a minor of a graph G if H can be obtained from a
subgraph of G by a series of contractions. A subdivision of a graph G is a graph obtained
from G by replacing its edges by internally vertex disjoint paths.

The degree of a vertex is the number of edges incident with that vertex. A graph is connected
if every pair of vertices can be joined by a path. The connectivity of a graph is the smallest
number of vertices which can be removed to disconnect the graph. A graph that does not
contain any cycles (acyclic) is called a forest. A connected forest is called a tree. The leaves
of a tree are the vertices of degree one.

A graph G= (V,E) is bipartite if V admits a partition into two classes such that every edge
has its ends in different classes: vertices in the same partition class must not be adjacent.
A bipartite graph is complete if all possible edges between the nodes of the graph, while
maintaining the restriction of the bipartition, are present in the graph. A graph is planar if
it can be embedded in a plane such that no two edges cross. The incidence graph I(G) of a
hypergraph G is the simple bipartite graph with vertex set V (G)∪E(G) such that v ∈ V (G)
is adjacent to e ∈ E(G) if and only if v is an end of e in G. Seymour and Thomas [116]
define a hypergraph H as planar if and only if I(H) is planar. Also, a hypergraph G is
called connected if I(G) is connected. For an edge e, η(e) is the number of nodes incident
with e. The largest value η(e) over all e∈E is denoted by η(G).

2.2. Branch decompositions

Let G= (V,E) be a hypergraph and T be a ternary tree (a tree where every non-leaf node
has degree 3) with |E(G)| leaves. Let ν be a bijection (one-to-one and onto function) from
the edges of G to the leaves of T . Then the pair (T, ν) is called a branch decomposition of
G [106].

A partial branch decomposition is a branch decomposition without the restriction of every
non-leaf node having degree 3. A separation of a graphG is a pair (G1,G2) of subgraphs with
G1∪G2 =G and E(G1∩G2) = ∅, and the order of this separation is defined as |V (G1∩G2)|.

4 INFORMS—New Orleans 2005, c© 2005 INFORMS

mq pq

em ce

op jk fk

mo dggh

no ef

ln bfhi

jl beacaddi

jm ej ij ei de bc

{m,p}

{m,n}

{e,j} {d,e,j}

{d,h} {e,f,j}

Figure 2. Branch decomposition of width 3 for the graph of Figure 1.

Let (T, ν) be a branch decomposition. Then removing an edge, say e, from T partitions the
edges of G into two subsets Ae and Be. The middle set of e, denoted mid(e), is the set of
vertices of G that are incident to the edges in Ae and the edges in Be and the width of an
edge e, denoted |mid(e)|, is the order of the separation (G[Ae],G[Be]). The width of a branch
decomposition (T, ν) is the maximum width among all edges of the decomposition. The
branchwidth of G, denoted by β(G), is the minimum width over all branch decompositions
of G. A branch decomposition of G with width equal to the branchwidth is an optimal
branch decomposition of G. Figure 2 illustrates an optimal branch decomposition of the
graph given in Figure 1.

Robertson and Seymour [106] characterized the graphs which have branchwidth ≤ 2 and
showed that n× n-grid graphs have branchwidth n. Other known classes of graphs with
known branchwidth are cliques whose branchwidth is ⌈(2/3)|V (G)|⌉. For chordal graphs,
the branchwidth of this class of graphs is characterized by ⌈(2/3)ω(G)⌉ ≤ β(G) ≤ ω(G)
where ω(G) is the maximum clique number of G [71, 106]. A triangulated or chordal graph
is a graph in which every cycle of length at least four has a chord. Related to chordal
graphs, another connectivity invariant related to branchwidth called strong branchwidth was
developed by Tuza [123].

2.3. Tangles

A tangle in G of order k is a set T of separations of G, each of order < k, such that:

(T1) for every separation (A,B) of G of order < k, one of (A,B), (B,A) is an element
of T ;

(T2) if (A1,B1), (A2,B2), (A3,B3) ∈ T then A1 ∪A2 ∪A3 6= G; and
(T3) if (A,B) ∈ T then V (A) 6= V (G).

These are called the first, second and third tangle axioms. The tangle number of G, denoted
by θ(G), is the maximum order of tangles of G. Figure 3 shows the tangle of order 3 for the
graph in Figure 1.

The relationship between tangle number and branchwidth is as follows:

Theorem 1 (Robertson and Seymour [106]). For any hypergraph G, max(β(G), η(G)) =
θ(G) unless η(G) = 0 and V (G) 6= ∅.

INFORMS—New Orleans 2005, c© 2005 INFORMS 5

Separation of order 0

(∅, G)
Separations of order 1

(v, G) ∀ v ∈ V (G)
Separations of order 2

({v, w}, G) ∀ v, w ∈ V (G)
(G[e], G[E(G)\ e]) ∀ e ∈ E(G)
(G[{ac, ad}], G[E(G)\ {ac, ad}])
(G[{dg, gh}], G[E(G)\ {dg, gh}])
(G[{fk, jk}], G[E(G)\ {fk, jk}])
(G[{gh, hi}], G[E(G)\ {gh, hi}])
(G[{jl, lm}], G[E(G)\ {jl, lm}])
(G[{ln, no}], G[E(G)\ {ln, no}])

(G[{mq, pq}], G[E(G)\ {mq, pq}])
(G[{dg, gh, hi}], G[E(G)\ {dg, gh, hi}])
(G[{jl, ln, no}], G[E(G)\ {jl, ln, no}])

(G[{mq, op, pq}], G[E(G)\ {mq, op, pq}])
(G[{dg, di, gh, hi}], G[E(G)\ {dg, di, gh, hi}])

(G[{mo,mq, op, pq}], G[E(G)\ {mo,mq, op, pq}])
(G[{mo,mq,no, op, pq}], G[E(G)\ {mo,mq,no, op, pq}])

(G[{ln,mo,mq,no, op, pq}], G[E(G)\ {ln,mo,mq,no, op, pq}])
(G[{jl, ln,mo,mq,no, op, pq}], G[E(G)\ {jl, ln,mo,mq,no, op, pq}])

(G[{jl, jm, ln,mo,mq,no, op, pq}], G[E(G)\ {jl, jm, ln,mo,mq,no, op, pq}])
(G[{em, jl, jm, ln,mo,mq,no, op, pq}], G[E(G)\ {em, jl, jm, ln,mo,mq,no, op, pq}])

(G[{em, je, jl, jm, ln,mo,mq,no, op, pq}], G[E(G)\ {em, je, jl, jm, ln,mo,mq,no, op, pq}])

Figure 3. Tangle of order 3 for the graph G of Figure 1.

2.4. Tree decompositions

The notions of a tree decomposition and treewidth were introduced by Robertson and Sey-
mour [104] and measure the tree-likeness of a graph. A tree decomposition of a graph G=
(V,E) is a pair ({Xi, i∈ I}, T = (I,F)) with Xi ⊆ V , i∈ I and T = (I,F) a tree, such that:

(TD1)
⋃

i∈IXi = V ;
(TD2) for all vw ∈E, there is an i∈ I with v,w ∈Xi; and
(TD3) for all v ∈ V , {i∈ I : v ∈Xi} forms a connected subtree of T .

The width of a tree decomposition ({Xi, i∈ I}, T = (I,F)) is maxi∈I |Xi|− 1. The treewidth
τ(G) of G is the minimum width over all tree decompositions of G. The ‘-1’ in the definition
of the width of a tree decomposition has cosmetic reasons only: in this way the treewidth of
a connected graph equals one if and only if it is a tree (or forest if the graph is unconnected).
Figure 4 shows a tree decomposition of the graph in Figure 1. Property (TD3) is sometimes
called the interpolation property. Furthermore, note that (TD1) is obsolete if G has no
isolated vertices.

The notions of branchwidth and treewidth are closely related to each other, as expressed in
the following theorem.

Theorem 2 (Robertson and Seymour [106]). Let G = (V,E) be a graph with E 6= ∅.
Then max(β(G),2)≤ τ(G)+ 1≤max(⌊ 3

2β(G)⌋,2).

Several equivalent notions for treewidth have been studied over time, such as partial k trees,
dimension, and k-decomposability. A graph has treewidth at most k if and only if it is a
partial k-tree if and only if the dimension ofG is at most k if and only ifG is k-decomposable.
See Bodlaender [27] for further details.

If T is restricted to be a path, we refer to ({Xi, i ∈ I}, T = (I,F)) as a path decomposition
and the best width as the pathwidth of G. The pathwidth of a tree can be arbitrarily large.

6 INFORMS—New Orleans 2005, c© 2005 INFORMS

j n o

c e i j

c f j k

a c d

b c e f

d g i

e j m

c e f j

d i j

j l n

j m o

m o q

o p q

g h i

Figure 4. Tree decomposition with width 3 for the graph of Figure 1.

One is referred to survey papers by Bodlaender [27] and Bienstock [19] for a more thorough
exposition of pathwidth.

2.5. Monadic Second Order Logic

Every class of graphs, when interpreted as a logical object, can be defined by a logical
statement. Furthermore, graph properties such as the existence of disjoint paths can be
stated as a logical condition. The following theorem from Courcelle [49] showed that graph
problems that can be stated in monadic second-order logic can be solved in polynomial time
for graphs with bounded branchwidth or treewidth.

Theorem 3 (Courcelle [49]). Let φ be a monadic second-order logic problem and let K
be a class of graphs with branchwidth or treewidth bounded above by k. For a graph G in
K, it can be determined in polynomial time if G satisfies φ. If G is given with a branch
decomposition or tree decompositions with width less than or equal to k, then a linear time
algorithm exists.

Monadic second-order logic (MSOL) is an extension of first-order logic that includes vertex
and edge sets and quantification (universal and existential) over these sets. In the context
of graph theory, first-order logic consists of the logical connectives, ∧, ∨, ¬, ⇒ and =
(traditionally interpreted as ‘and’, ‘or’, ‘not’, ‘implies’, and ‘equals’, respectively), variables
(e.g., x1; y1; a; b; z), universal (∀) and existential (∃) quantifiers, and a symbol defined to
represent the existence of edges between vertices. An example of a first-order formula φ is

∀x ∃y [(edg(x, y)∨ edg(y, x))∧¬(x= y)]

which is read “for every x there exists y such that the graph in question contains an edge
from x to y or the graph in question contains an edge from y to x and it is not true that
x equals y” or simply the graph contains no isolated vertices. First-order logic is limited in
its expressiveness: it can only be used for local properties. Monadic second-order logic’s set
variables and set quantification allow for larger, more complex expressions.

For problems that involve optimization of a numerical evaluation over the sets of vertices or
edges that are introduced in MSOL, we turn to the language of extended monadic second-
order logic (EMSOL) and the extended monadic second-order extremum problem presented
by Arnborg et al. [13]. These problems are also solvable in polynomial or linear time for
graphs with bounded branchwidth or treewidth.

INFORMS—New Orleans 2005, c© 2005 INFORMS 7

3. Graph Minors Theorem

In the 1930’s, Kuratowski [90] proved that a graph G is planar if and only if G does not
contain a subdivision of K5, the complete graph on five vertices, or K3,3, the complete
bipartite graph with three vertices on each side of the bipartition. Later, Wagner [124]
proved that a graph G is planar if and only if it does not contain K5 or K3,3 as a minor of
G.

Let F be a class of graphs. F is minor closed if all the minors of any member of F also
belong to F . Given a minor closed class of graphs F , the obstruction set of F is the set of
minor minimal graphs that are not elements of F (i.e. graphs that do not belong to F but
all of their proper minors belong to F). Clearly, any class of graphs embeddable on a given
surface is a minor closed class.

