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1. Introduction. In previous papers [2] and [3](2), a multiplicity for the

local solutions of an abstract functional equation was defined and studied.
The theory developed was used to obtain existence theorems for integral
equations and elliptic differential equations. The purpose of this paper is
to extend the multiplicity theory and apply the new results to obtain more
existence theorems for integral and differential equations.

We study the equation in a Banach space H,

(1.1) (7 + C+P)x = y

where x, yCzZ, I is the identity transformation, C is linear and completely
continuous, and T is a higher order transformation such that P(0)=0.
(Transformation T is not, in general, completely continuous.) The problem
is to investigate the solutions x near 0 of (1.1) for given y sufficiently close to
0. In §2, we recall the definition of multiplicity(3) and show that the multi-
plicity of the solution x = 0 of (1.1) with y = 0 is defined if and only if x = 0
is an isolated solution of (1.1) with y = 0 (Theorem 2.1). We also show
(Theorem 2.3) that if 7+C+Pisa 1-1 mapping, the multiplicity is +1 or — 1.

We apply Theorem 2.3 in §4 to obtain an existence theorem for a certain
class of integral equations and in §5 to obtain a new proof of a theorem of
Schauder [8, Satz IV] for elliptic differential equations by showing that the
integral and differential equations are special cases of (1.1).

The new proof of Schauder's theorem uses simpler topological considera-
tions than those used by Schauder. Also this proof fits Schauder's theorem
into a wider picture of the elliptic differential equation. For by using the
multiplicity theory, we are able to treat the case in which there are branch-
ings of the solutions of the differential equation. The multiplicity is defined
in terms of topological index and hence gives no direct information about
the number of distinct solutions of (1.1) for given y. However if the trans-
formation T has a differentia] and if the multiplicity m is different from zero,
then in each neighborhood of y = 0, there is an infinite set Q such that for each
yG(?, equation (1.1) has at least \m\ distinct solutions x near 0 (Theorem
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3.1). Thus if \m\ >1, there are actual "branchings" of the solutions of (1.1).
This is proved by using a theorem due to A. Sard [7J.

In §§4 and 5, it is shown that certain integral equations and the elliptic
differential equations studied by Schauder in [8] and further studied in [3]
are examples of equation (1.1). Hence Theorem 3.1 shows that for such
equations, there are "branchings" of the solutions.

2. The multiplicity. Let ï be a Banach space and 0 its zero. We consider
the equation

(2.1) (7 4-C + 7> = y
where x, y£X, 7 is the identity transformation, C is linear and completely
continuous, and P is a continuous transformation of ï into itself which
satisfies the following conditions:

(Pi)  7X0) =0.
(P2) There exist a neighborhood^) TV of 0 and a positive constant B such

that u, j/GTV implies

||T(«)-r«|| si BIN + IM1HI1« - »II]-
Clearly, x = 0 is a solution of (2.1) when y = 0. We define a multiplicity for

this solution. If (7+C) is nonsingular, i.e., if (7+C)z = 0 implies z = 0, then
the inverse iI+C)~l exists according to the Riesz theory of completely con-
tinuous transformations [6, Satz 7]. Because of conditions (Pi) and (P2),
the Hildebrandt-Graves implicit function theorem [4, pp. 134-135] can be
used to prove that for each y sufficiently close to 0, equation (2.1) has a unique
local solution x. More precisely, there exist neighborhoods Niy) and Nix)
such that for each yoGTV(y), there is a unique x£7V(x) satisfying the equa-
tion

(7 + C + T)x = yo.

(See [2] for the proof.) In this case, we say that the multiplicity of the solu-
tion x = 0 of (2.1) with y = 0 is one.

