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Abstract

Branched-chain amino acids (BCAAs) are important nutrient signals that have direct and indirect 

effects. Frequently, BCAAs have been reported to mediate antiobesity effects, especially in rodent 

models. However, circulating levels of BCAAs tend to be increased in individuals with obesity 

and are associated with worse metabolic health and future insulin resistance or type 2 diabetes 

mellitus (T2DM). A hypothesized mechanism linking increased levels of BCAAs and T2DM 

involves leucine-mediated activation of the mammalian target of rapamycin complex 1 

(mTORC1), which results in uncoupling of insulin signalling at an early stage. A BCAA 

dysmetabolism model proposes that the accumulation of mitotoxic metabolites (and not BCAAs 

per se) promotes β-cell mitochondrial dysfunction, stress signalling and apoptosis associated with 

T2DM. Alternatively, insulin resistance might promote aminoacidaemia by increasing the protein 

degradation that insulin normally suppresses, and/or by eliciting an impairment of efficient BCAA 

oxidative metabolism in some tissues. Whether and how impaired BCAA metabolism might occur 

in obesity is discussed in this Review. Research on the role of individual and model-dependent 

differences in BCAA metabolism is needed, as several genes (BCKDHA, PPM1K, IVD and 

KLF15) have been designated as candidate genes for obesity and/or T2DM in humans, and distinct 

phenotypes of tissue-specific branched chain ketoacid dehydrogenase complex activity have been 

detected in animal models of obesity and T2DM.

Introduction

Branched-chain amino acids (BCAAs; that is, leucine, isoleucine and valine) are essential 

amino acids and BCAA supplementation or BCAA-rich diets are often associated with 
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positive effects on the regulation of body weight, muscle protein synthesis and glucose 

homeostasis. Leucine is a particularly important nutrient signal: levels of this BCAA 

increase in the circulation after consumption of a protein-containing meal. Despite these 

effects on metabolic health, studies have highlighted that along with blood sugar, insulin and 

certain inflammatory markers, increased fasting concentrations of circulating BCAAs are 

associated with an increased risk of type 2 diabetes mellitus (T2DM) and insulin resistance 

in humans and in some rodent models. This consistent observation in cross-sectional and 

prospective human studies, along with limited studies suggesting that BCAA 

supplementation leads to deterioration in insulin sensitivity, has prompted two questions. 

Firstly, are BCAAs or BCAA-rich diets harmful, helpful or neutral with respect to insulin 

and glucose homeostasis? And secondly, what is the aetiology of altered blood levels of 

BCAAs in the insulin-resistant state? This Review provides evidence that under most 

conditions, alterations in fasting blood levels of BCAAs in the obese insulin-resistant state 

result from changes in the rate of appearance and clearance of these metabolites, coupled 

with decreased activity of catabolic enzymes in some tissues compared with the insulin-

sensitive state. Perturbations in BCAA levels probably reflect the insulin resistant and 

T2DM ‘pathophenotypes’ and BCAAs themselves are probably not necessary or sufficient 

to trigger disease.

BCAAs and metabolic health

The results from a number of interventional studies have suggested that increasing dietary 

levels of BCAAs should have a positive effect on the parameters associated with obesity and 

T2DM, such as body composition, glycaemia levels and satiety. Direct and indirect 

mechanisms for these positive effects have been proposed. For example, leucine seems to 

have direct effects on hypothalamic and brainstem processes involved in satiety.1–22

In the gastrointestinal tract and in fat deposits, BCAAs regulate the release of hormones (for 

example, leptin, GLP-1 and ghrelin) that can potentially affect food intake and glycaemia 

levels.15,16,20,23–25 BCAAs and insulin are anabolic signals that alter the growth of energy-

consuming tissues, mediated in part through their ability to activate the mammalian target of 

rapamycin complex 1 (mTORC1) and protein kinase Cε (PKCε),26–34 as well as by 

decreasing protein breakdown through unknown mechanisms.27 Synthesis of muscle protein 

is thought to underlie the higher level of diet-induced thermogenesis (energy wasting) 

associated with protein consumption or BCAA infusion than that associated with other 

nutrients.35–40 Supplementation of BCAAs also seem to result in health benefits in a number 

of liver diseases.41–45 As a consequence, supplementation with BCAAs or a BCAA-rich diet 

is believed to improve metabolic health; an increase in the recommended dietary allowance 

for protein has been proposed, which would effectively increase dietary levels of 

BCAAs.7,13,20,22,46–51 Nevertheless, the idea that BCAAs or their supplementation might 

have a positive role in preventing metabolic disease is controversial.

Circulating BCAA levels and poor health

A number of observational studies indicate that elevated circulating levels of BCAAs are 

associated with poor metabolic health. Given the above cited studies suggesting health 

benefits of high levels of dietary BCAAs, it might seem paradoxical that levels of BCAAs 
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tend to be increased, not decreased, in insulin-resistant obesity and T2DM (Figure 1).52–71 

Such increases are consistently observed in patients with T2DM or obesity and in some 

rodent models of obesity or T2DM.59,63,72–75 Furthermore, increased levels of BCAAs have 

been linked to the metabolic syndrome and cardiovascular disease.59,60,76–78 In clinical 

studies, increased blood levels of BCAAs positively correlate with insulin resistance,63,79 

HOMA index79 and levels of HbA1c (Figure 1).66,79 Several longitudinal studies in different 

cohorts have reported that increased blood levels of BCAAs are predictive of future insulin 

resistance or T2DM,54,62 which has led to speculation about a potential causative role for 

BCAAs. Although these associations are consistently observed in human populations, the 

mechanisms underlying the relationship remain to be fully established. Another issue is that 

when circulating levels of BCAAs increase, it is possible that they compete with the uptake 

of amino acid precursors of dopamine and 5-hydroxytryptamine in the brain.80–83 Although 

speculative, loss of these precursors could contribute to the increased risk of depression in 

individuals with obesity.84,85

Processes affecting circulating BCAA levels

To understand the seemingly conflicting findings regarding circulating BCAA levels and 

health it is helpful to appreciate the processes that contribute to BCAA rates of appearance 

(Ra) and disappearance (Rd) in the blood. Processes contributing to Ra include food intake 

and tissue protein degradation. However, in the case of the frequently reported association 

between blood levels of BCAAs and insulin resistance, the phenotype is not due to recent 

(for example, within a few hours) overeating, as almost all studies were conducted in the 

overnight-fasted state. That is not to say that overeating is not a culprit in obesity, but rather 

that other processes affecting the BCAA Ra and/or Rd are responsible for the plasma BCAA 

concentration in fasting individuals, including those with obesity.