Recall, the obstruction set for the class of planar graphs was found to be K5 and K3,3.
But what if we had surfaces other than the sphere? In 1979, Glover et al. [63] exhibited
a list of 103 graphs in the obstruction set of projective-planar graphs, and then in 1980
Archdeacon [10] proved that this list is complete. In 1989, Archdeacon and Huneke [11]
proved that the obstruction set for any non-orientable surface is finite. Finally as a corollary
of the Graph Minors Theorem (GMT), formerly known as Wagner’s conjecture, Robertson
and Seymour [103] proved that every minor closed class of graphs has a finite obstruction
set. The notions of branch decompositions, tangles, and tree decompositions were beneficial
to the proof of GMT.

Given some surface Σ, an antichain for Σ is a list of minor minimal graphs which cannot
be embedded in Σ. This means that no member of an antichain is isomorphic to a minor of
another. In the early 1960’s, Wagner conjectured that every surface has a finite antichain.
The proof of this conjecture would imply that the obstruction set for any minor closed class
is finite [103].

Theorem 4 (Graph Minors Theorem; Robertson and Seymour [109]). For every
infinite sequence of graphs G1,G2,..., there exists i, j with i < j such that Gi is isomorphic
to a minor of Gj.

A class with a reflexive and transitive relation is a quasi-order. For example, the relation
“H is isomorphic to a subgraph of G” defines a quasi-order on the class of all graphs. A
quasi-order, denoted by (Q, ≤), is well-quasi-ordered if for every countable sequence q1, q2,...
of members of Q there exist 1 ≤ i < j such that qi ≤ qj . Wagner’s conjecture is equivalent
to stating that the “minor” quasi-order, “H is isomorphic to a minor of G”, is well-quasi-
ordered.

One quasi-order that is not well-quasi-ordered is the “subgraph” quasi-order stated ear-
lier. This is true because a countable set of circuit graphs, one of each size, is an infinite
antichain [103]. A graph G topologically contains a graph H if G has a subgraph which
is isomorphic to a subdivision of H . Topological containment is not a well-quasi-ordering
either. The set of graphs formed by taking a circuit graph of each size and replacing each
edge by two parallel edges is an infinite antichain [103]; however, Kruskal proved that the
class of all trees is well-quasi-ordered under topological containment, one of two famous
conjectures of Vázsonyi [89]. Robertson and Seymour [105] used this theorem to prove:

Theorem 5. For any integer k the class of all graphs with treewidth ≤ k is well-quasi-
ordered by minors.

This theorem and many more like it proved beneficial to prove Theorem 3. The other
conjecture of Vázsonyi was that the class of all graphs with maximum degree at most three
is a well-quasi-ordering under topological containment [103].

8 INFORMS—New Orleans 2005, c© 2005 INFORMS

5

3

8

6

Q

M

M
K

(a) Obstruction set for
graphs with β(G)≤ 3

10M

5

8

6

M

M
K

(b) Obstruction set for
graphs with τ(G) ≤ 3

Figure 5. Obstruction set for graphs with branchwidth and treewidth at most 3.

Another quasi-order is immersion. A pair of adjacent edges ab and bc is lifted if ab and bc are
replaced by the edge ac. A graph H is immersed in a graph G if H can be obtained from a
subgraph ofG by lifting pairs of edges. Nash-Williams [96] conjectured that the “immersion”
quasi-order is well-quasi-ordered. This would imply both of Vázsonyi’s conjectures.

Tree decompositions were introduced in the proof of GMT because large order tangles have a
tree-like structure in their association with small order tangles. Branch decompositions were
introduced in Robertson and Seymour [106] where they studied the relationship between
tree decompositions and tangles.

By a result of Robertson and Seymour [106], for a given integer k, the class of graphs
with branchwidth at most k is a minor closed class, meaning that if G is a graph that
has branchwidth at most k, any minor of G has branchwidth at most k. Hence, the class
of graphs with branchwidth at most k and the class of graph with treewidth at most k
have finite obstruction sets. The only completely known obstruction sets are for graphs with
branchwidth or treewidth 2 and 3. The obstruction set for both graphs with branchwidth
at most 2 and graphs with treewidth at most 2 is K4. Bodlaender and Thilikos [38] proved
that a graph has branchwidth at most 3 if and only if it does not have K5, Q3, M6, and M8

as minor, see Figure 5(a). Similarly, Arnborg et al. [15] and Satyanarayana and Tung [113]
independently proved that the obstruction set for graphs with treewidth at most 3 is K5,
M6, M8, and M10, see Figure 5(b). The complete obstruction sets are not known for larger
values of either treewidth or branchwidth; however, Hicks [71] did prove that the Petersen
graph is a member of the obstruction set for graphs with branchwidth at most 4. Note, the
size of an obstruction for graphs with branchwidth or treewidth at most k probably grows
exponentially with k; it may prove extremely difficult to characterize these obstructions sets
for large k. We refer the reader to the work of Bienstock and Langston [20] for a more
thorough survey of GMT.

4. Branch Decompositions and Algorithms

This section details constructing branch decompositions with width as small as possible
and the use of branch decomposition based algorithms for solving discrete optimization
problems.

INFORMS—New Orleans 2005, c© 2005 INFORMS 9

4.1. Constructing Branch Decompositions

Since the complexity of branch decomposition based algorithms is typically exponential in
the given fixed width of an input branch decomposition (cf. Section 4.2), finding branch
decompositions whose associated width is as small as possible is vital to the performance of
a branch decomposition based algorithm.

4.1.1. Construction in Theory By a result of Seymour and Thomas [116], comput-
ing the branchwidth and finding an optimal branch decomposition of a general graph is
NP-hard. However, there is a polynomial time algorithm in Robertson and Seymour [108]
to approximate the branchwidth of a graph within a factor of 3. For example, the algo-
rithm decides if a graph has branchwidth at least 10 or finds a branch decomposition with
width at most 30. This algorithm and its improvements by Bodlaender [25], Bodlaender and
Kloks [32], and Reed [101] are only of theoretical importance. Bodlaender and Thilikos [38]
did give an algorithm to compute the optimal branch decomposition for any chordal graph
with maximum clique size at most 4 but the algorithm has been only shown practical for a
particular type of 3-tree. Bodlaender and Thilikos [37] also developed a tree decomposition
based linear time algorithm for finding an optimal branch decomposition but it appears to
be computationally impractical as well.

In terms of planar graphs, Fomin and Thilikos [56] proved that the branchwidth of any
planar graph is asymptotically bounded by the square root of the graph’s number of nodes
(2.122

√
n) based upon work on planar separators by Alon et al. [7]. This work also offered a

complexity bound for the minimum dominating set problem on planar graphs smaller than
any known complexity bound for the problem, including the work of Alber and Niedermeier
using tree decompositions [4]. The authors have produced similar results for NP-hard prob-
lems like the independent set problem, the longest cycle problem and the bisection problem
for planar graphs [57]. Kloks, Kratochvil and Müller [80, 81] gave a polynomial time algo-
rithm to compute the branchwidth of interval graphs but this algorithm has not been shown
to be practical.

4.1.2. Construction in Practice

Tree Building To construct a branch decomposition, start with a partial branch decom-
position and refine this decomposition until the tree is ternary. The underlying structure
used in constructing a branch decomposition is the separation, see Section 2.2. Without loss
of generality, we only use separations (G1, G2) such that E(G1) and E(G2) are nonempty.
Separations are vital to the construction of a branch decomposition because finding sepa-
rations will help refine partial branch decompositions into branch decompositions. In this
section, we may assume that the input graphG is biconnected since one can derive an optimal
branch decomposition for a disconnected graph G from the optimal branch decompositions
of G’s connected components; one can also derive an optimal branch decomposition for a
connected graph H from the optimal branch decompositions of the biconnected components
of H .

Given a partial branch decomposition, the studied refinements are one splits and two splits.
Let G represent our input graph and let (T1, ν) be a partial branch decomposition of G. Let
v be a non-leaf node of T1 with degree greater than three and denote Dv as the set of edges
incident with v. For a set S ⊆ V (G), let he(S) denote a hyperedge where the ends of the
hyperedge are the elements in S. Define Hv as the hypergraph constructed from the union
of hyperedges he(mid(e)) for all e ∈Dv. So if T1 is a star, then Hv would correspond to G
since G is assumed to be biconnected. Let (X,Y) be a separation of Hv. Create the tree T2

by replacing v with nodes x and y and the edge xy where x would be incident with the edges
that correspond to E(X) and y would be incident with the edges that correspond to E(Y).

10 INFORMS—New Orleans 2005, c© 2005 INFORMS

This procedure is called a one split. The middle set for the edge xy would be V (X)∩V (Y);
Figure 6 offers an illustration of a one split.

v

x

y

E(X)

E(Y)

Figure 6. A One Split

Let G, (T1, ν), and v be defined as in the previous paragraph. Let e be an edge incident with
v and let he(e) denote the hyperedge of Hv that corresponds to e. Let (X,Y) be a separation
of the hypergraph Hv \ {he(e)}. Without loss of generality, assume that the cardinality of
E(X) is at most the cardinality of E(Y). If the cardinality of E(X) is greater than one,
create T2 by adding new nodes x and y and edges vx and vy to T1 with x incident with
the edges corresponding to E(X) and y incident with the edges corresponding to E(Y).
Otherwise, create T2 by inserting a new node y and edge vy with y incident with the edges
corresponding to E(Y). The middle sets of the new edges in either case would be:

mid(vx) = (V (Y)∪mid(e))∩V (X) (1)

mid(vy) = (V (X)∪mid(e))∩V (Y) (2)

This procedure is called a two split. Figure 7 offers the two examples of a two split. Notice
that a two split when |E(X)|= 1 is equivalent to an one split with |E(X)|= 2; otherwise,
the two procedures do not yield the same results.

In order to build a branch decomposition, start with a partial branch decomposition whose
tree is a star and conduct a sequence of one and two splits to achieve a branch decomposition.
The tree-building aspect of using only one splits is equivalent to the tree-building aspect
developed by Cook and Seymour [47, 48] and the tree-building aspect of using only two
splits is equivalent to the tree-building aspect developed by Robertson and Seymour [108].

A partial branch decomposition (T, ν) of a graph G is called extendible given that β(Hv)≤
β(G) for every non-leaf node v ∈ V (T). This follows from the fact that if every Hv had
branchwidth at most some number k, then one could use the optimal branch decompositions
of the hypergraphs to build a branch decomposition of G whose width is at most k. Even
though a partial branch decomposition whose tree is a star is extendible, it is NP-hard to
check whether an arbitrary partial branch decomposition is extendible for general graphs.
In contrast, this is not the case for planar graphs, discussed later.

A separation is called greedy or safe [47, 48] if the next partial branch decomposition created
by the use of the separation in conjunction with a one or two split is extendible if the previous

INFORMS—New Orleans 2005, c© 2005 INFORMS 11

v

e

y

x

v
e

E(Y)

E(X)

(a) |E(X)|> 1

v

e

y

x

v
e

E(Y)

(b) |E(X)|= 1

Figure 7. Two Splits

partial branch decomposition was extendible. In particular, Cook and Seymour [47, 48]
describe three types of safe separations; the first and more general type is called a push. For
a hypergraph H and F , a subset of nodes or edges, let H [F] denote the subhypergraph of
H induced by F . The push separation is described in the following lemma.

