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This paper for the first time investigates a family of plane-

symmetric Bricard linkages studying two generated toroids.

By means of their intersection, a set of special Bricard link-

ages with various branches of reconfiguration are designed.

An analysis of the intersection of these two toroids reveals the

presence of coincident conical singularities which lead to the

design of plane-symmetric linkages that evolve to spherical

4R linkages. By examining the tangents to the curves of in-

tersection at the conical singularities it is found that the link-

age can be reconfigured between the two possible branches

of spherical 4R motion without disassembling it and with-

out requiring the usual special configuration connecting the

branches.

The study of tangent intersections between concentric

singular toroids also reveals the presence of isolated points

in the intersection which suggests that some linkages sat-

isfying the Bricard plane-symmetry conditions are actually

structures with zero finite degrees of freedom but with higher

instantaneous mobility. This paper is the second part of a pa-

per submitted in parallel by the authors in which the method

is applied to the line-symmetric case.

1 Introduction

Among the reported overconstrained linkages, the

Bricard linkages (along with the famous Bennett 4R link-

age) are the most studied due to their very special geome-

try that allow the mobility of these 6R loops. A total of six

∗Address all correspondence to this author.

cases were discovered by Bricard [1, 2]: the line-symmetric

case, the plane-symmetric case, the trihedral case, the line-

symmetric octahedral case, the plane-symmetric octahedral

case and the doubly collapsible octahedral case. The geom-

etry of these loops was thoroughly studied [3] [4] [5] [2] in

order to explain the mobility of these linkages. However,

some other properties of the Bricard linkages are still being

studied, including optimization, application, combination of

loops in large structures and reconfigurability, which has not

been systematically analized and whose intuitive presence on

the linkages has not been revealed. This paper deals with

these issues.

A reconfigurable linkage [6] has a configuration space

that includes at least two space components that are con-

nected through singular configurations. Thus, the linkage

can work in different motion branches without being disas-

sembled [7]. If these connected components of the configu-

ration space are of different dimensions, then the linkage is

able to change its degrees of freedom or local mobility and

it is said to be a kinematotropic linkage [8, 9]. At the con-

straint singularity with change of joint functionality or link

annexation resulting in configuration space change, a differ-

ent kind of reconfigurable linkage emerges as the metamor-

phic linkages [10, 11, 12, 13]. Recent advances in reconfig-

urable linkages include: a closed chain with 14 states that

constitute 28 configurations [14], a reconfigurable platform

whose hybrid legs include a 4R diamond [15], a parallel ma-

nipulator with 15 motion branch [16], type synthesis of kine-

matotropic platforms [17], various reconfigurable kinematic

JMR-17-1188 López-Custodio 1



chains with mobility one [18], a family of single-loop recon-

figurable linkages with an infinity of motion branches [19].

Some advances in the study of reconfigurable linkages in-

clude: the analysis of the connections between components

of the configuration space by means of algebraic geometry

[20], the study of reconfigurability by means of reciprocity

of screws [21], the use of morphing systemization to analyze

ways of reconfiguration of linkages [22], the application of

higher order kinematic analysis to prove the local mobility

of kinematotropic linkages [23,24,25] and the application of

dual quaternions in the analysis of reconfigurability [26, 16].

In regard to Bricard linkages that lead to different mo-

tion branches, the following contributions have already been

presented: the analysis of reconfiguration of a plane- and

line-symmetric Bricard linkage by means of geometric con-

straints and screw-system variations [18], spatial triangle

formed joint and variable axis joint are used to obtain a line-

symmetric linkage that can behave as a Bennett linkage [27],

the analysis of a plane- and line-symmetric Bricard linkage

with different motion branches in order to avoid singulari-

ties [28] and a line-symmetric Bricard linkage evolved from

a metamorphic 8R linkage [29]. In these studies, a theory of

the reconfigurability of Bricard loops that can help the design

of these linkages has not been studied thoroughly. However,

the authors searched for a method that could be used for this

study and the method of generated surfaces appeared as a

very promising alternative.

The technique of generated surfaces, based on kine-

matic dyads joined by spherical pairs or any possible reduc-

tion [30, 31, 32], was formerly applied to prove the mobil-

ity of some overconstrained linkages [33], design of link-

ages with dwell motion [34], analysis of non-overconstrained

linkages [35], synthesis of parallel platforms [36] and soft-

ware graphics [37]. The method was recently applied to re-

configurable linkages [38, 19, 39], taking advantage of the

rich knowledge on tangent intersection of surfaces.

In this paper, the method is for the first time applied to

the branch reconfiguration of Bricard plane-symmetric link-

ages, following the previous paper in which the authors study

the line-symmetric case. The plane-symmetric case is char-

acterized by the following DH parameters [5]:

a6,1 = a1,2, a2,3 = a5,6, a3,4 = a4,5,

α1,2 +α6,1 = 2π, α2,3 +α5,6 = 2π, α3,4 +α4,5 = 2π,

d1 = d4 = 0, d2 =−d6, d3 =−d5. (1)

where the positive direction of the zi axes1 is given by the

screw direction shown in Fig. 1. In this case each member of

the linkage is symmetric to another member through a plane

π (Fig. 1). Therefore, axes S2 and S6 (S3 and S5) intersect in

a point lying on π and axes S1 and S4 also lie on π. Hence,

a line containing the points of intersection of pairs of axes

1In [5] Baker sets the positive direction in such a way that the parameters

di are always positive, obtaining DH parameters slightly different but equiv-

alent to the ones used in this paper, where the directions are simply reflected

by plane π in figure 1.

{S2,S6} and {S5,S3} lies on π and, therefore also intersects

S1 and S4. Such line is the central axis of the linear complex

[40,41,3,42] which the six axes belong to. The pitch of such

linear complex is zero since the central axis always intersects

the six axes.

Fig. 1. The general plane-symmetric case of Bricard linkage.

The plane-symmetric Bricard linkage is analyzed in this

paper by means of the intersection of two generated toroids,

building a complete theory of the reconfigurability of these

loops. The design is made by manipulating the construction

parameters of two concentric singular toroids. An interest-

ing result is the discovery of spherical 4R linkages evolved

from the plane-symmetric linkages that are always able to

reconfigure between their two branches without being dis-

assembled and without passing through the special config-

uration that connects the branches in common 4R linkages.

To the knowledge of the authors, this is the first time that a

linkage with such reconfiguration between disjoint spherical

4R branches is presented and studied. However, Bricard 6R

linkages that also work as spherical 4R linkages were first

presented in [43].