Regulation of protein degradation can occur through changes in autophagy or proteasomal-

mediated degradation. Rates of protein degradation in muscle and liver can be inhibited by 

insulin, insulin-like growth factor 1 (IGF-1) and BCAAs via impairment of autophagy 

mediated by mTORC1 and AKT (also known as PKB)27,86–92 and the ubiquitin proteasomal 

pathway.29,87,93–99 Indeed, whereas insulin is able to stimulate protein synthesis in newborn 

pigs,100 in adult humans there is what has been called a ‘specific effect’ of insulin on protein 

degradation.101 Consistently, amino acids but not insulin stimulated protein synthesis in leg 

muscle, whereas insulin but not amino acids attenuated the breakdown of proteins in the leg 

muscles of humans.99 BCAAs and insulin usually act additively or synergistically to activate 

mTORC1. This additivity, in addition to the more specific action of insulin on protein 

degradation, might explain the finding that despite elevated BCAA levels, protein 

degradation is frequently increased in fasting individuals with obesity and insulin resistance, 

and in those with poorly controlled T2DM.61,73,102–106 It is tempting to speculate that 

elevated protein degradation might be attenuated by providing additional BCAAs in the diet 

(rather than by avoiding them), as even overnight infusion of BCAAs caused sustained 

decreases in muscle protein degradation.107

The major processes affecting the BCAA Rd include protein synthesis, excretion and BCAA 

catabolism and/or oxidation. As already mentioned, insulin and amino acids stimulate 
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protein synthesis during growth in newborn pigs.100 In weight-stable adult humans, this 

effect of insulin is either less important or not apparent (even though protein degradation is 

affected), whereas amino acids and IGF-1 stimulate protein synthesis in adult humans.101 

Counterintuitively, in insulin-resistant obesity and untreated T2DM, several studies have 

suggested that synthesis of muscle protein is either unchanged or increased.61,102–106 In 

these situations, muscle mass can decrease because protein degradation is increased more 

than protein synthesis. BCAA excretion could also be affected by insulin-resistant obesity, 

owing to the increased levels of circulating amino acids,73 but the degree to which this 

process is affected in humans remains to be established. BCAA oxidation is discussed 

further later.

Branched-chain aminoacidaemia and T2DM

Despite evidence that elevated levels of BCAAs predict future insulin resistance or T2DM, 

it is still unclear whether BCAAs are a causative factor in insulin resistance and T2DM or 

just a biomarker of impaired insulin action. In terms of the uptake of amino acids by the 

central nervous system, it is also unclear whether obesity causes depression or whether 

reverse causality exists;108 causation versus association is an important distinction. If 

BCAAs improve satiety, cholesterolaemia, glycaemia and lean mass, supplementation with 

BCAAs might be of therapeutic value. Two potential mechanisms explaining how BCAAs 

might contribute to insulin resistance in obesity and T2DM have emerged (Figures 2 and 3). 

The first mechanism proposes that an excess of dietary BCAAs activates mTORC1 

signalling, which leads to insulin resistance and T2DM. The second mechanism has its 

origins in studies of maple syrup urine disease (MSUD) and organic acidurias. This 

alternative mechanism proposes that in animal models or in individuals with impaired 

BCAA metabolism (referred to as BCAA dysmetabolism), increased levels of BCAAs are a 

biomarker of impaired metabolism; however, BCAA dysmetabolism also leads to the 

accumulation of toxic metabolites that cause mitochondrial dysfunction in pancreatic islet β 

cells (or elsewhere) and is associated with insulin resistance and T2DM.

Role of mTORC1

Persistent nutrient signalling might cause insulin resistance by BCAA activation of the 

mTORC1 signalling pathway (Figure 2).59,60,109,110 Persistent activation of the serine 

kinases S6K1 and mTORC1 promotes insulin resistance through serine phosphorylation of 

insulin receptor substrate (IRS)-1 and IRS-2, which might occur in response to persistent 

hyperinsulinaemia or aminoacidaemia. In essence, the theory proposes that over time, the 

increased demand for insulin from impaired insulin action, along with inflammation and 

lipotoxicity associated with insulin resistance, elicits hyperinsulinaemia and exhaustion of 

the β cells. Eventually euglycaemia can no longer be maintained and T2DM becomes 

evident.

Currently, it is unclear if this putative effect of BCAAs occurs in humans and to what extent 

other potential mediators besides BCAAs contribute to this scenario. Furthermore, while 

some experimental evidence supports this model, a number of observations do not support 

the concept of BCAA activation of mTORC1 as being necessary and sufficient to elicit 

insulin resistance. Firstly, although increases in BCAAs are associated with mTORC1 
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signalling in skeletal muscle, this pathway is also activated by exercise, a known factor in 

the prevention and regression of insulin-resistant and T2DM phenotypes. Secondly, 

supplementing or increasing circulating levels of BCAAs is associated with metabolic 

improvements despite increased mTORC1 signalling.21,111 Thirdly, in contrast to studies 

where large doses of leucine were orally administered,28 it is unclear whether the small 

changes in BCAA levels observed in patients with obesity and insulin-resistance are 

sufficient to independently affect serine phosphorylation of IRS-1 and IRS-2 (or to what 

extent other factors such as insulinaemia or inflammatory mediators might contribute to 

these phosphorylations). For example, individuals with morbid obesity have raised levels of 