Lemma 1 (Cook and Seymour [47, 48]). Let G be a graph with a partial branch decom-
position (T, ν). Let v ∈ V (T) have degree greater than three and let Dv ⊆ E(T) be the set
of edges incident with v. Also, let Hv be the corresponding hypergraph for v. Suppose there
exist e1, e2 ∈ E(T) incident with v such that |(mid(e1) ∪mid(e2)) ∩

⋃{mid(f) : f ∈ Dv \
{e1, e2}}| ≤ max{|mid(e1)|, |mid(e2)|}. Let he1 , he2 ∈ E(Hv) be the corresponding hyper-
edges for e1 and e2, respectively. Then the resulting partial branch decomposition after taking

12 INFORMS—New Orleans 2005, c© 2005 INFORMS

a one split using the separation (Hv[{he1 , he2}],Hv[E(Hv) \ {he1 , he2}]) is extendible if T
was extendible.

The other types of safe separations utilize 2-separations and 3-separations that satisfy some
simple conditions. First, given a partial branch decomposition of a biconnected graph, if
a separation (X,Y) is found such that |V (X)∩ V (Y)| = 2 then (X,Y) is safe. This is due
to the fact that any 2-separation is titanic in a biconnected graph [106]. All 3-separations
(X,Y) are safe unless V (X) ∩ V (Y) corresponds to an independent set in G and either
V (X)\V (Y) or V (Y)\V (X) has cardinality one; this is another result derived by Robertson
and Seymour [106].

Planar Graphs For planar (hyper)graphs, there exists a polynomial time algorithm called
the ratcatcher method [116] to compute the branchwidth. We briefly comment on the back-
ground behind the method and related results for computing the branchwidth of planar
graphs.

Let G be a graph with node set V (G) and edge set E(G). Let T be a tree having |V (G)|
leaves in which every non-leaf node has degree three. Let µ be a bijection between the
nodes of G and the leaves of T . The pair (T , µ) is called a carving decomposition of G.
Notice that removing an edge e of T partitions the nodes of G into two subsets Ae and Be.
The cut set of e is the set of edges that are incident with nodes in both Ae and Be (also
denoted δ(Ae) or δ(Be)). The width of a carving decomposition (T , µ) is the maximum
cardinality of the cut sets for all edges in T . The carvingwidth for G, κ(G), is the minimum
width over all carving decompositions of G. A carving decomposition is also known as a
minimum-congestion routing trees and one is referred to Alvarez et al. [8] for a link between
carvingwidth and network design. The ratcatcher method is really an algorithm to compute
the carvingwidth for planar graphs. In order to show the relation between carvingwidth and
branchwidth we need another definition.

a

c d

b

e f

g h

0

1

2

3

4

5
6 7

8

9
10

11

(a) Q3

0

11

51

42

9 10

3

8

6 7

Ca Cb

Cc Cd

Ce Cf

Cg Ch

(b) M(Q3)

Figure 8. Q3 and its Medial Graph

Let G be a planar (hyper)graph and let G also denote a particular planar embedding of the
graph on the sphere. For every node v of G, the edges incident with v can be ordered in a
clockwise or counter-clockwise order. This ordering of edges incident with v is the cyclic order
of v. Let M(G) be a graph with the vertex set E(G). For a node v ∈ V (G), define the cycle
Cv in M(G) as the cycle through the nodes of M(G) that correspond to the edges incident
with v according to v’s cyclic order in G; the edges of M(G) is the union of cycles Cv for
all v ∈ V (G). M(G) is called a medial graph of G, see Figure 8. Notice that every connected

INFORMS—New Orleans 2005, c© 2005 INFORMS 13

planar hypergraph G with E(G) 6= ∅ has a medial graph and every medial graph is planar.
In addition, notice that there is a bijection between the regions of M(G) and the nodes
and regions of G. Hence, one can derive, using the theory of Robertson and Seymour [107],
that if a planar graph and its dual are both loopless then they have the same branchwidth,
see Hicks [71]. Figure 9 illustrates this result by presenting one branch decomposition for
both Q3 and M6. For the relationship between branchwidth and carvingwidth, Seymour and
Thomas [116] proved:

Theorem 6 (Seymour and Thomas [116]). Let G be a connected planar graph with
|E(G)| ≥ 2, and let M(G) be the medial graph of G. Then the branchwidth of G is half the
carvingwidth of M(G).

11

5

a

e

b

dc

f

g h

0

2 3
4

6 7

8

9 10

(a) Q3

2 3

6

7 8

10

5

0 4

11

1 9

{a, d, f, g}

{a, e, f} {f, g, h}

{a, b, f} {a, c, g}

(b) (T, ν) (c) dual of Q3: M6

Figure 9. Q3 and M6 have branchwidth four

14 INFORMS—New Orleans 2005, c© 2005 INFORMS

So, computing the carvingwidth of M(G) gives us the branchwidth of G. Also, having a
carving decomposition of M(G), (T,µ), gives us a branch decomposition of G, (T, ν), such
that the width of (T, ν) is exactly half the width of (T,µ). The ratcatcher method actually
computes the carvingwidth of planar graphs. In addition, the ratcatcher method does not
search for low cut sets in the medial graph but for objects that prohibit the existence of
low cut sets. These objects are called antipodalities, see Seymour and Thomas [116] for
more details. The ratcatcher method has time-complexity O(n2) but requires a considerable
amount of memory for practical purposes. A slight variation which is more memory-friendly
was offered by Hicks [75] at the expense of the time-complexity going up to O(n3).

The original algorithm developed by Seymour and Thomas [116] to construct optimal branch
decompositions had complexity O(n4) and used the ratcatcher method to find extendible
separations. A practical improvement upon this algorithm using a more thorough divide-
and-conquer approach was offered by Hicks [76]. Recently, Gu and Tamaki [66] have found
a O(n3) time algorithm utilizing the ratcatcher method by bounding the number of calls
to the ratcatcher method by O(n). In addition, Tamaki [119] offered a linear time heuristic
for constructing branch decompositions of planar graphs; the heuristic could find a branch
decomposition of a 2,000 node planar graph in about 117 milliseconds on a 900MHz Ultra
SPARC-III. The heuristic uses the medial-axis tree of M(G) derived from a breadth-first
search tree of M(G)∗. Thus, the computed width is bounded below by the height of breadth-
first search tree; the difference between this parameter (bounded below by the radius of the
dual of the medial graph) and the branchwidth could be huge using a similar construction
as in Figure 10. Figure 10 raises an interesting question: What characterizes a planar graph
G such that G has the property that β(G) is equal to the radius of M(G)∗?

0

5

9

7

3

8 104 6

1

2

12

16

18

14

15 1711 13

Figure 10. Tamaki’s heuristic [119] gives a width bounded below by 6; the branchwidth is 3.

General Graphs For general graphs, most work has been done utilizing heuristics to
actually construct branch decompositions. Cook and Seymour [47, 48] gave a heuristic algo-
rithm to produce branch decompositions. Their heuristic is based on spectral graph theory
and the work of Alon [6]. Moreover, Hicks [72] also found another branchwidth heuristic that
was comparable to the algorithm of Cook and Seymour. This heuristic finds separations by
minimal vertex separators between diameter pairs.

In addition, Hicks [74] has developed a branch decomposition based algorithm for construct-
ing an optimal branch decomposition based on the notion of a tangle basis. For an integer
k and hypergraph G, a tangle basis B of order k is a set of separations of G with order < k
such that:

(B1) (G[e],G[E(G) \ e]) ∈B, ∀ e∈E(G) if η(e)<k;
(B2) (C,D) ∈ B and ∄ e∈E(G) such that G[e] =C if and only if ∃ (A1,B1), (A2,B2) ∈

B such that A1 ∪A2 =C and B1 ∩B2 =D; and

INFORMS—New Orleans 2005, c© 2005 INFORMS 15

(B3) B obeys the tangle axioms T2 and T3.

We will refer to B1, B2, and B3 as the tangle basis axioms. A tangle basis B in G of order
k is connected if every separation (A,B) of B has A connected. Define the connected tangle
basis number of G, denoted by θ′(G), as the maximum order of any connected tangle basis
of G. The relationship between connected tangle bases and tangles is given in the following
theorem:

Theorem 7 (Hicks [74]). If hypergraph G is connected such that β(G) ≥ η(G), then
β(G) = θ′(G).

The relationship shown in this theorem was used by Hicks [74] to construct a branch decom-
position based algorithm that tests whether a given connected graph has branchwidth at
most k− 1 (where k≥ 3) to be used in a practical setting to compute the branchwidth and
the optimal branch decomposition of a graph.

In the same vein of connected tangle bases, Fomin et al. [55] have developed the notion
of connected branch decompositions for 2-edge-connected graphs. Given a graph G and a
branch decomposition (T, ν), (T, ν) is called connected if for every edge e ∈ E(T), the two
edge induced subgraphs of G corresponding to the two components of T \ {e} are both
connected. Fomin et al. [55] showed that given a 2-edge-connected graph G and a branch
decomposition of G of width k there also exists a connected branch decomposition of G of
width k′ ≤ k. The authors used this result to approximate in polynomial time the connected
search strategy for a graph.

4.2. Branch Decomposition Based Algorithms

The blueprint of a branch decomposition based algorithm typically consists of two steps:
transforming the tree of the branch decomposition of a graph G into a rooted binary tree;
and visiting the nodes of the tree in post-depth-first search order in order to generate a
solution for the problem of interest. The tree T is transformed into a rooted binary tree by
selecting an edge ab and replacing ab by a node r, the root, and edges ar and rb. Since each
leaf of T corresponds to a particular edge of G, then each rooted subtree of T corresponds to
a particular subgraph of G. Also, every node v of T that is not a leaf node and not the root
of the tree is adjacent to three nodes: a parent node p; a left child lc; and a right child rc.
For each tree node v, let Gv denote the subgraph of G induced by the edges corresponding
to the leaves of the tree that are descendants of v. In addition, let Cv denote the middle set
of the parent edge pv. The algorithm then visits the tree nodes in post-depth-first order and
builds a set of partial solutions for each tree node. By visiting the tree in post-depth-first
order, all descendants of tree node v are visited before v is visited.

To illustrate further, some details for the Steiner tree problem in graphs are as follows. A
partial solution for a tree node v would be a forest F of Gv such that every connected
component D of F has the property that V (D) ∩Cv 6= ∅ unless F is a Steiner tree of G.
For the case that the tree node v is a leaf, there is one partial solution: ν(v) is an edge of
the desired Steiner tree. For tree node v that is not a leaf, the set of partial solutions of v
is contained in the union of the partial solutions of v’s children, lc and rc, and the merger
of partial solutions from both sets. Thus, every partial solution of lc is merged with every
partial solution of rc on the node set Clc ∩Crc. Figure 11 illustrates this procedure where
Clc = {a, b, c, d, e}, Crc = {c, d, e, f, g}, Cv = {a, b, c, f, g}, and the terminals are in black. The
number of partial solutions for a tree node v can grow very rapidly because the number
of partial solutions for any tree node v is exponential in the cardinality of Cv. Thus, the
time complexity of a branch decomposition based algorithm is exponential in the width of

16 INFORMS—New Orleans 2005, c© 2005 INFORMS

the input branch decomposition, which explains the importance of having low width. In
contrast, some partial solutions can be pruned away if they can never be transformed into
a feasible Steiner tree. For example, if a partial solution containing a cycle is obtained by
merging two partial solutions at a tree node, then that partial solution can be pruned away.
Another example is if a partial solution of a tree node v had a connected component D that
did not intersect with Cv and all the terminals were not contained in D, then that partial
solution can also be pruned.

a
b c

d

e

c

d

e

f
g

Partial solution for lc

Partial solution for rc

a
b

e

c

d

f
g

Partial solution for v

Connected

components

Member of Clc

Member of Crc

Member of Cv

Terminal

Figure 11. Joining Partial Solutions for lc and rc to Obtain a Partial Solution for v, for the Steiner
Tree Problem

A branch decomposition based algorithm was offered by Cook and Seymour [47] for the
ring-routing-problem, which arises in the design of reliable cost effective synchronous optical
networks (SONET networks) and was incorporated into commercial software for Telcordia
Technologies (formerly Bellcore). Cook and Seymour [48] also used a branch decomposition
based algorithm on a sparse graph generated by fractional solutions of linear programming
(LP) relaxations of a TSP test instance to generate an optimal solution for the sparse graph
and an upper bound for the test instance. This technique produced the best known solu-
tions for the 12 unsolved problems in TSPLIB95, a library of standard test instances for
the TSP [102]. Hicks has also developed computationally efficient branch decomposition
based algorithms for minor containment [73] and optimal branch decompositions [74]. One
is also referred to the work of Christian [43] for other practical algorithms. Some examples
of branch decomposition based algorithms proposed in theory are the notable work of Fomin
and Thilikos [56] and the work of Alekhnovich and Razborov [5] who used the branch-
width of hypergraphs to design a branch decomposition based algorithm in theory to solve
satisfiability problems. Despite the aforementioned examples of research in branch decom-
positions offering glimpses of potentially rewarding research in the field, overall research in
the area has been relatively ignored and vastly unexplored compared to research in tree
decompositions.

