
MINI-REVIEW

Branched chain aldehydes: production and breakdown
pathways and relevance for flavour in foods

Bart A. Smit & Wim J.M. Engels & Gerrit Smit

Received: 2 September 2008 /Revised: 16 October 2008 /Accepted: 18 October 2008 /Published online: 18 November 2008
# The Author(s) 2008. This article is published with open access at Springerlink.com

Abstract Branched aldehydes, such as 2-methyl propanal
and 2- and 3-methyl butanal, are important flavour
compounds in many food products, both fermented and
non-fermented (heat-treated) products. The production and
degradation of these aldehydes from amino acids is
described and reviewed extensively in literature. This paper
reviews aspects influencing the formation of these alde-
hydes at the level of metabolic conversions, microbial and
food composition. Special emphasis was on 3-methyl
butanal and its presence in various food products. Knowl-
edge gained about the generation pathways of these flavour
compounds is essential for being able to control the
formation of desired levels of these aldehydes.
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Introduction

Branched-chain aldehydes, such as 3-methyl butanal, 2-
methyl butanal and 2-methyl propanal, are potent flavour
compounds. In many food products, such aldehydes are
key-flavour compounds. Sensorially, they are generally
perceived as malty, chocolate-like. An important process
leading to the formation of compounds like 3-methyl
butanal is the non-enzymic, heat-induced, Strecker degra-
dation of amino groups with reducing sugar moieties
(Strecker 1862). Since foods during their production are
in many cases subjected to some kind of heat treatment and
protein and carbohydrates are generally present, the con-
ditions for the formation of branched-chain aldehydes are
favoured. In addition to chemical formation, branched-
chain aldehydes are formed during fermentation of many
foods. In foods like chocolate/cacao, the combination of
fermentation followed by heat treatment gives rise to
optimal flavour formation (Counet et al. 2002).

An (branched-chain) aldehyde is an organic compound
containing a terminal carbonyl group. This functional
group, which consists of a carbon atom bonded to a
hydrogen atom and double-bonded to an oxygen atom
(chemical formula O=CH–), is called the aldehyde group.
The slightly positive carbon atom in the aldehyde group,
caused by the electronegative oxygen atom, is susceptible
to attacks by nucleophiles, and this makes an aldehyde
relatively reactive. Aldehydes can therefore relatively easy
be reduced to the corresponding alcohols or oxidised to the
corresponding acids. Consequently, aldehydes are generally
present only in low concentrations, however, the taste
thresholds of aldehydes are also rather low; for 2-methyl
propanal and 2- and 3-methyl butanal, they were reported
as 0.10, 0.13, and 0.06 mg/l, respectively (Sheldon et al.
1971).
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Formation and conversion

Although 3-methyl butanal and the other short-chain,
branched aldehydes are important flavour compounds in
many foods, biochemical conversion routes have been
studied mainly in fermented dairy products and chemical
conversions mainly in relation to Strecker (Maillard)
reactions. This paragraph will focus on influencing the
conversion rates leading from and to 3-methyl butanal in
several food systems, leaving the biochemical details in the
referred papers.

Leucine catabolism

3-Methyl butanal is an intermediate in the catabolism of
leucine. A general summary of this catabolism is shown in
Fig. 1. The numbers in this figure will be referred to in the
next sections and in paragraph headings in parenthesis.

The pathway from leucine via the corresponding α-keto
acid and aldehyde to alcohol is referred to as the Ehrlich
pathway, which was identified in yeasts as the main route
for fusel alcohol formation (Ehrlich 1907). In addition to
this main route, leucine catabolism may result in hydroxy-
acids, CoA-esters and other high flavour-impact aldehydes,
alcohols and esters. This scheme has extensively been
reviewed for lactic acid fermentations (Yvon and Rijnen
2001; Smit et al. 2005b) and alcoholic fermentations
(Dickinson 2000b). The catabolism of valine, isoleucine,
phenylalanine and methionine proceeds very similarly to

the pathway described in this paper for leucine (suggested
reviews: Kohlhaw 2003; Fernandez and Zuniga 2006).