Now suppose that (7+C) is singular, i.e., that (7+C)z = 0 for some z^0.
In order to define the multiplicity, we make use of some facts from the Riesz
theory [ó]. There is an integer m (the Riesz index of (7+C)) and a direct sum
decomposition

such that ïm is the finite-dimensional null space of (7+C)m and (7+ C)/Im is
a 1-1 transformation of the complete subspace 3£m= iI+C)mx onto itself.
Define the transformation R as follows: select a basis for x~m and let A be
the corresponding matrix representation of (7+C)/ïm; R/Hm is the matrix

(4) Unless otherwise noted, all neighborhoods are spherical with center 0.
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1954] SOLUTIONS OF EQUATIONS IN BANACH SPACE 209

which transforms A into its Hermite canonical form [5, pp. 35-37] and
R/%m = [(7+C)/ïm]_1. Transformation P has an inverse and hence is a
homeomorphism. It is easy to show that for xGï,

P(7 + C)x = x - Ei{x),

where Pi is a projection of ï onto 3t*i, the null space of (7+C). Multiplying
(2.1) by R, we obtain:

(2.2) x1 + PP(x1+ x1) = R{y),

where Xi = Px(x) and x' = x —Xi. Now multiply (2.2) by Pi and Ei = I — Ei
respectively:

(2.3) EiRT{xi + x1) - EiR{y) = 0,
(2.4) x1 + E1RT{xi + x1) - E1R{y) = 0.

Since P has an inverse, then for given y, the study of the solutions x of (2.1)
is equivalent to the study of the simultaneous solutions xx and x1 of (2.3)
and (2.4).

Because of conditions (Pi) and (P2) on T, the Hildebrandt-Graves theorem
may be used to solve (2.4) uniquely for x1 in terms of Xi and y if x1, xu and y
are sufficiently small. That is, there exist neighborhoods U{y), U{xi), and
U{x1) in the spaces X, &, and ï1 = P1(ï) and a continuous function F{xi, y)
such that if (xi, y)E [U{xi)]x[U(y)], then

(2.5) x1=F{xi,y)

is the unique solution in U{x1) of (2.4). Substituting in (2.3), we obtain:

(2.6) EiRT[x, + F{xi, y)] - EiR{y) = 0.

Thus solving (2.1) for x when given yG.U{y) is equivalent to solving (2.6)
for Xi.

If y = 0, equation (2.6) has the solution Xi = 0. The topological index
[1, p. 470] at 0 of the map PiPP[xi + P(xi, 0)] is a measure of the multi-
plicity of this solution. This leads to the following definition.

Definition 2.1. If (7+C) is nonsingular, the multiplicity of the solution
x = 0 of (2.1) with y = 0 is one. If (7+C) is singular, the multiplicity is the
topological index at 0 of the map

(2.7) G{xi) = EiRT [xi + F{xh 0) ].

(Hereafter the term multiplicity will mean the multiplicity of the solution
x = 0 of (2.1) with y = 0.)

Theorem 2.1. The multiplicity is defined if and only if x = 0 is an isolated
solution of (2.1) with y = 0, i.e., if and only if there exists a neighborhood N0 in
ï such that if xÇzNo, then (7+C+P)x = 0 implies x = 0.
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Proof. The derivation of (2.6) shows that x = 0 is an isolated solution of
(2.1) with y = 0 if and only if xi = 0 is an isolated solution of (2.6) with y = 0,
i.e., an isolated solution of the equation: G(xi)=0. But this is the necessary
and sufficient condition that the topological index at 0 of G(x¡) be defined.

Theorem 2.2. If the multiplicity is different from zero, there exist neighbor-
hoods F(x), F(y) such that for each yÇiViy), equation (2.1) has at least one
solution x in F(x).

Proof. Follows from the fundamental properties of the topological index
[l, Deformationssatz, p. 424 and Satz 1, p. 467].

Remark. If the topological index at 0 of C7(xi) is not defined, i.e., if there
are points Xi arbitrarily close to 0 for which G(xi) =0, equation (2.6) may or
may not have solutions for given y. If for some y, the topological degree at 0 of
the map

EiRT[xi + Fixi, y)} - EaR{y)

relative to a neighborhood S(5) is not defined, (2.6) has at least one solution
Xi on the boundary of S. If the topological degree is defined and different from
zero, (2.6) has a solution in S. If the degree is zero, (2.6) may or may not have
a solution in S.

Theorem 2.3. If I+C + T is 1-1 in some neighborhood TVi, the multiplicity
is +1 or — 1.

Proof. It suffices to prove that G(xi) is a homeomorphism in some neigh-
borhood. The theorem then follows from [l, Satz VII, p. 475]. Choose the
P(xi), Uix1), and P(y) used in the derivation of (2.6) so that

[Uixi)] ® [Uix1)] CTVi.

