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Abstract. Basic results on combinatorial branched coverings between relative 
geometric cycles are given. It is shown that every geometric n-cycle is a branched 
covering over S". If the downstairs space of a branched covering is locally simply 
connected then the branched set is a pure subcomplex of codimension 2. Finally, 
several Hurwitz-like theorems on existence and representation of branched coverings 
between relative geometric cycles are derived. 

1. Introduction 

Branched coverings (of manifolds) are extensively studied but no common 
definition of  this notion is accepted. It seems that the most general approach was 
made by Fox [7]. Many authors use his definition of branched coverings, while 
many others consider only mappings where the branched set is a submanifold 
of  codimension two. As we see, there are two reasons for this. First, there are 
no powerful methods to describe branched coverings in higher dimensions. In 
Section 5 we offer such a description which is an obvious generalization of the 
well-known Hurwitz existence theorem for Riemann surfaces (see, e.g., [2]) and 
the results of  Heegaard [11] for describing branched coverings of  3-manifolds 
with a union of  disjointed curves as the branched set. 

The second reason why mathematicians sometimes consider only branched 
coverings with the branched set a submanifoid is because such coverings are 
sufficient for most topological applications. The most common use is in attempts 
to classify manifolds. By a well-known classical theorem of Alexander [1], each 
closed orientable PL n-manifold can be obtained as a branched covering over 
S". In dimension 3, which is of  special interest, the branched coverings of  S 3 of 
degree 3 or less and with the branched set a single closed curve are sufficient. 

* This work was supported in part by the Research Council of Slovenia, Yugoslavia. 
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The results of  this paper show that the most natural category for considering 
branched coverings consists of  (relative) geometric cycles. In view of  our com- 
binatorial interest, we consider only combinatorial branched coverings, i.e., only 
those which are simplicial maps between simplicial pseudocomplexes. 

Most of the results in this paper can be considered as "folklore" properties 
of branched coverings, at least in a lesser generality when restricted to com- 
binatorial manifolds. However, we did not find any clear presentation of them, 
neither in papers, nor in textbooks. Besides that, we believe that the present 
results might be of interest in a combinatorial approach to branched coverings 
and manifold topology. An interesting field is the growing theory of crystalliz- 
ations developed by Pezzana and others [3]-[6], [8], [13], [14], [16]. A crystalliz- 
ation is a simplicial pseudocomplex of dimensions n with n + 1 vertices (0- 
simplices). As implied by our Theorem 3.1, a crystallization is a very special 
branched coveting space over the n-sphere (in fact, a crystallization of S" obtained 
by taking two n-simplices and pairwise identifying all n + 1 of their (n - 1)-faces). 

In Section 3 we give a short proof of  a generalization of the theorem of  
Alexander. By Proposition 3.3, every orientable geometric n-cycle with a proper 
(n +2)-coloring of the vertex set has a stellar subdivision which is a (simplicial) 
branched coveting over the boundary of the (n + 1)-simplex, 0A "+' ~ S", with the 
branched set a subpseudocomplex of the (n -2 ) - ske le ton  of  0A "+1. Moreover, 
Theorem 3.1 implies that the barycentric subdivision of  every orientable geometric 
n-cycle is a branched covering over S" with the branched set a subcomplex of  
the (n - 2)-skeleton of  A'. 

In Section 4 we consider the branched set of a branched covering. We show 
that the branched set of a branched covering f :  M o N  is purely (n-2)-  
dimensional if the space N is locally simply connected, in particular if N is a 
manifold. This is not true in general. 

There are two classical Hurwitz theorems on the existence and classification 
of  branched coverings of  closed surfaces, see, e.g., [2]. Let M and N be closed 
surfaces. If f :  M -> N is an n-fold branched covering with branched set B, there 
is a homomorphism ~p(f): ,r~(N-B,*)->S,, determined up to conjugacy, 
obtained by choosing a 1-1 correspondence between f-~(*) and the set 
{1, 2 , . . . ,  n} and assigning to a loop 3' in ~ r l ( N - B ,  *) the permutation induced 
by lifting 3' to M. Conversely, given a representation ~o: l r ~ ( N -  B, , ) 4  S, there 
is a degree n branched covering M-> N with the branched set contained in B. 
The surface M is connected if and only if the image of ~ is a transitive subgroup 
of  S.. 