Amino acid pool (reactions 1 and 2)

In food systems, leucine is generally liberated from protein
by extracellular and intracellular proteolysis (1), although
many micro-organisms can also make leucine from threonine
(reaction 2). In Lactococcus spp., leucine biosynthesis is
encoded by the ILV and LEU operon (Godon et al. 1992,
1993). The last step in the leucine anabolism and first step
Leucine catabolism are the same: the conversion between
a-keto-isocaproic acid and leucine by a transaminase (Godon
et al. 1992). CodY is an important regulator of the internal
amino acid pool by controlling peptidase, transporter and
transaminase genes, based on isoleucine levels (Chambellon
and Yvon 2003). The concentration of isoleucine hereby also
affects the concentrations of other amino acids. Proteolysis is
essential for liberating enough amino acids for full flavour
development. The proteolytic system of micro-organisms is
extensively studied and reviewed (Ogrydziak 1993; Fox and
McSweeney 1996; Kunji et al. 1996; Christensen et al. 1999;
Savijoki et al. 2006). The large variation in peptidase
activities among strains of many species may yield a good
approach for controlling protein degradation in foods (Ayad
et al. 1999; Gatti et al. 2004; Di Cagno et al. 2007; van
Hylckama Vlieg and Hugenholtz 2007). In addition to the
natural diversity, strains over-expressing peptidases were
developed (Van De Guchte et al. 1990; Courtin et al. 2002;
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Bockelmann et al. 2006). The increase of amino acids in
cheese curd, obtained by the application of peptidase over-
producing starter cultures, not only leads to increased flavour
perception due to the flavour of the amino acids themselves
but also to increased levels of amino acid derived flavour
compounds, such as 3-methyl butanal (Exterkate and Alting
1995; Courtin et al. 2002). The same effect was observed in
dried sausages (Dura et al. 2004; Herranz et al. 2005;
Casaburi et al. 2008) and sourdough (Gänzle et al. 2007).

Transaminase activity (reaction 3)

An initial step in leucine conversion of leucine towards 3-
methyl butanal is the formation of α-keto isocaproic acid.
Reaction 3 in Fig. 1 yields this important intermediate and
can be catalysed by transaminases and leucine dehydroge-
nase. In food systems, the transaminases play a major role
(Yvon et al. 1997; Engels et al. 2000; Larrouture et al.
2000), while lactic acid bacteria (LAB) related spoilage
organisms such as Bacillus spp. and Clostridium spp.
possess a leucine dehydrogenase (Zink and Sanwal 1962;
Hummel and Kula 1989). Several transaminases have been
described, including leucine, branched-chain amino acid,
aromatic amino acid and methionine transaminases. These
enzymes have overlapping substrate specificities (Gao and
Steele 1998; Rijnen et al. 1999a,b; Engels et al. 2000; Yvon
et al. 2000; Hansen et al. 2001). Several studies have shown
that transaminase presence and activity varies largely
among bacterial species and strains (Smit et al. 2004c;
Fernandez De Palencia et al. 2006; Liu et al. 2008; van
Hylckama Vlieg and Hugenholtz 2007). Knocking out the
branched chain amino transferase in Lactococcus lactis
resulted in roughly 90% reduction in leucine transamination
(Yvon et al. 2000). The other 10% conversion was caused
by the aspecificity of other transaminases (Engels et al.
2000; Yvon et al. 2000). Knocking out two transaminases
in yeast did not lead to a full repression of the fusel alcohol
formation because anabolism provided the corresponding
α-keto acids converted in the Ehrlich pathway (Eden et al.
2001; Schoondermark-Stolk et al. 2005). Knocking out the
amino acid anabolism on top of the transaminases still led
to minor amounts of 3-methyl butanal and isoamyl alcohol,
indicating that an additional pathway or source for α-keto
isocaproic acid was also present (Eden et al. 2001).

Yvon et al. (1999) were the first to show that adding α-
keto glutarate to cheese curd leads to increased flavour levels
due to increased transamination capacity. Later, this was also
shown for other cheese types and for sausages (Larrouture et
al. 2000; Banks et al. 2001; Ur-Rehman and Fox 2002; Beck
et al. 2004; Herranz et al. 2004; Tjener et al. 2004a; Williams
et al. 2004). Instead of adding α-ketoglutarate to cheese, the
α-ketoglutarate can be recycled using the enzyme glutamate
dehydrogenase (GDH,4). This was shown by introducing a

GDH gene from Peptostreptococcus in a L. lactis strain
(Rijnen et al. 2000). Later, the same group showed the
presence of this gene in LAB and the natural transfer of the
GDH property to starter lactococci (Tanous et al. 2006).