This paper is organized as follows: The toroids, its gen-

erators and its singular forms are revisited in Section 2. Then,

in Section 3, it is find out that some examples of Bricard

plane-symmetric linkages can be explained and designed as

the intersection of concentric singular toroids. This inter-

section is analyzed in Section 4. In Section 5 any possibil-

ity of tangent intersection is explored. In Section 5 the two

branches of spherical 4R motion are studied in order to figure

out how to reconfigure the linkage from Bricard branches to

spherical 4R branches. Finally, two examples are presented

in Section 7. This paper is a continuation of the paper sub-

mitted by the authors on the line-symmetric case, [44], some

theory, notation, and basic concepts used here are introduced

in the aforementioned.

2 Singular toroids generated by kinematic RR chains.

In the second section in the paper submitted by the au-

thors on the line-symmetric case, [44], a discussion on gen-

eral toroids generated by RR dyads was presented. Now, the

particular case in which the radius of the secondary and base

circles are the same, l = r, and there is no secondary offset,

JMR-17-1188 López-Custodio 2



s = 0, is discussed. Such a toroid, Tr,r,γ,0, can be generated

by the following parameterization:

σ(u,v) = r
(

(cosv+1)cosu− cosγsinvsinu,

cosγsinvcosu+(cosv+1)sinu, sinγsinv
)

∈ R
3

(2)

and Tl,r,γ,s = im(σ(T2)). In a similar way, the implicit form

φ ∈ R[x,y,z] is reduced to:

φ(x,y,z) =
(

x2 + y2 + z2 −2r2
)2 −4r2

(

r2 − z2

sin4 γ

)

(3)

and Tr,r,γ,s =
{

rE ∈ R
3 |φ(rE) = 0

}

. For this case, it is easy

to prove that:

∂σ

∂u

∣

∣

∣

∣

(u,v)=(u,π)

= 0 ⇒
(

∂σ

∂u
× ∂σ

∂v

)∣

∣

∣

∣

(u,v)=(u,π)

= 0, ∀u ∈ T,

Therefore it can be concluded that (u,π) ∈ T
2 is a conical

singularity of Tr,r,γ,0. Hence, we call Tr,r,γ,0 a singular toroid2.

In this case the singularity maps to the point σ(u,π) = 0=O.

Figure 2 shows Tr,r,γ,0 with the singularity coincident with

the origin. B, the intersection of the toroid and any plane

containing the Z axis, becomes an 8-shapped curve that is

symmetric with respect to the intersection of the XY plane

and the plane containing B. The self-crossing of B occurs

at O.

Fig. 2. An RR dyad generating a singular toroid (r = l,s = 0).

2Conical singularities also appear when γ = π/2 and r > l. This is a

singular right torus, two conical singularities appear symmetrically disposed

in the Z axis. This class of torus never appear in plane-symmetric linkages

and thus they are not considered in this paper.

3 The concentric singular toroids generated by the

plane-symmetric Bricard linkage.

In the plane-symmetric case of Bricard linkage any adja-

cent pair of revolute joints with skew axes generates a toroid.

For a general plane-symmetric linkage, like the one shown

in Fig. 1, let a2,3 = 0. Then the point of intersection of S2

and S3 describes a toroid with respect to the fixed link be-

tween axes S6 and S5, this is generated by joints with axes

S6 and S1. Furthermore, the same point describes another

toroid with respect to the fixed link, this time generated by

joints with axes S4 and S5. Since the same point describes

two toroids, such point is confined to move in the intersection

of these toroids.

From the restrictions for plane symmetry in Eq. (1) ,

observe that if a2,3 = 0 then a5,6 = 0. This implies that both

toroids are concentric, as shown in Fig. 3a. Furthermore,

since a6,1 = a1,2 and a3,4 = a4,5, then r = l for both toroids.

Finally, since d1 = d4 = 0 both toroids have secondary offset

s = 0. From these observations it can be concluded that both

generated toroids are singular, with the singularity coincid-

ing with the intersection of fixed axes S6 and S5. Summariz-

ing, in addition to the restrictions on the DH parameters of

the plane-symmetric linkage in Eq. (1), the following condi-

tions are required to analyze and design these linkages using

the intersection of two toroids:

• di = 0, i = 1, . . . ,6

• a2,3 = a5,6 = 0 (4)

Fig. 3b shows an example of plane-symmetric Bricard

linkage that generates two singular toroids. For the sake of

identifying the construction parameters of each toroid, the

joints have been renamed with respect to Fig. 1: SA1 = S6,

SA2 = S1, SA3 = S2, SB3 = S3, SB2 = S4 and SB1 = S5. In

such case, a singular toroid T i
ri,ri,γi,0

:= Tri,ri,γi,0(k̂i,O) is gen-

erated by the joints with axes Si1 and Si2 and is referred to

coordinate systems i, i = A,B. The point that describes the

intersection C := T A
rA,rA,γA,0

∩T B
rB,rB,γB,0

is the intersection of

axes SA3 and SB3 and is called E. The point where SA1 and

SB1 intersect is called O.

For each toroid T i
ri,ri,γi,0

:= {Ei(qi) |qi ∈ T
2}, i = A,B,

the joint variables vector is given by the variables of the pa-

rameterization in Eq. (2), so that qi = (ui,vi) ∈ T
2. Once

the link D joins axes SA3 and SB3, EA(qA) = EB(qB) = E(q),
where q := (uA, vA, qA3, qB3, vB, uB) ∈ V ⊂ T

6, where V is

the configuration space of the linkage whose elements have

to fulfill the closure equation of the loop. Observe that, due

to symmetry, qA3 and qB3 are in linear correspondence with

uA and uB, respectively. Hence, finding the intersection C

completely describes the behavior of the linkage. In fact,

finding a parameterization of C in terms of any of the four

variables of the toroids would be equivalent to solve the po-

sition analysis of the linkage.

C may be composed of several components such that

C =∪n
i=1Ci, where dim(Ci)≤ 2 and n∈Z

∗. Each component

of C is related to a component of the configuration space

V . When Ci is a curve C ⊂ C , dim(Vi) = 1, where Vi is

JMR-17-1188 López-Custodio 3



Fig. 3. The concentric singular toroids intersection: a) surfaces, b)

resultant Bricard plane-symmetric linkage.

the corresponding component of V , and the linkage has 1

D.O.F. when assembled in this mode, this leads to the typical

overconstrained behavior of the linkage. On the other hand,

if Ci is an isolated point and dim(Vi) = 0. In such component

of V , the linkage can be assembled as a structure.

