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Abstract

In the context of multi-task learning, neural networks with branched architectures

have often been employed to jointly tackle the tasks at hand. Such ramified networks

typically start with a number of shared layers, after which different tasks branch out into

their own sequence of layers. Understandably, as the number of possible network config-

urations is combinatorially large, deciding what layers to share and where to branch out

becomes cumbersome. Prior works have either relied on ad hoc methods to determine the

level of layer sharing, which is suboptimal, or utilized neural architecture search tech-

niques to establish the network design, which is considerably expensive. In this paper, we

go beyond these limitations and propose an approach to automatically construct branched

multi-task networks, by leveraging the employed tasks’ affinities. Given a specific bud-

get, i.e. number of learnable parameters, the proposed approach generates architectures,

in which shallow layers are task-agnostic, whereas deeper ones gradually grow more

task-specific. Extensive experimental analysis across numerous, diverse multi-tasking

datasets shows that, for a given budget, our method consistently yields networks with

the highest performance, while for a certain performance threshold it requires the least

amount of learnable parameters.

1 Introduction

Deep neural networks are usually trained to tackle different tasks in isolation. Humans, in

contrast, are remarkably good at solving a multitude of tasks concurrently. Biological data

processing appears to follow a multi-tasking strategy too; instead of separating tasks and

solving them in isolation, different processes seem to share the same early processing layers

in the brain – see e.g. V1 in macaques [15]. Drawing inspiration from such observations,

deep learning researchers began to develop multi-task networks with branched architectures.

As a whole, multi-task networks [6] seek to improve generalization and processing ef-

ficiency through the joint learning of related tasks. Compared to the typical learning of

separate deep neural networks for each of the individual tasks, multi-task networks come
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with several advantages. First, due to their inherent layer sharing [14, 20, 21, 26, 31], the

resulting memory footprint is typically substantially lower. Second, as features in the shared

layers do not need to be calculated repeatedly for the different tasks, the overall inference

speed is often higher [31, 34]. Finally, multi-task networks may outperform their single-task

counterparts [20, 32, 43, 44]. Evidently, there is merit in utilizing multi-task networks.

When it comes to designing them, however, a significant challenge is to decide on the

layers that need to be shared among tasks. Assuming a hard parameter sharing setting1, the

number of possible network configurations grows quickly with the number of tasks. As a

result, a trial-and-error procedure to define the optimal architecture becomes unwieldy. Re-

sorting to neural architecture search [11] techniques is not a viable option too, as in this

case, the layer sharing has to be jointly optimized with the layers types, their connectivity,

etc., rendering the problem considerably expensive. Instead, researchers have recently ex-

plored more viable alternatives, like routing [39], stochastic filter grouping [5], and feature

partitioning [35], which are, however, closer to the soft parameter sharing setting. Previous

works on hard parameter sharing opted for the simple strategy of sharing the initial layers in

the network, after which all tasks branch out simultaneously. The point at which the branch-

ing occurs is usually determined ad hoc [14, 20, 43]. This situation hurts performance, as a

suboptimal grouping of tasks can lead to the sharing of information between unrelated tasks,

known as negative transfer [47].

In this paper, we go beyond the aforementioned limitations and propose a novel approach

to decide on the degree of layer sharing between multiple visual recognition tasks in order to

eliminate the need for manual exploration. To this end, we base the layer sharing on measur-

able levels of task affinity or task relatedness: two tasks are strongly related, if their single

task models rely on a similar set of features. [46] quantified this property by measuring the

performance when solving a task using a variable sets of layers from a model pretrained on

a different task. However, their approach is considerably expensive, as it scales quadrati-

cally with the number of tasks. Recently, [10] proposed a more efficient alternative that uses

representation similarity analysis (RSA) to obtain a measure of task affinity, by computing

correlations between models pretrained on different tasks. Given a dataset and a number

of tasks, our approach uses RSA to assess the task affinity at arbitrary locations in a neural

network. The task affinity scores are then used to construct a branched multi-task network

in a fully automated manner. In particular, our task clustering algorithm groups similar tasks

together in common branches, and separates dissimilar tasks by assigning them to different

branches, thereby reducing the negative transfer between tasks. Additionally, our method

allows to trade network complexity against task similarity. We provide extensive empiri-

cal evaluation of our method, showing its superiority in terms of multi-task performance vs

computational resources.

