BRANCHED COVERINGS WITHOUT REGULAR POINTS OVER BRANCH POINT IMAGES

BY
Erik Hemmingsen and William L. Reddy ${ }^{1}$
1. Introduction

The purpose of this paper is to describe the branch sets $B_{f}[1, \mathrm{p} .528]$ of those light open maps $f: S^{n} \rightarrow S^{n}$ (where S^{n} denotes the n-sphere) for which $f^{-1} f\left(B_{f}\right)=B_{f}$ and $\operatorname{dim} f\left(B_{f}\right) \leq n-2$. It will be proved that, in the cases $n=2$ and $n=3$, numerous different maps are possible whereas certain restrictions occur on the nature of B_{f} in higher dimensions. The hypothesis that $f^{-1} f\left(B_{f}\right)=B_{f}$ is a natural one. It holds for example if f is the orbit map of a finite group acting on the n-sphere. Furthermore, while the examples in [2] show the complications possible in the general case, in the regular Montgomery-Samelson case $\left(f^{-1} f B_{f}=B_{f}\right.$ and f is a homeomorphism there-abbreviated M-S) it is possible to find some structure [4]. (The reader should be warned that the hypothesis of regularity is invalidly omitted in [4].) The maps considered in this paper are an intermediate class between the M-S and the general light open maps.

Throughout, $f: M^{n} \rightarrow N^{n}$ will be a light open map of n-manifolds for which $\operatorname{dim} f\left(B_{f}\right) \leq n-2$ and hence [1, corollary 2.3, p. 531] $\operatorname{dim} B_{f} \leq n-2$. In dimension 2, even without further hypotheses, the Stoilow-Whyburn theory guarantees that B_{f} and $f\left(B_{f}\right)$ are finite sets.

2. The case of the two-sphere

Throughout this section, we consider maps $f: S^{2} \rightarrow S^{2}$.
Theorem 1. If $f^{-1} f\left(B_{f}\right)=B_{f} \neq \emptyset$, then either $f\left(B_{f}\right)=S^{0}=B_{f}$ or else $f\left(B_{f}\right)$ is a set consisting of three points. In the latter case the degree of f cannot be less than 4 ; for $d=4$ both B_{f} and the local behavior of f at B_{f} is uniquely determıned; for $d=5$ there is no such map; and for $d>5$ there are various possibilities.

Proof. Let $f\left(B_{f}\right)=\left\{q_{1}, \cdots, q_{k}\right\} ;$ let $f^{-1}\left(q_{j}\right)=\left\{p_{1 j}, \cdots, p_{m j, j}\right\}$ and let the exceptionality [2, p. 608] of f at $p_{i j}$ be $e_{i j}>0$. In this manner every element of $f^{-1}\left(q_{j}\right)$ becomes a branch point. Since the degree d is obtainable by computing for any y in the range of f the sum of the local degrees at the points of $f^{-1}(y)$, it follows that

$$
\begin{equation*}
d=\sum_{i}\left(e_{i j}+1\right)=\sum_{i} e_{i j}+m_{j} . \tag{1}
\end{equation*}
$$

Received April 4, 1972.
${ }^{1}$ This author's research was partially supported by a National Science Foundation grant.

Since the local degree at $p_{i j}$ is at least $2, m_{j} \leq \frac{1}{2} d$. Hence

$$
\begin{equation*}
\frac{1}{2} d \leq \sum_{i} e_{i j} \text { and } \frac{1}{2} k d \leq \sum_{i} \sum_{j} e_{i j} \tag{2}
\end{equation*}
$$

From the Hurwitz-Riemann formula [3, p. 275], which is the 2-dimensional case of Tucker's formula [7], it follows that

$$
\begin{equation*}
2+\sum_{j} \sum_{i} e_{i j}=2 d \tag{3}
\end{equation*}
$$

Hence from (2) and (3) it follows that

$$
\begin{equation*}
k \leq 4-4 / d \tag{4}
\end{equation*}
$$

Thus, for maps with the prescribed properties, k is either 1,2 , or 3 . If one solves the last inequality for d instead of k, one obtains

$$
\begin{equation*}
d \geq 4 /(4-k) \tag{5}
\end{equation*}
$$

from which it follows that $d \geq 2$ if $k=1$ or 2 and $d \geq 4$ when $k=3$.
From the second part of (2) and from (1) it follows that