Although increasing amino acid concentrations and en-
hancing transamination activities were proven to be effective
in increasing flavour formation by many food related
organisms, only a minor part of the converted leucine
accumulates as 3-methyl butanal in food products (Yvon
et al. 1999; Kieronczyk et al. 2003; Smit et al. 2004c). This
indicates that reaction rates of α-keto-isocaproic acid
converting enzymes influence the formation of 3-methyl
butanal. Several approaches for controlling the competition
between various α-keto isocaproic acid consuming reactions
are described in the following paragraphs.

Branched chain keto acid decarboxylase activity
(reaction 7)

This enzyme catalyses the decarboxylation of α-keto
isocaproic acid to 3-methyl butanal. Its activity in lactococci
(Streptococcus lactis) was identified by Tucker and Morgan
(1967). In yeast, the presence of such an enzyme besides the
specific pyruvate decarboxylase (PDC) was postulated in
relation to the production fusel alcohols (Chen 1977; Oku
and Kaneda 1988; Ter Schure et al. 1998). Wild lactococcal
strains, Corynebacterium (Ayad et al. 1999; Smit et al.
2004c), Carnobacterium (Larrouture et al. 2000), and L.
delbreuckii subsp. lactis (Helinck et al. 2004), appeared to
posses this activity more generally and with higher activities
than LAB used as starter cultures in dairy applications. Smit
et al. first discovered the gene encoding the branched chain
keto acid decarboxylase enzyme (KdcA) in L. lactis by
screening a mutant library of a decarboxylase-positive strain
in a decarboxylase-negative strain (Smit 2004). De la Plaza
identified a similar enzyme (KivD) by N-terminal sequenc-
ing the partially purified protein (De La Plaza et al. 2004).
The gene occurs rarely in the sequenced LAB genomes (Liu
et al. 2008). In contrast to PDC, KdcA has a very broad
substrate specificity, hereby being able to produce various
flavour compounds (Smit et al. 2005a; Vuralhan et al. 2005;
Yep et al. 2006; Gocke et al. 2007). This broad specificity
makes this enzyme also very interesting for use as biocatalyst
(Berthold et al. 2007; Gocke et al. 2007). Over-expression of
the enzyme was very successful, but in synthetic medium,
the 3-methyl butanal production was (only) similar to the
wild strain. This indicates that under these conditions, the
decarboxylase capacity of the wild strain was not limiting. A
test with an over-expression mutant in cheese with or
without α-ketoglutarate has, to our knowledge, not been
described. Food-grade non-starter LAB (“wild-LAB”) exhib-
iting high activity of this enzyme have successfully been
applied in cheese (Ayad et al. 2000; Whetstine et al. 2006).
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Hydroxy acid and keto acid dehydrogenases
(reactions 5 and 8)

In lactococci, a relatively large amount of leucine is
converted in the α-hydroxy isocaproic acid (Yvon et al.
1999; Smit et al. 2004c). This is in line with the general
desire of converting NADH to NAD+ by metabolically
active lactic acid bacteria (Schlegel 1997). Over-expression
of α-hydroxy acid dehydrogenase in Lactobacillus casei
followed by applying this strain as adjunct starter in the
preparation of cheddar cheese resulted in a decrease of keto-
acid derived flavour compounds. This confirms the high
impact of this enzyme on the α-keto-acid conversion, even
when used as adjunct culture (Broadbent et al. 2004; see also
below). This implies that knocking out the gene coding for
this dehydrogenase in combination with high decarboxylase
activity should most probably yield increased flavour levels.

The overall reaction catalysed by the α-keto acid
dehydrogenase complex is a substitution of CO2 by the
cofactor CoAwhile reducing NAD+. The enzyme is present
and active in yeasts, bacilli, enterococci, propioni bacterium
and Lactococcus lactis. The CoA coupled acid can be used
in fatty acid biosynthesis or hydrolysed to the branched
chain organic acid (reaction 3). This reaction does not lead
to the formation of 3-methyl butanal or the corresponding
fusel alcohol but produces relatively high amounts of
corresponding organic acids, for example by Lactobacillus
helveticus (Namba et al. 1969; Derrick and Large 1993;
Ward et al. 1999; Dickinson 2000a,b; Hester et al. 2000;
Zhu et al. 2005).

Chemical keto-acid conversion (reaction 6)

Besides various enzymatic conversions, chemical oxidation
of α-keto-isocaproic acid may occur under cheese-like
conditions. This reaction is catalysed by manganese and
results in 2-methyl propanal (Smit et al. 2004a). This
aldehyde is generally associated with (enzymic) valine
catabolism. The activity can be modulated by the Mn2+,
oxygen concentration and redox potential (Smit et al.
2004a; Kieronczyk et al. 2006). The variation in the
formation of volatiles in a meat model system was mainly
determined by pH and bacterial species and, to a lesser
extent, by the manganese concentration (Olesen and
Stahnke 2004; Tjener et al. 2004b). This indicates that this
chemical conversion is not dominant in this system.

