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Abstract It has been conjectured since the work of Lalley and Sellke (Ann. Probab.,
15, 1052–1061, 1987) that branching Brownian motion seen from its tip (e.g. from its
rightmost particle) converges to an invariant point process. Very recently, it emerged
that this can be proved in several different ways (see e.g. Brunet and Derrida, A
branching random walk seen from the tip, 2010, Poissonian statistics in the extremal
process of branching Brownian motion, 2010; Arguin et al., The extremal process of
branching Brownian motion, 2011). The structure of this extremal point process turns
out to be a Poisson point process with exponential intensity in which each atom has
been decorated by an independent copy of an auxiliary point process. The main goal
of the present work is to give a complete description of the limit object via an explicit
construction of this decoration point process. Another proof and description has been
obtained independently by Arguin et al. (The extremal process of branching Brownian
motion, 2011).
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1 Introduction

Branching Brownian motion is the subject of a large literature that one can trace back
at least to [18]. The connection of this probabilistic model with the well-known F-KPP
equation has in particular attracted much interest from both the probabilistic and the
analytic side starting with the seminal studies of McKean [24], Bramson [6], Lalley
and Sellke [23], Chauvin and Rouault [9] and more recently with works by Harris
[15], Kyprianou [22] and Harris, Harris and Kyprianou [16].

In the present work we consider a continuous-time branching Brownian motion
with quadratic branching mechanism: the system starts with a single particle at the
origin which follows a Brownian motion with drift � and variance σ 2 > 0. After an
exponential time with parameter λ > 0 the particle splits into two new particles which
each start a new independent copy of the same process started from its place of birth.
Each of them thus moves according to a Brownian motion with drift � and variance
σ 2 > 0 and splits into two after an exponential time with parameter λ > 0 and so on.

We write X1(t) ≤ · · · ≤ X N (t)(t) for the positions of the particles of the branching
Brownian motion alive at time t enumerated from left to right (where N (t) is the
number of particles alive at time t). The corresponding random point measure is
denoted by

N (t) :=
∑

i=1,...,N (t)

δXi (t).

We will work under conditions on λ, �, σ 2 which ensure that for all t > 0,

E

⎡

⎣
∑

i=1,...,N (t)

e−Xi (t)

⎤

⎦ = 1, E

⎡

⎣
∑

i=1,...,N (t)

Xi (t)e
−Xi (t)

⎤

⎦ = 0. (1.1)

Since E(N (t)) = eλt , for any measurable function F and each t > 0,

E

⎡

⎣
∑

i=1,...,N (t)

F(Xi,t (s), s ∈ [0, t])
⎤

⎦ = eλt E
[
F(σ Bs + �s, s ∈ [0, t])] ,

where, for each i ∈ {1, . . . , N (t)} we let Xi,t (s), s ∈ [0, t] be the position, at time
s, of the unique ancestor of Xi (t) and B is a standard Brownian motion. Thus the
Eq. (1.1) become � = λ + σ 2

2 and � = σ 2. Hence the usual conditions amount to
supposing � = σ 2 = 2λ. In this paper we always assume λ = 1, � = 2 and σ = √

2.
The choice of a binary branching is arbitrary. Our results certainly hold true for a more
general class of branching mechanisms, e.g. when the law of the number of offsprings
is bounded or has finite second moment. For the sake of clarity we only consider the
simple case of binary branching which already contains the full phenomenology.
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Branching Brownian motion seen from its tip 407

The position X N (t)(t) of the rightmost particle of the branching Brownian motion
has been much studied (see [5,6,23,24]). In these classical works, the authors usually
assume that � = 0, λ = σ = 1. We recall some of their results adapted to our
normalization. In particular, instead of the rightmost particle we prefer to work with
the position X1(t) of the leftmost particle.

Bramson [6] shows that there exists a constant CB ∈ R and a real valued random
variable W such that

X1(t) − mt
law→ W, t → ∞, (1.2)

where

mt := 3

2
log t + CB (1.3)

and furthermore the distribution function P(W ≤ x) = w(x) is a solution to the
critical F-KPP travelling wave equation

w′′ + 2w′ + w(w − 1) = 0.