An important phenomenon occurs when two conical sin-

gularities coincide. We call this coincidence the double sin-

gularity. The arrangement of singular toroids for plane-

symmetric linkages includes a double singularity since both

toroids are concentric. In the general method of generated

surfaces the two generators are connected by a spherical pair,

it was proved [38] that for such linkages when E is in the

double singularity the linkage has 2 D.O.F. since variables

uA and uB can take any value without restriction while vA

and vB remain constant. However, for the problem of plane-

symmetric Bricard linkages the spherical pair has been re-

duced to a pair of coincident revolute joints. When E reaches

the double singularity it coincides with O, therefore the axes

SA1, SB1, SA3 and SB3 are intersecting in the double singu-

larity while the joints with axes SA2 and SB2 remain idle. uA

and uB are now dependent one from another since the link-

age becomes a spherical 4R linkage. This property will be

thoroughly studied in section 8.

Refer to figure 4 which shows the common perpendicu-

lars diagram of the plane-symmetric linkage obtained from

the intersection of two toroids. In any configuration the

Fig. 4. Common perpendicular diagram for the plane-symmetric

linkage.

common perpendiculars between the adjacent joint axes con-

form two isosceles triangles, OPAE and OPBE, these trian-

gles share the same base OE, the lines from the mid-point

of EO to PA and PB are perpendicular to OE and therefore,

a plane π containing these two lines is perpendicular to the

planes that contain the two triangles. The axes SA2 and SB2

contain PB and PA, respectively, and are perpendicular to the

planes including the triangles OPAE and OPBE, respectively.

Hence, both axes belong to π and therefore they either inter-

sect or are parallel. This ensures that the symmetry condition

is always present while E moves through all the components

of C .

4 Concentric singular toroid-toroid intersection.

To analyze the intersection of toroids in the plane-

symmetric case, C = T A
rA,rA,γA,0

∩ T B
rB,rB,γB,0

, let the relation-

ship between coordinate systems A and B be given by A
BT =

T(R(θ, ĵ),0), so that the toroids are concentric and the axis

of B is obtained by rotating the axis of A θ radians about the

Y := YA = YB axis.
The parameterizations of both surfaces referred to coor-

dinate system A are:

AσA(uA,vA) =

(

rA ((cosvA +1)cosuA − cosγA sinvA sinuA) ,

dA (cosγA sinvA cosuA + sinuA cosvA + sinuA) ,

sinγAdA sinvA

)

AσB(uB,vB) =

(

(((cosvB +1)cosuB − cosγB sinvB sinuB)cosθ

+sinθsinγB sinvB)dB, dB(cosγB sinvB cosuB +

sinuB cosvB + sinuB), dB(((−cosvB −1)cosuB

+cosγB sinvB sinuB)sinθ+ cosθsinγB sinvB)

)

(5)

JMR-17-1188 López-Custodio 4



and the implicit forms are given by:

AφA(x,y,z) =
(

x2 + y2 + z2 − rA
2 − rB

2
)2

−4rB
2

(

rA
2 − z2

sin2 γA

)

AφB(x,y,z) =
1

sin2 γB

[

− (x2 + y2 + z2)(x2 + y2 + z2 −4rB
2)cos2 γB

+(−4x2rB
2 +4z2rB

2)cos2 θ+8 cosθsinθxzrB
2 + z4

+(2x2 +2y2 −4rB
2)z2 + x4 +2x2y2 + y4 −4y2rB

2

]

(6)

A direct way to find C is to solve AσA − AσB =
f(uA,vA,uB,vB) = 0. However, in this case it turns out to
be more complicated. An alternative technique, taken from
[45], is applied instead: Since, for any of both implicit forms
referred to coordinate system A, (x,y,z) = AσA(uA,vA) =
AσB(uB,vB), then AφB(

AσA(uA,vA)) = 0 is a scalar equa-
tion with two variables from which the restrictions uA(vA) or
vA(uA) can be obtained. This restriction fully defines C since

it can be replaced in AσA to obtain the whole parameteri-
zation of the intersection, for example using the restriction
uA(vA):

AC = {AσA(uA(vA),vA) |vA ∈W ⊂ T}. Consider the
parameterization of A being substituted in the implicit form
of B:

AφB(
AσA(uA,vA)) =− 4r2

A

sin2 γB

(cosvA +1)

[

r2
B cos2 γA(cosvA

−1)(sin2 uA +(cos2 uA −2)cos2 θ)− r2
B(cosvA +1)cos2 uA

−2r2
B sinuA cosγA(sinγA sinθcosθ(cosvA −1)

−cosuA sinvA sin2 θ)+ r2
B cos2 θ((cosvA +1)cos2 uA + cosvA −1)

−2r2
B sinγA cosθsinθsinvA cosuA − sin2 γB(cosvA +1)(r2

A(1

+cosvA)−2r2
B)

]

= 0 (7)

An immediate first possibility is observed: vA = π. This

solution leads to the double singularity in which E(q) =
O, ∀q ∈V1, where V1 is the spherical 4R component of V re-

lated to the double singularity. Since making 0 the first factor

in Equation 7 would compromise the construction parame-

ters of the toroids, the only remaining possibility is solving

the third factor. This factor is solved to obtain the restriction

uA(vA), two solutions are found which are not presented here

due to reasons of space since these are quite long expres-

sions. In a similar manner, two solutions for the restriction

vA(uA) are obtained. Therefore, C may feature a maximum

of two curves. Expressions for a parameterization of these

components can be computed as explained in the previous

paragraph, however, due to the length of the terms involved

in the restriction uA(vA), these are not presented here.

5 Tangent intersections of concentric singular toroids.

If in the concentric toroid-toroid intersection ∃ i, j ∋
Ci ∩ C j 6= /0 the linkage is reconfigurable with at least 2

motion branches, which are connected through at least one

configuration qi j ∈ Vi ∩Vj. It can be proved [38] that for

the 1-dimensional components of V , the toroids are tangent

to each other at E(qi j). The intersection is non-transverse

in E(qi j). Therefore, ∇φA(x
P,yP,zP)×∇φB(x

P,yP,zP) = 0,

where (xP,yP,zP) = E(qi j). The points in V that map to

points of tangency may be bifurcation configurations of the

linkage. These points in V may represent the intersection

of two components of V , or may be the self-crossing of the

same component. The surfaces are also tangent to each other

when they touch in one point, which would lead to an iso-

lated point in V . In addition, if a continuum of points of

tangency is found, the surfaces are touching in a curve that is

a component of C .