INFORMS—New Orleans 2005, c© 2005 INFORMS 17

5. Tree Decompositions and Algorithms

Besides branch decompositions, tree decompositions have also been used to solve discrete
optimization problems. In this section, we consecutively discuss the construction of a tree
decomposition with width as small as possible, lower bounds on the treewidth of a graph,
and finally algorithms for optimization problems that are based on tree decompositions.

5.1. Constructing Tree Decompositions

The construction of an arbitrary tree decomposition is trivial: just take a single node tree
and assign to this node a bag containing all vertices in the graph. This pair of a tree and
a bag satisfies all three conditions of a tree decomposition and thus qualifies as a tree
decomposition. Despite its formal status, it does not deserve the name tree decomposition
from a practical perspective: the tree decomposition does not decompose anything and is
not useful for solving combinatorial problems.

As with branch decompositions, the worth of a tree decomposition depends on its width. The
smaller the size of the largest bag, the more promising a tree decomposition is for solving
combinatorial optimization problems. Therefore, the construction of a tree decomposition
with a small width is desirable. We first discuss the theoretical results. Afterwards, we review
how tree decompositions are constructed in practice.

5.1.1. Construction in Theory We are confronted with a difficult problem related to
treewidth: Computing the treewidth of a graph is NP-hard. Many theoretical assessments
have been made concerning the difficulty of computing treewidth. The formal decision prob-
lem of treewidth asks whether there exists a tree decomposition with width at most k for
some integer k > 0. If k is part of the input, NP-completeness was proved by Arnborg et
al. [12]. If k may be considered as a constant, not part of the input, the best algorithm has
been given by Bodlaender [26] and checks in linear time whether or not a tree decompo-
sition with width at most k exists. The O(n) notation for this algorithm however hides a
huge constant coefficient that obstructs its practical computational value. An experimental
evaluation by Röhrig [110] revealed that the algorithm is computationally intractable, even
for k as small as four.

Graphs with treewidth at most 4 can be characterized either directly or indirectly. As
already pointed out in Section 2, τ(G) = 1 if and only if G is a forest. A graph G has
τ(G) ≤ 2 if and only if its biconnected components are series-parallel graphs [39]. Arnborg
and Proskurowski [14] gave six reduction rules that reduce G to the empty graph if and only
if τ(G) ≤ 3. Sanders [112] provided a linear time algorithm for testing τ(G)≤ 4.

Besides forests and series-parallel graphs, the complexity of treewidth for some special
classes of graphs are known (by presenting either a polynomial time algorithm or an NP-
completeness proof). We refer the interested reader to two surveys on the topic by Bodlaen-
der [24, 29]. Most remarkable in this context is that, so far, the complexity of treewidth for
planar graphs is unknown, whereas for branchwidth a polynomial time algorithm exists, see
Section 4. Lapoire [91] and Bouchitté et al. [41] proved that the treewidth of a planar graph
and of its geometric dual differ by at most one.

As it is NP-complete to decide whether the treewidth of a graph is at most k, a natural
way to proceed is to consider polynomial time approximation algorithms for the problem.
Given a graph G with τ(G) = k, the best algorithms are given by Bouchitté et al. [40] and
Amir [9], both providing a tree decomposition of width at most O(k logk) (i.e., a O(log k)
approximation). So far, neither is a constant approximation algorithm known nor is it proven
that no such algorithm exists.

18 INFORMS—New Orleans 2005, c© 2005 INFORMS

If we insist on computing the treewidth exactly, unless P = NP , the only way to go is the
development of an exponential time algorithm, see Woeginger [125] for a survey in this
recent branch of algorithm theory. For treewidth, Arnborg et al. [12] gave an algorithm with
running time O(2npoly(n)), where poly(n) is a polynomial in n. Fomin et al. [58] presented
a O(1.9601npoly(n)) algorithm. Whether these algorithms are of practical usefulness for
computing treewidth is a topic of further research.

5.1.2. Construction in Practice Most results presented in the previous subsection are
of theoretical interest only: the computational complexity hides huge constant coefficients
that make the algorithms impractical for actually computing treewidth. So far, only the
reduction rules for treewidth at most three have been proved to be of practical use in
preprocessing the input graph. However, in all those cases where the treewidth is larger than
three, we have to turn to heuristics without any performance guarantee. Many of the results
reviewed here have been tested on graphs of different origin, see TreewidthLIB [122] for a
compendium.

Preprocessing The reduction rules of Arnborg and Proskurowski [14] not only reduce
graphs of treewidth at most three to the empty graph, but can also be used as a preprocessing
technique to reduce the size of general graphs. In Bodlaender et al. [34], the rules have been
adapted and extended such as to preprocess general graphs. Given an input graph G, a
value low is maintained during the preprocessing such that max{low, τ(G′)}= τ(G), where
G′ is the (partly) preprocessed graph. If at any point, no further preprocessing rules can
be applied anymore, a tree decomposition of the preprocessed graph G′ is computed (see
below). Finally, given a tree decomposition for G′, a tree decomposition for the input graph
can be obtained by reversal of the preprocessing steps and adapting the tree decomposition
appropriately. Computational experiments have shown that significant reductions in the
graph size can be achieved by these rules.

The above mentioned preprocessing rules emphasize the removal of vertices from the graph.
Another way to reduce the complexity of finding a good tree decomposition is the splitting
of the input graph into smaller graphs for which we can construct a tree decomposition
independently. In Bodlaender and Koster [33], so-called safe separators are introduced for
this purpose. A separator S is a set of vertices whose removal disconnects a graph G.
Let V i, i = 1, . . . , p (p ≥ 2), induce the connected components of G − S. On each of the
connected components G[V i], a graph Gi is defined as G[V i∪S]∪clique(S), where clique(S)
denotes a complete graph, or clique, on S. If τ(G) = maxi=1,...,p τ(G

i), then S is called safe
for treewidth. In particular, clique separators (i.e., S induces a clique) and almost clique
separators (i.e., S contains a |S| − 1 clique) are safe. Experiments revealed that, roughly
speaking, by applying a safe separator decomposition to a graph, it remains to construct a
tree decomposition for the smaller graphs given by the decomposition.

Exact algorithms Although treewidth is NP-hard in general, there have been a couple of
attempts to tackle the problem by exact approaches. Shoikhet and Geiger [117] implemented
a modified version of the O(nk+2) algorithm by Arnborg et al. [12]. A branch and bound
algorithm based on vertex-ordering has been proposed by Gogate and Dechter [64].

Upper bound heuristics The operations research toolbox for constructing solutions to
combinatorial optimization problems has been opened but not yet fully explored for com-
puting the treewidth of a graph. Most heuristics are of a constructive nature: according to
some principle, we construct a tree decomposition from scratch. Improvement heuristics as
well as metaheuristics are less frequently exploited.

At first sight, condition (TD3) does not simplify the construction of good tree decompo-
sitions from scratch. However, an alternative definition of treewidth by means of graph
triangulations reveals the key to constructive heuristics. A triangulated or chordal graph is

INFORMS—New Orleans 2005, c© 2005 INFORMS 19

a graph in which every cycle of length at least four has a chord. A triangulation of a graph
G= (V,E) is a chordal graph H = (V,F) with E ⊆ F .

Lemma 2. Let G be a graph, and let H be the set of all triangulations of G. Then, τ(G) =
minH∈H ω(H)− 1, where ω(H) is the size of the maximum clique in H.

Thus, if G is triangulated, then τ(G) = ω(G)− 1, otherwise we have to find a triangulation
of H with small maximum clique size. Several algorithms exist to check whether G is tri-
angulated or to construct a triangulation of G. All are based on a special ordering of the
vertices. A perfect elimination scheme of a graph G= (V,E) is an ordering of the vertices
v1, . . . , vn such that for all vi ∈ V , δG[vi,...,vn](vi) induce a clique.

Lemma 3 ([60, 65]). A graph G is triangulated if and only if there exists a perfect elimi-
nation scheme.

To check whether a graph is triangulated it is thus enough to construct a perfect elimination
scheme or to prove that no such scheme exists. The lexicographic breadth first search (LEX)
recognition algorithm by Rose et al. [111] constructs in O(n+m) time a perfect elimination
scheme if such a scheme exists. The maximum cardinality search (MCS) by Tarjan and Yan-
nakakis [120] does the same (with the same complexity in theory, but is faster in practice).
Both algorithms can be adapted to find a triangulation H if G is not triangulated itself.
With help of Lemma 2 a tree decomposition can be constructed with width equal to the
maximum clique size of H minus one. The triangulated graph given by both algorithms is
not necessarily minimal in the sense that there may not exist a triangulation H ′ = (V,F ′)
with E ⊂ F ′ ⊂ F . As unnecessarily inserted edges can increase the maximum clique size, it
is desirable to find a minimal triangulation. For both algorithms there exist variants that
guarantee to find a minimal triangulation H ′ of G, known as LEX-M [111] and MCS-M [17],
respectively. See [84] for some experimental results for LEX-P, MCS, and LEX-M. Recently,
Heggernes et al. [69] proposed a new algorithm to find a minimal triangulation. Alterna-
tively, we can add as a post-processing step to MCS and LEX-P an algorithm that turns
a triangulation into a minimal triangulation [22, 51, 70]. Note that in case the input graph
is chordal, the minimal triangulation is the graph itself, and the treewidth of the graph is
computed exactly with all described algorithms.

The minimal fill-in problem is another problem that is studied in relation to triangulation
of graphs. The minimum fill-in of a graph is the minimum number of edges to be added
to a graph such that the resulting graph is chordal/triangulated. This problem is known
to be NP-hard [127], but it is not difficult to think of two heuristics. The first one is a
greedy algorithm: select repeatedly the vertex for which the fill-in among its neighbors
is minimized, turn its neighbors into a clique, and remove that vertex. This algorithm is
called Greedy Fill-In (GFI) or simply the minimum fill-in algorithm in some articles. The
second algorithm does the same except that it selects the vertex according to the minimum
degree. See Bachoore and Bodlaender [16] and Clautiaux et al. [44, 45] for computational
experiments and fine tuning of these algorithms.

Except for the algorithm that turns a triangulation into a minimal triangulation, all heuris-
tics described so far are constructive. The algorithm described in Koster [83] can be viewed
as an improvement heuristic, similar to the tree building idea for branchwidth. Given a tree
decomposition, it tries to replace the largest bag(s) by smaller ones, preserving all condi-
tions of a tree decomposition. If the algorithm starts with the trivial tree decomposition
consisting of a single node, the algorithm can be viewed as a constructive algorithm; if it
starts with a tree decomposition constructed by another method, it can be considered an
improvement heuristic as well.