(The Hildebrandt-Graves theorem permits choice of arbitrarily small neigh-
borhoods.) Let F be a neighborhood in xi such that P_1[F]CP(y). Since G
is continuous, there is a neighborhood IF in & such that G(IF)CF. Now
G(xi) is 1-1 on IF. For suppose there exist Xn, x^GJF, Xn^Xit, and

(2.8) Gixu) = G(x12) = z. G F.

Since VQR[Uiy)], there exists yoGUiy) such that PiP(y0) =zi and P»P(y0)
= 0. Hence (2.8) may be written

EiRT[xn + Fixu, E*Riy0))] - PiP(y0) = 0

and

P!P7[xi2 +F(xi2, PxP(yo))] - PiP(yo) = 0.

(6) When we speak of the topological degree of a mapping / relative to a set M, we mean
the topological degree of the mapping f/M.
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Then writing xî = P(xn, E1R{y0)) and x2 = P(xi2, P1P(y0)), we have

(7 + C + T){xu + xi) = y0

and

(7 + C + T){xi2 + x2) = y0.

This contradicts the hypothesis. So G is 1-1, continuous and hence a homeo-
morphism on IF [l, Satz III, p. 95].

Corollary 2.1. (Invariance of Domain). Let M be a 1-1 map of an open
set UCÏ into ï. Suppose that for each xoGU, there is a neighborhood N{xo) of Xo
and transformations Co, To so that for xGAr(xo),

M{x) = M{xo) + 7(x — Xo) + Co(x — x0) + Po(x — Xo)

where I is the identity transformation, C0 is linear and completely continuous,
and To is a map of the open set

No — [y | y — x — Xo where x G iV(xo)]

into %' with the properties:
(1) Po(0)=0.
(2) There is a positive constant Bo such that u, vÇ^No implies

\\T{u) - T{v)\\ ^ Bo[\\u\\ + ||v||][||« - »|| ].

Then Mill) is an open set in £.

Remark. The statement of Corollary 2.1 (and Theorems 4.2 and 5.2 which
are applications in §§4 and 5 of Theorem 2.3) does not involve the notion
of multiplicity at all.

3. Branchings of the solutions. We consider the question: if the multi-
plicity is known, what can be said about the number of distinct solutions of
equation (2.1)? If the multiplicity is zero, little can be said beyond the state-
ment that there is no neighborhood U{y) for each point of which (2.1) has a
unique solution. (For if such a U{y) existed, the multiplicity would be ± 1
by Theorem 2.3.) For a given y, equation (2.1) may have no solutions, a
unique solution, or more than one solution.

But if the multiplicity m is different from zero, (2.1) has at least one solu-
tion for each sufficiently small y by Theorem 2.2. In some cases, (2.1) has at
least \m\ distinct solutions. To prove this, we put the following additional
hypothesis on T.

(P7K6) At each point x in some neighborhood of 0, transformation T has
a differential T-^Ax) which satisfies a Lipschitz condition in x. That is, there

(6) Conditions (P3), (P(), (Ps), and (P6), which will not be discussed here, are conditions used
in computing the multiplicity. See [3, pp. 110-111 ].
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is a neighborhood TV<¡ such that for each x£TVd there is a bounded linear
transformation Lx and a transformation Qx both taking X into H and satisfy-
ing the following conditions:

(di) For each Ax£X, P(x+Ax)-P(x) = PI(Ax)-f-(?.(Ax).
(d2) There is a positive constant K such that u, í>GTV<¡ implies

||¿_-£,|| = K\\u- v\\.

(di) IIm4a_oo-(A*)/||A*||=0.
To simplify the statement of the theorem, we make the following defini-

tion.
Definition 3.1. Let H^Hi®^ where Ji^H1 are neighborhoods in &, ï1

respectively. Suppose that corresponding to each point xjGT^1, there is a set
EvQHi of «-dimensional measure zero. (The n is the dimension of & regarded
as a real Euclidean space.) A set A CN is said to contain a good many of the
points of ?i ii

AD \J [xl® iHi- E,)].
V

If h is a homeomorphism of X onto itself, hiA) is said to contain a good many
of the points of the open set Ä(7v0-

Theorem 3.1. If the multiplicity m is different from zero, there exist neigh-
borhoods J^(x) and ?iiy) such that for a good many of the points y(EH(y), the
equation

(7 + C + T)x = y

has at least \m\ distinct solutions in 7S[(x).