3-Methyl butanal conversion (reactions 10 and 11)

Once formed, 3-methyl butanal can be converted to
compounds such as 3-methyl butanol, 3-methyl butanoic
acid, via reduction and oxidation respectively, and esters. In
many organisms, 3-methyl butanal is therefore only a

transient metabolite (De Vos Petersen et al. 2004). Products
from 3-methyl butanal as mentioned clearly add to the
(balance in) flavour perception, but their odour threshold is
much higher than that of 3-methyl butanal. When maximal
flavour is desired, a reduction of these 3-methyl butanal
conversions might therefore be beneficial. The natural
variation in activity of the enzymes, found in various
microbial strains, involved is an appropriate way to control
this balance.

Alcohol dehydrogenase (10) catalyses the reduction of 3-
methyl butanal to 3-methyl butanol. This is the last step in
the Ehrlich pathway. This reaction is very active in yeasts
(Chen 1977). In many lactic acid bacteria, alcohol dehydro-
genase is present, but its activity is much lower (Hatanaka et
al. 1974; Schneider-Bernlohr et al. 1981; Bradshaw et al.
1992; Arnau et al. 1998; Temino et al. 2005).

Aldehyde dehydrogenase (11) is also active in many
organisms. In Staphylococcus xylosus, it has been shown that
3-methyl butanoic acid is mainly formed by the consecutive
decarboxylation of the keto acid followed by oxidation of the
aldehyde by a wide spectrum aldehyde dehydrogenase. It has
also been shown that the oxidation activity is higher than the
decarboxylation activity, resulting in low 3-methyl butanal
concentrations (Beck et al. 2002). In yeast, the organic fusel
acids can be transported out of the cell by the PDR12p ABC
transporter (Hazelwood et al. 2006).

Chemical formation of 3-methyl butanal by Strecker
degradation

The Maillard reaction is very important for the formation of
brown colour and flavour in especially heat-treated prod-
ucts such as bread and malt. In short, the Maillard reaction
starts with the condensation of an amino group with a
reducing sugar leading to a so-called Amadori product.
Rearrangement of this Amadori product can lead to
dicarbonyls. The reaction of such a dicarbonyl with an
amino acid resulting in flavour-active aldehydes is called
the Strecker degradation (Strecker 1862; Schonberg and
Moubacher 1952). In the case of leucine, deamination
followed by decarboxylation results in 3-methyl butanal as
shown in Fig. 2 (Pokorny et al. 1973; Baltes 1982;
Oberparleiter and Ziegleder 1997; Rizzi 1998). The major
control parameters are temperature, but substrate concen-
trations and substrate characteristics also affect their
conversion rates. Already in 1957, Keeny and Day (1957)
postulated that this reaction might add to the flavour of
cheese, since amino acids and reducing sugars are available
in a suitable environment and a long (ripening) time enables
the reaction to proceed. Later, several kinetic studies were
done with other substrates at elevated temperatures, but no
kinetic data under food fermentation conditions (relatively
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low temperature) have been presented (Hofmann et al.
2000; Martins et al. 2003; Martins and Van Boekel 2005).

Biodiversity, lysis, co-operation

The intracellular processes, as discussed previously, are
influenced by the total food matrix. The chemical and
physical properties of the surrounding matrix influence the
behaviour of the microbial cell. Other organisms potentially
add to the total set of possible reactions in the system. For
example, lysis of bacteria is a process where the intracel-
lular enzymes suddenly end up in a total different
environment, with not only different substrate and cofactor
concentrations but also physical parameters such as pH.

Impact of matrix

Apart from being present or not, activity of amino acid
converting enzymes can also be affected by the growth and
culture conditions of the bacteria. This is highly relevant
because it also offers opportunities for practical implication.
Stress responses to salt and pH for example stimulate
several pathways. In yoghurt, acid pushes the bacterial
culture into stationary phase, the phase where most
exopolysaccharides and flavours are formed. In cheese,
the stationary phase is reached due to a lack of lactose. In
this phase, the cofactor pool will change, hereby also
affecting the flavour formation. Proteolysis, peptidolysis,
transamination and decarboxylation can still proceed, while
dehydrogenases will probably be inactive due to a lack of
NADH. If this reasoning holds, the main 3-methyl butanal
increases should be measurable during carbon-source
limited stationary phase.