20 INFORMS—New Orleans 2005, c© 2005 INFORMS

Metaheuristics have been applied to treewidth as well. Clautiaux et al. [45] experimented
with a tabu search algorithm. For a problem closely related to treewidth, Kjærulff [79]
applies simulated annealing, whereas Larrañaga et al. [92] use a genetic algorithm.

Branchwidth and treewidth As already pointed out in Section 2, the notions branch-
width and treewidth are closely related. Given a branch decomposition with width k, a
tree decomposition with width at most ⌊ 3

2k⌋ can be constructed in polynomial time: Let i
be an internal node of the branch decomposition and let j1, j2, j3 be its neighbors. More-
over, let Uj1 , Uj2 , Uj3 ⊆ V be the vertex sets induced by edges corresponding to the leafs
of the subtrees rooted at j1, j2, and j3 respectively. Thus mid(ij1) := Uj1 ∩ (Uj2 ∪ Uj3),
mid(ij2) :=Uj2 ∩ (Uj1 ∪Uj3), and mid(ij3) :=Uj3 ∩ (Uj1 ∪Uj2). Now, associate with node i
the bag Xi :=mid(ij1)∪ (ij2)∪mid(ij3). Since the union contains Uj ∩Uk, j, k ∈ {j1, j2, j3},
j 6= k, twice, the size of Xi is at most ⌊ 3

2k⌋. It is left to the reader to verify that ({Xi, i ∈
I}, T = (I,F)) satisfies all conditions of a tree decomposition.

5.2. Treewidth Lower Bounds

The heuristics for practical use described above do not generally guarantee a tree decompo-
sition with width close to optimal. To judge the quality of the heuristics, lower bounds on
treewidth are of great value. Moreover, obtaining good lower bounds quickly is essential for
the performance of branch and bound algorithms (see Gogate and Dechter [64]), and the
height of a treewidth lower bound is a good indication for the computational complexity of
tree decomposition based algorithms to solve combinatorial optimization problems.

In recent years, substantial progress on treewidth lower bounds has been achieved, both
theoretically and practically. The probably widest known lower bound is given by the max-
imum clique size. This can be seen by Lemma 2: the maximum clique of G will be part of
a clique in any triangulation of G.

Scheffler [114] proved that every graph of treewidth at most k contains a vertex of degree
at most k. Stated differently, the minimum degree δ(G) is a lower bound on the treewidth
of a graph. Typically this lower bound is of no real interest as the minimum degree can be
arbitrarily small. Even if the preprocessing rules of the previous section have been applied
before, only δ(G)≥ 3 can be guaranteed.

Ramachandramurthi [99, 100] introduced the parameter

γR(G) = min(n− 1, min
v,w∈V,v 6=w,{v,w}/∈E

max(d(v), d(w))

and proved that this is a lower bound on the treewidth of G. Note that γR(G) = n−1 if and
only if G is a complete graph on n vertices. If G is not complete, then γR(G) is determined
by a pair {v,w} /∈E with max(d(v), d(w)) as small as possible. From its definition it is clear
that γR(G)≥ δ2(G)≥ δ(G), where δ2(G) is the second smallest degree appearing in G (note
δ(G) = δ2(G) if the minimum degree vertex is not unique). So, we have

δ(G)≤ δ2(G)≤ γR(G)≤ τ(G)

and all these three lower bounds can be computed in polynomial time.

One of the heuristics for constructing a (good) tree decomposition is the Maximum Cardi-
nality Search algorithm (MCS), see Section 5.1.2. Lucena [94] proved that with the same
algorithm a lower bound on the treewidth can be obtained. The MCS visits the vertices of a
graph in some order, such that at each step, an unvisited vertex that has the largest number
of visited neighbors becomes visited (note that the algorithm can start with an arbitrary
vertex). An MCS-ordering of a graph is an ordering of the vertices that can be generated

INFORMS—New Orleans 2005, c© 2005 INFORMS 21

by the algorithm. The visited degree of a vertex v in an MCS-ordering is the number of
neighbors of v that are before v in the ordering. The visited degree of an MCS-ordering ψ
of G is the maximum visited degree over all vertices v in ψ and denoted by mcslbψ(G).

Theorem 8 (Lucena [94]). Let G be a graph and ψ an MCS-ordering. Then,
mcslbψ(G)≤ τ(G).

If we define the maximum visited degree MCSLB(G) of G as the maximum visited degree
over all MCS-orderings of graph G, then obviously MCSLB(G) ≤ τ(G) as well. Bodlaen-
der and Koster [33] proved that determining whether MCSLB(G) ≤ k for some k ≥ 7 is
NP-complete and presented computational results by constructing MCS-orderings using
tiebreakers for the decisions within the MCS algorithm.

It is easy to see that every lower bound for treewidth can be extended by taking the maxi-
mum of the lower bound over all subgraphs or minors: given an optimal tree decomposition
for G and H a subgraph (minor) of G, then we can construct a tree decomposition with
equal or better width for H by removing vertices from the bags that are not part of the
subgraph (minor) and replacing contracted vertices by their new vertex.

In Koster et al. [84] the minimum degree lower bound has been combined with taking
subgraphs. The maximum minimum degree over all subgraphs, denoted by δD(G) is known
as the degeneracy of a graph G and can be computed in polynomial time by repeatedly
removing a vertex of minimum degree and recording the maximum encountered. Szekeres and
Wilf [118] proved that δD(G)≥ χ(G)−1 and thus δD(G)≥ ω(G)−1. Hence, the degeneracy
provides a lower bound no worse than the maximum clique size and in addition it can be
computed more efficiently. In Bodlaender and Koster [33] it is shown that MCSLB(G) ≥
δD(G).

Independently, Bodlaender et al. [35] and Gogate and Dechter [64] combined the minimum
degree lower bound with taking minors. The so-called contraction degeneracy δC(G) is
defined as the maximum minimum degree over all minors of G. In [35] it is proven that
computing δC(G) is NP-hard and computational experiments are presented by applying
tiebreakers to the following algorithm: repeatedly contract a vertex of minimum degree to
one of its neighbors and record the maximum encountered. Significantly better lower bounds
than the degeneracy are obtained this way. In Wolle et al. [126] further results for contraction
degeneracy are discussed, showing for example that δC(G) ≤ 5 + γ(G), where γ(G) is the
genus of G.

Also the lower bounds δ2(G), γR(G), and MCSLB(G) can be computed over all subgraphs
or minors. In [35] the combination of MCSLB(G) and taking minors has been studied,
whereas the combination of δ2(G) and γR(G) with taking subgraphs or minors is the topic
of research in [88]. Whereas computing δ2(G) over all subgraphs (denoted by δ2D(G)) can
be computed in polynomial time, surprisingly computing γR(G) over all subgraphs (denoted
by γRD(G)) is already NP-hard. A 2-approximation for γRD(G) is given by δ2D(G). Fur-
thermore, δ2D(G)≤ δD(G)+1 and δ2C(G) ≤ δC(G)+1, where δ2C(G) is the minor-taking
variant of δ2(G). Figure 12 shows an overview of the lower bounds for treewidth discussed
so far. In practice, δ2C(G) and γRC(G) are only marginal better (if at all) than the lower
bounds computed for the contraction degeneracy.

Another vital idea to improve lower bounds for treewidth is based on the following result.

Theorem 9 (Bodlaender [28]). Let G= (V,E) be a graph with τ(G) ≤ k and {v,w} /∈E.
If there exist at least k+2 vertex disjoint paths between v and w, then {v,w} ∈F for every
triangulation H of G with ω(H)≤ k.

22 INFORMS—New Orleans 2005, c© 2005 INFORMS

γ CRδ

δ2

γR

γ DR

δ D2

Dδ δ C2

δ C

MCSLB

MCSLBC
ω−1 χ−1

 τ

Figure 12. Degree-based treewidth lower bounds

Hence, if we know that τ(G) ≤ k and there exist k+ 2 vertex disjoint paths between v and
w, adding {v,w} to G should not hamper the construction of a tree decomposition with
small width. Clautiaux et al. [44] explored this result in a creative way. First, they compute
a lower bound ℓ on the treewidth of G by any of the above methods (e.g., ℓ= δC(G)). Next,
they assume τ(G) ≤ ℓ and add edges {v,w} to G for which there exist ℓ+ 2 vertex disjoint
paths in G. Let G′ be the resulting graph. Now, if it can be shown that τ(G′)> ℓ by a lower
bound computation on G′, our assumption that τ(G) ≤ ℓ is false. Hence, τ(G)> ℓ or stated
equally τ(G) ≥ ℓ+ 1: an improved lower bound for G is determined. This procedure can be
repeated until it is not possible anymore to prove that τ(G′)> ℓ (which of course does not
imply that τ(G′) = ℓ).

In Clautiaux et al. [44], δD(G′) is used to compute the lower bounds for G′. Since computing
the existence of at least ℓ+2 vertex disjoint paths can be quite time consuming, a simplified
version checks whether v and w have at least ℓ+ 2 common neighbors. In Bodlaender et
al. [36] the above described approach is nested within a minor-taking algorithm, resulting
in the best known lower bounds for most tested graphs, see [122]. In many cases optimality
could be proved by combining lower and upper bounds.

For graphs of low genus, in particular for planar graphs, the above described lower bounds
are typically far from the real treewidth. For planar graphs, we can once more profit from
Theorem 2. Treewidth is bounded from below by branchwidth and branchwidth can be
computed in polynomial time on planar graphs. Hence, a polynomial time computable lower
bound for treewidth of planar graphs is found. Further research in finding lower bounds
(based on the concept of brambles [115]) for (near) planar graphs is underway [31]. One of
these bounds is also a lower bound for branchwidth.

5.3. Tree Decomposition Based Algorithms

All efforts to compute good tree decompositions (and lower bounds on treewidth) have two
major reasons:

• Several practical problems in various fields of research are equivalent to treewidth on an
associated graph.

• For many NP-hard combinatorial problems that contain a graph as part of the input,
polynomial time algorithms are known in case the treewidth of the graph is bounded by
some constant (as is the case for branchwidth).

INFORMS—New Orleans 2005, c© 2005 INFORMS 23

For a long time, the second reason has been considered to be of theoretical value only, but
(as with branchwidth) more and more practical work has been carried out in this direction.

Examples of the first reason can be found in VLSI design, Cholesky factorization, and evo-
lution theory. We refer to Bodlaender [24] for an overview. In this context we also should
mention that the control flow graph of goto-free computer programs written in common
imperative programming languages like C or Pascal have treewidth bounded by small con-
stants, see Thorup [121] and Gustedt et al. [67]. Recently, Bienstock and Ozbay [21] con-
nected treewidth with the Sherali-Adams operator for 0/1 integer programs.

For many NP-complete problems like Independent Set, Hamiltonian Circuit, Chro-

matic Index [23], or Steiner Tree [82] it has been shown that they can be solved in
polynomial time if defined on a graph of bounded treewidth. Typically there exists a kind
of dynamic programming algorithm based on the tree decomposition. Since such algorithms
follow a scheme similar to the branch decomposition based algorithms described before,
we leave out such a formal description (see e.g., Bodlaender [24] for a description of the
algorithm for the independent set problem or Koster [83, 87] for frequency assignment).

The probably first tree decomposition based algorithm that has been shown of practical
interest is given by Lauritzen and Spiegelhalter [93]. They solve the inference problem for
probabilistic (or Bayesian belief) networks by using tree decompositions. Bayesian belief
networks are often used in decision support systems. Applications of Bayesian belief networks
can be found in medicine, agriculture, and maritime applications.