Fig. 5. Two singular toroids that are tangent to each other in the

XAZA plane.

To find the points where the intersection may be-

come non-transverse, the real points (x,y,z) ∈ R
3 that make

∇φA(x,y,z)× ∇φB(x,y,z) = 0 and also satisfy φA(x,y,z) =
φB(x,y,z) = 0 are explored. Two points in the Y axis are

found, however, they imply rA = rB, so that the points are

(0,rA,0) = (0,rB,0) and (0,−rA,0) = (0,−rB,0). This case

leads to a linkage that is both line- and plane-symmetric.

This example was analyzed before in [28] and the line-

symmetric case was investigated by the authors of this paper

in another work yet to be published. The other solutions that

do not degenerate the toroids imply y = 0. Therefore, any

point of tangency must lie in the XAZA plane if the linkage

is not the plane- and line-symmetric case. The solutions in

the XAZA plane are large expressions that involve not only
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the construction parameters of the toroids, but also the angle

θ. Considering the singular curves BA and BB obtained by

Bi = {(x,y)∈R
2 |φ1(x,0,y) = 0} (figure 5a), it is found that

the curves become tangent to each other if:

cosθ =±

√

(r2
B cos2 γB + r2

A sin2 γB)(r
2
A cos2 γA + r2

B sin2 γA)

rArB
(8)

Each possibility leads to two solutions, therefore there

are in total 4 values of θ that make the surfaces tanget to

each other in the XAYA plane. Note that the argument of the

square root is always positive, however, to obtain real values

of θ, it is necessary that (r2
B cos2 γB + r2

A sin2 γB)(r
2
A cos2 γA +

r2
B sin2 γA) ≤ r2

Ar2
B, since cosθ ∈ [−1,1]. After some alge-

bra it is concluded that if rA > rB then3 |sinγB|> |sinγA| ⇒
sinγ∗B > sinγ∗A and if rA < rB then |sinγA| > |sinγB| ⇒
sinγ∗A > sinγ∗B. W.l.o.g. Fig. 5, shows the case in which

rA > rB ⇒ sinγ∗A > sinγ∗B. This makes toroid B looking more

flattened than toroid A.

6 Isolated points of tangency and Bricard structures.

The nature of the intersection when the two concentric

singular toroids are tangent to each other in the XAZA plane is

now investigated. For this aim, consider the following propo-

sition:

Proposition 6.1: The intersection of two concentric sin-

gular toroids with different radius contains only two isolated

points if the toroids are tangent to each other at some point.

Proof: Let the two singular toroids to be intersected be

T A
rA,rA,γA,0

and T B
rB,rB,γB,0

, where rA 6= rB, thus the only pos-

sibility for tangent intersection is that the surfaces are tan-

gent to each other in the XAZA plane. Replacing the values

of θ from Eq. (8) in the parameterizations of the surfaces

and trying to find C would lead to quite complicated expres-

sions. A simpler way to proceed is to analyze the normal

curvatures of the toroids in one of the points where the sur-

faces are tangent. The normal curvatures of both surfaces

must be the same in the direction that is tangent to the in-

tersection curve. If there is no intersection curve and the

surfaces are only touching in such point, the curvatures are

always different for both surfaces in any direction. Since

normal curvature is invariant to frame transformations both

toroids can be analyzed in their own coordinate systems. Ac-

cording to Euler’s formula, the normal curvature is given by:

κ(ψ) = κ1 cos2 ψ+κ2 sin2 ψ, where κ1 and κ2 are the curva-

tures in the principal directions ê1 and ê2 and ψ is the angle

that defines the direction of the normal curvature with respect

to one of the principal directions.

The singular toroids are surfaces of revolution with B

being rotated about the Z axis. It is known (see for exam-

ple [46]) that in surfaces of revolution the principal curva-

tures are the tangents to the meridian and parallel crossing

the point in analysis. Hence, for the arrangement shown in

3The same toroid can be generated using different angles γ, [44]. From

these, we take γ∗ in (0,π/2], which is unique for any toroid.

Fig. 5b ê1 = ĵ and ê2 = t̂, where t̂ is the mutual tangent vec-

tor to BA and BB at P1. If the intersection includes a curve

crossing P1, it should be possible to find an angle ψ∈T, such

that:

κ1A cos2 ψ+κ2A sin2 ψ = κ1B cos2 ψ+κ2B sin2 ψ

⇔ κ1A −κ1B

κ2B −κ2A

= tan2 ψ ≥ 0 (9)

where κiA and κiB, i = 1,2, are the principal curvatures at P1

of toroids A and B, respectively. From Fig. 5b Note that κ2 j,

j = A,B are the curvatures of plane curves B j, while κ1 j are

the curvatures of plane curves D j obtained by intersecting

the toroids with the plane that contains P1 and is spanned by

ê1 = ĵ and n̂. If, w.l.o.g. rA > rB as shown in Fig. 5, it is clear

that κ2B > κ2A and κ2B −κ2A > 0. Hence, in order to have

a real solution of Eq. (9), it is necessary that κ1A − κ1B >
0. These curvatures can be computed using the following

expression [47]:

κ1 j := κ(φ j, ĵ)(P1) =
ĵT Hess(φ j(x,y,z))ĵ

|∇φ j(x,y,z)|

∣

∣

∣

∣

∣

(x,y,z)=P1

, j = A,B

where, Hess : R[x,y,z]→ M3×3(R) is the Hessian matrix of

the given implicit form. Upon calculations it is concluded

that:

κ1 j =
|sinγ j|(|rP1

|2 −2r2
j )

2|rP1
|r j

√

|rP1
|2 −2(|rP1

|2 −2r2
j )cos2 γ j

, j = A,B

(10)
where |rP1

|,is the magnitude of the position vector of P1,
which is the same value for both toroids and is invariant to
frame transformations. |rP1

| is calculated using the value of
θ in Eq. (8), leading to:

|rP1
|=

2

√

r4
B sin2 γA cos2 γB − r4

A sin2 γB cos2 γA

r2
B sin2 γA cos2 γB − r2

A sin2 γB cos2 γA +(r2
A − r2

B)sin2 γA sin2 γB

Replacing this value in Eq. (10) and carrying out sim-

plifications it can be concluded that, κ1A −κ1B has the same

sign as rB − rA. Therefore, if rA > rB (as first supposed for

this proof), κ1A −κ1B < 0, tan2 ψ < 0 ⇒ ψ /∈ T and there is

no real solution for Eq. (9). Hence, both toroids are touch-

ing each other in P1 and P2 but these are isolated points in

C = {P1,P2,O}. �

Two important conclusions can be drawn from the pre-

vious proposition: First, a Bricard linkage fulfilling the plane

symmetry conditions can be a 0-DOF structure which can be

assembled in two different configurations. However, if the

linkage is assembled in E(q) = O the same linkage has 1

DOF and works as a spherical 4R linkage. In such case, V is

composed of 3 regions: 2 isolated points and a 1-dimensional

curve in T
6. And second, there is no way to reconfigure these
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Fig. 6. A Bricard plane-symmetric linkage with finite mobility zero in

its two different assembly modes.

linkages directly from one curve to another at least the link-

age is also line-symmetric.