Section 5 is devoted to representations of  branched coverings in any dimension. 
We derive several Hurwitz-like theorems on the existence and representation of  
branched coverings between relative geometric cycles. 

In the last section the representations of regular branched coverings are 
considered. 

2. Basic Definitions 

A pseudocomplex is a cell complex in which each cell, considered with all its 
faces, is abstractly isomorphic to the closed simplex of  the same dimension. This 



Branched Coverings 341 

notion represents a generalization of a simplicial complex since we allow that 
two distinct cells of a pseudocomplex intersect in the union of  cells (simplices). 
The cells of  the pseudocomplex are called simplices, and the usual notions of  
combinatorial topology (e.g., the star and the link of  a simplex, the simplicial 
map, etc.) are carded to pseudocomplexes in the obvious way. 

A particular class of  pseudocomplexes is important for our purposes. A 
pseudocomplex K is a relative geometric n-cycle if: 

(1) K is n-dimensional and pure, i.e., each simplex of K is contained in an 
n-simplex, 

(2) the open star of  each simplex of K is strongly connected, i.e., any two 
n-simplices in the open star of a simplex A can be joined by a sequence 
of n-simplices, all of  them containing A, such that any two consecutive 
simplices intersect in an ( n -  1)-simplex which contains A, and 

(3) every simplex of codimension 1 is contained in at most two n-simplices. 

The boundary of the relative n-cycle K, denoted by OK, is the 
subpseudocomplex of K induced by the ( n -  1)-simplices which are contained 
in only one n-simplex of  K. The n-cycles with empty boundary are called geometric 
cycles. 

Let M and N be relative n-cycles and assume that N is connected. A simplicial 
mapping p: M --* N is a branched covering if: 

(1) p is nondegenerate, i.e., p preserves the dimension of simplices, 
(2) p is nonsingular, i.e., any two distinct n-simplices of M having a common 

( n -  1)-face are mapped to distinct n-simplices in N, and 
(3) p(OM)=ON. 

Note that every branched covering is onto. Note also that we do not require that 
the upstairs space M is connected. 

The set of simplices in M at which p fails to be a local isomorphism is called 
the singular set of p. It is a subpseudocomplex of dimension at most n - 2. The 
image of the singular set is called the branched set of  p. It will be denoted by 
Bp, or simply B if no confusion arises. The preimage p-l(Bp) is the branch cover 
of p. 

To describe relative n-cycles and branched coverings we shall make use of  
dual graphs and we proceed by basic definitions concerning graphs. We consider 
finite, undirected graphs with multiple edges and half-edges, where a half-edge 
is an edge having only one end vertex (sometimes is called free edge). By V(G) 
and E(G)  we denote the vertex-set and the edge-set of  the graph G, respectively. 
Each edge of  G which is not a half-edge gives rise to two oppositely oriented 
arcs, and each half-edge determines one arc. In this way we get the set D(G) of  
arcs of  G. The initial vertex of  the arc e ~ D(G) is denoted by i(e), the terminal 
vertex by t(e), and the opposite arc of e by r(e). The arc e is a half-edge if and 
only if r(e) = e. For a half-edge e, i(e) = t(e). 

For each ve  V(G) we define the star of  v, denoted by st(v, G), as the set of 
all arcs emanating from v. A graph G is k-regular if Ist(v, o)1 = k for each 
v ~ V(G). 
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Let H be a connected graph. A graph map p: G-~ H is a (graph) covering 
projection if for each vertex v ~ V(G), the induced mapping st( v, G) --> st( p (v), H)  
is a bijection where half-edges and only half-edges are mapped to half-edges. 
Thus, the deletion of  half-edges in both graphs gives rise to a covering in the 
usual sense. Since the downstairs graph is required to be connected, every covering 
projection is onto. 

The dual graph K* of the relative geometric n-cycle K is defined as follows. 
It has n-simplices of K as its vertices, and two arbitrary vertices are joined by 
one edge for each common ( n -  l )-face of  the corresponding two n-simplices. 
Furthermore, for each boundary (n -1 ) - s imp l e x  we add a half-edge to the 
corresponding vertex. The dual graph of a relative n-cycle is (n + 1)-regular and 
its connected components correspond to (strongly) connected components of the 
n-cycle. 

A nondegenerate map f :  K --> L between relative cycles induces a map f * :  K* 
L* between the dual graphs. The following is clear by definitions. 