Extracellular molecules can influence the regulation of
several reactions. As stated earlier, isoleucine is able to
regulate the amino acid metabolism via CodY (Guedon et al.
2001; Chambellon and Yvon 2003). Adding isoleucine to the
cheese matrix should theoretically lead to lower 3-methyl
butanal levels by high-3-methyl butanal producing strains.

Besides an impact on regulatory pathways, the previ-
ously discussed α-ketoglutarate example shows that also
changing (limiting) substrate concentrations in the medium
can be very effective (Yvon et al. 1999). The addition of
amino acids have been described above, but instead of
adding free amino acids or peptides, also the addition of
proteolytic enzymes has been successfully researched and
applied in cheese and sausage productions (Ansorena et al.
2000; Fernandez et al. 2001; Azarnia et al. 2006).

Natural biodiversity

A large variety in amino acid conversion capacities is found
in lactic acid bacteria, particularly among strains isolated
from a non-production environment, the so-called wild
isolates. Wild strains are often found in environments low
in amino acids, which makes them more dependent on their
own biosynthesis of amino acids compared to industrial
strains, and consequently, they possess more amino acid
converting enzymes. In wild lactococci for example, not
only a larger enzyme potential is present, but concomitantly
also produce rather unusual flavour components and/or
flavour profiles (Ayad et al. 1999). This variety is a great
source for finding more optimal, more characteristic
production organisms. Knowledge on the pathways as
described above enables specialized and high-throughput
screening of culture collections (Lavery et al. 2001; Smit et
al. 2004b; Ingham et al. 2007; van Hylckama Vlieg and
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Hugenholtz 2007; Pastink et al. 2008). The large natural
biodiversity could potentially offer specific traits for new
products; some examples of using wild starter bacteria in
products such as cheese have already been reported (Ayad
et al. 2003).

Co-operation between strains

It is not often that the optimal combination of enzymes can
or will be found within one strain. However, in many
fermented products, a combination of microbial strains is
used, which could potentially result in co-operation of
enzymes in a pathway between strains, for instance, upon
lysis of the strains (see below). This interaction can be
negative, where desired compounds are broken down by
another organism, or positive. A combination of strains
should be selected, where the total set of conversions is
optimal. Screenings, as used for screening the natural
biodiversity, are also relevant for the screening of optimal
co-operation. For example, Ayad et al. (2001) showed that
the combination of two strains, of which each had only a
limited set of enzymes in the pathway leading to 3-methyl
butanal, were able to complement each other. Kieronczyk et
al. (2003, 2004) found similar results when combining
strains lacking and possessing GDH activities, and Broad-
bent et al. (2004) showed an example where a D-
hydroxyisocaproic acid dehydrogenase over-producing
strain could reduce the flavour forming, e.g. 3-methyl
butanal, ability of other strains in a mixture. The latter was
most likely caused by the effective conversion of keto-acid
to non-tasting components (see also above). Genomics
approaches offer new opportunities for unravelling and
applying microbial co-operation in food fermentations
(Sieuwerts et al. 2008).

These examples of co-operation between strains offer
new possibilities for the construction of tailor-made starter
cultures because it means that not all the required enzyme
activities in a certain flavour pathway need to be present in
one strain. It was shown that such a co-operation between
strains can also work in a real cheese, with again the
example of production of 3-methyl butanal as a key com-
pound in that cheese (Ayad et al. 2003; Amarita et al.
2006).

Role of lysis in the formation of branched-chain aldehydes

One could question whether the above-mentioned co-
operation can be explained by a diffusion of intermediate
compounds in a pathway from one bacterial strain to
another or whether this is due to a (partial) lysis of bacteria.
In the latter case, the total potential of enzymes would
become available as if it was one incubation mixture. The
role of cell lysis has extensively been studied with regard to

the level of proteolysis and peptidolysis of lactic acid
bacteria. Meijer et al. (1998) and Lepeuple et al. (1998)
showed that lysis of lactic acid bacteria greatly improved
the peptidolytic activity under cheese conditions. Their
results indicated that the cell membrane can be a barrier
between the enzymes, located intracellularly, and the
peptide substrates present in the cheese matrix. Apparently,
there is not enough active transport by the starter cultures,
for taking up the peptides, once they are present in the
cheese matrix, and lysis then is essential for enhancing
enzyme–substrate interaction.