As an example of this situation, consider the plane-

symmetric linkage with the following DH parameters:

αA1,A2 =
4
3
π, αB2,B1 =

5
6
π, αB1,A1 = arccos

(

247
280

)

,
aA1,A2 = 10, aB2,B1 = 7, aB1,A1 = 0

αA2,A3 =
2
3
π, αB3,B2 =

7
6
π, αA3,B3 =−arccos

(

247
280

)

,
aA2,A3 = 10, aB3,B2 = 7, aA3,B3 = 0

(11)

and di = 0 for all joints. These parameters satisfy the condi-

tions in Eqs. (1) and (4) and, therefore, the linkage is plane-

symmetric and it generates the intersection of two concentric

singular toroids. From these parameters it can be seen that

γ∗A = 1
3
π, rA = 10, γ∗B = 1

6
π, rB = 7 and θ = arccos

(

247
280

)

,

which turns out to be one of the 8 values that can be obtained

from Eq. 8. Thus, the Bricard linkage must be a structure

with 0 DOF if assembled in any of the two isolated points.

If assembled with E = O the linkage should behave as a

spherical 4-bar linkage, however, observe that such spheri-

cal linkage would have twist angles 2γA = 2
3
π, 2γB = 1

3
π and

two links with angles arccos
(

247
280

)

, the largest angle is 2
3
π

but 2
3
π > 1

3
π+ 2arccos

(

247
280

)

, therefore the spherical link-

age cannot be assembled. The only two possible assembly

modes are those for which the linkage is a structure, namely

E(q1) = P1 and E(q2) = P2, these are presented in figure 6.

Consider the linkage assembled in an isolated point

E(q1) = P1 in figure 8, some interesting results regarding

the reciprocal system of the screw system of the linkage are

now obtained: First, the plane of symmetry is perpendicu-

lar to and bisects the segment OE, which lies on the XAZA

plane, thus the plane of symmetry is perpendicular to the

XAZA plane. As a consequence of this, SA3 and SB3 lie on

the plane XAZA, since their symmetric members, SA1 and SB1

lie on XAZA which is perpendicular to the plane of symmetry.

Then, the axis of the special linear complex is the intersec-

tion of the plane of symmetry and the XAZA plane as expected

from Section 2.

Fig. 7. A Bricard plane-symmetric linkage with finite mobility zero in

the assembly mode with E(q1) = P1.

Knowing the value of θ, it is possible to calculate both

uA and uB for any of the two configurations in which the

linkage can be assembled without using the double singular-

ity and making it a spherical 4R linkage. With uA and uB, the

following Plücker coordinates are obtained for the screws A2

and B2, respectively:

A
SA2(q1) =

(

3
√

17391

682
,

√
48081

341
,

1

2
;

15
√

5797

341
,

10
√

16027

341
,−5

√
3

)

,

A
SB2(q1) =

(

63
√

5797

6820
,

√
16027

341
,

7
√

3

20
;

5
√

17391

341
,

7
√

48081

341
,−5

)

.

Previously, it was proved that SA2 and SB2 always inter-

sect. If the screws are defined by Si = (ŝi; mi), i = A2,B2,

such intersection point is given by P = (ŝA2 ·mB2)
−1mA2 ×

mB2. However, it turns out that for this example (AmA2 ×
AmB2) · Aj = 0, which means that P lies on the XAZA plane.

This implies that a pencil of lines in the XAZA plane can be
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drawn with center in P and each line in the pencil will be re-

ciprocal to all the axes of the linkage. Hence, the reciprocal

system is a 2-system and the first order mobility of the link-

age is 2. A velocity analysis applied to this structure would

reveal that the linkage has 2 degrees of freedom since the

tangent space of V in such configuration is a 2-dimensional

space. A tangent cone [48, 49, 50, 51, 52, 23] analysis was

made for this configuration. While the first order approxima-

tion is a 2-dimensional vector space, as expected, the second

order approximation is 0-dimensional, proving that the link-

age is actually a structure. It is then said that the structure

has second order rigidity [53].

7 Motion branch reconfiguration through the double

singularity.

Reconfiguration of motion branches can be achieved us-

ing the double singularity of the concentric toroids if there

are curves crossing it. Due to the symmetry of the intersec-

tion, and since there are no points of tangency (excluding the

known exceptions), it can be concluded that the intersection

will have any of the following forms:

1. Two regular disjoint curves and the double singularity

point

2. One singular 8-shaped curve with its self-crossing coin-

cident with the double singularity,

3. Two singular 8-shaped curves that share the same self-

crossing point which is coincident with the double sin-

gularity.

The first case is generated by non-reconfigurable link-

ages since there is no way to migrate from one curve to an-

other or to visit the double singularity. The second case is

reconfigurable with two motion branches: a Bricard 6R op-

eration mode and a spherical 4R linkage mode. The third

case is the most interesting since the configuration space in-

cludes two Bricard branches which can be visited by the link-

age without disassembling it and, in addition, the linkage can

undergo spherical 4R motion branches.

In figure 8, note that if in the XAZA plane BA ∩BB =
{O} the intersection of the toroids includes two singular

curves as in the third case of intersection. Since the toroids

are symmetric with the XAZA plane, if BB crosses BA in four

points, the intersection curve never includes O, as in the first

case of intersection. If BB crosses BA in two points, the in-

tersection curve crosses O and then intersects the XAZA plane

in the two points where BB crosses BA, the intersection of

toroids is then a sole singular curve, as in the second case

of intersection. Now imagine that the two points where the

intersection crosses the XAZA move through BA approaching

O, since the intersection is symmetric with the XAZA plane,

the curve starts to sharpen in such points until they reach O

and the intersection becomes two singular curves. Refer to

figure 8a, it is easy to prove that the tangent to Bi, i = A,B
makes an angle γ∗i with the xi axis. Then the conditions that

Fig. 8. A case with two singular curves in the intersection: a) BA

and BB curves, b) surfaces and intersection.

make BB intersect BA only in O are the following:

γ∗A + γ∗B <
π

2

γ∗A + γ∗B < θ < π− γ∗A − γ∗B (12)

In the remaining part of the paper we focus exclusively

in linkages whose generated toroids fulfill conditions 12,

since these are the most complicated cases.