Proposition 2.1. The nondegenerate map f:  K ~ L is a branched covering if and 
only i f  the dual map f *  is a graph covering projection. 

3. Theorem of Alexander 

A well-known theorem of  Alexander [1] states that each closed orientable PL 
manifold of dimension n can be obtained as a branched covering space over S". 
We generalize this to geometric cycles. Let ap,, be the pseudotriangulation of S" 
which is obtained from two n-simplices by pairwise identifying all their ( n -  l)-  
faces. Recall that a proper k-coloring of  K is an assignment of  colors 1, 2 , . . . ,  k 
to the vertex set of  K such that no two adjacent vertices receive the same color. 

Theorem 3.1. Each orientable geometric n-cycle without boundary which has a 
proper (n + 1)-coloring of  the vertex set is a branched covering over ¢p. with the 
branched set a subcomplex of the ( n -  2)-skeleton of ep.. 

Proof. In Corollary 4.6 of  [15] it is shown that the orientable n-cycle K admits 
an (n + 1)-coloring if and only if there is a nondegenerate and nonsingular 
simplicial mapping into the pseudocomplex gP,. If K has no boundary this is a 
branched covering. [] 

Recall that the barycentric subdivision of  a cell complex has an (n + 1)-coloring 
of the vertex set. This implies the following corollary. 

Corollary 3.2. Each orientable geometric n-cycle without boundary is a (topo- 
logical) branched covering over S n with the branched set a subcomplex of the 
(n -2)-skeleton of  A n 
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For PL manifolds, Corollary 3.2 was strengthened by Pezzana [ 16] who proved 
that every PL manifold M admits a crystallization which has only n + 1 vertices 
(n is the dimension of M),  and thus an (n + 1)-coloring. Consequently, this gives 
a very special branched covering of M to S n. See also [4] and [5] for additional 
generalizations in this direction. 

The following result, which is topologically only a weaker version of Theorem 
3.1, may be used for constructing branched coverings. 

Proposition 3.3. Each orientable geometric n-cycle without boundary which admits 
a proper (n + 2)-coloring of its vertex-set has a stellar subdivision which is a branched 
covering over 0A n+l ~ S ~. 

Proof. Orient K and aA n÷~. Note that the coloring of K t~) determines a non- 
degenerate simplicial mapping f :  K -->oA "+1 (consider the 0-simplices of  OA n+l 
as colors). Let T be the set of  all n-simptices of K such t h a t f  does not preserve 
their orientation. Use the stellar subdivision at each n-simplex of  T, thus obtaining 
the complex KI. The introduced vertex in a simplex A of  T can be colored by 
the color which is not used on A. The obtained coloring of  K~ gives rise to a 
nondegenerate map K~ -~ OA n+l which is easily seen to be nonsingular and hence 
a branched covering. [] 

4. The Branched Set of  a Branched Covering 

Branched coverings of n-manifolds whose branched set is a pure ( n - 2 ) -  
dimensional subcomplex tamely embedded in the interior are of special interest 
in topology [7]. In general, it is not true that the branched set is pure of 
codimension two. Consider the following example. Let N be a relative n-cycle 
and let M be any (unbranched) cover of N. Denote by ~ X : = X * S  O the 
suspension of X. The covering projection f :  M--, N can be extended to the 
branched covering Y,f: Y. M ~ N. It is easy to see that the branched set of ~ f  
is equal to both suspension points ( i f f  is not an isomorphism), and hence it is 
of  dimension 0. 

We shall show that the above irregularity cannot appear if N is locally simply 
connected, i.e., if for each simplex A in the barycentric subdivision N '  of  N, if 
d i m ( A ) < n - 2  then link(A, N') is simply connected. Note that every com- 
binatorial manifold is locally simply connected. 

Theorem 4.1. Let M and N be relative n-cycles and N locally simply connected. 
Then the branched set of  any branched covering f :  M - - , N  is a pure ( n - 2 ) -  
dimensional subpseudocomplex of  N. 

