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Branch Flow Model: Relaxations and

Convexification—Part II
Masoud Farivar and Steven H. Low

Abstract—We propose a branch flow model for the analysis and

optimization of mesh as well as radial networks. The model leads

to a new approach to solving optimal power flow (OPF) that con-

sists of two relaxation steps. The first step eliminates the voltage

and current angles and the second step approximates the resulting

problem by a conic program that can be solved efficiently. For ra-

dial networks, we prove that both relaxation steps are always exact,

provided there are no upper bounds on loads. For mesh networks,

the conic relaxation is always exact but the angle relaxation may

not be exact, and we provide a simple way to determine if a re-

laxed solution is globally optimal. We propose convexification of

mesh networks using phase shifters so that OPF for the convexified

network can always be solved efficiently for an optimal solution.

We prove that convexification requires phase shifters only outside

a spanning tree of the network and their placement depends only

on network topology, not on power flows, generation, loads, or op-

erating constraints. Part I introduces our branch flow model, ex-

plains the two relaxation steps, and proves the conditions for exact

relaxation. Part II describes convexification of mesh networks, and

presents simulation results.

Index Terms— Convex relaxation, load flow control, optimal

power flow, phase control, power system management.

I. INTRODUCTION

I N Part I of this two-part paper [2], we introduce a branch

flowmodel that focuses on branch variables instead of nodal

variables. We formulate optimal power flow (OPF) within the

branch flow model and propose two relaxation steps. The first

step eliminates phase angles of voltages and currents. We call

the resulting problem OPF-ar which is still nonconvex. The

second step relaxes the feasible set of OPF-ar to a second-order

cone. We call the resulting problem OPF-cr which is convex, in-

deed a second-order cone program (SOCP) when the objective

function is linear. We prove that the conic relaxation OPF-cr

is always exact even for mesh networks, provided there are no

upper bounds on real and reactive loads, i.e., any optimal solu-

tion of OPF-cr is also optimal for OPF-ar. Given an optimal so-

lution of OPF-ar, whether we can derive an optimal solution to
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the original OPF depends on whether we can recover the voltage

and current angles correctly from the given OPF-ar solution.We

characterize the exact condition (the angle recovery condition)

under which this is possible, and present two angle recovery al-

gorithms. It turns out that the angle recovery condition has a

simple interpretation: any solution of OPF-ar implies a phase

angle difference across a line, and the angle recovery condition

says that the implied phase angle differences sum to zero (mod

) around each cycle. For a radial network, this condition holds

trivially and hence solving the conic relaxation OPF-cr always

produces an optimal solution for the original OPF. For a mesh

network, the angle recovery condition may not hold, and our

characterization can be used to check if a relaxed solution yields

an optimal solution for OPF.

In this paper, we prove that, by placing phase shifters on some

of the branches, any relaxed solution of OPF-ar can be mapped

to an optimal solution of OPF for the convexified network, with

an optimal cost that is no higher than that of the original net-

work. Phase shifters thus convert an NP-hard problem into a

simpler problem. Our result implies that when the angle re-

covery condition holds for a relaxed branch flow solution, not

only is the solution optimal for the OPF without phase shifters,

but the addition of phase shifters cannot further reduce the cost.

On the other hand, when the angle recovery condition is vio-

lated, then the convexified network may have a strictly lower

optimal cost. Moreover, this benefit can be attained by placing

phase shifters only outside an arbitrary spanning tree of the net-

work graph.

There are in general manyways to choose phase shifter angles

to convexity a network, depending on the number and location

of the phase shifters. While placing phase shifters on each link

outside a spanning tree requires the minimum number of phase

shifters to guarantee exact relaxation, this strategy might require

relatively large angles at some of these phase shifters. On the

other extreme, one can choose to minimize (the Euclidean norm

of) the phase shifter angles by deploying phase shifters on every

link in the network. We prove that this minimization problem is

NP-hard. Simulations suggest, however, that a simple heuristic

works quite well in practice.

These results lead to an algorithm for solving OPFwhen there

are phase shifters in mesh networks, as summarized in Fig. 1.