BCAAs that normalize after gastric bypass surgery;72,112–114 however, mTORC1 activation 

in muscle did not change after gastric bypass surgery in a longitudinal study.113 Fourthly, 

isoleucine has been reported to reduce plasma levels of glucose by stimulating glucose 

uptake in skeletal muscle by an unknown mechanism.115,116 Similarly, an analogue of 

isoleucine (4-hydroxyisoleucine) increased the glucose Rd in euglycaemic 

hyperinsulinaemic clamp studies.117 Finally, in adipose tissue, mTORC1 is important for the 

increase in fat cell mass associated with the positive effects of PPAR-γ agonists on whole 

body insulin sensitivity.118

Although the focus of the mTORC1 hypothesis is on activation of mTORC1 in skeletal 

muscle, to the best of our knowledge none of the more recently described candidate genes 

for obesity, HbA1c and T2DM seem to be involved in activation of the mTORC1 signalling 

pathway.119–121 Most T2DM candidate genes are thought to exert their actions in pancreatic 

islets, not in skeletal muscle.119 However, rather than causing T2DM, activation of 

mTORC1 in β cells has been linked to avoidance of T2DM, which is associated with 

compensatory increases in islet and β-cell mass.122–128 Adverse effects of the mTORC1 

blocker, sirolimus, have consistently included two hallmarks of the metabolic syndrome, 

hyperglycaemia and dyslipidaemia, along with new onset diabetes after 

transplantation.122–125,129 Those actions might be secondary to the ability of rapamycin to 

inhibit mTORC1 and to interfere with mTORC2 assembly over time, which in turn can 

affect AKT activity.126–128 Both the impaired peripheral resistance that occurs in response 

to chronic rapamycin treatment and a second effect on islets that impairs their ability to 

produce sufficient insulin are thought to underlie new onset diabetes after transplantation.129 

Thus, a number of studies do not support the notion that sustained activation of mTORC1 

promotes islet dysfunction or T2DM.122

BCAA dysmetabolism

In addition to the ‘persistent activation of mTORC1’ mechanism, there is a second 

hypothetical mechanism explaining how increased levels of BCAAs might be causally 

linked to insulin resistance and T2DM. Impairments in BCAA metabolism (BCAA 

dysmetabolism) could result in the accumulation of potentially toxic intermediates that 

impair cellular function. Individuals or animal models with a phenotype of impaired or 

incomplete BCAA metabolism might thereby have increased susceptibility to insulin 

resistance or T2DM. According to this model,75 an accumulation of toxic BCAA 

metabolites (rather than BCAAs themselves) contributes to β-cell mitochondrial dysfunction 
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and eventually the apoptosis of β cells that accompanies T2DM (Figure 3). Nevertheless, 

elevated levels of BCAAs would be evident with such dysfunction.

The BCAA metabolic pathway—The first step in the metabolism of BCAAs in most 

peripheral tissues, except the liver, is catalysed by the mitochondrial isoform of branched-

chain-amino-acid transaminase, BCAT(m), encoded by the BCAT2 gene. One piece of 

evidence supporting a putative mechanism of BCAA dysmetabolism derives from the 

phenotype of BCAT2−/− mice. Deletion of BCAT2 largely prevents BCAA metabolites from 

forming in peripheral tissues. Rather than exhibiting insulin resistance as might be expected 

from the mTORC1 persistent activation mechanism (Figure 2), BCAT2−/− mice exhibit 

greatly improved glycaemic control, insulin sensitivity, adiposity and lipid profiles, despite 

overall increased mTORC1 signalling and increased energy expenditure (Box 1).111 One 

caveat is that at least some of the improvements in glycaemic control in BCAT−/− mice 

probably result from the loss of gluconeogenic precursors, a reflection of the important role 

that muscle transaminases have in generating gluconeogenic substrates for the liver (Box 1).

Box 1

Genetic findings in first two steps of BCAA metabolism

BCAT(m)

• Bcat2−/− mice have increased levels of BCAAs and decreased levels of 

BCKAs111

• Bcat2−/− mice have improved glycaemic control (indicating a role of BCAT(m) 

in gluconeogenesis), glucose tolerance and insulin sensitivity111

• Bcat2−/− mice display decreased adiposity and increased thermogenesis111

BCKDH complex

• Human mutations in components of the BCKDH complex lead to MSUD183–186

• Individuals with MSUD and MSUD animal models exhibit both elevated levels 

of BCAAs and BCKAs166,184–187

• Addition of BCKAs, which are elevated in MSUD, to cells results in oxidative 

stress and mitochondrial dysfunction130–133,188

• Fibroblasts and neural cells derived from individuals with MSUD undergo 

apoptosis when BCKAs are added134,135

• BCKDHA has been described as a primary susceptibility gene for both obesity 

and T2DM120

BCKDK

• BCKDK transgenic overexpressing cells undergo cell death when leucine is 

added136
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• Increasing BCKDK protein levels in animals would be expected to increase 

plasma concentrations of both BCAAs and BCKAs, but no viable BCKDK 

transgenic animals have been reported

PPM1K

• Ppm1k−/− mice have increased levels of BCAAs and BCKAs137,151

• Mutation in human PPM1K leads to an intermittent form of MSUD138

• PPM1K has been described as a T2DM susceptibility gene in human islets165

• Allelic variation near PPM1K was associated with poorer glycaemic control and 

body weight response in the POUNDS LOST trial167

• Cells from an individual with defective PPM1K and Ppm1k−/− mice display 

changes frequently linked to obesity, insulin resistance and T2DM, such as 

increased lipotoxicity and lipid peroxidation, increased oxidative stress (ROS 

generation and mitochondrial permeability transition pore opening), increased 

apoptosis and stress kinase activation (JNK and p38)137–140,166

Abbreviations: BCAA, branched-chain amino acid; BCAT(m), branched-chain amino 

acid transaminase, mitochondrial; BCKA, branched-chain α-keto acid; BCKDH; 

branched-chain α-keto acid dehydrogenase; JNK, c-Jun N-terminal kinase; MSUD, 

maple syrup urine disease; p38, mitogen-activated protein kinase p38; ROS, reactive 

oxygen species; T2DM, type 2 diabetes mellitus.