For problems where integer linear programming turns out to be troublesome, using a tree
decomposition based algorithm could be a good alternative. A demonstrative example in this
context is a frequency assignment problem studied by Koster [83] (see also [86, 87]). In the
so-called minimum interference frequency assignment problem, we have to assign frequencies
to transmitters (base stations) in a wireless network such that the overall interference is
minimized. For this purpose, let G = (V,E) be a graph, and for every vertex v ∈ V , a
set of radio frequencies Fv is given. For every pair {v,w} and every f ∈ Fv, g ∈ Fw , a
penalty pvfwg ≥ 0 is defined. The penalties measure the interference caused by assigning
two frequencies to the vertices. For v and w, {v,w} ∈E if and only if at least one penalty
pvfwg > 0. In Koster et al. [85] a cutting plane algorithm is shown to be effective only for
|Fv| ≤ 6. In practice however, |Fv| = 40 on average. In [83, 87], a tree decomposition based
algorithm is developed for the problem. First, a tree decomposition is computed with the
improvement heuristic described in Section 5.1.2. Next, the tree decomposition is used to
run a dynamic programming algorithm to solve the problem. Several reduction techniques
have been developed to keep the number of partial solutions to be maintained during the
algorithm small. The algorithm is tested on frequency assignment problems that have been
defined in the context of the CALMA project (see [2, 1] for more information on the problems
and overview of the results). It was indeed possible to solve 7 out of the 11 instances to
optimality by this technique. For the other instances, the computer memory was exhausted
before optimality of the best known solution could be proven.

In [86] the algorithm is adapted to an interference lower bound algorithm by considering
subsets of the frequencies instead of the single frequencies. Step by step the subsets are
refined to improve the lower bound until either the best known solution is proved to be
optimal, or computer memory prohibits further computation.

In [87], this tree decomposition based algorithm is discussed in the more general context of
partial constraint satisfaction problems with binary relations. It is shown that the maximum
satisfiability (MAX SAT) problem can be converted to a partial constraint satisfaction
problem and computational results are presented for instances taken from the 2nd DIMACS
challenge on cliques, colorings, and satisfiability [53].

24 INFORMS—New Orleans 2005, c© 2005 INFORMS

Other experimental work has been carried out for vertex covering and vertex coloring. Alber
et al. [3] applied a tree decomposition based algorithm for solving the vertex cover problem
on planar graphs. Commandeur [46] experimented with an algorithm that solves the vertex
coloring by first coloring the heaviest bag of a tree decomposition and the remaining vertices
afterwards.

As already pointed out in the frequency assignment application, memory consumption is a
major concern for tree decomposition based algorithms. Recently, Betzler et al. [18] have
proposed a technique for reducing the memory requirements of these algorithms.

Requests for computational assistance in the construction of tree decompositions for var-
ious graphs exemplify that applying treewidth approaches to various other combinatorial
problems is gaining more and more interest in fields as different as bioinformatics, artificial
intelligence, operations research, and (theoretical) computer science.

6. Branchwidth, Treewidth and Matroids

6.1. Branchwidth of Matroids

It is only natural that branch decompositions can be extended to matroids. In fact, branch
decompositions have been used to produce a matroid analogue of the graph minors theo-
rem [62]. A formal definition for the branchwidth of a matroid is given below.

The reader is referred to the book by Oxley [98] if not familiar with matroid theory. Let M
be a matroid with finite ground set S(M) and rank function ρ. The rank function of M∗,
the dual of M , is denoted ρ∗.

A separation (A,B) of a matroid M is a pair of complementary subsets of S(M) and the
order of the separation, denoted ρ(M,A,B), is defined to be following:

ρ(M,A,B) =

{

ρ(A)+ ρ(B)− ρ(M)+ 1 if A 6= ∅ 6= B,
0 else,

A branch decomposition of a matroid M is a pair (T,µ) where T is a tree having |S(M)|
leaves in which every non-leaf node has degree 3 and µ is a bijection from the ground set of
M to the leaves of T . Notice that removing an edge, say e, of T partitions the leaves of T and
the ground set of M into two subsets Ae and Be. The order of e and of (Ae,Be), denoted
order(e) or order(Ae,Be), is equal to ρ(M,Ae,Be). The width of a branch decomposition
(T , µ) is the maximum order of all edges in T . The branchwidth of M , denoted by β(M),
is the minimum width over all branch decompositions of M . A branch decomposition of M
is optimal if its width is equal to the branchwidth of M . For example, Figure 13 gives a
Euclidean representation of a matroid and its optimal branch decomposition where all of
the orders for the edges of the branch decomposition are provided.

Some results characterizing the branchwidth of matroids are given in the following lemma.

Lemma 4 (Dharmatilake [52]). Let M be a matroid. Then, β(M) = β(M∗), and if M ′

is a minor of M , then β(M ′)≤ β(M).

Lemma 5 (Dharmatilake [52]). Let M be a matroid. Then β(M) ≤ 1 if and only if
M has no non-loop cycle. Moreover, β(M) ≤ 2 if and only if M is the cycle matroid of a
series-parallel graph.

The cycle matroid of graph G, denoted M(G), has E(G) as its ground set and the cycles of
G as the cycles of M(G). For example, Figure 14 gives an optimal branch decomposition of

INFORMS—New Orleans 2005, c© 2005 INFORMS 25

(a) Euclidean representation of the
Fano Matroid

(b) Optimal branch
decomposition of the
Fano Matroid

Figure 13. Fano Matroid F7 with Optimal Branch Decomposition (T,µ) of width 4

em ce

jk fk

mo dggh

no ef

ln bfhi

jl beacaddi

jm ej ij ei de bc

2

2

2 3

2 3

mq pq

op

Figure 14. Optimal Branch Decomposition (T,µ) of width 3 for the Cycle Matroid of the graph
in Figure 1

the cycle matroid of the example graph given in Figure 1 where some of the orders for the
edges of the branch decomposition are provided.

In addition, there is also the concept of matroid tangles, first offered by Dharmatilake [52].
Let k be a positive integer and let M be a matroid. A tangle of order k in M is a set T of
< k separations of M such that:

• for every separation (A,B) of M such that ρ(M,A,B) < k, either (A,B) ∈ T or
(B,A) ∈ T ;

• if (A1,B1), (A2,B2), (A3,B3) ∈T then A1 ∪A2 ∪A3 6= S(M); and
• if (A,B) ∈ T then ρ(A) < ρ(M).

They are referred to as the first, second and third matroid tangle axioms. Likewise, the
tangle number of a matroid M , denoted θ(M), is the largest order of a tangle for M . Notice

26 INFORMS—New Orleans 2005, c© 2005 INFORMS

that the third matroid tangle axiom offers instances where the tangle number could be
infinity. This occurs when the matroid has a coloop because the coloop can always be on
the second part of the separations of a tangle. In addition, Dharmatilake gave a min-max
relationship between tangles of matroids and the branchwidth of matroids, given below.

Theorem 10 (Dharmatilake [52]). Let M be a matroid. Then β(M) = θ(M) if and only
if M has no coloop and β(M) 6= 1.

It was conjectured by Geelen et al. [61] that the branchwidth of a graph and the branchwidth
of the graph’s cycle matroid are equal if the graph has a cycle of length at least 2. Similar to
the work on characterizing the classes of graphs with bounded branchwidth, there have been
some developments in characterizing the classes of matroids with bounded branchwidth.
Most notable is the work of Robertson and Seymour [106] characterizing the class of matroids
with branchwidth at most 2 and the work of Geelen et al. [62] proving that the size of
excluded minors for the class of matroids with bounded branchwidth is finite. In addition,
Hall et al. [68] showed that there are at most 14 excluded minors of the class of matroids
with branchwidth at most 3. Recently, Oum and Seymour [97] have derived a polynomial
time algorithm to approximate the branchwidth of any matroid similar the algorithm offered
by Robertson and Seymour [108] for graphs. One is also referred to the work of Hliněný [77]
for more detailed discussions on the branchwidth of matroids.

6.2. Treewidth of Matroids

In contrast to branchwidth, it is not straightforward to generalize the notion of treewidth
to matroids. Where the width of a branch decomposition is defined on edges of the graph,
the width of a tree decompositions is defined on graph vertex sets (the bags). The ground
set of the cycle matroid corresponds with the edge set of the associated graph, whereas the
vertices do not play a role in the cycle matroid.

Hliěný and Whittle [78], inspired by Geelen, state a definition for treewidth of matroids and
show that in case of the cycle matroid of a graph this definition is equivalent to the graph-
based definition, by providing an alternative characterization of the treewidth of graphs.

Let M be a matroid on the ground set S(M). A pair (T,µ), where T is a tree and µ : S→
V (T) is an arbitrary mapping, is called a tree decomposition of M . For a node x of T , denote
the connected components of T − x by T1, . . . , Td and set Fi = µ−1(V (Ti)). The width of x
is

(MW)

d
∑

i=1

ρM (S−Fi)− (d− 1) · ρ(M),

and the width of the decomposition (T,µ) is the maximum width over all nodes of T . The
treewidth τ(M) of M is the minimum width over all tree decompositions of M .

Theorem 11 (Hliěný and Whittle [78]). Let G be a graph with at least one edge, and
let M(G) be the cycle matroid of G. Then τ(G) = τ(M(G)).

Note that the mapping µ in the definition has nothing to do with the bags Xi defined in
the graph version of tree decompositions. The mapping µ guarantees that property (TD2)
is fulfilled, whereas the interpolation property (TD3) is hidden in (MW). The width of a
node x of T can be rewritten as

ρ(M)−
d

∑

i=1

(ρ(M)− ρM (S−Fi)) ,

INFORMS—New Orleans 2005, c© 2005 INFORMS 27

which can be seen as minimizing the rank defect of the branches of each node (here rank
defect is defined as ρ(M)− ρM(S−F) for a set F ⊆ S).

Besides the equivalence of graph and matroid treewidth, Hliěný and Whittle [78] also prove
the relation between matroid branchwidth and matroid treewidth, similar to Theorem 2.
They show that β(M)≤ τ(M)+1≤max(2β(M)− 1,2) holds for all matroids M . Hence all
results for matroids of bounded branchwidth carry over to matroids of bounded treewidth
and vice versa. Note that the upper bound is not as tight as in the case of graphs.

7. Open Problems

Related to branchwidth and treewidth, the following open questions are worth considering:

• Does there exist a polynomial time algorithm to compute the branchwidth and optimal
branch decomposition of a planar graph with complexity smaller than O(n3)?

• Is the branchwidth of a graph and its cycle matroid equal if the graph has a cycle of
length at least two?

• Do there exist polynomial time algorithms to compute the branchwidth and optimal
branch decomposition of graphs embeddable on orientable surfaces on than the sphere
such as the torus or double torus?

• Do there exist (practical) integer programming formulations for finding the branchwidth
or treewidth of a graph?

• Does there exist a polynomial time approximation algorithm for treewidth with constant
approximation guarantee?

• Does there exist a polynomial time algorithm for computing treewidth of a planar graph,
or a proof that this problem is NP-hard?

• Do heuristics other than MCS have a lower bounding counterpart?
• How good can the contraction degeneracy δC(G) be in general graphs? Is there a bound

(different from treewidth) that limits this parameter?
• Do there exist computational efficient algorithms to compute the treewidth of general

graphs? Are the exponential time algorithms useful for practical computations?

Finally, the real application of the methodology to other combinatorial problems is of impor-
tance for both the operations research community and the algorithmic graph theory com-
munity. For operations researchers, it is good to have alternative methodologies than integer
linear programming that indeed solve real-world problems. For the algorithmic graph the-
orists more applications will drive the research to improved lower and upper bounds for
treewidth or related notions.