Since power networks in practice are very sparse, the number

of lines not in a spanning tree can be relatively small compared

to the number of buses squared, as demonstrated in simulations

in Section V using the IEEE test systems with 14, 30, 57, 118,

and 300 buses, as well as a 39-bus model of a New England

power system and two models of a Polish power system with

more than 2000 buses. Moreover, the placement of these phase

shifters depends only on network topology, but not on power

0885-8950/$31.00 © 2013 IEEE
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Fig. 1. Proposed algorithm for solving OPF with phase shifters in mesh net-
works. The details are explained in this two-part paper.

flows, generations, loads, or operating constraints. Therefore

only one-time deployment cost is required to achieve subse-

quent simplicity in network operation. Even when phase shifters

are not installed in the network, the optimal solution of a convex

relaxation is useful in providing a lower bound on the true op-

timal objective value. This lower bound serves as a benchmark

for other heuristic solutions of OPF.

The paper is organized as follows. In Section II, we extend the

branch flowmodel of [2] to include phase shifters. In Section III,

we describemethods to compute phase shifter angles to map any

relaxed solution to an branch flow solution. In Section IV, we

explain how to use phase shifters to simplify OPF. In Section V,

we present our simulation results.

II. BRANCH FLOW MODELWITH PHASE SHIFTERS

We adopt the same notations and assumptions A1–A4 of [2].

A. Review: Model Without Phase Shifters

For ease of reference, we reproduce the branch flow model of

[2] here:

(1)

(2)

(3)

Recall the set of branch flow solutions given defined in

[2]:

(4)

and the set of all branch flow solutions:

(5)

To simplify notation, we often use to denote the set defined

either in (4) or in (5), depending on the context. In this section

we study power flow solutions and hence we fix an . All quan-

tities, such as , are with respect to the given ,

even though that is not explicit in the notation. In the next sec-

tion, is also an optimization variable and the sets

are for any .

Given a relaxed solution , define by

(6)

It is proved in [2, Theorem 2] that a given can be mapped to a

branch flow solution in if and only if there exists a that

solves

(7)

for some integer vector . Moreover if (7) has a solution,

then it has a countably infinite set of solutions , but they

are relatively unique, i.e., given , the solution is unique, and

given , the solution is unique. Hence (7) has a unique solution

with if and only if

(8)

which is equivalent to the requirement that the (implied) voltage

angle differences sum to zero around any cycle :

where if and if .

B. Model With Phase Shifters

Phase shifters can be traditional transformers or Flexible AC

Transmission Systems (FACTS) devices. They can increase

transmission capacity and improve stability and power quality

[3], [4]. In this paper, we consider an idealized phase shifter

that only shifts the phase angles of the sending-end voltage and

current across a line, and has no impedance nor limits on the

shifted angles. Specifically, consider an idealized phase shifter

parametrized by across line ), as shown in Fig. 2. As

before, let denote the sending-end voltage. Define to be

the sending-end current leaving node towards node . Let

be the point between the phase shifter and line impedance

. Let and be the voltage at and current from to ,

respectively. Then the effect of the idealized phase shifter is

summarized by the following modeling assumption:

The power transferred from nodes to is still (defined to be)

which, as expected, is equal to the power

from nodes to since the phase shifter is assumed to be loss-

less. Applying Ohm’s law across , we define the branch flow

model with phase shifters as the following set of equations:

(9)

(10)

(11)
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Fig. 2. Model of a phase shifter in line .

Without phase shifters , (9)–(11) reduce to the branch

flow model (1)–(3).

The inclusion of phase shifters modifies the network and en-

largers the solution set of the (new) branch flow equations. For-

mally, let

(12)

Unless otherwise specified, all angles should be interpreted as

being modulo and in . Hence we are primarily in-

terested in . For any spanning tree of , let

“ ” stand for “ for all ”, i.e., involves

only phase shifters in branches not in the spanning tree . De-

fine

(13)

Since (9)–(11) reduce to the branch flow model when ,

.

III. PHASE ANGLE SETTING

Given a relaxed solution , there are in general many ways

to choose angles on the phase shifters to recover a feasible

branch flow solution from . They depend on the number

and location of the phase shifters.