8 Bricard branches as a link between crank-rocker

spherical 4R branches.

Let C = C1 ∪C2, like in the third case of intersection,

then C1∩C2 = {O}. it has to be considered that, even though

the two curves intersect in one point, if Vi is the component

of V related to Ci, then V1 ∩V2 = /0, which means that the

linkage cannot reconfigure from V1 to V2 directly. This is

a consequence of the double-singularity O. In any regular

point in a surface all curves intersecting the point do it with

the same values of (u,v) ∈ U , as σ is a bijection from U to

S \ sing(S). But since in the conic singularity of the singu-

lar toroids ∂σ/∂u = 0 there are an infinity of pairs (u,v) that

map to O and the only way to escape from the singularity

is moving in the direction of the isoparametric curve of v,

since ∂σ/∂v 6= 0 is such point. These isoparametric curves

are the secondary circles, their tangent vectors in the singu-

larity generate a cone that is tanget to the toroid in the singu-

larity. Any two curves on the toroid crossing the singularity

with non-parallel tangent vectors at O will have different val-

ues (u(t),v(t)) at O, since they reached the point in different

secondary circles.
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The previous paragraph implies that in general the link-

age cannot move from V1 to V2 since E reaches O in different

configurations. In fact, in the self-crossing of each singular

curve in C , the linkage is unable to chose between the two

segments in the neighborhood of O, E smoothly passes the

double singularity and V1 and V2 are free of singularities even

though they are related to singular curves C1 and C2. Despite

V1 and V2 are disjoint, they are connected through the spher-

ical 4R motion branch related to the double singularity. For

the evolved spherical 4R linkage two opposite links have the

same twist angle, θ, while the other two links have twist an-

gles 2|γA| and 2|γB|.
Suppose E lies on C1 and approaches O, once the link-

age starts working in the spherical 4R branch axes SA2 and

SB2 can move until the secondary circles are both tangent to

C2 and E can scape from the double singularity allowing the

linkage to enter the V2 branch. Since there are two singu-

lar curves crossing O, there are in total four different direc-

tions in which E can move to scape from O. Two of these

will reconfigure a spherical 4R branch into the same plane-

symmetric Bricard branch related to C1, while the other two

will reconfigure to the branch related to C2. In each of these

configurations the evolved spherical 4R linkage most be in a

plane-symmetric configuration since such configuration also

belongs to a Bricard branch. Fig. 9 shows a plane-symmetric

linkage in a spherical 4R branch with E = O, the linkage is

about to scape to V1 since the secondary circles C2A and C2B

are both tangent to C1 at O.

Fig. 9. A reconfigurable Bricard plane-symmetric linkage in its

spherical 4R operation mode, with its two secondary circles tangent

to each other and to curve C1 and the linkage is about to escape to

V1.

.

However, it is known that the configuration space of the

spherical 4R linkages may include two branches which may

or may not intersect. It is possible that the two configura-

tions that allow to scape to V1 (E scaping from O to C1) be-

long to the same branch of the 4R linkage, while the other

two configurations to scape to V2 (E scaping from O to C2)

belong to the other branch of the 4R linkage. In such case,

in order to reconfigure the linkage from V1 to V2 it is neces-

sary to disassemble it if the two spherical 4R branches are

disjoint. Therefore, the following paragraphs investigate the

two spherical 4R branches and the four scape configurations

in order to establish the restrictions that ensure that the link-

age can reconfigure through all of its branches. We begin by

analyzing the rotability of the evolved spherical 4R linkages

since branch identification is different depending on the rota-

bility of the links. However, we restrict this analysis to the

cases in which the toroid generators are built using |γ|= γ∗

Fig. 10. A plane-symmetric configuration of a spherical 4R linkage

with two opposite links of the same angle.

.

Proposition 6.1: The spherical 4R linkages obtained as

a behavior of Bricard plane-symmetric linkages that generate

two concentric toroids intersecting in two curves are either

crank-rocker or change-point.

Proof: Let the twist angles of the spherical four-bar link-

age evolved from the Bricard plane-symmetric linkage be

αA1,A3 = 2|γA|, αA3,B3 = αB1,A1 = θ and αB3,B1 = 2|γB| (Fig.

10). From the second condition in Eq. (12): θ+ γA + γB <
π ⇒ 2θ + 2γA + 2γB < 2π, then Σαi < 2π. According to

Gupta and Ma [54], if the sum of twist angles is less that

2π, the full rotability criterion is quite similar to that for the

planar case: if αmin +αmax < αp +αq, then at least one of

the links is fully rotatable.

From the second condition in Eq. (12), γA + γB < θ ⇒
1
2
(αA1,A3 +αB3,B1) < αA3,B3 = αB1,A1 and αmin 6= αA3,B3 =

αB1,A1. By contradiction consider that none of the links is

fully rotatable. Then, if αmax = αA3,B3 = αB1,A1 = θ, from

the criterion it follows:

αmin +θ > θ+αq ⇒ αmin > αq

JMR-17-1188 López-Custodio 9



which is a contradiction. In a similar way, now consider αp =
αq = αA3,B3 = αB1,A1 = θ:

αmin +αmax > 2θ ⇒ αA1,A3 +αB3,B1 > 2θ

which contradicts the second condition in Eq. (12). Hence,

it is proved that at least one of the links is fully rotatable.

This link is the one whose twist angle is αmin. In Fig. 10

it can be seen that the twist angle for the coupler and fixed

links is θ, which is proved to be different to αmin. Therefore,

the smallest twist angle corresponds to either the input or

output links. Hence, all the linkages are crank-rocker or, if

αA1,A3 = αB3,B1 ⇒ γA = γB, change-point. �

It is known [55] that in crank-rocker (or rocker-crank)

4R linkages both branches are disjoint. Therefore, from

Proposition 6.1 it is concluded that the only way to have a

special configuration joining the two branches is the spher-

ical equivalent of a parallelogram linkage. In such a very

special case the criterion for branch change is simply the

parallel- or anti-parallelism of the links. For crank-rockers

(or rocker-cranks), the following two propositions allow the

identification of branch change.

Proposition 6.2: A 4R linkage with two opposite links

of the same twist angle can reach four plane-symmetric con-

figurations, two of them belong to the same branch while the

other two belong to the other branch.