After BCAT(m), the next step in the BCAA metabolic pathway is rate-controlling and the 

first irreversible step in BCAA metabolism. This step is catalysed by the multienzyme 

mitochondrial branched-chain α-ketoacid dehydrogenase complex (BCKDC), which results 

in the oxidation of BCAAs to their respective ketoacids (Figure 4). BCKDC activity is 

inhibited by phosphorylation at a single site by the specific kinase, branched-chain α-

ketoacid dehydrogenase kinase (BCKDK, Figure 4). Conversely, BCKDC is activated by 

the mitochondrial isoform of protein phosphatase 1K (PPM1K, also known as PP2CM, 

Figure 4). A number of metabolic factors altered in obesity, insulin resistance and T2DM 

affect the activity and expression of these enzymes (Table 1). Mutations in genes encoding 

subunits of BCKDC or in PPM1K can lead to MSUD—a potentially lethal disease that 

results in elevated levels of BCAAs and branched-chain α-ketoacids (BCKAs, Box 1), the 

latter of which are widely believed to be the toxic factor in the disease.

The putative BCAA dysmetabolism mechanism is also supported by studies in which either 

several BCKAs or the α-ketoacid of leucine, α-ketoisocaproate (α-KIC), are added to cells, 

and by data from mouse models of altered BCKDC metabolism.130–141 Consistently, the 

addition of BCKAs to glial cells or to the cerebral cortex increases lipid peroxidation and 

oxidative stress leading to mitochondrial bioenergetic dysfunction.130,131,141 The ability of 

BCKAs to cause mitochondrial dysfunction extends beyond the brain. For example, BCKAs 

inactivate pyruvate dehydrogenase in rat liver and strongly inhibit pyruvate dehydrogenase 

and α-ketoglutarate dehydrogenase in the heart132,133,141 and cause apoptosis when added to 

fibroblast and neural cells isolated from patients with MSUD.134,135 Further support for the 
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BCAA dysmetabolism mechanism is derived from studies on human or mouse cells with 

altered BCKDC activity (Box 1). Cells from patients with classic or intermittent MSUD and 

mouse cells with disrupted expression of PPm1K and BCKDK exhibit toxic cellular changes, 

including mitochondrial dysfunction and/or apoptosis (Box 1 and Figure 4). For example, in 

cells expressing a BCKDK transgene, cell death occurs when leucine is added, presumably 

due to its rapid conversion to, and the subsequent accumulation of, α-KIC.136 Consistently, 

mutation or deletion of PPM1K results in a mild increase in levels of BCAAs in humans and 

mice, which nevertheless increases lipid peroxidation, lipotoxicity, oxidative stress, 

mitochondrial transition pore opening and apoptosis, along with the activation of the stress 

kinases JNK and p38.137–140 All of the above-mentioned factors are generally believed to be 

involved in insulin resistance and in the pathogenesis of T2DM. However, it must be 

emphasized that blood levels of BCKAs in these conditions are modest compared with those 

in individuals with MSUD, and elevations in circulating levels of BCKAs in individuals 

with insulin resistance and in animal models of obesity are not universally observed.63

The products of BCKDC activity are branched-chain acyl-Coenzyme A (CoA) species that 

are further metabolized by multiple mitochondrial-matrix enzymatic steps, eventually 

leading to the formation of lipogenic, ketogenic or gluconeogenic substrates (in liver), such 

as acetoacetyl-CoA, acetyl-CoA and propionyl-CoA (Figure 4). Acyl-CoAs can be 

converted to acylcarnitines, which in turn can be transported out of the mitochondria and 

cells. Acylcarnitines can be assayed in plasma or urine as reporters of the status of 

mitochondrial metabolism involving CoA species. A number of BCAA-derived 

acylcarnitines are increased in individuals with insulin-resistant obesity or 

T2DM.59,60,73,113,142–144 Clinically, urine and blood levels of acylcarnitines are used to 

detect organic acidurias. Similar to MSUD, organic acidurias can result in mitochondrial 

dysfunction, albeit the mechanism for the latter is not entirely obvious.145 In part, the idea 

that accumulations of acyl-CoA species are potentially toxic originates from the disorders 

caused by these inborn errors of metabolism. However, as with BCKAs, it is uncertain 

whether levels of acyl-CoA species reach sufficient concentrations in insulin-resistant states 

to cause mitochondrial dysfunction.

Impaired mitochondrial BCAA metabolism—One of the most robust and consistent 

changes in obesity, regardless of the model, is a marked decrease in adipose tissue 

expression of genes involved in BCAA metabolism;63,72,74,143,146–150 however, the 

mechanisms underlying these changes remain to be defined. Changes in adipose tissue 

concentrations of these proteins in obesity coincide with the above-cited reduced gene 

expression levels, at least in the first two steps in metabolism that have been examined in 

Zucker rats and ob/ob mice. In the Zucker rat, the losses in BCAT(m) and BCKDC E1-α are 

quite large even when changes in adipose tissue mass are considered.72,73 Thus, it has been 

proposed that decreased BCAA metabolism in fat contributes to increased plasma levels of 

BCAAs in individuals with insulin-resistant obesity or untreated T2DM,63,72,73,143 and that 

visceral adipose tissue, in particular, might have an important role in this regard.63 

Consistent with the latter view, BCAA catabolic enzyme gene expression in visceral adipose 

tissue strongly correlates with insulin sensitivity and is reduced in individuals with the 
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metabolic syndrome and obesity compared with control individuals with similar levels of 

obesity but who do not have the metabolic syndrome.63,150

However, there is a caveat for this proposal given that whole-body BCAA metabolism 

demonstrates considerable interorgan dependence. A demonstration of interorgan 

dependence comes from studies in patients with MSUD as well as from mouse models of 

MSUD. In these studies, transplantation of normal tissue (such as liver or adipose tissue) 

largely compensates for the loss of BCAA metabolism in the other tissues of the 

metabolically impaired mice or patients with MSUD and this leads to considerable 

reductions in plasma levels of BCAAs.74,151,152 This reduction is assisted, in part, by the 

fact that BCKDC is activated in the transplanted tissue by the elevated circulating α-KIC 

levels found in patients with MSUD. Thus, in individuals with intact metabolism, a high 