A. Computing

For a network with phase shifters, we have from (9) and (10)

leading to . Hence

for some integer . This changes the angle recovery

condition in [2, Theorem 2] fromwhether there exists that

solves (7) to whether there exists that solves

(14)

for some integer vector . The case without

phase shifters corresponds to setting .

We now describe two ways to compute : the first minimizes

the required number of phase shifters, and the second minimizes

the size of phase angles.

1) Minimize Number of Phase Shifters: Our first key result

implies that, given a relaxed solution , we

can always recover a branch flow solution

of the convexified network. Moreover it suffices to use phase

shifters in branches only outside a spanning tree. This method

requires the smallest number of phase shifters.

Given any -dimensional vector , let denote its pro-

jection onto by taking modulo componentwise.

Theorem 1: Let be any spanning tree of . Consider a

relaxed solution and the corresponding defined by (6)

in terms of .

1) There exists a unique with

such that , i.e., is a branch flow

solution of the convexified network. Specifically

2) and hence .

Proof: For the first assertion, write and set

. Then (14) becomes

(15)

We now argue that there always exists a unique , with

, and , that solves (15)

for some .

The same argument as in the proof of [2, Theorem 2] shows

that a vector with and is a

solution of (15) if and only if

where is an integer vector.

Clearly this can always be satisfied by choosing

(16)

Note that given , is uniquely determined since

, but can be freely chosen to satisfy (16). Hence

we can choose the unique such that .

Hence we have shown that there always exists a unique

, with , and ,

that solves (15) for some . Moreover this unique

vector is given by the formulae in the theorem.

The second assertion follows from assertion 1.

2) Minimize Phase Angles: The choice of in The-

orem 1 has the advantage that it requires the minimum number

of phase shifters (only on links outside an arbitrary spanning

tree ). It might however require relatively large angles

at some links outside . On the other extreme, suppose we

have phase shifters on every link. Then one can choose

such that the phase shifter angles are minimized.

Specifically we are interested in a solution of (14)

that minimizes where denotes the Euclidean norm

of after taking mod componentwise. Hence we are inter-

ested in solving the following problem: given

(17)

(18)

where are integer vectors.

Theorem 2: The problem (17), (18) of minimum phase angles

is NP-hard.
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Fig. 3. Each lattice point corresponds to for a . The constrained
optimization (19) is to find a lattice point that is closest to the range space

of . The shaded region around the origin is and
contains a point for exactly one . Our approximate
solution corresponds to solving (20) for this fixed .

Proof: Clearly the problem (17), (18) is equivalent to the

following unconstrained minimization [eliminate from (17),

(18)]:

(19)

It thus solves for a lattice point that is closest to the

range space of , as illustrated in Fig. 3.

Fix any . Consider and the inner

minimization in (19):

(20)

This is the standard linear least-squares estimation where rep-

resents an observed vector that is to be estimated by an vector

in the range space of in order to minimize the normed error

squared. The optimal solution is

(21)

(22)

Substituting (22) and (20) into (19), (19) becomes

(23)

where and is the

orthogonal complement of the range space of . But (23) is the

closest lattice vector problem and is known to be NP-hard [5].1

Remark 1: Since the objective function is strictly convex,

the phase angles at optimality will

lie in . Moreover, if an optimal solution exists, then

there is always an optimal solution with in : if

is optimal for (19) with , then by writing

for integer vectors , , the objective

function in (19) becomes

1We thank Babak Hassibi for pointing out (23) is the closest lattice vector
problem studied in the literature.

i.e., we can always choose so that lies

in and . Therefore, given an optimal

solution with , we can find another point

with that is also optimal.

Many algorithms have been proposed to solve the closest

lattice vector problem. See [6] for state-of-the-art algorithms.

Given , there is a unique such that is in

, as illustrated in the shaded area of Fig. 3. A simple

heuristic that provides an upper bound on (19) is to solve (20)

for this fixed . From (21)–(22), the heuristic solution is

This approximate solution is illustrated in Section V and seems

to be effective in reducing the phase shifter angles ( in all

our test cases).