$$
\begin{equation*}
\frac{1}{2} k d \leq \sum_{i j} e_{i j}=\sum_{j}\left(d-m_{j}\right)=k d-\sum_{j} m_{j} \tag{6}
\end{equation*}
$$

and hence that $k d \geq 2 \sum_{j=1} m_{j}$. Since $m_{j} \geq 1$, it follows that $d \geq 2$.
From (1) and (3) it follows that

$$
\begin{equation*}
2 d-2=k d-\sum_{j} m_{j} \tag{7}
\end{equation*}
$$

When $k=2, m_{1}+m_{2}=2$ and B_{f} consists precisely of two points. Thus the case $k=2$ is the case in which the restriction $\left.f\right|^{-1} f\left(B_{f}\right)$ is a homeomorphism. For all degrees $d \geq 2$, the complex function $f(z)=z^{d}$ yields such a map, and topologically these are the only such maps.

When $k=3$ and the functions under discussion exist, equation (6) yields $\sum m_{j}=d+2$ and the number of branch points is seen to depend upon the degree. For large degree there are a great many different functions of this type with various collections of exceptionalities for the branch points.

For even degree the functions of degree $2 n$ defined by

$$
g(z)=\left(z^{2 n}+6 z^{n}+1\right) / 4 z^{n}, \quad n=2,3, \cdots
$$

provide examples. A computation will show that

$$
\begin{gathered}
g^{-1} g\left(B_{g}\right)=B_{g}=\left\{z \mid z^{2 n}=1\right\} \text { together with } 0 \text { and } \infty, \\
g\left(B_{g}\right)=\{1,2, \infty\}
\end{gathered}
$$

where
$g^{-1}(\infty)=\{0, \infty\}, g^{-1}(1)=n$th roots of $-1, g^{-1}(2)=n$th roots of +1 and the exceptionalities are as follows:

$$
e(0)=e(\infty)=n-1, \quad e(+1)=e(-1)=1
$$

It will now be proved that the values $d=5$ and $k=3$ cannot occur to-
gether. If they did, the values of $e_{i j}$ would be at most 4. If $e_{i j}=4$, then $m_{j}=1$. The case $e_{i j}=3$ cannot occur, for it would mean that the local degree of f at $p_{i j}$ would be 4 and that the other point in $f^{-1}\left(q_{j}\right)$ would be outside B_{f}. If $e_{i j}=2$, there is just one other element in $f^{-1}\left(q_{j}\right)$ and it has exceptionality 1. Hence, for each $j, \sum_{i} e_{i j}$ is either 3 or 4 and $\sum_{i j} e_{i j} \geq 9$. In equation (3) this would mean that $2+9 \leq 10$ which is false.

If $d=2 n+1$ and $n>2$, there are examples. In the case $d=7$ and $k=3$, there is topologically precisely one such map. For higher degrees there are many. This question is dealt with for both even and odd degree in the thesis of Carl Shepardson [5], to which we refer the reader for these examples.

In the case $k=2$, the sets $f^{-1}\left(q_{j}\right), j=1,2$, are homeomorphic. When $k=3$, one obtains the following:

Remark. If $k=3$, and the sets $f^{-1}\left(q_{j}\right), j=1,2,3$, are homeomorphic, then $d \equiv 4 \bmod 3$.

Proof. Let $m_{j}=m, j=1,2,3$. Then from 1 and 3 , an elimination of $\sum_{i j} e_{i j}$ yields $d=3 m-2$. If, in addition, one requires that the exceptionalities be the same, say e at all branch points, then from (1), $d=m(e+1)$. This cannot occur, therefore, at prime degrees.

3. Higher dimensions

We consider maps $f: S^{3} \rightarrow S^{3}$. Let p and q be positive integers and let S^{1} and D be the unit circle and unit disk in the complex plane respectively. Let

$$
g_{p q}: S^{1} \times D \rightarrow S^{1} \times D
$$

be defined by $g_{p q}(z, w)=\left(z^{p}, w^{q}\right)$. Appropriate identification of the boundaries of two such solid tori, one the domain for $g_{p q}$ and the other for $g_{q p}$ produces a map $f: S^{3} \rightarrow S^{3}$ satisfying the hypotheses of this paper. The set B_{f} is the disjoint union of two copies of S^{1} and they are linked; $f\left(B_{f}\right)$ has the same structure. Certain aspects of this situation are valid in higher dimensions, to which we now turn.