2 Related work

Multi-task learning. Multi-task learning (MTL) [6, 41] is associated with the concept of

jointly learning multiple tasks under a single model. This comes with several advantages, as

described above. Early work on MTL often relied on sparsity constraints [4, 19, 27, 30, 45]

1In this setting, the input is first encoded through a stack of shared layers, after which tasks branch out into their

own sequence of task-specific layers [14, 20, 21, 31, 43]. Alternatively, a set of task-specific networks can be used

in conjunction with a feature sharing mechanism [26, 33, 42]. The latter approach is termed soft parameter sharing

in the literature.
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to select a small subset of features that could be shared among all tasks. However, this can

lead to negative transfer when not all tasks are related to each other. A general solution to this

problem is to cluster tasks based on prior knowledge about their similarity or relatedness [1,

3, 12, 22, 48].

In the deep learning era, MTL models can typically be classified as utilizing soft or hard

parameter sharing. In soft parameter sharing, each task is assigned its own set of parameters

and a feature sharing mechanism handles the cross-task talk. Cross-stitch networks [33]

softly share their features among tasks, by using a linear combination of the activations

found in multiple single task networks. Sluice networks [42] extend cross-stitch networks

and allow to learn the selective sharing of layers, subspaces and skip connections. In a

different vein, multi-task attention networks [26] use an attention mechanism to share a

general feature pool amongst task-specific networks. In general, MTL networks using soft

parameter sharing are limited in terms of scalability, as the size of the network tends to grow

linearly with the number of tasks.

In hard parameter sharing, the parameter set is divided into shared and task-specific pa-

rameters. MTL models using hard parameter sharing are often based on a generic framework

with a shared off-the-shelf encoder, followed by task-specific decoder networks [7, 20, 34,

43]. Multilinear relationship networks [29] extend this framework by placing tensor normal

priors on the parameter set of the fully connected layers. [14] proposed the construction of

a hierarchical network, which predicts increasingly difficult tasks at deeper layers. A limi-

tation of the aforementioned approaches is that the branching points are determined ad hoc,

which can easily lead to negative transfer if the predefined task groupings are suboptimal. In

contrast, in our branched multi-task networks, the degree of layer sharing is automatically

determined in a principled way, based on task affinities.

Our work bears some similarity to fully-adaptive feature sharing [31] (FAFS), which

starts from a thin network where tasks initially share all layers, but the final one, and dy-

namically grows the model in a greedy layer-by-layer fashion. Task groupings, in this case,

are decided on the probability of concurrently simple or difficult examples across tasks. Dif-

ferently, (1) our method clusters tasks based on feature affinity scores, rather than example

difficulty, which is shown to achieve better results for a variety of datasets; (2) the tree struc-

ture is determined offline using the precalculated affinities for the whole network, and not

online in a greedy layer-by-layer fashion, which promotes task groupings that are optimal in

a global, rather than local, sense.

Neural architecture search. Neural architecture search (NAS) [11] aims to automate the

construction of the network architecture. Different algorithms can be characterized based

on their search space, search strategy or performance estimation strategy. Most existing

works on NAS, however, are limited to task-specific models [24, 25, 37, 38, 49]. This is

to be expected as when using NAS for MTL, layer sharing has to be jointly optimized with

the layers types, their connectivity, etc., rendering the problem considerably expensive. To

alleviate the heavy computation burden, a recent work [23] implemented an evolutionary

architecture search for multi-task networks, while other researchers explored more viable

alternatives, like routing [39], stochastic filter grouping [5], and feature partitioning [35]. In

contrast to traditional NAS, the proposed methods do not build the architecture from scratch,

but rather start from a predefined backbone network for which a layer sharing scheme is

automatically determined.