Proof. In order to prove this theorem, we make use of a theorem due to
A. Sard [7, Theorem 4.1]. First two definitions.

Definition 3.2. Let

j : (Xi, " * • , xn) ■ * \Xi, , xn)

be a map of a region i\ of a real Euclidean w-space R" into P". If / can be
described by equations

fiixi, • • ■ , xn) = Xi ii = 1, • • • , n)

such that at each point of i\ the derivatives dfi/dx,- {i, j=l, ■ ■ ■ , n) exist
and are continuous, then J is said to be a differentiable map in iR..

Definition 3.3. Let J be a differentiable map of region %<ZRn into P".
A critical value of J is the image under 7 of a point at which the Jacobian of 7
is zero, i.e., a critical value is the image of a critical point.

The special case of Sard's theorem that we use is this:
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Lemma 3.1. Let J be a differentiable map of a region £PvCPn into R". Then
the set of critical values of J has n-dimensional measure zero.

We use Lemma 3.1 to prove the following lemma.

Lemma 3.2. Let J be a continuous map defined on the closure Cl (T\) of
region %_(ZRn and differentiable in 5\. Suppose the topological degree of J at
point po is d^O. Then there is a neighborhood U of p0 and a set E of n-dimen-
sional measure zero, E(ZU, such that pÇzU — E implies that J~x{p) is a finite
set consisting of at least \ d \ points.

Proof. By the Deformationssatz [l, p. 424], there is a neighborhood U of
po such that the topological degree of J is d at each point p^U. By Lemma
3.1, the set P of points in U which are critical values of J has «-dimensional
measure zero. We show that each point pG U—E is the image under J of at
least \d\ distinct points in <PV

First pG7(T\) because the topological degree at p is aVO. The set J~x{p)
must be a set of isolated points, hence a finite set. For if there is a point go
which is a limit point of J_1{p), then q0Ç.J~1{p) and so the Jacobian of J at
g0 must be different from zero. But then J would be a 1-1 mapping in some
neighborhood of q0 which contradicts the fact that a0 is a limit point of
J~1{p). Since the Jacobian of J is nonzero on J~*{p), the topological index
of J at each gG7_1 is +1 or — 1. But the topological degree of J at p is the
sum of the indices of J at the points of J~1{p) [l, Satz II, p. 472]; so there
must be at least \d\ distinct counterimages of p.

Now we are ready to prove Theorem 3.1. We choose the U{xi), U{x1), and
U{y) used in the derivation of (2.6) so that U{y) and [U{xi)]® [¿/(x1)] are
contained in Nr^Ndr\N0 where N and Nd are the neighborhoods described
in (P2) and (P7) and No is the isolation neighborhood described in Theorem
2.1. By the same argument as for the proof of Theorem 2.2, there is a neigh-
borhood V(xi) in & and a neighborhood V(y) in 26 such that for each
y€z^{y), the topological degree at 0 and relative to V(xi) of the map

(3.1) EiRT [xi + F{xi, y) ] - EiR{y)

is m.
First we prove the theorem using the assumption that for each yE:"^{y),

the map (3.1) is a differentiable map in V(xi). Then we complete the actual
proof of the theorem by proving this assumption.

We return to (2.5), the Hildebrandt-Graves solution x1 of equation (2.4).
Clearly, x1 is a function of Xi and ElR{y), i.e.,

x1 = P(xi, £lP(y)) = P(xi, y).

Let V1 and TA be neighborhoods in ï1 and ïi respectively such that

R-^V1® Vi] CV(y).
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Then the topological degree at zero and relative to V(xi) of the map

EiRT[xi + Hixi, w1)] - ui

is m for all u1 + Ui(E.V1®Vi. From this, it follows that the degree at arbitrary
UiEVi oí EiRT[xi + P(xi, u1)] is m for all u'EV1. Take a fixed «¿6171. By
Lemma 3.2, there is a set PCIA, E of w-dimensional measure zero, such that
pÇEiVi — E implies that the equation

PiPr[xi + P(xi, u\)} = p

has at least \m\ distinct solutions in V(xi). Since P is a homeomorphism,
then p-^l^elA] is the desired open set Hiy).

