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1. Introduction
The purpose of this paper is to describe the branch sets Bf [1, p. 528] of

those light open maps f" S --. S (where S" denotes the n-sphere) for which
f-lf(Bf) Bs and dim f(B) _< n 2. It will be proved that, in the cases
n 2 and n 3, numerous different maps are possible whereas certain
restrictions occur on the nature of Bs in higher dimensions. The hypothesis
that f-lf(B]) B] is a natural one. It holds for example if f is the orbit
map of a finite group acting on the n-sphere. Furthermore, while the
examples in [2] show the complications possible in the general case, in the
regular Montgomery-Samelson case (f-lfB] B] and f is a homeomorphism
there--abbreviated M-S) it is possible to find some structure [4]. (The
reader should be warned that the hypothesis of regularity is invalidly omitted
in [4].) The maps considered in this paper are an intermediate class between
the M-S and the general light open maps.

Throughout, f" M" --. N will be a light open map of n-manifolds for
which dimf(Bf) <_ n 2 and hence [1, corollary 2.3, p. 531] dimB <_ n 2.
In dimension 2, even without further hypotheses, the Stoilow-Whyburn
theory guarantees that B/and f(Bs) are finite sets.

2. The case of the two-sphere

Throughout this section, we consider maps f" S-o S.
THEOREM 1. If f-f(B]) Bs 0, then either f(B/) S B] or else

f (Bs) is a set consisting of three points. In the latter case the degree of f cannot
be less than 4; for d 4 both B] and the local behavior of f at B] is uniquely
determined; for d 5 there is no such map; and for d > 5 there are various
possibilities.

Proof. Let f(B/) {ql,’", q}; let f-(qj) IPI,’", P,J.} and
let the exceptionality [2, p. 608] of f at p be e 0. In this manner every
element of f- (q) becomes a branch point. Since the degree d is obtainable
by computing for any y in the range of f the sum of the local degrees at the
points of f- (y), it follows that
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Since the local degree at p is at least 2, m <_ 1/2 d. Hence

(2) 1/2 d <_ ., e, and 1/2kd <_ _,, _, e.
From the Hurwitz-Riemann formula [3, p. 275], which is the 2-dimensional
case of Tucker’s formula [7], it follows that

(3) 2 -t- _, .,, e, 2 d.

Hence from (2) and (3) it follows that

(4) k <_ 4-- 4/4.

Thus, for maps with the prescribed properties, k is either 1, 2, or 3. If one
solves the last inequality for d instead of k, one obtains

(5) d>_ 4/(4- k)

from which it follows that d >_ 2 if k 1 or 2 and d >_ 4 when k 3.
From the second part of (2) and from (1) it follows that

(6) 1/2kd <_ _, e , (d- m) kd-

_
m

and hence that kd >_ 2, m. Since m >_ 1, it follows that d >_ 2.
From (1) and (3) it follows that

(7) 2d- 2 kd- m.
When k 2, m -t- m 2 and B] consists precisely of two points. Thus
the case k 2 is the case in which the restriction f i-f(B]) is a home-
omorphism. For all degrees d >_ 2, the complex function f(z) z yields
such a map, and topologically these are the only such maps.
When k 3 and the functions under discussion exist, equation (6) yields
m d 2 and the number of branch points is seen to depend upon the

degree. For large degree there are a great many different functions of this
type with various collections of exceptionalities for the branch points.
For even degree the functions of degree 2n defined by

g(z) (z’* q-- 6z + 1)/4z, n 2,3,...

provide examples. k computation will show that

g-g(B) B /zlz" 1} together with 0 and
g(B) {1, 2,

where
--1 g-1g (oo) {0, oo}, (1) nth roots of -1, g-(2) nth roots of

and the exceptionalities are as follows"

e(0) e(o) n- 1, e(q-1) e(-1) 1.

It will now be proved that the values d 5 and k 3 cannot occur to-
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gether. If they did, the values of e. would be at most 4. If e 4, then
n 1. The case e 3 cannot occur, for it would mean that the local
degree of f at p would be 4 and that the other point in f-1 (q) would be
outside B]. If e 2, there is just one other element in f- (q) and it has
exceptionality 1. Hence, for each j, e is either 3 or 4 and .e >_ 9.
In equation (3) this would mean that 2 W 9 _< 10 which is false.
Ifd 2n W 1 andn > 2, there are examples. In the cased 7and

k 3, there is topologically precisely one such map. For higher degrees
there are many. This question is dealt with for both even and odd degree
in the thesis of Carl Shepardson [5], to which we refer the reader for these
examples.