Transfer learning. Transfer learning [36] uses the knowledge obtained when solving

one task, and applies it to a different but related task. Our work is loosely related to transfer

learning, as we use it to measure levels of task affinity. [46] provided a taxonomy for task
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Algorithm 1 Branched Multi-Task Networks - Task clustering

1: Input: Tasks T , K images I, a sharable encoder E with D locations where we can branch, a set of

task specific decoders Dt and a computational budget C.

2: for t in T do

3: Train the encoder E and task-specific decoder Dt for task t.

4: RDMt ← RDM(E,D,I) ⊲ RDM for task t.

5: end for

6: Ad,i, j← rs

(

triu
(

RDM
ti
d,:,:

)

, triu
(

RDM
t j

d,:,:

))

for ti, t j in T and d in locations ⊲ Task affinity

7: D = 1−A ⊲ Task dissimilarity

8: Return: Task-grouping with minimal task dissimilarity that fits within C

transfer learning to quantify such relationships. However, their approach scales unfavorably

w.r.t. the number of tasks, and we opted for a more efficient alternative proposed by [10].

The latter uses RSA to obtain a measure of task affinity, by computing correlations between

models pretrained on different tasks. In our method, we use the performance metric from

their work to compare the usefulness of different feature sets for solving a particular task.

Loss weighting. One of the known challenges of jointly learning multiple tasks is prop-

erly weighting the loss functions associated with the individual tasks. Early work [20] used

the homoscedastic uncertainty of each task to weigh the losses. Gradient normalization [7]

balances the learning of tasks by dynamically adapting the gradient magnitudes in the net-

work. Liu et al. [26] weigh the losses to match the pace at which different tasks are learned.

Dynamic task prioritization [14] prioritizes the learning of difficult tasks. [43] cast MTL as a

multi-objective optimization problem, with the overall objective of finding a Pareto optimal

solution. Note that, addressing the loss weighting issue in MTL is out of the scope of this

work. In fact, all our experiments are based on a simple uniform loss weighing scheme.

3 Method

In this paper, we aim to jointly solve N different visual recognition tasks T = {t1, . . . , tN}
given a computational budget C, i.e. number of parameters or FLOPS. Consider a backbone

architecture: an encoder, consisting of a sequence of shared layers or blocks fl , followed

by a decoder with a few task-specific layers. We assume an appropriate structure for layer

sharing to take the shape of a tree. In particular, the first layers are shared by all tasks,

while later layers gradually split off as they show more task-specific behavior. The proposed

method aims to find an effective task grouping for the sharable layers fl of the encoder, i.e.

grouping related tasks together in the same branches of the tree. When two tasks are strongly

related, we expect their single-task models to rely on a similar feature set [46]. Based on

this viewpoint, the proposed method derives a task affinity score at various locations in the

sharable encoder. The number of locations D can be freely determined as the number of

candidate branching locations. As such, the resulting task affinity scores are used for the

automated construction of a branched multi-task network that fits the computational budget

C. Fig. 3 illustrates our pipeline, while Algorithm 1 summarizes the whole procedure.
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Figure 1: Pipeline overview. (left) We train a single-task model

for every task t ∈ T . (middle) We use RSA to measure the task

affinity at D predefined locations in the sharable encoder. In

particular, we calculate the representation dissimilarity matrices

(RDM) for the features at D locations using K images, which

gives a D×K×K tensor per task. (right) The affinity tensor A is

found by calculating the correlation between the RDM matrices,

which results in a three-dimensional tensor of size D×N×N,

with N the number of tasks.

f 0

Input

f 1 f 1

f 2 f 2 f 2
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Figure 2: Our

pipeline’s output

is a branched multi-

task network, similar

to how NAS tech-

niques output sample

architectures. An

example branched

multi-task network is

visualized here.