B. Arbitrary Network of Phase Shifters

More generally, consider a network with phase shifters on an

arbitrary subset of links. Given a relaxed solution , under what

condition does there exists a such that the inverse projection

is a branch flow solution in ? If there is a spanning

tree such that all links outside have phase shifters, then

Theorem 1 says that such a always exists, with an appropriate

choice of phase shifter angles on non-tree links. Suppose no

such spanning tree exists, i.e., given any spanning tree , there

is a set of links that contain no phase shifters.

Let and denote the submatrix of and subvector of ,

respective, corresponding to these links. Then a necessary and

sufficient condition for angle recovery is: there exists a spanning

tree such that the associated and satisfy

(24)

This condition reduces to (8) if there are no phase shifters in

the network and is always satisfied if every

link outside any spanning tree has a phase shifter .

It requires that the angle differences implied by sum to zero

(mod ) around any loop that contains no phase shifter (c.f. [2,

Theorem 2(1) and Remark 4]). After such a is identified, the

above two methods can be used to compute the required phase

shifts.

C. Other Properties

We close this section by discussing two properties of . First,

the voltage angles are and the angle

recovery condition (8) becomes

(25)

which can always be satisfied by appropriate (nonunique)

choices of . A similar argument to the proof of Theorem

2(2) leads to the following interpretation of (25). For any link

, (14) says that the phase angle difference from node

to node is and consists of the voltage angle difference

and the phase shifter angle . Fix



FARIVAR AND LOW: BRANCH FLOWMODEL: RELAXATIONS AND CONVEXIFICATION (PART II) 2569

any link not in tree . The left-hand side

of (25) represents the sum of the voltage

angle differences from node to node along the unique path

in , not including the phase shifter angles along the path.

This must be equal to the voltage angle difference

across (the non-tree) link , not including the phase shifter

angle across . Therefore (25) has the same interpretation

as before that the voltage angle differences sum to zero (mod

) around any cycle, though, with phase shifters, the voltage

angle differences are now instead of . This in

particular leads to a relationship between any two solutions

and of (14).

In particular, let be the solution in Theorem 1 where

, and any other solution. Then applying (25) to

both and leads to a relation between them on every basis

cycle. Specifically, let be a link not in the spanning tree

, let be the unique path in from node 0 to any

node . Then for each link in that is not in , we have

(equalities to be interpreted as mod )

Second, Theorem 1 implies that given any relaxed solution ,

there exists a such that its inverse projection

is a branch flow solution, i.e., satisfies (9)–(11). We now

give an alternative direct construction of such a solution

from any given branch flow solution and phase shifter setting

that may have nonzero angles on some links in . It exhibits

how the effect of phase shifters in a tree is equivalent to changes

in voltage angles.

Fix any spanning tree . Given any , partition

with respect to . Define by

or . Then define the mapping by

(26)

and

if

if
(27)

i.e., is nonzero only on non-tree links. It can be verified that

where is the unique path in

tree from node to node . Note that ,

and . Hence if is a relaxed branch flow solution, so

is . Moreover, the effect of phase shifters in is equivalent

to adding to the phases of and .

Theorem 3: Fix any tree . If is a solution of (9)–(11),

so is defined in (26) and (27).

Proof2: Since , and ,

satisfies (10) and (11). For any link in tree , (26)

2A less direct proof is to observe that (25) and imply

which means satisfies (14).

and (27) imply

where the second equality follows from . For any

link not in , (26) and (27) imply

But since satisfies (9). Therefore

, i.e., satisfies (9) on every link.

IV. OPF IN CONVEXIFIED NETWORK

Theorem 1 suggests using phase shifters to convexify a mesh

network so that any solution of OPF-ar can be mapped into an

optimal solution of OPF of the convexified network. Convexifi-

cation thus modifies an NP-hard problem into a simple problem

without loss in optimality; moreover this requires an one-time

deployment cost for subsequent operational simplicity, as we

now show.

We will compare four OPF problems: the original OPF de-

fined in [2]:

OPF:

the relaxed OPF-ar defined in [2]:

OPF-ar:

the following problem where there is a phase shifter on every

line ):

OPF-ps:

and the problem where, given any spanning tree , there are

phase shifters only outside :

OPF-ps(T):

Let the optimal values of OPF, OPF-ar, OPF-ps, and OPF-ps(T)

be , , , and , respectively.