8. Acknowledgements

The authors would like to acknowledge the support of the National Science Foundation
(grant DMI-0217265), the DFG research group “Algorithms, Structure, Randomness” (grant
GR 883/9-3, GR 883/9-4), and the Netherlands Organization for Scientific Research (project
Treewidth and Combinatorial Optimization).

References

[1] K. I. Aardal, C. A. J. Hurkens, J. K. Lenstra, and S. R. Tiourine. Algorithms for radio link
frequency assignment: The CALMA project. Operations Research, 50(6):968–980, 2003.

[2] K. I. Aardal, C. P. M. van Hoesel, A. M. C. A. Koster, C. Mannino, and A. Sassano. Models
and solution techniques for the frequency assignment problem. 4OR, 1(4):261–317, 2003.

28 INFORMS—New Orleans 2005, c© 2005 INFORMS

[3] J. Alber, F. Dorn, and R. Niedermeier. Experimental evaluation of a tree decomposition based
algorithm for vertex cover on planar graphs. Disc. Appl. Math., 145:210–219, 2004.

[4] J. Alber and R. Niedermeier. Improved tree decomposition based algorithms for domination-
like problems. In Proceedings of the 5th Latin American Theoretical Informatics (LATIN
2002), pages 613–627, Heidelberg, Germany, 2002. Springer-Verlag. Lecture Notes in Com-
puter Science 2286.

[5] M. Alekhnovich and A. Razborov. Satisfiability, branch-width and Tseitin tautologies. In
43rd Annual IEEE Symposium on Foundations of Computer Science, pages 593–603. IEEE
Computer Society, 2002.

[6] N. Alon. Eigenvalues and expanders. Combinatorica, 2:83–96, 1986.

[7] N. Alon, P. D. Seymour, and R. Thomas. Planar separators. SIAM Journal on Discrete
Mathematics, 7:184–193, 1994.

[8] C. Alvarez, R. Cases, J. Diaz, J. Petit, and M. Serna. Routing tree problems on random graphs.
Technical Report LSI-01-10-R, Software Department, Universitat Politecnica de Catalunya,
Barcelona, Spain, 2000.

[9] E. Amir. Efficient approximations for triangulation of minimum treewidth. In Proceedings of
the 17th Conference on Uncertainty in Artificial Intelligence, pages 7–15, 2001.

[10] D. Archdeacon. A Kuratowski Theorem for the Projective Plane. PhD thesis, Ohio State
University, 1980.

[11] D. Archdeacon and P. Huneke. A Kuratowski theorem for non-orientable surfaces. Journal of
Combinatorial Theory, Series B, 46(2):173–231, 1989.

[12] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a
k-tree. SIAM J. Alg. Disc. Meth., 8:277–284, 1987.

[13] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable graphs. Journal
of Algorithms, 12:308–340, 1991.

[14] S. Arnborg and A. Proskurowski. Characterization and recognition of partial 3-trees. SIAM
J. Alg. Disc. Meth., 7:305–314, 1986.

[15] S. Arnborg, A. Proskurowski, and D. Corneil. Forbidden minors characterization of partial
3-trees. Discrete Mathematics, 80:1–19, 1990.

[16] E. Bachoore and H. L. Bodlaender. New upper bound heuristics for treewidth. In S. Niko-
letseas, editor, WEA 2005: Workshop on Efficient and Experimental Algorithms. Springer,
Lecture Notes in Computer Science, to appear, 2005.

[17] A. Berry, J. Blair, P. Heggernes, and B. Peyton. Maximum cardinality search for computing
minimal triangulations of graphs. Algorithmica, 39:287–298, 2004.

[18] N. Betzler, R. Niedermeier, and J. Uhlmann. Tree decompositions of graphs: Saving memory
in dynamic programming. In CTW 2004: Cologne-Twente Workshop on Graphs and Combi-
natorial Optimization, pages 56–60, Villa Vigoni (CO), Italy, 2004.

[19] D. Bienstock. Reliability of Computer and Communication Networks, volume 5 of DIMACS
Ser. In Discrete Math. and Theoret. Comput. Sci., chapter Graph Searching, Path-Width,
Tree-Width and Related Problems (a Survey), pages 33–49. AMS, Providence, RI, 1991.

[20] D. Bienstock and M. A. Langston. Algorithmic implications of the graph minor theorem. In
Network Models, Handbook of Operations Research and Management Science, chapter Algo-
rithmic Implications of the Graph Minor Theorem, pages 481–502. North-Holland, Amster-
dam, 1995.

[21] D. Bienstock and N. Ozbay. Tree-width and the Sherali-Adams operator. Discrete Optimiza-
tion, 1:13–21, 2004.

[22] J. R. S. Blair, P. Heggernes, and J. Telle. A practical algorithm for making filled graphs
minimal. Theor. Comp. Sc., 250:125–141, 2001.

[23] H. L. Bodlaender. Polynomial algorithms for graph isomorphism and chromatic index on
partial k-trees. J. Algorithms, 11:631–643, 1990.

[24] H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11:1–21, 1993.

[25] H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth.
SIAM Journal on Computing, 25:1305–1317, 1996.

[26] H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Comput., 25:1305–1317, 1996.

[27] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor. Comp.
Sc., 209:1–45, 1998.

INFORMS—New Orleans 2005, c© 2005 INFORMS 29

[28] H. L. Bodlaender. Necessary edges in k-chordalizations of graphs. Journal of Combinatorial
Optimization, 7:283–290, 2003.

[29] H. L. Bodlaender. Discovering treewidth. In P. Vojtáš, M. Bieliková, B. Charron-Bost, and
O. Sýkora, editors, SOFSEM 2005: Theory and Practice of Computer Science, pages 1–16.
Springer, Lecture Notes in Computer Science, vol. 3381, 2005.

[30] H. L. Bodlaender and F. Fomin. Equitable colorings of bounded treewidth graphs. Technical
Report UU-CS-2004-010, Institute of Information and Computing Sciences, Utrecht Univer-
sity, Netherlands, 2004.

[31] H. L. Bodlaender, A. Grigoriev, and A. M. C. A. Koster. Treewidth lower bounds with
brambles. Work in progress, 2005.

[32] H. L. Bodlaender and T. Kloks. Efficient and constructive algorithms for the pathwidth and
treewidth of graphs. Journal of Algorithms, 21:358–402, 1996.

[33] H. L. Bodlaender and A. M. C. A. Koster. Safe separators for treewidth. In Proceedings 6th
Workshop on Algorithm Engineering and Experiments ALENEX04, pages 70–78, 2004.

[34] H. L. Bodlaender, A. M. C. A. Koster, F. van den Eijkhof, and L. C. van der Gaag. Pre-
processing for triangulation of probabilistic networks. In J. Breese and D. Koller, editors,
Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence, pages 32–39, San
Francisco, 2001. Morgan Kaufmann.

[35] H. L. Bodlaender, A. M. C. A. Koster, and T. Wolle. Contraction and treewidth lower bounds.
In S. Albers and T. Radzik, editors, Proceedings 12th Annual European Symposium on Algo-
rithms, ESA2004, pages 628–639. Springer, Lecture Notes in Computer Science, vol. 3221,
2004.

[36] H. L. Bodlaender, A. M. C. A. Koster, and T. Wolle. Contraction and treewidth lower bounds.
Technical Report UU-CS-2004-34, Dept. of Computer Science, Utrecht University, Utrecht,
The Netherlands, 2004.

[37] H. L. Bodlaender and D. Thilikos. Constructive linear time algorithms for branchwidth. In
P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela, editors, Lecture Notes in Computer
Science: Proceedings of the 24th International Colloquium on Automata, Languages, and Pro-
gramming, pages 627–637. Springer Verlag, 1997.

[38] H. L. Bodlaender and D. Thilikos. Graphs with branchwidth at most three. Journal of Algo-
rithms, 32:167–194, 1999.

[39] H. L. Bodlaender and B. van Antwerpen-de Fluiter. Parallel algorithms for series parallel
graphs and graphs with treewidth two. Algorithmica, 29:543–559, 2001.

[40] V. Bouchitté, D. Kratsch, H. Müller, and I. Todinca. On treewidth approximations. Disc.
Appl. Math., 136:183–196, 2004.

[41] V. Bouchitté, F. Mazoit, and I. Todinca. Chordal embeddings of planar graphs. Discrete
Mathematics, 273:85–102, 2003.

[42] G. Chang and D. Kuo. The l(2,1)-labeling problem on graphs. SIAM J. Discrete Math.,
9:309–316, 1996.

[43] W. A. Christian. Linear-Time Algorithms for Graphs with Bounded Branchwidth. PhD thesis,
Rice University, 2003.

[44] F. Clautiaux, J. Carlier, A. Moukrim, and S. Négre. New lower and upper bounds for graph
treewidth. In J. D. P. Rolim, editor, Proceedings International Workshop on Experimental and
Efficient Algorithms, WEA 2003, pages 70–80. Springer Verlag, Lecture Notes in Computer
Science, vol. 2647, 2003.

[45] F. Clautiaux, A. Moukrim, S. Négre, and J. Carlier. Heuristic and meta-heuristic methods
for computing graph treewidth. RAIRO Oper. Res., 38:13–26, 2004.

[46] M. Commandeur. Solving vertex coloring using tree decompositions. Master’s thesis, Univer-
siteit Maastricht, The Netherlands, 2004.

[47] W. Cook and P. D. Seymour. An algorithm for the ring-routing problem. Bellcore technical
memorandum, Bellcore, 1994.

[48] W. Cook and P. D. Seymour. Tour merging via branch-decomposition. INFORMS Journal
on Computing, 15(3):233–248, 2003.

[49] B. Courcelle. Graph rewriting: An algebraic and logic approach. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, pages 194–242. Elsevier, 1990.

[50] B. Courcelle. The monadic second-order logic of graphs I: Recognizable sets of finite graphs.
Information and Computation, 85:12–75, 1990.

30 INFORMS—New Orleans 2005, c© 2005 INFORMS

[51] E. Dahlhaus. Minimal elimination ordering inside a given chordal graph. In Proceedings 23rd
International Workshop on Graph-Theoretic Concepts in Computer Science WG’97, pages
132–143. Springer Verlag, Lecture Notes in Computer Science, vol. 1335, 1997.

[52] J. S. Dharmatilake. A min-max theorem using matroid separations. Contemporary Mathe-
matics, 197:333–342, 1996.

[53] The second DIMACS implementation challenge: NP-Hard Problems: Maximum Clique, Graph
Coloring, and Satisfiability. See http://dimacs.rutgers.edu/Challenges/, 1992–1993.

[54] J. Fiala, P. Glovach, and J. Kratochvil. Distance constrained labelings of graphs of bounded
treewidth. In Proceedings of 32nd International Colloquium on Autmata, Languages and Pro-
gramming, 2005. to appear.

[55] F. Fomin, P. Fraigniaud, and D. Thilikos. The price of connectedness in expansions. Tech-
nical Report LSI-04-28-R, Departament de Lenguatges i Sistemes Informàtics, Universitat
Politécnica de Catalunya, Spain, 2004.

[56] F. Fomin and D. Thilikos. Dominating sets in planar graphs: Branch-width and exponential
speed-up. In Proceedings of the Fourthteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (Baltimore, MD 2003), pages 168–177, New York, 2003. ACM.

[57] F. Fomin and D. Thilikos. A simple and fast approach for solving problems on planar graphs.
In STACS 2004, 2004.

[58] F. V. Fomin, D. Kratsch, and I. Todinca. Exact (exponential) algorithms for treewidth and
minimum fill-in. In Proceedings of the 31st International Colloquium on Automata, Languages
and Programming, pages 568–580, 2004.