Proof: Refer to Fig. 10, which shows the spherical 4R

linkage with two opposite links of the same twist angle, θ, the

angle of the other two links are 2γA and 2γB. The linkage is

shown in a plane-symmetric configuration. ŝA1, ŝA3, ŝB3 and

ŝB1 are the unit vectors parallel to the axes of the revolute

joints. A coordinate system X0Y0Z0 is placed fixed to the

symmetry plane π, so that π coincides with the plane X0Z0

and X0 bisects the angle between ŝA1 and ŝA3.
The linkage is symmetric with respect to π when 0ŝi1 ·

ĵ = −0ŝi3 · ĵ while 0ŝi1 · î = 0ŝi3 · î and 0ŝi1 · k̂ = 0ŝi3 · k̂, i =
A,B. Adding this restriction, the following four solutions are
found for 0ŝB1:

0ŝ1
B1 =

(

cosθ

cosγB
− K1

2cos2 γB
,

K1

cosγB sinγB
,

√

K2 +K1 cosθ

cos3 γB

)

0ŝ2
B1 =

(

cosθ

cosγB
− K1

2cos2 γB
,

K1

cosγB sinγB
,−
√

K2 +K1 cosθ

cos3 γB

)

0ŝ3
B1 =

(

cosθ

cosγB
+

K1

2cos2 γB
,− K1

cosγB sinγB
,

√

K2 −K1 cosθ

cos3 γB

)

0ŝ4
B1 =

(

cosθ

cosγB
+

K1

2cos2 γB
,− K1

cosγB sinγB
,−
√

K2 −K1 cosθ

cos3 γB

)

(13)

where K1 = |cosγB sinγB|
√

2(1− cosγA) and K2 =
1
2

cosγB(2cos2 γB − 2cos2 θ+ cosγA − 1). 0ŝk
B3, k = 1, . . . ,4

can be obtained from 0ŝk
B1 by simply changing the sign of the

Y0 component of each vector. 0ŝA1 and 0ŝA3 are the same for

all configurations since they are fixed to plane π.

According to [56], if the linkage is crank-rocker

(or rocker-crank), all the configurations for which ηk :=

0ŝA1 × 0ŝk
B3 · 0ŝk

A3 has the same sign belong to the same

branch. Upon calculation it is found that, sign(η1) =
sign(η3) = sign(cosγB sinγB) and sign(η2) = sign(η4) =
−sign(cosγB sinγB). Hence, it is concluded that plane-

symmetric configurations 1 and 3 lie in the same branch,

while configurations 2 and 4 lie in the other branch. �

From Proposition 6.2 it can be seen that the two dif-

ferent Bricard branches may reconfigure to spherical 4R

modes in different branches, making impossible to move

from one Bricard branch to the other. Each of the four

plane-symmetric configurations presented in Proposition 6.2

is a bifurcation configuration between Bricard branches and

spherical 4R branches. Therefore, a vector v̂ j tangent to the

curve of intersection at O can be calculated for each of these

configurations. For the sake of simplicity we call these vec-

tors escape directions

Proposition 6.3 Given a plane-symmetric Bricard link-

age generated from the intersection of two concentric singu-

lar toroids with the axis of one rotated about the Y axis from

the other, the escape directions lying on the same side of

the plane XZ correspond to configurations lying in the same

spherical 4R branch.

Proof: From the geometry of the plane-symmetric link-

ages obtained from the intersection of two concentric singu-

lar toroids it can be proved that the escape directions v̂ j are

parallel to4 (ŝB3 × ŝB1)× (ŝA3 × ŝA1)||ĵ0, where ĵ0 is the unit

vector in the direction of Y0 in Fig. 10. Each of the four con-

figurations obtained in Proposition 6.2 lead to a escape di-

rection v̂ j. We are interested in obtaining such vectors in the

coordinate system A, which is fixed, while coordinate system

0 moves from one configuration to another. Therefore, for

coordinate system A, vectors AŝA1 and AŝB1 are fixed, while

there are four sets of vectors Aŝ
j
A3 and Aŝ

j
B3.

The escape directions are calculated by finding the bases
{

0 î
j
A,

0 ĵ
j
A,

0k̂
j
A

}

:

Av̂ j =
A ĵ

j
0 =

A
0 T j

0 ĵ0 = aug
(

0 î
j
A,

0 ĵ
j
A,

0k̂
j
A

)−1

ĵ

The following four escape directions are found, each re-

lated to each of the symmetric configurations found in Propo-

4The radius of the secondary circles are the common perpendiculars be-

tween axes Si1 and Si2, i = A,B. In the spherical 4R branches this line

segment coincides with the common perpendicular of Si2 and Si3. There-

fore, ŝi1 × ŝi3 must be parallel to the radius of C2i. Since the circles are

tangent to each other in the escape configurations and this tangent is per-

pendicular to the radii of both circles, it follows that the tangent is parallel

to (ŝB3 × ŝB1)× (ŝA3 × ŝA1)
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sition 6.2:

Av̂1 =

(

−2cosθcosγB sin2 γB +K1

2|sinθ|cosγB sinγB

,−cosγB

√
2K2 +K1

|sinθ|
√

cos3 γB

,

sinγB

)

Av̂2 =

(

−2cosθcosγB sin2 γB +K1

2|sinθ|cosγB sinγB

,
cosγB

√
2K2 +K1

|sinθ|
√

cos3 γB

,

sinγB

)

Av̂3 =

(

−2cosθcosγB sin2 γB −K1

2|sinθ|cosγB sinγB

,−cosγB

√
2K2 −K1

|sinθ|
√

cos3 γB

,

sinγB

)

Av̂4 =

(

−2cosθcosγB sin2 γB −K1

2|sinθ|cosγB sinγB

,
cosγB

√
2K2 −K1

|sinθ|
√

cos3 γB

,

sinγB

)