Figure 3: The proposed method: (a) calculate task affinities at various locations in the

sharable encoder; (b) build a branched multi-task network based on the computed affinities.

3.1 Calculate task affinity scores

As mentioned, we rely on RSA to measure task affinity scores. This technique has been

widely adopted in the field of neuroscience to draw comparisons between behavioral models

and brain activity. Inspired by how [10] applied RSA to select tasks for transfer learning, we

use the technique to assess the task affinity at predefined locations in the sharable encoder.

Consequently, using the measured levels of task affinity, tasks are assigned in the same or

different branches of a branched multi-task network, subject to the computational budget C.

The procedure to calculate the task affinity scores is the following. As a first step, we train

a single-task model for each task ti ∈ T . The single-task models use an identical encoder E -

made of all sharable layers fl - followed by a task-specific decoder Dti . The decoder contains

only task-specific operations and is assumed to be significantly smaller in size compared to

the encoder. As an example, consider jointly solving a classification and a dense prediction

task. Some fully connected layers followed by a softmax operation are typically needed for

the classification task, while an additional decoding step with some upscaling operations is

required for the dense prediction task. Of course, the appropriate loss functions are applied in

each case. Such operations are part of the task-specific decoder Dti . The different single-task

networks are trained under the same conditions.

At the second step, we choose D locations in the sharable encoder E where we calculate

a two-dimensional task affinity matrix of size N×N. When concatenated, this results in a
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three-dimensional tensor A of size D×N×N that holds the task affinities at the selected lo-

cations. To calculate these task affinities, we have to compare the representation dissimilarity

matrices (RDM) of the single-task networks - trained in the previous step - at the specified

D locations. To do this, a held-out subset of K images is required. The latter images serve

to compare the dissimilarity of their feature representations in the single-task networks for

every pair of images. Specifically, for every task ti, we characterize these learned feature

representations at the selected locations by filling a tensor of size D×K×K. This tensor

contains the dissimilarity scores 1−ρ between feature representations, with ρ the Pearson

correlation coefficient. Specifically, RDMd,i, j is found by calculating the dissimilarity score

between the features at location d for image i and j. The 3-D tensors are linearized to 1-D

tensors to calculate the pearson correlation coefficient.

For a specific location d in the network, the computed RDMs are symmetrical, with a

diagonal of zeros. For every such location, we measure the similarity between the upper

or lower triangular part of the RDMs belonging to the different single-task networks. We

use the Spearman’s correlation coefficient rs to measure similarity. When repeated for every

pair of tasks, at a specific location d, the result is a symmetrical matrix of size N×N, with

a diagonal of ones. Concatenating over the D locations in the sharable encoder, we end

up with the desired task affinity tensor of size D×N ×N. Note that, in contrast to prior

work [31], the described method focuses on the features used to solve the single tasks, rather

than the examples and how easy or hard they are across tasks, which is shown to result in

better task groupings in Section 4. Furthermore, the computational overhead to determine

the task affinity scores based on feature correlations is negligible. We conclude that the

computational cost of the method boils down to pre-training N single task networks. A

detailed computational cost analysis can be found in the supplementary materials.

Other measures of task similarity [2, 9] probed the features from a network pre-trained

on ImageNet. This avoids the need to pre-train a set of single-task networks first. However,

in this case, the task dictionaries only consisted of various, related classification problems.

Differently, we consider more diverse, and loosely related task (see Section 4). In our case,

it is arguably more important to learn the task-specific information needed to solve a task.

This motivates the use of pre-trained single-task networks.