BCAA intake should be well-tolerated because of the reserve capacity of BCKDC in the 

body and the fact that BCKDC is activated by excess substrate under normal conditions.153 

Loss of BCAA metabolism in one organ, such as fat, might be associated with normal or 

increased metabolism in other tissues, unless those other tissues exhibit some form of 

mitochondrial dysfunction, as is common in insulin-resistant obesity or T2DM. As described 

later, two such phenotypes have been observed in animal models of obesity associated with 

changes in hepatic BCKDC.75

The issue of whether or not organs other than adipose tissue have altered BCAA metabolism 

in insulin resistant or T2DM states is starting to be addressed. For example, spectral analysis 

has revealed decreased expression of two enzymes involved in valine and isoleucine 

metabolism in muscle of patients with T2DM (Figure 4).154 Similarly, in Goto–Kakizaki 

rats, expression of 3-hydroxyisobutyrate dehydrogenase, the protein encoded by the Hibadh 

gene in rats, was reduced by >50% in skeletal muscle (Figure 4).155 This protein catalyses a 

step in valine metabolism (Figure 4) and impairment of this enzyme in humans is associated 

with an accumulation of 3-OH-butyryl-CoA and 3-OH-butyrylcarnitine; loss of this 

enzymatic step can have toxic effects.156 In another study, male individuals with obesity and 

T2DM, but not similarly affected female individuals, exhibited considerably reduced 

BCKDC protein concentrations.157

However, several challenges exist in addressing whether whole-body or tissue-specific 

BCAA metabolism is increased or decreased in states of insulin-resistant obesity and T2DM. 

Interpretive problems arise when comparing tissues or even whole-body metabolism from 

individuals with different body compositions (a problem that has also affected the 

calorimetry field158). For example, the size of the liver is approximately twofold higher in 

obese compared with lean Zucker rats (livers from obese Zucker rats are also more lipid 

laden than those from lean Zucker rats) and the contribution of adipose tissue increases even 

more and the muscle mass declines further in obese Zucker rats than in lean Zucker rats.73 

In the case of tissues from individuals with and without obesity, should each tissue be 

considered as a ‘pool’ of enzyme activity? Thus an important question is which denominator 

or normalizer is appropriate when measuring tissue levels of BCAA enzymes when the body 

size and composition are different.
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Other issues also present themselves when analysing whole-body BCAA metabolism in 

individuals with T2DM or insulin resistance, with or without obesity. In addition to the Rd 

from oxidative metabolism, several processes contributing to the Ra and Rd of BCAAs are 

likely to be altered. If these changes are dramatic they can confound efforts to develop a 

simple interpretation of BCAA oxidation data.73 Another issue in whole-body metabolism is 

related to the choice of using either leucine or α-KIC specific activities for leucine isotope 

studies. After priming the bicarbonate pool with isotope, α-KIC rather than leucine-specific 

activity or enrichment is frequently used to monitor muscle or whole-body protein synthesis 

and turnover,159,160 as α-KIC is believed to better represent the intracellular pool of leucine 

in skeletal muscle (the frequent focus of this methodology and where there is considerable 

BCAT(m) activity to interconvert BCAAs and BCKAs).159 However, considerable BCKA 

oxidation takes place in the liver, which lacks BCAT(m). In Zucker rats, the obese:lean 

ratios of BCAA and BCKA levels are different in plasma and muscle;73 although the 

obese:lean BCAA level ratio is similar in liver, the ratio for BCKA levels is far more 

increased in liver than in plasma and skeletal muscle. Neglecting the specific activity 

problem, another issue is still what denominator should be used for calculating rates of 

leucine oxidation and appearance, and the tissue-specific rates of protein synthesis when 

body compositions are different. Thus, the body composition factors comparing individuals 

with and without obesity create interpretive dilemmas that need to be considered.

With regard to branched-chain α-keto acid dehydrogenase (BCKDH) activity or 

phosphorylation (inactivation), there currently seems to be two responses evident in animal 

models of insulin-resistant obesity (Figure 5). The first phenotype is exemplified by animal 

models of insulin-resistant obesity, such as Lepob/ob mice, obese Zucker rats, ZDF rats and 

Otsuka Long–Evans Tokushima Fatty rats.72,73,161,162 Along with the usual reductions in 

BCAA metabolic pathways in adipose tissue, these animals exhibit impaired active or total 

BCKDC activity in the liver. Considering that BCKDC activity is regulated by 

phosphorylation, it is possible to measure its activity in isolated tissues, in comparison to 

how much the activity might be if the enzyme was fully active—the total activity. Total 

activity is measured after the enzyme is treated with a phosphatase that removes the 

inhibitory phosphorylations on the E1-α subunit of BCKDC in homogenates. The impaired 

hepatic activity of BCKDC in obese Zucker rats is explained in part by increased expression 

of BCKDK. In obese Zucker rats, a global reduction in BCKDC activity is evident in fat, 

liver, kidney, skeletal muscle and heart, compared with activity in lean animals.72 This 

generalized diminution is associated with greatly increased levels of BCKAs and 

alloisoleucine—the pathognomonic biomarker of MSUD.75

The second putative phenotype is demonstrated by rodents with diet-induced obesity. 

Whereas this model is characterized by reduced levels of BCAA enzymes in fat,63 other 

studies show that liver BCKDH activity is actually increased and could compensate for the 

reduced activity in fat.163 Consistently, the lean versus obese differences in plasma levels of 

BCAAs are much lower in the model of diet-induced obesity than in Zucker rats.163 

Extrapolating, it is tempting to speculate that individuals could also have different 

phenotypes in this regard. It has been proposed that human studies focusing more carefully 

on alloisoleucine might be useful in determining where these two phenotypes manifest in 
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patients with insulin-resistant obesity or T2DM.75 This approach would be more practical 

than measuring BCKDC activity in muscle and liver biopsy samples. However, in a biopsy 

study, human livers from male individuals with obesity or obesity and T2DM had lower 

expression levels of BCKDC protein than control lean male individuals; female individuals 

were not affected.157 Thus, compared to the diet-induced obesity model163 the decrease in 

BCKDC in male Zucker rats72,73 might more closely model male human obesity and T2DM. 