In contrast to the activity of peptidases, where lysis
generally enhances the activity enzymes, enzymes that
require cofactors or cosubstrates (e.g. PLP, NAD, and
NADP) could be negatively affected by lysis of the cells. It
likely depends on the type of enzyme(system) whether lysis
will improve the activity (and formation of flavour) or not.
Despite this precaution, it appears from a recent work by
various studies that lysis of the bacteria in general seems to
increase the formation of flavour components, such as
branched-chain aldehydes.

Martinez-Cuesta et al. (2006a,b) reported that cell
membrane permeabilisation by lactacins positively influ-
ence the formation of aldehydes in lactic acid bacteria.
Bourdat-Deschamps et al. (2004) took this further towards
cheese models by showing that the conversion of phenyl-
alanine to flavour compounds was enhanced by autolysis.
In a study by De Palencia et al. (2004), bacteriocin-
sensitive strains of L. lactis, with BcAA activity and α-
keto acid decarboxylase activity, were used as adjunct
together with a bacteriocin-producing (Lacticin 3147) L.
lactis strain in cheese making. In control cheese making, a
non-bacteriocin producing strain was used. The bacteriocin
produced enhanced lysis of the adjunct strains, which led to
an increase in isoleucine transamination. The concentration
of the flavour compound 2-methylbutanal was about
doubled again, indicating that increased aldehyde formation
can be obtained due to lysis.

Taken together, lysis appears to improve the conversion
rate of intermediates towards branched-chain aldehydes,
and this finding may also explain why a combination of
strains (with different enzyme activities for the pathway to
these aldehydes) can be an effective way to generate
branch-chain aldehydes in products like cheese.

Presence and impact of branch-chain aldehydes
in various food products

After having discussed pathways of formation of branched-
chain aldehydes and opportunities to influence and control
their formation, in this section, we focus on the impact of 3-
methyl butanal as flavour compound and its formation in
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various important foods. In a large number of foods, 3-
methyl butanal is a (key) flavour compound, and it is
mainly produced by the transaminase-initiated enzymic
pathway and by (non-enzymic) Strecker degradation. We
will only focus on those products that are subject to a
processing step (i.e. heating and fermentation) and not on
the presence of these aldehydes in products like tomato or
grain, where they can also be detected pre-harvest.

Bread/wheat/sourdough

Taste and smell are undoubtedly the most important attributes
determining the quality of bread or baked cereals in general. 3-
Methyl butanal, phenylacetaldehyde and 3-(methylthio)-
propanal are amino-acid-derived key flavour compounds in
bread (Schieberle 1996). They are formed essentially in two
ways: The enzymatic (Ehrlich) reaction is dominant in the
crumb, while the chemical Strecker degradation proceeds
fast in the crust during the baking process. Aldehyde
concentrations in the crumb generally are low, whereas in
the crust, a stronger (Strecker) formation of aldehydes 2- and
3-methyl butanal and 2-methyl propanal is observed during
baking (Zehentbauer 2001; Ruiz et al. 2003).

The type of starter cultures used in the fermentation
process and the fermentation regime (temperature, time, pH,
etc.) differs considerably between several bread types
resulting in large differences in 3-methyl butanal levels
(Zehentbauer 2001; Ruiz et al. 2003; Gänzle et al. 2007).
Sourdough breads are, in addition to bakers yeast, Saccha-
romyces cerevisiae, produced with lactic acid bacteria
(LAB), such as Lactobacillus, Leuconostoc, Pediococcus
and Streptococcus. The majority belongs to the genus
Lactobacillus, e.g. Lactobacillus sanfrancisco (Hansen and
Schieberle 2005). In sourdough breads, these LAB also
significantly influence the amounts of 3-methyl butanal and
many other odorants, e.g. acetic acid, butanoic acid, phenyl-
acetic acid, 2- and 3-methylbutanoic acid and pentanoic acid
(Czerny and Schieberle 2002; Gänzle et al. 2007; Van Der
Meulen et al. 2007). 3-Methyl butanal concentration in the
flour is low, and LAB may increase the concentration by a
factor of 4. In addition, yeast fermentation yields 3-methyl
butanal. The results of research on sourdough breads
suggested that, in some cases, no free leucine was left over
after fermentation, thereby indicating the need to form
sufficient amounts of the free amino acids during fermenta-
tion (Czerny and Grosch 2000; Hansen et al. 2001; Kirchhoff
and Schieberle 2002; Hansen and Schieberle 2005; Corsetti
and Settanni 2007; Corsetti et al. 2007).