3.2 Construct a branched multi-task network

Given a computational budget C, we need to derive how the layers (or blocks) fl in the

sharable encoder E should be shared among the tasks in T . Each layer fl ∈ E is represented

as a node in the tree, i.e. the root node contains the first layer f0, and nodes at depth l contain

layer(s) fl . The granularity of the layers fl corresponds to the intervals at which we measure

the task affinity in the sharable encoder, i.e. the D locations. When the encoder is split into

bl branches at depth l, this is equivalent to a node at depth l having bl children. The leaves of

the tree contain the task-specific decoders Dt . Fig. 2 shows an example of such a tree using

the aforementioned notation. Each node is responsible for solving a unique subset of tasks.

The branched multi-task network is built with the intention to separate dissimilar tasks

by assigning them to separate branches. To this end, we define the dissimilarity score be-

tween two tasks ti and t j at location d as 1−Ad,i, j, with A the task affinity tensor2. The

branched multi-task network is found by minimizing the sum of the task dissimilarity scores

at every location in the sharable encoder. In contrast to prior work [31], the task affinity (and

2This is not to be confused with the dissimilarity score used to calculate the RDM elements RDMd,i, j .



VANDENHENDE ET AL.: BRANCHED MULTI-TASK NETWORKS 7

dissimilarity) scores are calculated a priori. This allows us to determine the task clustering

offline. Since the number of tasks is finite, we can enumerate all possible trees that fall

within the given computational budget C. Finally, we select the tree that minimizes the task

dissimilarity score. The task dissimilarity score of a tree is defined as Ccluster = ∑l C
l
cluster,

where Cl
cluster is found by averaging the maximum distance between the dissimilarity scores

of the elements in every cluster. The use of the maximum distance encourages the separation

of dissimilar tasks. By taking into account the clustering cost at all depths, the procedure can

find a task grouping that is considered optimal in a global sense. This is in contrast to the

greedy approach in [31], which only minimizes the task dissimilarity locally, i.e. at isolated

locations in the network.

4 Experiments

In this section, we evaluate the proposed method on a number of diverse multi-tasking

datasets, that range from real to semi-real data, from few to many tasks, from dense predic-

tion to classification tasks, and so on. For every experiment, we describe the most important

elements of the setup. We report the number of parameters (#P) for every model to facilitate

a fair comparison. Additional implementation details can be found in the supplementary

materials.

4.1 Cityscapes

Dataset. The Cityscapes dataset [8] considers the scenario of urban scene understanding.

The train, validation and test set contain respectively 2975, 500 and 1525 real images, taken

by driving a car in Central European cities. It considers a few dense prediction tasks: se-

mantic segmentation (S), instance segmentation (I) and monocular depth estimation (D). As

in prior works [20, 43], we use a ResNet-50 encoder with dilated convolutions, followed by

a Pyramid Spatial Pooling (PSP) [17] decoder. Every input image is rescaled to 512 x 256

pixels. We reuse the approach from [20] for the instance segmentation task, i.e. we consider

the proxy task of regressing each pixel to the center of the instance it belongs to.

Results. We measure the task affinity after every block (1 to 4) in the ResNet-50 model (see

Fig. 4). The task affinity decreases in the deeper layers, due to the features becoming more

task-specific. We compare the performance of the task groupings generated by our method

with those by other approaches. As in [32], the performance of a multi-task model m is

defined as the average per-task performance drop/increase w.r.t. a single-task baseline b.

We trained all possible task groupings that can be derived from branching the model in

the last three ResNet blocks. Fig. 5 visualizes performance vs number of parameters for

the trained architectures. Depending on the available computational budget C, our method

generates a specific task grouping. We visualize these generated groupings as a blue path

in Fig. 5, when gradually increasing the computational budget C. Similarly, we consider

the task groupings when branching the model based on the task affinity measure proposed

by FAFS [31] (green path). We find that, in comparison, the task groupings devised by our

method achieve higher performance within a given computational budget C. Furthermore, in

the majority of cases, for a fixed budget C the proposed method is capable of selecting the

best performing task grouping w.r.t. performance vs parameters metric (blue vs other).