Proof. The branched covering f induces the branched covering f ' :  M'--, N'  of  
first barycentric subdivisions. Note that M'  and N'  are simplicial complexes and 
that the branched set of  f '  has the same underlying topological space as the 
branched set o f f .  Hence it suffices to prove that B r, is pure ( n -  2)-dimensional. 
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Let A be a simplex in Br,, and assume that d im(A)<  n - 2  and that A is not 
contained in any other simplex from Br,. Take an arbitrary simplex A~ in f '-~(A) 
and any simplex B in link(A, N').  Since M'  and N '  are simplicial complexes 
and the join A * B is not in the branched set, f '  induces an isomorphism between 
link(A~ * B~, M') and link(A * B, N')  for any B~ in link(A~, M')nf ' -~(B) .  But 
since 

and 

l ink(A- * B- ,  M') = l ink(B-,  link(A~, M'))  

link(A * B, N') = link(B, link(A, N')),  

the above isomorphism is also an isomorphism between l ink(B-,  l ink(A-, M'))  
and link(B, link(A, N')). Thus, the restriction o f f '  to l ink(A-, M') is a covering 
projection to link(A, N') .  From the local simple connectivity of  N it follows that 
link(A, N')  is simply connected, and hence every connected cover of  it is isomor- 
phic to it. Since links in relative geometric cycles are connected, this implies that 
l ink(A-,  M')  is isomorphic to link(A, N') .  But then A -  is not in the singular set 
o f f ' .  It follows that A is not in Bi.. The proof  is completed. [] 

Denote by p(A, K) the number of  n-simplices of  the pseudocomplex K which 
contain the simplex A. An immediate consequence of  Theorem 4.1 is the following 
proposition. 

Proposition 4.2. Let M and N be relative n-cycles and N locally simply connected. 
The singular set of a branched covering f: M ~ N is the full subcomplex on those 
(n -2)-simplices A of M for which p(A, M) ~ p( f (A) ,  N). [] 

Proposition 4.2 gives us a simple criterion to check if a given branched covering 
is a covering projection. We must verify the local homeomorphism property only 
on the neighborhoods of (n-2)-s impl ices .  

At the end of this section we point out an obvious conjecture. Note that the 
branched set of  branched coverings over the 3-sphere is a graph without isolated 
vertices, and it is easily seen that it has no vertices of  degree 1. 

Conjecture 4.3. Every graph without vertices of degree 0 or 1 is a branched set of 
a branched covering f:  M ~ S 3 where M is a 3-manifold. [] 

5. Simplicial Schemes and Representations of Branched Coverings 

A convenient description of relative cycles, especially good when working with 
branched coverings, is the concept of simplicial schemes [ 15]. Let G be a regular 
graph. A presimplicial scheme g on G is a function which assigns to every arc 
ee D(G) a bijective map ge: st(/(e), G)~st ( t (e) ,  G) such that the following 
conditions are satisfied: 

(SS1) for each e e  D(G), ge(e) = r(e), and 
(SS2) for each e~ D(G) ,  gr~e~=g~ ~. 
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Let W =flf2" " "fa be a walk in G. Denote by gw the composition gr,," " "g6gi,. 
An arc e ~ st(i(fl) ,  G) is said to avoid the walk W (with respect to the presimplicial 
scheme g) if e ~ f l  and, for j = 1 , . . . ,  d - 1, gr,...r,(e) ~J~+~. 

A presimplicial scheme g is a simplicial scheme if, in addition to (SS1) and 
(SS2), the following condition is also satisfied: 

(SS3) for each closed walk W and each arc e ~ st( i(W),  G) which avoids W, 
gw(e) = e. 

Relative geometric cycles and simplicial schemes are related by the following 
construction. Let G be an (n + 1)-regular graph and g be a simplicial scheme on 
(3. Then we construct an n-dimensional pseudocomplex,  denoted by K = 
K(G,  g), as follows. For each vertex v c V(G) take an n-simplex A~ and choose 
a 1-1 correspondence between the arcs in st(v, G) and vertices of Av. For each 
arc e of  st(v, G),  let Fe be the (n - 1)-face of  A~ which is opposite the vertex of 
A~ corresponding to e. Finally, we identify for each arc e~  D(G)  the ( n - 1 ) -  
simplices F~ and F~,~ in such a way that for each arc f ~  st(/(e), G ) - { e } ,  the 
vertex of A , ~  corresponding to f is identified with the vertex of A,t~ which 
corresponds to g~(f). 