The rest of this section will be devoted to the case $\operatorname{dim} M=\operatorname{dim} N=n>2$. The singular homology (and cohomology) theory with integer coefficients will be employed. Let M and N be compact orientable manifolds without boundary whose homology vanishes in dimensions 1 and 2. Let B_{i} and $f\left(B_{i}\right)$ be orientable ($n-2$)-manifolds such that $B_{i}=f^{-1} f\left(B_{i}\right), B_{i}$ and $f\left(B_{i}\right)$ are isolated tamely embedded components of B_{f} and $f\left(B_{f}\right)$ respectively and let d_{i} be the local degree on B_{i}.

Lemma 1. Let x be a point of B_{i} and let U be a Euclidean neighborhood of x in M such that $U \cap B_{i}$ is a Euclidean neighborhood of x in B_{\imath} and $U \cap B_{f}$ $=U \cap B_{i}$. Let $V=B_{i} \cap U$. Then diagram \mathbf{A} is a commutative diagram of groups and homomorphisms in which φ is the Lefschetz duality isomorphism, δ
is the coboundary homomorphism and i denotes inclusion. Furthermore, the vertical arrows represent isomorphisms.

Diagram A
Proof. We know that B_{i} and $(U-V)$ are tautly embedded in M [6, Theorem 10, p. 290] and hence φ is an isomorphism [6, Theorem 19, p. 297] in both cases. In the exact cohomology sequences for $\left(M, B_{i}\right)$ and ($M, U-V$), the groups $H^{n-1}(M)$ and $H^{n-2}(M)$ are zero by the Poincare duality theorem [6, Theorem 18, p. 297] and the fact that the homology of M vanishes in dimensions 1 and 2. Therefore δ is an isomorphism in both cases. Diagram A is commutative, the bottom square by the naturality of the exact sequence for a pair and the top square by the naturality of $\bar{\gamma}_{U}$ and the inclusions appearing in the proof of [6, Theorem 19, p. 297]. The naturality of $\bar{\gamma}_{U}$ with respect to inclusions is established at [6, p. 292].

We remark that $U-V$ is homotopically equivalent to S^{1} which implies that

$$
Z=H_{1}(U-V)=H^{n-2}[(M-U) \cap V]
$$

Since B_{i} is an orientable $(n-2)$-manifold, $H^{n-2}\left(B_{i}\right)=Z$.
Lemma 2. In Diagram A, the horizontal arrows represent isomorphisms.
Proof. It suffices to prove that i_{8}^{*} is an isomorphism.
Notice that $\bar{V} \cap(M-U)=S^{n-3}=\left(B_{i}-U\right) \cap \bar{V}$. Since $B_{i}-U$ is a manifold with boundary, $H^{n-2}\left(B_{i}-U\right)=0$. The following commutative diagram with exact rows is a consequence of the inclusion of

$$
\left(B_{i}, B_{i}-U, \bar{V}\right) \quad \text { in } \quad(M-U \mathbf{u} V, M-U, \bar{V})
$$

and of the Mayer-Vietoris theorem [6, p. 239].

$$
\begin{aligned}
& \begin{array}{ccc}
Z & Z & 0 \\
\| 2 & \| 2 & \| 2
\end{array} \\
& \underset{\uparrow i^{*}}{H^{n-3}\left(\left(B_{i}-U\right) \cap \bar{V}\right) \xrightarrow{\Delta^{*}} \underset{\uparrow i_{3}{ }^{*}}{H^{n-2}\left(B_{i}\right)} \rightarrow H^{n-2}\left(B_{i}-U\right) \oplus H^{n-2}(\bar{V}), ~} \\
& H^{n-3}((M-U) \cap \bar{V}) \quad \xrightarrow{\Delta^{*}} H^{n-2}((M-U) \cup V) \cong Z
\end{aligned}
$$

Here the maps i^{*} and i_{3}^{*} are induced by the inclusion. The homomorphism i^{*} is an isomorphism since it is induced by the identity map. The homomorphism Δ^{*} is an epimorphism, and since its domain and range are copies
of Z, it is an isomorphism. Hence $i_{3} \circ \Delta^{*}$ is an isomorphism and thus i_{3}^{*} is an isomorphism.