We also compare our branched multi-task networks with cross-stitch networks [33],

NDDR-CNNs [13] and MTAN [26] in Table 2. While cross-stitch nets and NDDR-CNNs
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Figure 4: Task affinity scores measured after
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Figure 5: Number of parameters versus

multi-task performance on Cityscapes for

different task groupings. The ’Other Group-

ings’ contain any remaining tree structures

that can be found by randomly branching the

model in the last three ResNet blocks.

give higher multi-task performance, attributed to their computationally expensive soft pa-

rameter sharing setting, our branched networks can strike a better trade-off between the per-

formance and number of parameters. In particular, we can effectively sample architectures

which lie between the extremes of a baseline multi-task model and a cross-stitch or NDDR-

CNN architecture. Finally, our models provide a more computationally efficient alternative

to the MTAN model, which reports similar performance while using more parameters.

4.2 Taskonomy

Dataset. The Taskonomy dataset [46] contains semi-real images of indoor scenes, annotated

for 26 (dense prediction, classification, etc.) tasks. Out of the available tasks, we select

scene categorization (C), semantic segmentation (S), edge detection (E), monocular depth

estimation (D) and keypoint detection (K). The task dictionary was selected to be as diverse

as possible, while still keeping the total number of tasks reasonable for all computations. We

use the tiny split of the dataset, containing 275k train, 52k validation and 54k test images.

We reuse the architecture and training setup from [46]: the encoder is based on ResNet-50;

a 15-layer fully-convolutional decoder is used for the pixel-to-pixel prediction tasks.

Results. The task affinity is again measured after every ResNet block. Since the number of

tasks increased to five, it is very expensive to train all task groupings exhaustively, as done

above. Instead, we limit ourselves to three architectures that are generated when gradually

increasing the parameter budget. As before, we compare our task groupings against the

method from [31]. The numerical results can be found in Table 1. The task groupings

themselves are shown in the supplementary materials.

The effect of the employed task grouping technique can be seen from comparing the

performance of our models against the corresponding FAFS models, generated by [31]. The

latter are consistently outperformed by our models. Compared to the results on Cityscapes
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Method D

(L1)↓
S

(IoU)↑
C

(Top-5)↑
E

(L1)↓
K

(L1)↓
#P

(M)

∆MT L

(%)↑
Single task 0.60 43.5 66.0 0.99 0.23 224 + 0.00

MTL baseline 0.75 47.8 56.0 1.37 0.34 130 - 22.50

MTAN 0.71 43.8 59.6 1.86 0.40 158 -37.36

Cross-stitch 0.61 44.0 58.2 1.35 0.50 224 - 32.29

NDDR-CNN 0.66 45.9 64.5 1.05 0.45 258 - 21.02

FAFS - 1 0.74 46.1 62.7 1.30 0.39 174 - 24.5

FAFS - 2 0.80 39.9 62.4 1.68 0.52 188 - 48.32

FAFS - 3 0.74 46.1 64.9 1.05 0.27 196 - 8.48

Ours - 1 0.76 47.6 63.3 1.12 0.29 174 - 11.88

Ours - 2 0.74 48.0 63.6 0.96 0.35 188 - 12.66

Ours - 3 0.74 47.9 64.5 0.94 0.26 196 - 4.93

Table 1: Results on the tiny Taskonomy test set. The results for edge (E) and keypoints (K)

detection were multiplied by a factor of 100 for better readability. The FAFS models refer to

generating the task groupings with the task affinity technique proposed by [31].