In the case k 2, the sets f-1 (q.), j 1, 2, are homeomorphic. When
k 3, one obtains the following-

Remark. If k 3, and the sets f- (q), j 1, 2, 3, are homeomorphic,
then d --- 4 mod 3.

Proof. Let m m, j 1, 2, 3. Then from 1 and 3, an elimination of.e yields d 3m 2. If, in addition, one requires that the excep-
tionalities be the same, say e at all branch points, then from (1), d m (e - 1).
This cannot occur, therefore, at prime degrees.

3. Higher dimensions
We consider maps/: S --. 8. Let p and q be positive integers and let

S and D be the unit circle and unit disk in the complex plane respectively.
Let

g:S XD--*SXD
be defined by gq(z, w) (z’, wq). Appropriate identification of the boun-
daries of two such solid tori, one the domain for gq and the other for gq
produces a map f: S - S satisfying the hypotheses of this paper. The set
B is the disjoint union of two copies of S and they are linked; f(B1) has
the same structure. Certain aspects of this situation are valid in higher
dimensions, to which we now turn.
The rest of this section will be devoted to the case dimM dimN n > 2.

The singular homology (and cohomology) theory with integer coefficients
will be employed. Let M and N be compact orientable manifolds without
boundary whose homology vanishes in dimensions 1 and 2. Let B and

Bf(B) be orientable (n-2)-manifolds such that B f-f() B and f(B)
are isolated tamely embedded components of Bf and f(Bf) respectively and
let d be the local degree on B.
LEMMA 1. Let x be a point of B and let U be a Euclidean neighborhood of

x in M such that U n B is a Euclidean neighborhood o/x in B, and U n BI
U n B. Let V B U. Then diagram A is a commutative diagram of

groups and homomorphisms in which is the Lefschetz duality isomorphism,
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is the coboundary homomorphism and i denotes inclusion.
vertical arrows represent isomorphisms.

Furthermore, the

Proof. We know that B and (U V) are tautly embedded in M [6,
Theorem 10, p. 290] and hence is an isomorphism [6, Theorem 19, p. 297]
in both cases. In the exact cohomology sequences for (M, B) and
(M, U V), the groups H"- (M) and H"-" (M) are zero by the Poincari
duality theorem [6, Theorem 18, p. 297] and the fact that the homology of M
vanishes in dimensions 1 and 2. Therefore is an isomorphism in both
cases. Diagram A is commutative, the bottom square by the naturality
of the exact sequence for a pair and the top square by the naturality of qu
and the inclusions appearing in the proof of [6, Theorem 19, p. 297]. The
naturality of qu with respect to inclusions is established at [6, p. 292].
We remark that U V is homotopically equivalent to S which implies

that
Z H,(U- V) H"-*[(M- U)a V].

Since B is an orientable (n 2)-manifold, H"- (B) Z.

LEMA 2. In Diagram A, the horizontal arrows represent isomorphisms.
,$

Proof. It suffices to prove that , is an isomorphism.
Notice that ? (M- U) S"-a (B- U) I7. SinceB- Uis

a manifold with boundary, H"- (B U) 0. The following commutative
diagram with exact rows is a consequence of the inclusion of

(B,, B,- U, (r) in (M- UuV, M- U, )
and of the Mayer-Vietoris theorem [6, p. 239].

Z Z 0

* H._ H-- H--H"-"((B,- U)n ?) --, (B,)-- (B,- U) ()
$ i* T i,*

A* H._H"-"((M U) n f’) ((m U)uV) --- ZHere the maps i* and i are. induced by the inclusion. The homomorphism
is an isomorphism since it is induced by the identity map. The homo-

morphism A* is an epimorphism, and since its domain and range are copies
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of Z, it is an isomorphism.
is an isomorphism.