Now we show that for each fixed yCz^iy), the map (3.1) is a differentiable
map in V(xi). The constant term PiP(y) can be disregarded. It is sufficient
to consider the case when & is one-dimensional. (The proof in the general
case is almost the same except that the notation is more complicated.) We
write the elements of 3ci as a f where f is a fixed nonzero vector in & such that
||f||_-l. Then the problem is to prove that the real-valued function
PiPP[af+P(af, y)] has a continuous derivative with respect to a.

Lemma 3.3. Suppose there is a neighborhood W of a = 0 such that for aÇzW

« ,ï H      F[ja + Aay, y] - F[at, y]
(3.2) hm -■—■- = D(a, y)

Aa-K) Aa

exists and is continuous in a. Then the derivative

--{EiRT[a¡;+Fiat,y)\\
da

exists and is continuous at each point aÇfW.

Proof. By condition (P7), we have:

EiRT[ja + Aa)r + F((a + Aa)t, y)] - PiPr[«r + Fjat, y)j
Aa

EiRLaS+FUt,y)[W+Fiia + Aa)t, y) - Fiat, y)]

+

Aa

EiRQa¡+F{at,y) [Aat + FHa + Aa)t, y) - Fiat, y) ]

T7.T?T   .. _.   .     .      J- _L

Aa

FHa + Aa)f, y) - Fiat, y)"

+
Aa
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From {d3) of (P7) and the hypothesis of the lemma, it follows that the limit,
as Aa approaches zero, of the second term is zero. Hence

— {EiRT[oÇ +F{aÇ, y)]} = EiRLat+FM,v) [f + 0{a, y)].
da

To complete the proof of Theorem 3.1, it is sufficient to show that the
the limit (3.2) exists and is continuous in a. This result is a special case of a
much more general theorem due to Hildebrandt and Graves [4, Theorem 4].
We describe briefly a proof of the statement needed here partly because for
this special case the proof can be made quite short but mainly so that we
may indicate precisely the limitations which must be put on the neigh-
borhoods U{xi), U{x1), and U{y) (used in the derivation of (2.6)).

The function P(af, y) is the solution for x1 of the equation

(2.4) x1 + P»Pr(af + x1) - ElR{y) = 0.

It may be obtained by successive approximations as follows: put

x(o) = 0,        z = EiR{y),

x(m) = x(m)(af, y) = z — E1RT{aÇ + x(m_i)) {m = 1, 2, • • ■ )•

Then according to the Hildebrandt-Graves implicit function theorem, {x(m)}
is a Cauchy sequence in 261 which converges to the solution of (2.4). Let a
be a fixed real number such that l/4<a<l. We choose U{xi), U{x1), and
U{y) small enough so that if ¿Vi(xi) is a fixed neighborhood in Hi such that
Cl (i7i(xi))C U{xi), the following restrictions are satisfied(7):

(Ri) max, ||7i1PiZ,ai-(|')|| <ck. (Condition {Pi) implies that P0 = 0.)
(R2) For each fixed yE U{y) and for all m,

max [P||£1P||||ar+ «eoOtf, y) \\ ] < — •
a 4

(R3) For each fixed yE. U{y) and for all m,

max (||x(m+i)(af, y) - *<m)(af, y)||)1/2
a

< — max (||x(m)(af, y) - x(m_i)(af, y)||)1/2.
4        a

The maxima are taken over a such that afGCl (t7i(xi)). Equation {3.3) and
condition (P2) show that for restrictions (R2) and (R3) to be satisfied, it is
sufficient that for all m, afGCl {Ui{xi)), and yEU{y),

II*(•»)(<#, y)|| < c
(7) From a formal viewpoint, it would be better to introduce these restrictions on t7(xi),

U(xl), and U(y) at the beginning of the proof of Theorem 3.1. For clarity, we state them here.
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where c is a positive constant of appropriate size. The proof of the Hilde-
brandt-Graves theorem shows that this inequality can be satisfied by proper
choice of P(xi), Uix1), and Uiy). Also computation using equation (3.3) and
condition (P2) shows directly that the inequality can be satisfied. From now
on, we work entirely with the newly chosen 77(xi), Uix1), and Uiy). The
neighborhood V(xi) is contained in Pi(xx) and V(y) is the neighborhood
that corresponds to this V(xi).