Theorem 1 implies that for any spanning

tree . Hence we have
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TABLE I
LOSS MINIMIZATION. MIN LOSSWITHOUT PHASE SHIFTERS (PS) WAS COMPUTED USING SDP RELAXATION OF OPF; MIN LOSSWITH PHASE SHIFTERS WAS

COMPUTED USING SOCP RELAXATIONS OPF-CR OF OPF-AR. THE “(%)” INDICATES THE NUMBER OF PS AS A PERCENTAGE OF #LINKS

TABLE II
LOADABILITYMAXIMIZATION. MAX LOADABILITYWITHOUT PHASE SHIFTERS (PS) WAS COMPUTED USING SDP RELAXATION OF OPF; MAX LOADABILITYWITH
PHASE SHIFTERS WAS COMPUTED USING SOCP RELAXATIONS OPF-CR OF OPF-AR. THE “(%)” INDICATES THE NUMBER OF PS AS A PERCENTAGE OF #LINKS

Corollary 4: For any spanning tree ,

, with equality if there is a solution of OPF-ar that

satisfies (8).

Corollary 4 has several important implications:

1) Theorem 1 in [2] implies that we can solve OPF-ar effi-

ciently through conic relaxation to obtain a relaxed solu-

tion . An optimal solution of OPFmay or may not

be recoverable from it. If satisfies the angle recovery

condition (8) with respect to , then Theorem 2 in [2]

guarantees a unique such that the inverse

projection is indeed optimal for OPF.

2) In this case, Corollary 4 implies that adding any phase

shifters to the network cannot further reduce the cost since

.

3) If (8) is not satisfied, then and there is no

inverse projection that can recover an optimal solution of

OPF from . In this case, . Theorem

1 implies that if we allow phase shifters, we can always

attain with the relaxed solution , with

potentially strict improvement over the network without

phase shifters (when ).

4) Moreover, Corollary 4 implies that such benefit can be

achieved with phase shifters only in branches outside an

arbitrary spanning tree .

Remark 2: The choice of the spanning tree does not af-

fect the conclusion of the theorem. Different choices of cor-

respond to different choices of linearly independent rows of

and the resulting decomposition of and into and .

Therefore determines the phase angles and according to

the formulae in the theorem. Since the objective of

OPF is independent of the phase angles , for the same relaxed

solution , OPF-ps achieves the same objective value regardless

of the choice of .

V. SIMULATIONS

For radial networks, results in Part I (Theorem 4) guaran-

tees that both the angle relaxation and the conic relaxation are

exact. For mesh networks, the angle relaxation may be inexact

and phase shifters may be needed to implement a solution of

the conic relaxation. We now explore through numerical exper-

iments the following questions:

� Howmany phase shifters are typically needed to convexify

a mesh network?

� What are typical phase shifter angles to implement an op-

timal solution for the convexified network?

Test Cases: We explore these questions using the IEEE

benchmark systems with 14, 30, 57, 118, and 300 buses, as well

as a 39-bus model of a New England power system and two

models of a Polish power system with 2383 and 2737 buses.

The data for all the test cases were extracted from the library of

built in models of the MATPOWER toolbox [7] in Matlab. The

test cases involve constraints on bus voltages as well as limits

on the real and reactive power generation at every generator

bus. The New England and the Polish power systems also

involve MVA limits on branch power flows. All these systems

are mesh networks, but very sparse.

Objectives: We solve the test cases for two scenarios:

� Loss minimization. In this scenario, the objective is to min-

imize the total active power loss of the circuit given con-

stant load values, which is equivalent to minimizing the
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total active power generation. The results are shown in

Table I.

� Loadability maximization. In this scenario, the objective is

to determine the maximum possible load increase in the

system while satisfying the generation, voltage and line

constraints. We have assumed all real and reactive loads

grow uniformly, i.e., by a constant multiplicative factor

called the max loadability in Table II.