It is easy to see that K(G,  g) is a relative geometric n-cycle, and its dual graph 
is isomorphic to (7. Conversely, if M is a relative cycle then we may define a 
simplicial scheme g on the dual graph M* of  M such that K ( M * ,  g) is isomorphic 
with M [15]. The simplicial scheme g is obtained as follows. Each arc e of  M* 
corresponds to a pair (A, B) where A is an n-simplex and B is an (n - 1)-face 
of  A. Let F~ := B and let V~ be the vertex of A opposite B. Then g~(e) = e, and, 
f o r f ~  e, g~(f) is the arc of st(t(e),  M*) with Vg,~r~ = V r. 

Thus regular graphs and simplicial schemes are in a natural bijective correspon- 
dence with relative cycles. Moreover, the branched coverings correspond to graph 
coverings between the dual graphs. 

Let p: G ~ H be a graph covering and e c D(G)  an arc in G with initial vertex 
u and terminal vertex v. A simplicial scheme h on H determines the local 
mapg~:  st(u, G ) ~ s t ( v ,  G)  such that hp~,~plst(u, G)=pg~ .  The family {g~le~ 
D(G)}  is a simplicial scheme on G which is called the lift of  h to G. Interested 
readers will find the proofs of  the above-stated facts in [15], where the following 
theorem is also given. 

Theorem 5.1. Let K be a relative geometric cycle and let ((3, g) be its dual graph 
with the corr'esponding simpliciai scheme. Every branched covering K ~ -~ K over K 
is uniquely determined by a graph covering G ~ --> G. The simplicial scheme g-  on 
G -  which determines K -  is just the lift of g to G- ,  and K -  = K ( G- ,  g-) .  

Theorem 5.1 provides a convenient way of  describing branched covering 
projections between relative cycles. All the information we need is the graph 
covering projection between dual graphs. 

It is known [10] that every d-fold graph covering over the graph G can be 
described by a permutation voltage assignment on G. This is a function ~o: D ( G )  --> 
Sa (where Sa denotes the symmetric group on d letters) which assigns inverse 
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group elements to opposite arcs, and assigns the identity permutation to each 
half-edge. The pair (G, ~o) is then called the voltage graph. We may regard ~o as 
a 1-cocycle with values in Sd, and we write q~ e ZI(G;  Sd). (In fact, ~ is a cocycle 
on the graph G with deleted half-edges, but, nevertheless, we shall not hesitate 
to use the terminology introduced above.) 

A voltage graph ((3, ~p) determines the derived graph G ~ which is a covering 
graph over G and is defined as follows. The vertex set V(G ~) is V(G)× 
{ 1 , 2 , . . . ,  d} and for each arc e c  D(G)  and k e { 1 , . . . ,  d} there is an arc (e, k) 
with initial vertex (i(e), k) and terminal vertex (t(e),  q~(e)(k)). 

Let (G, ~o) be a voltage graph, and let u ~ V(G). If y is a closed walk in G 
based at u then the product of voltages on the arcs on y is denoted by ~(y) .  
Denote by Fu(tp) the set of voltages tp(y) taken over all the closed walks based 
at u. Clearly, F,(tp) is a subgroup of S,, and it is called the local group based at 
u (sometimes the term monodromy group is also used). Note that any two local 
groups (with respect to the same voltage assignment) are conjugate in S,. The 
derived graph G * of  the voltage graph (G, ~) is connected if and only if the 
local group is transitive in S,. 

Two voltage graphs ((3, ~p) and ((3, ~b) are called equivalent if there is a 
0-cochain ~:: V(G)--> Sd such that for each e ~ D(G) 

c~( e ) = ~-'( i( e ) )q~( e )~( t( e) ). 

Clearly, the derived graphs G ~ and G ~ are isomorphic (as covering spaces over 
G) if and only if the two voltage graphs are equivalent. 

The equivalence of voltage graphs induces an equivalence relation on 
Z~(G; Sd). We denote the quotient set by Ht(G;  Sd) and we call it the 1- 
cohomology set of G with values in Sd. Note that usually only the cohomology 
with values in Abelian groups is considered. In this case the 1-cohomology set 
admits the structure of a group. 

The following result is an easy consequence to Theorem 5.1. Recall that the 
isomorphism of (branched) coverings means a combinatorial isomorphism which 
preserves fibers. 

Proposition 5.2. The isomorphism classes of  d-fold covering graphs over the graph 
G, and, consequently, the isomorphism classes of  d-fold branched covering spaces 
over K = K ( G, g) are in a bijective correspondence with the 1-cohomology sets in 
H'(G; S~). 