Using the same type of computation that was used in the proof of
Lemma 3.3, it can be shown by induction that for each m and for all a such
that afGCl (77i(xi)),

d
da

(x(m)Ha + Aa)f, y) - *(m)(af, y)\
X(.m)iai, y)  =   Inn   1-V

Ao-K)     ' A0

exist. This is done by proving that for all m,

d
da(3.4)

r    d     i
X(m)   =   —   E1RLa!:+x(m-l)     f + — #(m-l)     ■

Part (d2) of (P7) implies that for each m, dxim)/da is continuous in a. Let
I = [a |af (E Cl iUiixi))] and §9 be the Banach space of continuous functions
/ mapping 7 into ï1 and having as norm max«p7 ||/(a) . We denote this norm
by 11/11,

Lemma 3.4. The sequence {dx{m)iaÇ, y)/da} is a Cauchy sequence in g).

Proof. Applying part (d2) of (P7) and restriction (R2) to (3.4), we obtain

da
X(m+1)

1  /        Id II \ / || d II \
<— (1+      — *(m) )<a[l+      — X(„) ).

/      4 \        I 00 II j/ \        || aa        H//da II if \        [I da

By restriction (Ri), ||0'x(i)/a*a||r<Q;.   Hence by induction, we have for all m,

d
(3.5) da

x<.m)iaÇ, y) < X) «* < _C a" = M.
I q-l 5=1

Direct computation using part (d2) of (P7), restriction (R2), and (3.5) shows
that

! d
— X(m+1)-— X(m)
00 00

< %(m) X(m— 1)
da da

+ [||_?__||][__][! + M][||xCm) - x^ull,].

Since {x(m)j is a Cauchy sequence in §), then for all m greater than some mo,
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X(m)  —  X(m_i)||r)1/2 <
4[||£1P||][P][1 + M-]

Hence

X(m+l) X(m)
da da

< X(m) X(m—1)
da da + —-   (||*(m)   -   Xlm-uWr)112.

i      4

From this inequality and restriction (R3), it follows that

vrnd
¿J    \\— X(m)™=2L I! da da

X(m-1) +   (*<»>   -   *(«-!>    j)1"       <    »■

This completes the proof of Lemma 3.4.
Now let w{a) =limmj00 dx{n)/da. Then by standard methods, in particular

by using the notion of the Riemann integral of the functions/(a) G§D, it is
easy to show that for all a G 7,

p[(a + Aa)f, y] - F[aV, y]
lim

Aa—K) Aa
= w{a).

This completes the proof of Theorem 3.1.
4. Application to integral equations. We use Theorems 2.2, 2.3, and 3.1

to obtain existence theorems for the integral equation

(4.1) x{s) + f   K{s, t)F[x{t)]dt = y{s)
J a

where y{s) is a given real-valued continuous function on the closed interval
(a, b), K{s, t) is a given real-valued continuous function on the closed square
(a, b)X{a, b), and F{x) is a real-valued function having, for some positive e,
a continuous second derivative in the interval — e^x^e and such that P(0)
= 0. (This last assumption does not restrict the generality.) We show that
(4.1) is an example of the abstract equation (2.1) if 36 is the Banach space
S of continuous functions on the closed interval (a, b) with norm
maxas,Ès I x(s) |.

Using a Taylor's expansion, we may write (4.1) in the form

x{s) + f   K{s, t)Fx{0)x{t)dt
J a

+  f   K{s, t)[x{t)]2 f    [Fxx[rx{t)]\{l - r\drdt = y{s).
Ja Jo

The transformation
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f   Kis, t)FxiO)xit)dt
•7 a

acting on x(¿) is linear and completely continuous, and it is a straightforward
computation to show that

Tix) =   f   Kis, t){F[xit)] - xit)FxiO)}
J a

dt

satisfies conditions (Pi), (P2), and (P7) ; for we have

Tix + Ax) - Tix)

=   f   Kis, t) [Fix + Ax) - Fix) - AxFxi<S)]dl
•7 a

=  f   Kis, I) |ax[F,(x) - F,(0)] + (Ax)2 f    [Fxxix + rAx)][l - r]dr\ dt.