Zehentbauer and Grosch (Zehentbauer 2001) observed, in
addition to differences in formation of Strecker aldehydes
depending on the ingredients and recipe used for bread
making, also differences in losses of 2-methyl propanal, 2-
and 3-methyl butanal. It can be assumed that the formation

and losses of both desired and undesired compounds
(leading to off-flavour) determine overall flavour balance
(Zehentbauer 2001; Czerny and Schieberle 2002).

In rice cakes, produced without fermentation, various
volatile flavour compounds were formed in the whole product
due to the baking process, including aldehydes 2- and 3-
methyl butanal (Buttery et al. 1999).

Chocolate/cocoa

The secret of the flavour of chocolate resides mainly in its
volatile aromatic fraction. At least 35 key aroma com-
pounds could be identified in chocolate (Counet et al. 2002;
Frauendorfer and Schieberle 2006). Three of those com-
pounds had a strong chocolate-like flavor: 2-methylpropa-
nal, 2-methylbutanal and 3-methyl butanal. Many others
were characterized by cocoa/praline-flavoured/nutty/coffee
notes, e.g. pyrazines (Counet et al. 2002).

The first processing step of cocoa beans involves
fermentation with LAB, acetic acid bacteria and yeasts
(Nielsen et al. 2007). This cocoa fermentation is crucial not
only to the formation of significant volatile fractions
(alcohols, esters and fatty acids) but also for the development
of cocoa–chocolate flavor precursors (amino acids and
reducing sugars). Cocoa is dried to minimize the formation
of moulds and to reduce the acid level and astringency of the
beans by decreasing the total quantity of polyphenols. Via
Maillard reactions, subsequent cocoa roasting converts flavor
precursors formed during fermentation to two main classes
of odorant compounds already mentioned: pyrazines and
aldehydes (Kattenberg and Kemming 1993). Concentrations
between 20 and 60 mg/kg have been found for 3-methyl
butanal (Ziegleder 1991).

Meat

For storage and preservation purposes, meat is treated in
various ways, of which some have a strong impact on flavour.
Examples are fermentation and drying. These processes may
yield significant levels of 3-methyl butanal. Two types of
starter culture, lactic acid bacteria and Micrococcaceae, are
often used in combination when producing fermented
sausages. Lactic acid bacteria, e.g. Lactobacillus sakei and
Pediococcus pentosaceus, cause a lowering of the pH,
thereby preventing growth of many pathogenic microorgan-
isms. The Micrococcaceae, e.g. S. xylosus and Staphylococ-
cus carnosus, are added due to their nitrate and nitrite
reductase activity, which assists in color formation (Lucke
1998; De Vos Petersen et al. 2004). Furthermore, the
Micrococcaceae also produce pleasant flavors, such as those
associated with the branched-chain aldehydes contributing
significantly to odor perception of the final product (Montel
et al. 1996).
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The microbial catabolism of leucine by LAB and
Staphylococcus species and by, e.g. Carnobacterium
species and Moraxella has been studied by various groups
(Montel et al. 1996; Stahnke 1999a,b; Marco et al. 2007).
Masson et al. demonstrated catabolism of leucine by S.
carnosus yielding 3-methyl butanal, 3-methyl butanol and
3-methyl butanoic acid (Masson et al. 1999). It appeared
that the preculture and incubation conditions strongly
influenced the level of production of the three metabolites.
The reactions yielding 3-methyl butanal were those already
described for LAB in the previous section (Fig. 1).
Oxidation of 3-methyl butanal then might yield 3-methyl
butanoic acid. In addition, direct oxidative decarboxylation
yielding 3-methyl butanoic acid from the keto acid was
suggested (Masson et al. 1999). Carnobacterium piscicola
is also able to form 3-methyl butanal and 3-methyl butanol
via α-ketoisocaproic acid (Larrouture-Thiveyrat and Mon-
tel 2003; Larrouture-Thiveyrat et al. 2003). Moraxella
phenylpuruvica degraded both leucine and phenylalanine
yielding 3-methyl butanal and benzaldehyde/benzacetalde-
hyde (Møller et al. 1998).

In dry-cured ham, 2- and 3-methyl butanal have been
associated with nutty, cheese and salty notes, e.g. in Parma
ham (Andres et al. 2002), Iberian ham (Andres et al. 2005)
and American country ham (Song et al. 2008). The
formation is probably non-enzymic via Strecker reaction,
since no fermentation takes place in the product. This is a
slow process, at temperatures applied during dry-cured ham
ripening, but long ripening times may facilitate this reaction
(Andres et al. 2002).