The finding that female individuals did not show any changes in BCKDC levels is consistent 

with the idea that different phenotypes in hepatic BCKDC might occur in various obesity 

models. Further studies on how BCKDC activity is affected in other tissues of individuals 

with obesity and T2DM and between different animal models and the effect of sex is 

needed.

Finally, other evidence that BCAA catabolism is altered in obesity is derived from the 

observed increases in levels of BCAA-related acylcarnitines mentioned 

earlier.59,60,73,113,142–144 One interpretation of these increases is that they reflect increased 

BCAA metabolic flux,59 a reasonable hypothesis given that the substrates for BCAA 

metabolism are increased in states of obesity. However, a caveat is that, as mentioned 

earlier, acylcarnitine profiles are used clinically, not to determine accelerated metabolism, 

but rather to detect defects in metabolism (for example, organic acidurias). Notably, in 

human skeletal muscle mitochondria isolated from individuals with insulin-resistant obesity, 

spectral analysis shows a reduction of ~50% in transcript levels of PCCB (encoding 

propionyl-CoA carboxylase β chain, mitochondrial) and ALDH6A1 (encoding 

methylmalonate-semialdehyde dehydrogenase [acylating], mitochondrial), consistent with 

impaired BCAA metabolism (Figure 4).154 Further studies are needed to understand the 

mechanisms underlying the increased levels of BCAA-related acylcarnitines in states of 

T2DM and insulin-resistant obesity.

Altered BCAA metabolism in disease states—Attenuation of complete 

mitochondrial BCAA metabolism, if it should occur in states of insulin resistance or T2DM, 

could occur by several mechanisms (Figure 3), the simplest of which involves altered gene 

expression, mutations or epigenetic factors that affect gene expression. Seven independent 

computational disease-prioritization methods have been applied to 9,556 positional 

candidate genes for obesity and T2DM.120 This approach identified nine primary candidate 

genes for T2DM and five for obesity, together with 94 secondary candidates for T2DM and 

116 for obesity. BCKDHA, the gene encoding the regulated subunit of BCKDC was only 

one of two primary susceptibility genes identified that affected the risk of both T2DM and 

obesity (Figure 4).120 IVD, encoding isovaleryl-CoA dehydrogenase, which catalyses the 

next step in leucine metabolism, was identified as a secondary T2DM susceptibility gene 

(Figure 4).

In 2009, PPM1K was identified as the BCKDHA phosphatase.137,164 A later report, 

attempting to identify T2DM susceptibility genes,165 examined global gene expression 

profiles of 63 islet donors with or without T2DM and compared this to 48 known genes 

located near known risk variants of T2DM (Figures 3 and 4). Decreased expression of 

PPM1K was observed in islets from individuals with T2DM. PPM1K was selected as one of 

the top 20 candidate genes for further study. Knockdown of PPM1K in rat INS-1 cells 
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impaired glucose-stimulated insulin secretion and activated apoptosis (Figures 3 and 4, Box 

1).165 Thus, PPM1K has been designated as a T2DM susceptibility gene in islet β cells. In 

another study, elevated circulating valine levels and the ratio of BCAA levels to the 

phenylalanine plus tyrosine concentration were found to be associated with a human single-

nucleotide polymorphism called rs1440581.166 RS1440581 is located upstream of PPM1K. 

Subsequently, an analysis of POUNDS LOST trial participants on an energy-restricted high-

fat diet who had the C allele of rs1440581 had poorer weight loss outcomes as well as less 

improved insulin sensitivity than those missing this allele. (Box 1 and Figure 3).167 Further 

studies are needed to determine if the rs1440581 polymorphism does indeed affect PPM1K 

expression.

Obesity and/or insulin resistance are known to disrupt circadian homeostasis.168–172 

Krueppel-like factor 15 (encoded by the KLF15 gene) is a master regulator of glucose and 

amino acid metabolism (including BCAA metabolism)119,173 that is differentially expressed 

in the muscle and fat of overweight individuals with insulin resistance174 and is thought to 

regulate circadian nitrogen homeostasis. KLF15 or idiosyncratic responses to it could be 

another factor in altering BCAA metabolism in insulin-resistant obesity (Figure 3).

Other factors altered by states of obesity and T2DM regulate BCKDC activity in the short 

and long term (Table 1). Unfortunately, many of these factors have only been studied in a 

single tissue; an important limitation, as tissue specific regulation has been observed for 

some factors (Table 1). Thus, it is difficult to predict how some of these regulators affect 

BCKDC activity in other tissues. It is not immediately obvious from looking at these 

regulators how the known changes in insulin-resistant states and T2DM might additively 

work to alter BCAA metabolism or bring about different BCKDC activity phenotypes 

(Figure 5). However, an interesting point is that long-chain fatty acids and their metabolites, 

which are elevated in insulin-resistant states and T2DM, inhibit BCKDC activity either by 

affecting redox states or acetyl-CoA concentrations.98,143,175–181 Increased free fatty acid 

metabolism has also been linked to the increased generation of reactive oxygen species, 

which leads to the formation of reactive lipid aldehydes.178–181 Proteomic studies have 

revealed that enzymes in the BCAA metabolic pathway are carbonylated (for example, by 

the action of 4-hydroxynonenals) following oxidative stress, which could potentially impair 

their enzymatic activity (Figure 4).178–181 The increased availability of free fatty acids and 

their ability to directly or indirectly inhibit BCAA metabolism in mitochondria (for example, 

through oxidative stress associated carbonylation) could be a factor linking increased free 

fatty acid levels to the BCAA dysmetabolism model presented here (Figure 3), and 

discussed elsewhere.143

Conclusions

Although a number of studies have suggested that BCAA supplementation or BCAA-rich 

diets are beneficial for promoting lean body mass in obesity or catabolic disorders, or for 

increasing satiety for body weight loss, acceptance of this idea has been tempered by the 

associations between increased circulating levels of BCAAs and insulin-resistant obesity 

and T2DM, as well as the observations that these increases might predict future insulin 

resistance or T2DM. Two mechanisms have been proposed that could explain how elevated 
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levels of BCAAs might be linked to metabolic disease. One involves the persistent 

activation of the nutrient sensing complex, mTORC1. However, numerous observations 

indicate that BCAA-associated mTORC1 activation is not necessary or sufficient to trigger 

insulin resistance. A BCAA dysmetabolism model suggests that those individuals or animal 

models with the highest plasma levels of BCAAs (that correlate more closely with metabolic 

dysfunction) might have impaired BCAA metabolism that adds to the contribution of 