It can be seen that Av̂1 and Av̂2 (Av̂3 and Av̂4) are symmet-

ric with respect to the XAZA plane as the only difference be-

tween them is the sign of the Y component. The sign of

the Y components of Av̂1 and Av̂3 (Av̂2 and Av̂4) is the same,

namely −sign(cosγB) (sign(cosγB)), hence they lie in the

same side of the XAZA plane. In addition, all these vectors

lie in the same side of the XAYA plane as their Z components

are the same, namely −sign(sinγB). From Proposition 6.2 it

is known that configurations 1 and 3 (2 and 4) lie in the same

branch, therefore it can be concluded that the escape direc-

tions lying in the same side of the XAZA plane belong to the

same branch of the spherical 4R linkage. �

Fig. 11 shows three possible cases of intersection com-

posed by two curves: rA > rB, rA = rB and rA < rB. In

each case the tangent vector to the curves at O, the double

singularity point, are shown. These tangent vectors are the

same that were calculated in Proposition 6.3, in which it was

proven that if these 4 vectors have ZA component of the same

sign, then: when the vectors lie in the same side of the XAZA

plane the configurations of the spherical 4R linkage lie in the

same branch. From Fig. 11 it can be seen that for the case

rA > rB the vectors lying on the same side of the XAZA plane

are tangent to the same curve, and since these configurations

belong to the same spherical 4R branch reconfiguration to the

other curve is impossible and the two spherical 4R branches

cannot be reached without disassembling the linkage. For

rA = rB and rA < rB the two vectors lying on the same side

of the XAZA are tangent to different curves, this means that it

is possible to reconfigure the disjoint spherical 4R branches

without disassembling the linkage as both branches are con-

nected through a Bricard branch related to each of the two

curves.

It can be proved5 that for the change-point evolved

spherical 4R linkages the escape directions that are symmet-

ric with respect to the plane XAZA belong to the same branch.

Therefore, from Fig. 11, if rA > rB the same Bricard branch

can be reconfigured to parallel or anti-parallel branches of

change-point spherical 4R linkage.

Fig. 12 shows the reconfiguration diagrams for two

cases of reconfigurable plane-symmetric linkage obtained

from the toroids intersection. The diagram in Fig. 12a is re-

lated to a case with two crank-rocker spherical 4R branches,

it is known that these branches are disjoint, but it is possi-

ble to reach both branches without disassembling the linkage

since they are communicated through two different Bricard

plane-symmetric branches. Fig. 12b shows a more com-

plicated case in which rA = rB and |γA| = |γB|, leading to

a plane- and line-symmetric linkage for which the toroids

are tangent to each other in two points in the Y axis, these

singularities communicate the two Bricard branches, further-

more, since |γA| = |γB| the evolved spherical 4R linkage is

change-point, allowing a direct reconfiguration between its

two branches through the special configuration.

9 An example with two spherical 4R branches

connected through two Bricard plane-symmetric

branches.

Consider the plane-symmetric linkage shown in figure

13 which has the following DH parameters:

αA1,A2 =
1
3
π, αB2,B1 =

23
12

π, αB1,A1 =
17
36

π,
aA1,A2 = 5, aB2,B1 = 6, aB1,A1 = 0

αA2,A3 =
5
3
π, αB3,B2 =

1
12

π, αA3,B3 =
55
36

π,
aA2,A3 = 5, aB3,B2 = 6, aA3,B3 = 0

(14)

then the linkage generates the intersection of two concentric

singular toroids, such that γA = 1
3
π, rA = 5, γB =− 15

180
π, rB =

6 and θ = 85
180

π. These construction parameters satisfy the

conditions in Eq. 12, therefore C = C1 ∪C2 such that C1 ∩
C2 = {O}. Since E can reach the double singularity O the

linkage has four motion branches: two Bricard branches and

two spherical 4R branches. In addition, since rA < rB and

γA 6= γB the linkage should be able to move through the two

spherical 4R branches without disassembling it.

Figure 14 shows the linkage in several configurations in

each motion branch. Observe that the two configurations be-

longing to V1 (V2) for which E = O are different as expected.

None of these four symmetric configurations coincide since

V1 and V2 are disjoint. However, each of these is singu-

lar in V , allowing the reconfiguration to VO1 and VO2, the

spherical 4R branches, for which E(q) = O, ∀q ∈VO1 ∪VO2.

The reconfiguration between branches is presented in the di-

agram in Fig. 12a, which shows how the two branches of the

evolved spherical 4R linkage are connected through plane-

symmetric Bricard branches allowing reconfigurability with-

out disassembling.

5Such a proof, as mentioned above, is based on the parallelism or anti-

parallelism of the links. The proof is not presented due to space reasons.
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Fig. 11. Tangent vectors to the intersection curves at the double singularity, for the three possible cases: rA > rB, rA = rB and rA < rB

Fig. 12. Two cases of branch reconfiguration diagrams when the in-

tersection of concentric singular toroids is composed of two singular

curves: a) rA < rB and γA 6= γB (example presented in this subsec-

tion); b) rA = rB and |γA|= |γB|.
.

Conclusions

The plane-symmetric case of Bricard loops was an-

alyzed using the intersection of two concentric singular

toroids, allowing the design of reconfigurable linkages

with several motion branches which can be either plane-

symmetric 6R branches or spherical 4R branches. The con-

ditions for having two singular curves in the intersection set

were presented. Each of these curves is related to a plane-

symmetric 6R branch of motion. The phenomenon of dou-

ble singularity leads to kinematotropy when the two surface

generators are joined by a spherical pair or a reduction of this

to a pair of revolute joints each being parallel to the axis of

rotation of surfaces of revolution. However, in the case of

overconstrained plane-symmetric linkages it was found that

such double singularity leads to a spherical 4R branch.

Fig. 13. A reconfigurable Bricard plane-symmetric linkage that al-

lows the reconfiguration between two spherical 4R branches through

two Bricard branches. The intersection of the concentric singular

toroids is composed of two singular curves.

.

The study of the escape directions, which are the tan-

gents to the intersection curves at the double singularity re-

vealed the existence of linkages whose evolved crank-rocker

spherical 4R linkage can work in its two branches without

disassembling it. To the knowledge of the authors, this is the

first time that a linkage with this property is presented. These

interesting results, along with those for the line-symmetric

case, which the authors are presenting in a different paper,

shed light on whether it is possible to design more overcon-

strained linkages that can be reconfigured between different

branches using the method of generated surfaces. The paper

in which the authors apply the method to the line-symmetric

case, [44], is published in parallel with this paper.

JMR-17-1188 López-Custodio 12



Fig. 14. Several configurations of the plane-symmetric Bricard linkage when the intersection of concentric toroids contains two singular

curves.

.
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JMR-17-1188 López-Custodio 14



a constrained parallel robot to reach a set of task posi-

tions”. In Proceeding of the 2005 IEEE International

Conference on Robotics and Automation, Barcelona,

Spain, pp. 4026–4030.

[37] Liu, Y., and Zsombor-Murray, P., 1995. “Intersection

curves between quadric surfaces of revolution”. Trans-

actions of the Canadian Society for Mechanical Engi-

neering, 19(4), pp. 435–453.
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