Soy fermentations

Soy sauce is traditionally used as seasoning in eastern Asia,
and its popularity in the Western part of the world is growing
due to its intense umami taste accompanied by a very
characteristic aroma (Steinhaus and Schieberle 2007). Japa-
nese soy sauce (shoyu) is traditionally produced by
fermentation of heated soybeans and wheat flour with
Aspergillus oryzae or Aspergillus sojae to koji. In the next
step, the koji is fermented with Pediococcus halophilus and
Zygosaccharomyces rouxii to yield moromi. Pressing of
moromi then yields the soy sauce, which is finally
pasteurized and bottled. For the aroma development of
Japanese soy sauce, all these steps are important. For
Chinese soy sauce, only soybeans but no cereals are used,
whereas Korean soy sauce is produced from soybeans,
barley meal, and various spices (Nunomura and Sasaki
1992). 3-Methyl butanal and 2-methyl butanal are amongst
the most important odorants in soy sauce and are thought to
be essentially produced by microbial action via both the
Ehrlich pathway and via amino-acid biosynthetic pathways
of branched-chain amino acids leucine, valine and isoleu-

cine. In addition to the aldehydes, the oxidation and
reduction products such as 3-methylbutanoic acid and (fusel)
alcohols are regarded as key aroma compounds (van der
Sluis et al. 2000, 2002; Steinhaus and Schieberle 2007).

Beverages

In beverages such as (fermented) black tea and coffee, 3-
methyl butanal is thought to be a key contributor to aroma
(Czerny and Grosch 2000; Kumazawa and Masuda 2001;
Wright et al. 2007). In wine, branched-chain alcohols, e.g.
isoamyl alcohol and isobutanol, are synthesised in the yeast
cell through the Ehrlich pathway by degradation of
branched-chain amino acids (Ehrlich 1907). Mitochondrial
and cytosolic enzymes of S. cerevisiae are involved in the
initial α-keto acid formation from the amino acids. A
decarboxylase converts the resulting α-keto acid to the
corresponding branched-chain aldehyde, e.g. 3-methyl
butanal, with one carbon-less atom, and the alcohol
dehydrogenase catalyses the NADH-dependent reduction
of this aldehyde to the corresponding fusel alcohol.
Alternatively, the aldehyde might be oxidised to a carbolic
acid (Derrick and Large 1993; Dickinson and Norte 1993;
Didion et al. 1996; Swiegers et al. 2005; Swiegers and
Pretorius 2005).

Although the branched-chain aldehydes are generally not
regarded as key flavour compounds in wine, in some wine
or wine products, 3-methyl butanal definitely contributes to
flavour, e.g. in Pedro Ximenez, Fino, botrytized Sauternes
and Cava wines that contain relatively high concentrations
of this aldehyde (Campo et al. 2008). Sherry wines and Port
may also have large amounts of branched aldehydes
(Cullere et al. 2007). Potential key aroma compounds of
freshly distilled Calvados and Cognac were 3-methyl
butanal and hexanal (Ledauphin et al. 2006a, b).

Beer is made by fermenting a malt extract with S.
cerevisiae. Malt is predominantly produced by germinating
barley followed by a drying process called kilning (Fickert
and Schieberle 1998). 3-Methyl and 2-methyl butanal were
determined as the most odor-active compounds in malt
(Zhou et al. 2002; Cramer et al. 2005). Nevertheless,
aldehyde levels in beer are usually low and increase over
shelf life. In aged beer, 2-methyl propanal, 2-methyl
butanal, 3-methyl butanal, pentanal, hexanal, furfural,
methional, phenylacetaldehyde, and (E)-2-nonenal can be
detected and are in some cases undesired (Vesely et al.
2003; Vanderhaegen et al. 2007).

Concluding remark

Branched aldehydes, such as 3-methyl butanal, are impor-
tant flavour compounds in many food products, both

994 Appl Microbiol Biotechnol (2009) 81:987–999



fermented and non-fermented (heat-treated) products.
Knowledge gained about the generation pathways of these
flavour compounds is essential for being able to control the
formation of desired levels of these aldehydes. Currently,
good examples of these are already implemented in
fermented food products such as cheese, and there is a
great potential to also implement this in other fermented
and non-fermented food products.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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