BCAAs resulting from protein degradation in insulin resistant states. In contrast to the 

mTORC1 mechanism, the BCAA dysmetabolism model assumes that it is the accumulation 

of BCAA metabolites that result in dysfunction and that the increased BCAA levels are 

simply reporters of that accumulation. Inborn errors of metabolism and accumulation of 

BCAA metabolites can cause mitochondrial dysfunction associated with stress kinase 

activation and β-cell apoptosis—factors that are frequently associated with insulin resistance 

and T2DM.

Alternatively, BCAA dysmetabolism or incomplete oxidation (of isoleucine and valine, in 

particular) might promote anaplerotic stress and an anaplerosis–cataplerosis imbalance that 

contributes to suboptimal mitochondrial function in states of T2DM.66,142 These concepts 

remain speculative but warrant further study. Even though rodent models of obesity and 

humans with insulin resistance universally exhibit reduced levels of BCAA metabolic 

enzymes in fat compared with metabolically healthy controls, (Figure 5) there is emerging 

evidence that these reductions in adipose tissue BCAA metabolic capacity might either 

extend to other tissues (phenotype A) or be compensated for by increased BCKDC activity 

in the liver (phenotype B). If these phenotypes exist in humans (as seems to be the case on 

the basis of the results of a recent study157)some individuals might have more global 

reductions in BCAA metabolic capacity that could contribute to increasing circulating levels 

of BCAAs to the higher ranges that have an increased association with the development of 

future T2DM and insulin resistance. To determine whether different BCAA metabolic 

phenotypes affecting multiple tissues exist in humans, a strategy using alloisoleucine has 

been proposed.75 Further research is needed to elucidate the contributions of various 

processes, such as tissue uptake, oxidation and lean mass catabolism, in mediating the 

increased levels of BCAAs found in individuals with insulin resistance and T2DM and to 

understand the molecular mechanisms underlying the cellular responses to dysfunctional 

BCAA metabolism.

In summary, although mechanisms have been proposed that might explain how increased 

BCAA levels could lead to insulin resistance or obesity, it should be appreciated that 

increased BCAA levels are more likely to be a marker of loss of insulin action and not, 

themselves, causative.
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Key points

• Branched-chain amino acids (BCAAs) have beneficial nutrient signalling effects 

but paradoxically are associated with obesity, insulin resistance and type 2 

diabetes mellitus (T2DM)

• BCAAs might be a marker of, rather than, a cause of insulin resistance, as 

insulin resistance increases the rate of appearance of BCAAs and is linked to 

reduced expression of mitochondrial BCAA catabolic enzymes

• Alternatively, two mechanisms have emerged indicating that a causative link 

exists between increased plasma concentrations of BCAAs and T2DM or insulin 

resistance

• In the first mechanism, persistent activation of the mammalian target of 

rapamycin complex 1 signalling pathway uncouples the insulin receptor from 

the insulin signalling mediator, IRS-1, which leads to insulin resistance

• In the second mechanism, abnormal BCAA metabolism in obesity results in 

accumulation of toxic BCAA metabolites that in turn trigger the mitochondrial 

dysfunction and stress signalling associated with insulin resistance and T2DM

• Factors that alter expression of genes involved in the BCAA metabolic pathway 

(or post-translational modification of the encoded proteins) are associated with 

obesity and T2DM; three genes in the pathway are candidate genes for obesity 

and/or T2DM
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Review criteria

PubMed and Google Scholar were searched for English language articles published 

between 1968 and 2014 using the following search terms alone and in combination: 

“ACAD8”, “ACADS”, “ACADSB”, “ACAT1”, “ACAT2”, “ACDASB”, 

“acylcarnitines”, “adipose tissue”, “ALDH6A1”, “amino acids”, “AUH”, “autophagy”, 

“BCAT2”, “BCATm”, “BCKDHA”, “BCKDHB”, “BCKDK”, “branched chain amino 

acids”, “branched chain keto acids”, “branched chain ketoacid dehydrogenase”, 

“candidate gene”, “cholesterol”, “DBT”, “dehydrogenase”, “diabetes mellitus”, “DLD”, 

“ECHS1”, “HADHA”, “HbA1c”, “haemoglobin A1C”, “HIBADH”, “HIBCH”, 

“HMGCL”, “HSD17B10”, “hypothalamic”, “IGF-1”, “inborn”, “inborn errors of 

metabolism”, “insulin”, “insulin resistance”, “isoleucine”, “lean mass”, “leucine”, 

“liver”, “MCCC1”, “MCCC2”, “metabolic disease”, “metabolic syndrome”, 

“metabolism”, “metabolomics”, “mTOR”, “mTORC1”, “mTORC2”, “muscle”, “new 

onset diabetes”, “nutrient signalling”, “obesity”, “organic acidurias”, “OXCT1”, 

“OXCT2”, “PCCB”, “PP2Cm”, “IVD”, “PPM1K”, “prediabetes”, “protein degradation”, 

“protein degradation”, “protein synthesis”, “proteasome”, “rapamycin”, “satiety”, 

“Sirolimus”, “transaminase”, “transplant”, “turnover”, “type 2 diabetes” and “valine”. 

The current understanding of the BCAA metabolic pathway was based on annotations 

from the Kyoto Encyclopaedia of Genes and Genomes (KEGG).
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Figure 1. 