So

and

LxiAx) =  f   Kis, t)Ax[Fxix) -F.(0)]a/
•7 a

QxiAx) =   f   Kis, I) |(Ax)2 j    Fxxix + rAx)(l - r)0vl dt.

Hence we can apply the results of §2 to (4.1).
If

xis) +  f   Kis, t)FxiO)xit)dt
J a

is a nonsingular operator, then, by the Hildebrandt-Graves theorem, (4.1) has
a unique local solution xis) for each sufficiently small y is). From Theorems
2.2, 2.3, and 3.1, we obtain:

Theorem 4.1. If the multiplicity is different from zero, there exist eit e2>0
such that for each yis), ||y(s)|| <«i, equation (4.1) has at least one solution xis),
||x(i)|| <e2.

Theorem 4.2. Suppose there is an €1 >0 such that the operator

xis) + f   Kis, t)F[xit)]dt
•7 a
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is 1-1 on the set of functions x{s), \\x{s)\\ <ei. Then there exist e2, «3>0 such that
for each y{s), ||y(s)|| <«2, equation (4.1) has a solution x{s), ||x(s)|| <€3.

Theorem 4.3. If the multiplicity m is different from zero, there exist ti, e2>0
such that for a good many of the functions, y{s), ||y(s)|| <«i, equation (4.1) Aas
at least \m\ distinct solutions x{s), ||x(s)|| <e2.

5. Application to elliptic differential equations(8). We investigate the solu-
tions z(x, y) "neighboring" a given initial solution z0(x, y) of the differential
equation

(5.1) F{x, y, z, p, q, r, s, t) = ypo{x, y)

where p, q, r, s, t denote zx, z„, zxx, zxy, zyy respectively, F has a-Hölder con-
tinuous third derivatives in all its variables, and F is elliptic relative to z0,
i.e.,

[Ps]2-4[Pr][P(] <0

when z0 and its derivatives are substituted in Fs, Fr, Ft. The solution z0 is
defined on the closure K of an open disc K in the xy-plane and is in P„,3.
Let 4>o be the boundary value of Zo, i.e.,

</>o = Zo/P — K.

A solution "neighboring" z0 is a function Zi(x, y) whose boundary value <j>i is
close to c6o (in the topology of ea,i) and which satisfies the equation

P(x, y, z, p, q, r, s, t) = ^i(x, y)

where \pi is close to \[/o (in the topology of Pa,i).
In [3], this problem was reduced to that of investigating the solutions

(p, <j>) of an equation in Ea,iXea,3

[3.12] lip, 4>) + C{p, <p) + T{p, 4,) = fo 4),
where 7 is the identity and {ip, <p) is given. It was proved that C is linear
and completely continuous and that T satisfies conditions (Pi) and (P2).
Here using a much simpler method, we shall prove that T satisfies (Pi), (P2),
and (P7)(9). That done, we can apply the theorems of §§2 and 3 to [3.12].
We obtain then the following results for equation (5.1).

(8) We use the notation and terminology of [3]. Equations from [3] will be indicated by
their numbers as given in [3 ] with the numbers in brackets instead of parentheses.

(9) I am indebted to the referee for pointing out this method which is much clearer and
simpler than that used in [3]. This method shows that only a-Hölder continuous third deriva-
tives of F are needed to show that (P7) is satisfied. The referee also pointed out that no deriva-
tives higher than the second are needed in §4.
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If (7+C) is nonsingular (i.e., if the Jacobi equation associated with (5.1)
has only the zero solution [3, Lemma 3.2]), equation (5.1) has a unique local
solution. If (7+G) is singular, i.e. if the Jacobi equation has a nonzero solu-
tion, we apply Theorems 2.2, 2.3, and 3.1 to obtain:

Theorem 5.1. If the multiplicity is different from zero, there exist ei, e2, e3>0
such that if

hi - tfoiu.i < «i
and

\\<i>l  —   <í>o||cr,3   <   «2>

the equation

Fix, y, z, p, q, r, s, t) = xf/^x, y)

has at least one solution Zi(x, y) with boundary value <bi and satisfying the in-
equality :

||zi — Zo||«,3 < í3.