Hence i8 o A* is an isomorphism and thus

LEMMA 3. There is a 1-cycle z whose carrier is a simple closed curve linking
V in U; and on the homology class {z} H1 (U V) the map f, is a multipli-
cation by d where d is the local degree of f at B

Proof. We know [1, Theorem 4, p. 533] that there is a euclidean neighbor-
hood U such that f is topologically equivalent to the natural winding map
around the tamely embedded (n 2)-cell V. Let this be the one employed
in Diagram/k. Thus there is a 1-cycle z whose carrier z is a simple closed
curve linking V in U, and this carrier can be chosen so that it has as an image
a simple closed curve on which it winds d times. If is the cycle carried by
f([ z I) and if {z} is the homology class at z, then f,({z}) d{}. Since
U V is contractible to z I, the homology class z} is a generator of the
group H1 (U V) and the action of f, on H(U V) is merely a multipli-
cation by d.

LEMMA 4. The homomorphism f," H(M B) ---, H[N f(B)] is a
multiplication by d

Proof. Consider the following commutative diagram in which the vertical
arrows are seen by the argument on Diagram A to be isomorphisms.

H(U- V) HI(.f(U- V))
i, $ i,

H(M B,) H1 (N f(B)
It is immediate that f," HI (M B) H(N f(B) is a multiplication
by d.

THEOREM 2. Let f: M --, N be a light open map of compact, oriented n-mani-
folds with vanishing homology in dimensions i and 2. Suppose dim B1 n 2,
n > 2, and B/contains as an isolated component a tamely embedded orientable
(n 2)-manifold B whose image f(B) is also an isolated tamely embedded
orientable (n 2)-manifold such that f-lf(B) B. Let Bj be an arc-con-
nected component ofB for which f-lf(Bj) B and f(B) n f(B) . Then
f(B) carries a 1-cycle which represents a nonzero class in H[N f(B) ].

Proof. Suppose that no 1-cycle in f(B) belongs to a nonzero class in
H[N f(B)]. Let a be a generator of H[N f(B)] chosen as follows:
Let t be an arc from a point y of f(Bj) to a point y of the cycle 1 of the
proof of Lemma 3 such that f is disjoint from f(B]) except at yl. Let a

be the path that proceeds along from y to y. then around 1 and finally
back to y along the reverse of ; i.e. a f/V. Let x f- (y) n B.
Let 5 be a lift through f of a starting at x and proceeding around a part of
z and returning from a point x of f- (y.) n z to a point x of f-1 (y) B..
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Let be an arc in B joining x to x. The paths f() and q, are closed.
That the cycle carried by /is non-trivial in M B can be seen as follows.
Let {} be the homology class of ,. Then

f,({&’y}) =-{of(’y)} {a} "l-{f(’Y)}.

Sincef(-/) f(B) and no cycle off(B) linksf(B), it follows that

{f()} 0 6 H(N f(B,)).
Thus

f, ({av}) 0.

On the other hnd, by Lemm 4, f. is multiplication by d on Hx (M B).
Hence {} is d multiple of some element of Hx(N f(B)) which in turn
is multiple of {}. This is impossible, nd thus there is 1-cycle in f(B)
that links f(B).
Theorem 2 cn be extended nd pplied in vrious directions. Here is

smple.

TI-I’EOREM 3 Under the hypotheses of Theorem 2, if f B is a covering map,
then B carries a cycle which represents a generator in Hx (M B)

Proof. If g is the degree of the covering mp f lB nd is the cycle
guaranteed to exist by Theorem 2, there is cycle z crried by B. such that
f(z) g. Consider

f.: H(M- B,) ----> H[N- f(B,)].

Thenf.{z} g{} 0since{} 0 ndH[N f(B)] Z. Nowzis
some multiple of a generator of H(M B), so the generator is also carried
by B.

It is known that the homology of B: cannot be more complicated thn that
of M for certain regular M-S coverings and certain coefficient domains [4].
Theorem 3 allows a strong statement about B: for certain branched coverings"

Coo.xY. Let f: M ----> N be a branched covering, n > 3. Suppose for
each component B of B: f-f(B) B. Then B: does not contain two disjoint
copies of S"-.

Proof. One copy of S"- cannot link the other in an n-mnifold, n > 3,
contrary to Theorem 3.

Notice that if we drop the requirement that B and f(B) be orientble
and replace integral coefficients by coefficients in Z., Lemmas 1-4 remain
vlid. A minor modification of the proof of Theorem 2 then yields the fol-
lowing theorem.

THEOREM 2’. Oi$ the hypothesis of orientability in Theoren 2. Suppose
that the local degree on B is even. Then f(B) carries a representative of a
non-zero class in H[N f(B) Z].
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