(Fig. 5), we find that the multi-task performance is much more susceptible to the employed

task groupings, possibly due to negative transfer. Furthermore, we observe that none of the

soft parmeter sharing models can handle the larger, more diverse task dictionary: the perfor-

mance decreases when using these models, while the number of parameters increases. This

is in contrast to our branched multi-task networks, which seem to handle the diverse set of

tasks rather positively. As opposed to [46], but in accordance with [32], we show that it

is possible to solve many heterogeneous tasks simultaneously when the negative transfer is

limited, by separating dissimilar tasks from each other in our case. In fact, our approach

is the first to show such consistent performance across different multi-tasking scenarios and

datasets. Existing approaches seem to be tailored for particular cases, e.g. few/correlated

tasks, synthetic-like data, binary classification only tasks, etc., whereas we show stable per-

formance across the board of different experimental setups.

4.3 CelebA

Dataset. The CelebA dataset [28] contains over 200k images of celebrities, labeled with

40 facial attribute categories. The training, validation and test set contain 160k, 20k and

20k images respectively. We treat the prediction of each facial attribute as a single binary

classification task, as in [18, 31, 43]. To ensure a fair comparison: we reuse the thin-ω model

from [31] in our experiments; the parameter budget C is set for the model to have the same

amount of parameters as prior work.

Results. Table 3 shows the results on the CelebA test set. Our branched multi-task net-

works outperform earlier works [18, 31] when using a similar amount of parameters. Since

the Ours-32 model (i.e. ω is 32) only differs from the FAFS model on the employed task

grouping technique, we can conclude that the proposed method devises more effective task

groupings for the attribute classification tasks on CelebA. Furthermore, the Ours-32 model

performs on par with the VGG-16 model, while using 64 times less parameters. We also

compare our results with the ResNet-18 model from [43]. The Ours-64 model performs

1.35% better compared to the ResNet-18 model when trained with a uniform loss weigh-

ing scheme. More noticeably, the Ours-64 model performs on par with the state-of-the-art

ResNet-18 model that was trained with the MGDA loss weighing scheme from [43], while

at the same time using 31% less parameters (11.2 vs 7.7 M).
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Method S

(IoU)↑
I

(px)↓
D

(px)↓
#P

(M)

∆MT L

(%)↑
Single task 65.2 11.7 2.57 138 +0.00

MTL baseline 61.5 11.8 2.66 92 -3.33

MTAN 62.8 11.8 2.66 113 -2.53

Cross-stitch 65.1 11.6 2.55 140 +0.42

NDDR-CNN 65.6 11.6 2.54 190 +0.89

Ours - 1 62.1 11.7 2.66 107 -2.68

Ours - 2 62.7 11.7 2.62 114 -1.84

Ours - 3 64.1 11.6 2.62 116 -0.96

Table 2: Results on the Cityscapes validation

set.

Method Acc. (%) #P (M)

MOON [40] 90.94 119.73

Independent Group [16] 91.06 -

MCNN [16] 91.26 -

MCNN-AUX [16] 91.29 -

VGG-16 [31] 91.44 134.41

FAFS [31] 90.79 2.09

GNAS [16] 91.63 7.73

Res-18 (Uniform) [43] 90.38 11.2

Res-18 (MGDA) [43] 91.75 11.2

Ours-32 91.46 2.20

Ours-64 91.73 7.73

Table 3: Results on the CelebA test set. The

Ours-32, Ours-64 architectures are found

by optimizing the task clustering for the pa-

rameter budget that is used in the FAFS,

GNAS model respectively.

5 Conclusion

In this paper, we introduced a principled approach to automatically construct branched multi-

task networks for a given computational budget. To this end, we leverage the employed tasks’

affinities as a quantifiable measure for layer sharing. The proposed approach can be seen as

an abstraction of NAS for MTL, where only layer sharing is optimized, without having to

jointly optimize the layers types, their connectivity, etc., as done in traditional NAS, which

would render the problem considerably expensive. Extensive experimental analysis shows

that our method outperforms existing ones w.r.t. the important metric of multi-tasking per-

formance vs number of parameters, while at the same time showing consistent results across

a diverse set of multi-tasking scenarios and datasets.
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