Plasma BCAA levels and insulin-resistant obesity. a | Association between plasma BCAA 

levels and insulin-resistant obesity in humans, obese Zucker rats, mice with diet-induced 

obesity (DIO) and ob/ob mice. Data were compiled from elsewhere and redrawn.63,72,73,75 b 

| Correlation between plasma levels of leucine and fasting levels of HbA1c in African–

American women with obesity and T2DM (blue circles) and those with obesity but no 

T2DM (green circles). Abbreviations: BCAA, branched-chain amino acid; IR, insulin 

resistant; T2DM, type 2 diabetes mellitus. Adapted from Fiehn, O. et al. PLoS ONE 5, 

e15234 (2010),66 which is published under a Creative Commons Licence owned by PLOS 

©.
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Figure 2. 

Persistent activation of mTORC1 links increased plasma BCAA levels to insulin resistance. 

According to this theory,59,109,110 excess nutrients that lead to obesity also result in frequent 

prandial increases in plasma levels of leucine, which together with insulin activate mTORC1 

and S6K1. Persistent activation leads to serine phosphorylation of IRS-1 and IRS-2, which 

interferes with signalling and might target IRS1 for proteolysis via a proteasomal 

pathway.109,110 The resulting insulin resistance increases demand on insulin to dispose of 

excess glucose. Insulin resistance might increase the Ra of BCAAs from protein 

degradation. Long-term demand for insulin secretion, along with other factors such as 

lipotoxicity, might negatively affect the function of islets (for example, an initial 

compensatory increase in β-cell numbers and mass and islet mass, followed by apoptosis), 

ultimately resulting in a failure to produce sufficient quantities of insulin and leading to the 

onset of T2DM. Abbreviations: BCAA, branched-chain amino acid; IRS, insulin receptor 

substrate; mTORC1, mammalian target of rapamycin complex 1; Ra, rate of appearance; Rd, 

rate of disappearance; S6K1, ribosomal protein S6 kinase β1; T2DM, type 2 diabetes 

mellitus.
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Figure 3. 

BCAA dysmetabolism links elevated plasma levels of BCAAs and FFAs to T2DM and 

obesity-related comorbidities. The schematic shows how obesity might affect a number of 

factors contributing to elevated circulating BCAA levels via effects on the Ra or Rd of 

BCAAs. Loss of steps in BCAA metabolism could lead to the accumulation in tissues of 

BCKAs and BCAA-related acyl-CoAs. Accumulation of these species in inherited disorders 

can be mitotoxic and might lead to T2DM and other obesity-related comorbidities. A caveat 

is that while the metabolites of BCAAs are potentially toxic in maple syrup urine disease 

and organic acidurias, their role in T2DM-associated mitochondrial dysfunction or in 

activation of stress kinases is unknown. Alternatively, reduced or incomplete valine and 

isoleucine catabolism could attenuate anaplerosis from these substrates, contributing to 

anaplerotic stress in one or more tissues affected by T2DM. Abbreviations: BCAA, 

branched-chain amino acid; BCKA, branched-chain α-keto acid; BCKDC, branched-chain 

α-keto acid dehydrogenase complex; CoA, coenzyme A; FFA, free fatty acid; KLF15, 

Krueppel-like factor 15; Ra, rate of appearance; Rd, rate of disappearance; ROS, reactive 

oxygen species; T2DM, type 2 diabetes mellitus.
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Figure 4. 

Mitochondrial genes attributed to BCAA metabolism. The genes involved in mitochondrial 

BCAA metabolism are shown. Note that BCAT(m) activity is essentially absent from the 

liver. During reversible BCAT(m) metabolism, an intermediate of isoleucine can 

tautomerize, leading to alloisoleucine formation.182 Alloisoleucine formation increases 

when BCKDC activity is impaired and might be useful for identifying individuals with 

impaired BCKDC activity,75 in addition to its usual use in identifying those with maple 

syrup urine disease. *Indicates an obesity and/or T2DM susceptibility gene.120,165 ↓ 

Indicates a literature finding of decreased gene or protein expression observed in human 

islets or skeletal muscle biopsies from individuals with T2DM, except for HIBADH, which 

is decreased in skeletal muscle of Goto–Kakizaki rats.154,155,165 Coloured oval shapes 

represent genes implicated in BCAA metabolism. Abbreviations: BCAA, branched-chain 

amino acid; BCAT(m), branched-chain-amino-acid aminotransferase, mitochondrial; 

BCKDC, branched-chain α-ketoacid dehydrogenase complex; KIC, α-ketoisocaproate; KIV, 

2-ketoisovalerate; KMV, α-keto-β-methylvalerate. Modified with permission from Herman, 

M. A. et al. J. Biol. Chem. 285, 11348–11356 (2010)74 © The American Society for 

Biochemistry and Molecular Biology.
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Figure 5. 

Patterns of altered BCAA metabolism observed in animal models of obesity. Losses of 

adipose tissue BCAA metabolic gene and protein expression in obesity have consistently 

been observed. In a rat model of diet-induced obesity,63 reduced levels of BCAA 

metabolizing enzymes in adipose tissue seem to be compensated for by increased hepatic 

BCKDH activity163 (termed a type B response). In contradistinction, hepatic BCKDH was 

also attenuated in other models such as ZDF rats,161,162 Zucker fa/fa rats72,73, ob/ob mice72 

and Otsuka Long–Evans Tokushima Fatty rats162 (termed a type A response). Multiple 

peripheral tissues were examined and found to be affected in Zucker rats.73 These distinct 

phenotypes are important because uncompensated loss of BCAA metabolism in multiple 

peripheral tissues could result in a higher range of plasma BCAAs that, when observed in 

states of obesity, associate to a greater extent with insulin resistance, levels of glycaemia and 

future T2DM. Alloisoleucine elevations below the level used to screen for MSUD have been 

proposed as a strategy to distinguish between these phenotypes.75 Levels of BCAAs were 

considerably increased in models in which metabolism was impaired (↑↑). Abbreviations: 

BCAA, branched-chain amino acid; BCKDH, branched-chain α-keto acid dehydrogenase; 

MSUD, maple syrup urine disease. Adapted with permission from John Wiley and Sons © 

Olson, K. C. et al. Obesity (Silver Spring) 22, 1212–1215 (2014).75
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