Lemma 3. There is a 1-cycle z whose carrier is a simple closed curve linking V in U; and on the homology class $\{z\} \in H_{1}(U-V)$ the map f_{*} is a multiplication by d_{i}, where d_{i} is the local degree of f at B_{i}.

Proof. We know [1, Theorem 4, p. 533] that there is a euclidean neighborhood U such that f is topologically equivalent to the natural winding map around the tamely embedded $(n-2)$-cell V. Let this be the one employed in Diagram A. Thus there is a 1 -cycle z whose carrier $|z|$ is a simple closed curve linking V in U, and this carrier can be chosen so that it has as an image a simple closed curve on which it winds d_{i} times. If \bar{z} is the cycle carried by $f(|z|)$ and if $\{z\}$ is the homology class at z, then $f_{*}(\{z\})=d_{i}\{\bar{z}\}$. Since $U-V$ is contractible to $|z|$, the homology class $\{z\}$ is a generator of the group $H_{1}(U-V)$ and the action of f_{*} on $H_{1}(U-V)$ is merely a multiplication by d_{i}.

Lemma 4. The homomorphism $f_{*}: H_{1}\left(M-B_{i}\right) \rightarrow H_{1}\left[N-f\left(B_{i}\right)\right]$ is a multiplication by d_{i}.

Proof. Consider the following commutative diagram in which the vertical arrows are seen by the argument on Diagram A to be isomorphisms.

$$
\begin{array}{cc}
\begin{array}{c}
H_{1}(U-V) \\
\downarrow i_{*}
\end{array} \xrightarrow{f_{*}} H_{1}(f(U-V)) \\
\downarrow i_{*} \\
H_{1}\left(M-B_{i}\right) \xrightarrow{f_{*}} H_{1}\left(N-f\left(B_{i}\right)\right)
\end{array}
$$

It is immediate that $f_{*}: H_{1}\left(M-B_{i}\right) \rightarrow H_{1}\left(N-f\left(B_{i}\right)\right)$ is a multiplication by d_{i}.

Theorem 2. Let $f: M \rightarrow N$ be a light open map of compact, oriented n-manifolds with vanishing homology in dimensions 1 and 2. Suppose $\operatorname{dim} B_{f}=n-2$, $n>2$, and B_{f} contains as an isolated component a tamely embedded orientable ($n-2$)-manifold B_{i} whose image $f\left(B_{i}\right)$ is also an isolated tamely embedded orientable ($n-2$)-manifold such that $f^{-1} f\left(B_{i}\right)=B_{i}$. Let B_{j} be an arc-connected component of B_{f} for which $f^{-1} f\left(B_{j}\right)=B_{j}$ and $f\left(B_{j}\right) \cap f\left(B_{i}\right)=\emptyset$. Then $f\left(B_{j}\right)$ carries a 1-cycle which represents a nonzero class in $H_{1}\left[N-f\left(B_{i}\right)\right]$.

Proof. Suppose that no 1-cycle in $f\left(B_{j}\right)$ belongs to a nonzero class in $H_{1}\left[N-f\left(B_{i}\right)\right]$. Let α be a generator of $H_{1}\left[N-f\left(B_{i}\right)\right]$ chosen as follows: Let β be an arc from a point y_{1} of $f\left(B_{j}\right)$ to a point y_{2} of the cycle $|\bar{z}|$ of the proof of Lemma 3 such that β is disjoint from $f\left(B_{f}\right)$ except at y_{1}. Let α be the path that proceeds along β from y_{1} to y_{2} then around $|\bar{z}|$ and finally back to y_{1} along the reverse of β; i.e. $\alpha=\beta \bar{z} \beta^{-1}$. Let $x_{1} \in f^{-1}\left(y_{1}\right) \cap B_{j}$. Let $\tilde{\alpha}$ be a lift through f of α starting at x_{1} and proceeding around a part of $|z|$ and returning from a point x_{2}^{\prime} of $f^{-1}\left(y_{2}\right) \cap|z|$ to a point x_{1}^{\prime} of $f^{-1}\left(y_{1}\right) \cap B_{j}$.