[59] M. R. Garey, R. L. Graham, D. S. Johnson, and D. E. Knuth. Complexity results for band-
width minimization. SIAM J. Appl. Math., 34:477–495, 1978.

[60] F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs. J.
Comb. Theory Series B, 16:47–56, 1974.

[61] J. F. Geelen, A. M. H. Gerards, N. Robertson, and G. P. Whittle. On the excluded minors
for the matroids of branch-width k. Journal of Combinatorial Theory Series B, 88:261–265,
2003.

[62] J. F. Geelen, A. M. H. Gerards, and G. Whittle. Branch width and well-quasi-ordering in
matroids and graphs. Journal of Combinatorial Theory, Series B, 84:270–290, 2002.

[63] H. Glover, P. Huneke, and C. S. Wang. 103 graphs that are irreducible for the projective
plane. Journal of Combinatorial Theory, Series B, 27:332–370, 1979.

[64] V. Gogate and R. Dechter. A complete anytime algorithm for treewidth. In proceedings
UAI’04, Uncertainty in Artificial Intelligence, 2004.

[65] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York,
1980.

[66] Q.-P. Gu and H. Tamaki. Optimal branch-decomposition of planar graphs in O(n3) time.
preprint, 2005.

[67] J. Gustedt, O. A. Mæhle, and J. A. Telle. The treewidth of Java programs. In David M. Mount
and Clifford Stein, editors, Proceedings 4th International Workshop on Algorithm Engineering
and Experiments, pages 86–97. Springer Verlag, Lecture Notes in Computer Science, vol. 2409,
2002.

[68] R. Hall, J. Oxley, C. Semple, and G. Whittle. On matroids of branch-width three. Journal of
Combinatorial Theory Series B, 86:148–171, 2002.

[69] P. Heggernes, J. A. Telle, and Y. Villanger. Computing minimal triangulations in time
O(nα log n) = o(n2.376). To appear in proceedings SODA’05, 2005.

[70] P. Heggernes and Y. Villanger. Efficient implementation of a minimal triangulation algorithm.
In R. Möhring and R. Raman, editors, Proceedings of the 10th Annual European Symposium on
Algorithms, ESA’2002, pages 550–561. Springer Verlag, Lecture Notes in Computer Science,
vol. 2461, 2002.

[71] I. V. Hicks. Branch Decompositions and their Applications. PhD thesis, Rice University, 2000.

[72] I. V. Hicks. Branchwidth heuristics. Congressus Numerantium, 159:31–50, 2002.

[73] I. V. Hicks. Branch decompositions and minor containment. Networks, 43(1):1–9, 2004.

[74] I. V. Hicks. Graphs, branchwidth, and tangles! oh my! Networks, 2005. to appear.

[75] I. V. Hicks. Planar branch decompositions I: The ratcatcher. INFORMS Journal on Comput-
ing, 2005. to appear.

INFORMS—New Orleans 2005, c© 2005 INFORMS 31

[76] I. V. Hicks. Planar branch decompositions II: The cycle method. INFORMS Journal on
Computing, 2005. to appear.

[77] P. Hliněný. On the excluded minors for matroids of branch-width three. preprint, 2002.

[78] P. Hliěný and G. Whittle. Matroid tree-width. Technical report, Technical University Ostrava,
Ostrava, Czech Republic, 2003.

[79] U. Kjærulff. Optimal decomposition of probabilistic networks by simulated annealing. Statis-
tics and Computing, 2:2–17, 1992.

[80] T. Kloks, J. Kratochvil, and H. Müller. New branchwidth territories. In C. Meinel and
S. Tison, editors, STAC ’99, 16th Annual Symposium on Theoretical Aspects of Computer
Science, Trier, Germany, March 1999 Proceedings, pages 173–183, Berlin, 1999. Springer-
Verlag.

[81] T. Kloks, J. Kratochvil, and H. Müller. Computing the branchwidth of interval graphs. Dis-
crete Applied Mathematics, 145:266–275, 2005.

[82] E. Korach and N. Solel. Linear time algorithm for minimum weight Steiner tree in graphs
with bounded treewidth. Manuscript, 1990.

[83] A. M. C. A. Koster. Frequency Assignment - Models and Algorithms. PhD thesis, Univ.
Maastricht, Maastricht, The Netherlands, 1999.

[84] A. M. C. A. Koster, H. L. Bodlaender, and S. P. M. van Hoesel. Treewidth: Computational
experiments. In H. Broersma, U. Faigle, J. Hurink, and S. Pickl, editors, Electronic Notes in
Discrete Mathematics, volume 8. Elsevier Science Publishers, 2001.

[85] A. M. C. A. Koster, C. P. M. van Hoesel, and A. W. J. Kolen. The partial constraint sat-
isfaction problem: Facets and lifting theorems. Operations Research Letters, 23(3–5):89–97,
1998.

[86] A. M. C. A. Koster, C. P. M. van Hoesel, and A. W. J. Kolen. Lower bounds for minimum
interference frequency assignment problems. Ricerca Operativa, 30(94–95):101–116, 2000.

[87] A. M. C. A. Koster, S. P. M. van Hoesel, and A. W. J. Kolen. Solving partial constraint
satisfaction problems with tree decomposition. Networks, 40:170–180, 2002.

[88] A. M. C. A. Koster, T. Wolle, and H. L. Bodlaender. Degree-based treewidth lower bounds.
In S. Nikoletseas, editor, WEA 2005: Workshop on Efficient and Experimental Algorithms.
Springer, Lecture Notes in Computer Science, to appear, 2005.

[89] J. Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture. Trans. American
Mathematical Society, 95:210–225, 1960.

[90] K. Kuratowski. Sur le probleme des courbes gauches en topologie. Fundamenta Mathematicae,
15:271–283, 1930.

[91] D. Lapoire. Treewidth and duality for planar hypergraphs. preprint, 2002.

[92] P. Larrañaga, C. M. H. Kuijpers, M. Poza, and R. H. Murga. Decomposing Bayesian networks:
triangulation of the moral graph with genetic algorithms. Statistics and Computing (UK),
7(1):19–34, 1997.

[93] S. J. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphi-
cal structures and their application to expert systems. The Journal of the Royal Statistical
Society. Series B (Methodological), 50:157–224, 1988.

[94] B. Lucena. A new lower bound for tree-width using maximum cardinality search. SIAM J.
Disc. Math., 16:345–353, 2003.

[95] B. Monien. The bandwidth minimization problem for caterpillars with hair length 3 is NP-
complete. SIAM J. Alg. Disc. Meth., 7:505–512, 1986.

[96] C. Nash-Williams. On well-quasi-ordering infinite trees. Proceedings of the Cambridge Philo-
sophical Society, 61:697–720, 1965.

[97] S.-I. Oum and P. D. Seymour. Approximating clique-width and branch-width. Technical
report, Mathematics Department, Princeton University, 2005. preprint.

[98] J. G. Oxley. Matroid Theory. Oxford University Press, Oxford, UK, 1992.

[99] S. Ramachandramurthi. Algorithms for VLSI Layout Based on Graph Width Metrics. PhD
thesis, Computer Science Department, University of Tennessee, Knoxville, Tennessee, USA,
1994.

[100] S. Ramachandramurthi. The structure and number of obstructions to treewidth. SIAM J.
Disc. Math., 10:146–157, 1997.

32 INFORMS—New Orleans 2005, c© 2005 INFORMS

[101] B. Reed. Tree width and tangles: A new connectivity measure and some applications. In R. A.
Bailey, editor, Survey in Combinatorics, 1997, pages 87–162. Cambridge University Press,
Cambridge, 1997.

[102] G. Reinelt. TSPLIB - a traveling salesman library. ORSA Journal on Computing, 3:376–384,
1991. URL: http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/.

[103] N. Robertson and P. D. Seymour. Graph minors: A survey. In Surveys in Combinatorics,
London Math Society Lecture Note Series, pages 153–171. Cambridge University Press,
Cambridge-New York, 103 edition, 1985.

[104] N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. J.
Algorithms, 7:309–322, 1986.

[105] N. Robertson and P. D. Seymour. Graph minors IV: Treewidth and well-quasi-ordering. Jour-
nal of Combinatorial Theory, Series B, 48:227–254, 1990.

[106] N. Robertson and P. D. Seymour. Graph minors. X. Obstructions to tree-decomposition. J.
Comb. Theory Series B, 52:153–190, 1991.

[107] N. Robertson and P. D. Seymour. Graph minors XI: Circuits on a surface. Journal of Com-
binatorial Theory, Series B, 60:72–106, 1994.

[108] N. Robertson and P. D. Seymour. Graph minors XIII: The disjoint paths problem. Journal
of Combinatorial Theory, Series B, 63:65–110, 1995.

[109] N. Robertson and P. D. Seymour. Graph minors XX: Wagner’s conjecture. Journal of Com-
binatorial Theory Series B, 92(2):325–357, 2004.

[110] H. Röhrig. Tree decomposition: A feasibility study. Master’s thesis, Max-Planck-Institut für
Informatik, Saarbrücken, Germany, 1998.

[111] D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex elimination on
graphs. SIAM J. Comput., 5:266–283, 1976.

[112] D. Sanders. On linear recognition for tree-width at most four. SIAM Journal of Discrete
Math, 9:101–117, 1996.

[113] A. Satyanarayana and L. Tung. A characterization of partial 3-trees. Networks, 20:299–322,
1990.

[114] P. Scheffler. Die Baumweite von Graphen als ein Maß für die Kompliziertheit algorithmischer
Probleme. PhD thesis, Akademie der Wissenschaften der DDR, Berlin, 1989.

[115] P. D. Seymour and R. Thomas. Graph searching and a minmax theorem for tree-width. J.
Comb. Theory Series B, 58:239–257, 1993.

[116] P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica, 14(2):217–
241, 1994.

[117] K. Shoikhet and D. Geiger. A practical algorithm for finding optimal triangulations. In Proc.
National Conference on Artificial Intelligence (AAAI ’97), pages 185–190. Morgan Kaufmann,
1997.

[118] G. Szekeres and H. S. Wilf. An inequality for the chromatic number of a graph. J. Comb.
Theory, 4:1–3, 1968.

[119] H. Tamaki. A linear time heuristic for the branch-decomposition of planar graphs. Technical
Report MPI-I-2003-1-010, Max-Planck-Institut Fur Informatick, 2003.

[120] R. E. Tarjan and M. Yannakakis. Simple linear time algorithms to test chordiality of graphs,
test acyclicity of graphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput.,
13:566–579, 1984.

[121] M. Thorup. All structured programs have small tree width and good register allocation.
Information and Computation, 142:159–181, 1998.

[122] Treewidthlib. http://www.cs.uu.nl/people/hansb/treewidthlib, 2004-03-31.

[123] Z. Tuza. Strong branchwidth and local transversals. Discrete Applied Mathematics, 145:291–
296, 2005.

[124] K. Wagner. Uber eine eigenschaft der ebenen komplexe. Mathematische Annalen, 115:570–
590, 1937.

[125] G. J. Woeginger. Exact algorithms for NP-hard problems: A survey. In Combinatorial Opti-
mization: “Eureka, You Shrink!”, pages 185–207, Berlin, 2003. Springer Lecture Notes in
Computer Science, vol. 2570.

[126] T. Wolle, A. M. C. A. Koster, and H. L. Bodlaender. A note on contraction degeneracy.
Technical Report UU-CS-2004-042, Institute of Information and Computing Sciences, Utrecht
University, Utrecht, The Netherlands, 2004.

INFORMS—New Orleans 2005, c© 2005 INFORMS 33

[127] M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J. Alg. Disc. Meth.,
2:77–79, 1981.