There is another, sometimes more convenient, description of  covering graphs 
and hence also of branched coverings of relative geometric cycles. Let T be 
spanning tree of G. For every voltage assignment on G there is an equivalent 
one which is trivial on T [10]. Obviously, the equivalence between voltage 
assignments which are trivial on T is just conjugacy. On the other hand, the 
edges of G - T  are in a natural 1-1 correspondence with generators of  the 
fundamental group ~rl(G,*) where * is any vertex of G. Thus the voltage 
assignment ~p induces a homomorphism ~r:  ~ I ( G , * ) ~ S d ,  determined up to 
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conjugacy. Conversely, every such homomorphism gives rise to a voltage assign- 
ment on the arcs of  G - T in the obvious way. We may summarize this as follows. 

Proposition 5.3. The isomorphism classes old-fold covering graphs over the graph 
G and the isomorphism classes old-fold branched coverings over K = K(G,  g) are 
in a bijective correspondence with the conjugacy classes of  homomorphisms 
~r,( G, * )--, S~. 

Similar to the description of Proposition 5.3, there are two classical Hurwitz 
theorems on the existence and classification of  branched coverings of  surfaces 
(see [2] and [12]). A very similar description is also known for 3-manifolds and 
branched coverings with a collection of simple closed curves as the branched set 
[l  1]. In the above-mentioned results, d-fold branched coverings are described 
by homomorphisms rrt(K - B, *) ~ Sd where B is the branched set. The advantage 
of this approach is that 7r~(K - B, *) is independent of the triangulation of K. 

Proposition 5.4. Let K be a relative n-cycle and let B be a subpseudocomplex of 
K. The isomorphism classes of d-fold branched coverings over K with the branched 
set contained in B are in bijective correspondence with the conjugacy classes of  
homomorphisms ~rl( K - B, *)-> Sd. 

Proof. Taking into account that a branched covering to K with the branched 
set in B is determined by the corresponding unbranched covering to K - B [7], 
the result follows by well-known representation properties of covering spaces, 
see [17]. [] 

Corollary 5.5. I f  7r~(K-B)=zr~(K)  then every branched covering with the 
branched set contained in B is unbranched. 

If  K - - K ( G ,  g) is locally simply connected then the branched set is pure 
(n -2 ) -d imens iona l  by Theorem 4.1, and is thus determined by its ( n - 2 ) -  
simplices. In this case, the fundamental group of the pseudocomplex can also 
be easily calculated. It is equal to the fundamental group of the 2-skeleton of 
the dual cone complex, and r r l ( K - B )  can be obtained as follows. Take the 
generators of  rrt(G) (the edges of a cotree). Then add relations corresponding 
to links of  the ( n - 2 ) - s i m p l i c e s  which are not in B. That 's all. 

We note that the representation theorems can be useful in the theory of 
crystallizations. Notice that every n-crystallization is a branched covering over 
K(Hn,  hn), where H,  is the graph consisting of  two vertices and n + 1 parallel 
edges between them, and h, sends each arc o f / 4 ,  to its inverse. 

6. Regular Branched Coverings 

A branched covering f :  M-> N is regular if the corresponding unbranched 
covering is regular. This means that the local groups act transitively on fibers, 
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and this is true if and only if the dual graph covering f*:  M* ~ N* is a regular 
covering projection. It is known [9], [I0] that every regu.ar graph covering 
projection over the graph G can be represented by an ordinary voltage assignment 
on (3;. This is a function ~p: D ( G ) ~  F (a 1-cocycle with values in F) where F is 
some group. The triple (G, F, ~p), called the ordinary voltage graph, gives rise to 
the derived graph G ~, which has vertex set V ( G ) x  F, and two arbitrary vertices, 
(u, g) and (v, h), adjacent if and only if (uv) ~ D(G)  and h = ~(uv)g. The derived 
graph is a [Fl-fold regular covering graph over G. 

Remark. There is the obvious generalization of both ordinary and permutation 
voltage graphs. If F is a group acting on the set X, then a given 1-cocycle of  G 
with values in F gives rise to the derived graph with vertex set V(G)x  X, and 
two vertices adjacent if the same condition as above is satisfied. 

Proposition 6.1. Each regular branched covering over the relative n-cycle K can 
be represented by a 1-cocycle on the dual graph with values in some group. 
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