Let γ be an arc in B_{j} joining x_{1}^{\prime} to x_{1}. The paths $f(\gamma)$ and $\tilde{\alpha} \gamma$ are closed. That the cycle carried by $\tilde{\alpha} \gamma$ is non-trivial in $M-B_{i}$ can be seen as follows. Let $\{\tilde{\alpha} \gamma\}$ be the homology class of $\tilde{\alpha} \gamma$. Then

$$
f_{*}(\{\tilde{\alpha} \gamma\})=\{\alpha f(\gamma)\}=\{\alpha\}+\{f(\gamma)\}
$$

Since $f(\gamma) \subset f\left(B_{j}\right)$ and no cycle of $f\left(B_{j}\right)$ links $f\left(B_{i}\right)$, it follows that

$$
\{f(\gamma)\}=0 \in H_{1}\left(N-f\left(B_{i}\right)\right)
$$

Thus

$$
f_{*}(\{\tilde{\alpha} \gamma\})=\{\alpha\}=\{\bar{z}\} \neq 0
$$

On the other hand, by Lemma $4, f_{*}$ is a multiplication by d_{i} on $H_{1}\left(M-B_{i}\right)$. Hence $\{\bar{z}\}$ is a d_{i} multiple of some element of $H_{1}\left(N-f\left(B_{i}\right)\right)$ which in turn is a multiple of $\{\bar{z}\}$. This is impossible, and thus there is a 1 -cycle in $f\left(B_{j}\right)$ that links $f\left(B_{i}\right)$.

Theorem 2 can be extended and applied in various directions. Here is a sample.

Theorem 3 Under the hypotheses of Theorem 2, if $f \mid B_{j}$ is a covering map, then B_{j} carries a cycle which represents a generator in $H_{1}\left(M-B_{i}\right)$.

Proof. If g is the degree of the covering map $f \mid B_{j}$ and \bar{z} is the cycle guaranteed to exist by Theorem 2, there is a cycle z carried by B_{j} such that $f(z)=g \bar{z}$. Consider

$$
f_{*}: H_{1}\left(M-B_{i}\right) \rightarrow H_{1}\left[N-f\left(B_{i}\right)\right] .
$$

Then $f_{*}\{z\}=g\{\bar{z}\} \neq 0$ since $\{\bar{z}\} \neq 0$ and $H_{1}\left[N-f\left(B_{i}\right)\right]=Z$. Now z is some multiple of a generator of $H_{1}\left(M-B_{i}\right)$, so the generator is also carried by B_{j}.

It is known that the homology of B_{f} cannot be more complicated than that of M for certain regular M-S coverings and certain coefficient domains [4]. Theorem 3 allows a strong statement about B_{f} for certain branched coverings:

Corollary. Let $f: M \rightarrow N$ be a branched covering, $n>3$. Suppose for each component B of $B_{f}, f^{-1} f(B)=B$. Then B_{f} does not contain two disjoint copies of S^{n-2}.

Proof. One copy of S^{n-2} cannot link the other in an n-manifold, $n>3$, contrary to Theorem 3.

Notice that if we drop the requirement that B_{i} and $f\left(B_{i}\right)$ be orientable and replace integral coefficients by coefficients in Z_{2}, Lemmas 1-4 remain valid. A minor modification of the proof of Theorem 2 then yields the following theorem.

Theorem 2'. Omit the hypothesis of orientability in Theorem 2. Suppose that the local degree on B_{i} is even. Then $f\left(B_{j}\right)$ carries a representative of a non-zero class in $H_{1}\left[N-f\left(B_{i}\right) ; Z_{2}\right]$.

References

1. P. T. Church and E. Hemmingsen, Light open maps on n-manifolds, Duke Math. J., vol. 27 (1960), pp. 527-536.
2. ——, Light open maps on n-manifolds II, Duke Math. J., vol. 28 (1961), pp. 607-624.
3. H. Hopf, Uber den Defekt stegiger Abbildungen von Mannigfaltigkeiten, Rend. Mat. e Appl. (V), vol. 21 (1962), pp. 273-285.
4. W. L. Reddy, Branched coverings, Michigan Math. J., vol. 18 (1971), pp. 103-114.
5. C. Shepardson, Thesis, Syracuse University,
6. E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. pp. 859-862.
7. A. W. Tucker, Branched and folded coverings, Bull. Amer. Math. Soc., vol. 42 (1931), pp. 859-862.

Syracuse University
Syracuse, New York
Wesleyan University
Middletown, Connecticut