Theorem 5.2 (Schauder's Theorem). If Fix, y, z, p, q, r, s, t) is a 1-1
mapping in some neighborhood of z0(x, y), there exist ei, e2, «3>0 such that if

11^1  —  ̂ û||a,l   <  «1

and

\\<t>l  —  #o||_,3   <  «2,

the equation

Fix, y, z, p, q, r, s, t) = \piix, y)

has a solution Zi(x, y) with boundary value <f>i and satisfying the inequality

||Z1  —  Zo|| a,3  <  «3.

Theorem 5.3. If the multiplicity m is different from zero, there exist eit e2,
e3>0 such that for a good many of the pairs tyi, 0i),

IllfW  —  ^o||a,l   <  «1

and

\\<I>1  —  <Êo||«,3   <  £2>

the equation
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F{x, y, z, p, q, r, s, t) = 4n{x, y)

has at least \ m \ distinct solutions Zi with boundary value <¡>i and satisfying the
inequality

||zi  —  Zo||a,3   <  «3-

It remains to show that T satisfies conditions (Pi), (P2), and (P7). The
transformation Tip, <p) was defined in [3, pp. 114-118] as

Tip, <t>) = {R™0>, <t>), 0) + (P<2) (p, 4>), 0)
where

P2(1)(p, 4>) + RmiP, <t>)

= P(x, y, z0 + w, po + Wx, ?o + wy, r0 + wxx, sa + wxy, t0 + wyy)

T,0 T^0 rfi— wFz — WxFj, — WyFq — p

where
0 0 0

p = p{x, y) = wxxFr + wxyFs + wyvFt

and the superscript zero means that the arguments of the functions are

x, y, Zo, Po, So, To, So, to.

Since wand its derivatives are linear functions of {p,4>) and F{x, y, z0, £ogo, r0,
so, io)=0, it is clear that P(0) =0, i.e., condition (Pi) is satisfied.

Now let (p, i>) and (p', </>') be two points in Pa,iXea,3. We indicate argu-
ments by superscripts in this way:

w = w{p, <t>),

w' = w{p', <t>'),

F = F{x, y, Zo + w, po + wx, q0 + wy, r0 + wxx, s0 + wxy, t0 + wyy),

F' - F{x, y, 20 + w , po + wx, g0 + wv, r0 + w'xx, j0 + wl¡„ ¿0 + w'yy),

FT = P[x, y, zo + w + t(w' — w), ^0+1^^ + r(w' — w)x,

qo + wy + t{w' — w)y, r0 + wxx + r{w' — w)xx,

SO   +    WXy   +    t(w'    —     W)^,    to   +    Wfl,,    +    r(îf'    —     W)yy\.

Then
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rFíp', 4>') + Rmip', <b') - R^ip, <¡>) - RmiP, <b)

= (P - F) - [iw' - w)Fz + iw' - w)xFv + iw' - w)yFq]

- [iw' - w)xxF°r + iw' - w)xyF°s + iw' - w)yvF°t]

= iw' - w)Fz + iw' — w)yFp + iw' - w)vFq + iw' — w)xxFr

+ iw' - w)xyFs + iw' — w)yyF¡

+  f    [iw' - w)2Fl + 2(w' - w)iw' - w)xF¡p H-1(1 - r)dr
°

- [iw' — w)Fz + iw' — w)xFp + iw' — w)yFQ]

- [iw' — w)xxFr + iw' - w)xyFs + iw' - w)yyFA

= iw' - w)iFz - F°.) + iw' - w)xiFp - F°)

+ iw' - w)viFq - F\) + iw' - w)xxiFr - F°r)

+ (w' - w)xyiFs - P°) + iw' - w)VyiFt - F°t)

+  f    [iw' - w)Y„ + 2iw' - w)iw' - w)xFTzp + ■ ■ ■ j(l - r)dr.
J o

Applying [3, Lemma 3.1 ] to this last expression shows that P satisfies condi-
tion (P7). The integral is the Çx(Ax) and the sum of the remaining terms is the
LxiAx). Applying the mean value theorem to Fz—F°z and other differences of
this form in (5.2) and again using [3, Lemma 3.1] shows that P satisfies
condition (P2). It is necessary to assume that F has a-Hölder continuous
third derivatives because norms in an Pa,i are considered.
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