Solution Methods: We use the “SEDUMI” solver in Matlab

[8]. We first solved the SOCP relaxation OPF-cr for a solution

of OPF-ar. In all test cases, equality was attained at opti-

mality for the second-order cone constraint, and hence OPF-cr

was exact, as [2, Theorem 1]would suggest. Recall however that

the load values were constants in all the test cases. Even though

this violated our condition that there are no upper bounds on the

loads OPF-cr turned out to be exact with respect to OPF-ar in all

cases. This confirms that the no-upper-bound condition is suffi-

cient but not necessary for the conic relaxation to be exact.

Using the solution of OPF-ar, we checked if the angle

recovery condition (8) was satisfied. In all test cases, the angle

recovery condition failed and hence no was feasible

for OPF without phase shifters. We computed the phase shifter

angles using both methods explained in Section III-A and the

corresponding unique that was an optimal solution

of OPF for the convexified network. For the first method that

minimizes the number of required phase shifters, we have used

a minimum spanning tree of the network where the weights on

the lines are their reactance values. For the second method, we

solve an approximation to the angle minimization that optimizes

over for the fixed that shifts to .

InTables I and II,we report thenumber ofphase shifters

potentially required, the number of active phase shifters (i.e.,

those with a phase angles greater than 0.1 ), and the range of the

phaseanglesatoptimalityusingbothmethods. InTable II,wealso

report thesimulation timeonanIntel1.8GHzCore i5CPU.

We report the optimal objective values of OPF with and

without phase shifters in Tables I and II. The optimal values

of OPF without phase shifters were obtained by implementing

the SDP formulation and relaxation proposed in [9] for solving

OPF. In all test cases, the solution matrix was of rank one

and hence the SDP relaxation was exact. Therefore the values

reported here are indeed optimal for OPF.

The SDP relaxation requires the addition of small resistances

to every link that has a zero resistance in the original

model, as suggested in [10]. This addition is, on the other hand,

not required for the SOCP relaxation: OPF-cr is tight with re-

spect to OPF-ar with or without this addition. For comparison,

we report the results where the same resistances are added for

both the SDP and SOCP relaxations.

Summary: From Tables I and II:

1) Across all test cases, the convexified networks have higher

performance (lower minimum loss and higher maximum

loadability) than the original networks. More important

than the modest performance improvement is design for

simplicity: it guarantees an efficient solution for OPF.

2) The networks are (mesh but) very sparse, with the ratios

of the number of lines to the number of buses

varying from 1.2 to 1.6 (Table I). The numbers of

phase shifters potentially required on every link outside

a spanning tree for convexification vary from 17% of the

numbers of links to 37%.

3) The numbers of active phase shifters in the test cases vary

from 7% of the numbers of links to 25% for loss min-

imization, and 11% to 34% for loadability maximization.

The phase angles required at optimality is nomore than 20

in magnitude with the minimum number of phase shifters.

With the maximum number of phase shifters, the range of

the phase angles is much smaller (less than 7 ).

4) The simulation times range from a few seconds to minutes.

This is much faster than SDP relaxation. Furthermore they

appear linear in network size.

VI. CONCLUSION

We have presented a branch flow model and demonstrated

how it can be used for the analysis and optimization of mesh

as well as radial networks. Our results confirm that radial net-

works are computationally much simpler than mesh networks.

For mesh networks, we have proposed a simple way to con-

vexify them using phase shifters that will render them compu-

tationally as simple as radial networks for power flow solution

and optimization. The addition of phase shifters thus convert a

nonconvex problem into a different, simpler problem.

We have proposed a solution strategy for OPF that consists

of two steps:

1) Compute a relaxed solution of OPF-ar by solving its conic

relaxation OPF-cr.

2) Recover from a relaxed solution an optimal solution of the

original OPF using an angle recovery algorithm.

We have proved that, for radial networks, both steps are al-

ways exact, provided there are no upper bounds on loads, so

this strategy guarantees a globally optimal solution. For mesh

networks the angle recovery condition may not hold but can be

used to check if a given relaxed solution is globally optimal.

Since practical power networks are very sparse, the number of

required phase shifters may be relatively small. Moreover, their

placement depends only on network topology, but not on power

flows, generations, loads, or operating constraints. Therefore an

one-time deployment cost is required to achieve the subsequent

simplicity in network and market operations.
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