Lalley and Sellke’s paper [23] can be seen as the real starting point of the present
work. Realizing that the convergence (1.2) cannot hold in an ergodic sense, they prove
the following result. Define

Z(t) :=
∑

i=1,...,N (t)

Xi (t)e
−Xi (t). (1.4)

We know that E(Z(t)) = 0 by (1.1) and it is not hard to see that (Z(t), t ≥ 0) is in
fact a martingale (the so-called derivative martingale). It can be shown that

Z := lim
t→∞ Z(t) (1.5)

exists, is finite and strictly positive with probability 1. The main result of Lalley and
Sellke’s paper is then that ∃C > 0 such that

lim
s→∞ lim

t→∞ P(X1(t + s) − mt+s ≥ x |Fs) = exp
(−C Zex)

where Ft is the natural filtration of the branching Brownian motion. As a consequence,

P(W ≤ x) ∼ C |x |ex , x → −∞. (1.6)

Since conditionally on Z the function y �→ exp (−C Zey) = exp
(−ey+log(C Z)

)
is

the distribution function of minus a Gumbel random variable centered on − log(C Z),
this suggests the following picture which is conjectured by Lalley and Sellke for the
front of branching Brownian motion. The random variable X1(t) − mt converges in
distribution and its limit is the sum of two terms. The first one is − log(C Z), which
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depends on the limit of the derivative martingale, while the second term is simply
minus a Gumbel random variable. Brunet and Derrida [8] interpret this as a random
delay (which builds up early in the process and settles down to some value) and a
fluctuation term around this position.

In the last section of [23], the authors conjecture that more generally, the point
measure of particle positions relative to mt − log(C Z)

¯N (t) :=
∑

i=1,...,N (t)

δXi (t)−mt +log(C Z)

converges to a stationary distribution.
In the present work we prove that ¯N (t) converges to a stationary distribution

which we describe precisely. We show that the structure of this limit point measure is
a decorated Poisson point measure, i.e., a Poisson point measure on the real line where
each atom is replaced by an independent copy of a certain point measure shifted by the
position of the atom. Another proof and description has been obtained independently
by Arguin et al. [4] (see Sect. 3).

2 Main results

Throughout the paper, all point measures are, as in the setting of Kallenberg [21],
considered as elements of the space M of Radon measures on R equipped with the
vague topology, that is, we say that μn converges in distribution to μ if and only if∫

f dμn → ∫
f dμ for any real continuous function f with compact support. By

Theorem 4.2 (iii) p. 32 of [21], it is equivalent to say that (μn(A j ), 1 ≤ j ≤ k)

converges in distribution to (μ(A j ), 1 ≤ j ≤ k) for any intervals (A j , 1 ≤ j ≤
k). The space C(R+, R) (or sometimes, C([0, t], R)) is endowed with topology of
uniform convergence on compact sets. If F is a function on C(R+, R), then for any
continuous function (Zs, s ∈ [0, t]), we define F(Zs, s ∈ [0, t]) as F(Z̃s, s ≥ 0),
with Z̃s := Zmin{s, t}.

We now introduce two point measures which are the main focus of this work. First,
consider the point measure of the particles seen from mt − log(C Z) and enumerated
from the leftmost:

¯N (t) = N (t) − mt + log(C Z) =
∑

i=1,...,N (t)

δXi (t)−mt +log(C Z).

We will also sometimes want to consider the particles as seen from the leftmost

N ′(t) :=
∑

i=1,...,N (t)

δXi (t)−X1(t)

Theorem 2.1 As t → ∞ the pair { ¯N (t), Z(t)} converges jointly in distribution to
{L , Z} where Z is as in (1.5), L and Z are independent and L is obtained as follows.
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Branching Brownian motion seen from its tip 409

(i) Define P a Poisson point measure on R, with intensity measure ex dx.
(ii) For each atom x of P , we attach a point measure Q(x) where Q(x) are indepen-

dent copies of a certain point measure Q.
(iii) L is then the point measure corresponding to the sum of all x + Q(x), i.e.,

L :=
∑

x∈P

∑

y∈Q(x)

δx+y

where x ∈ P means “x is an atom of P”.

Since the leftmost atom of P has the Gumbel distribution, this implies that the
Gumbel distribution is the weak limit of X1(t)− mt + log(C Z). The following corol-
lary, concerning the point measure seen from the leftmost position, contains strictly
less information than the theorem.

Corollary 2.2 As t → ∞ the point measure N ′(t) converges in distribution to the
point measure L ′ obtained by replacing the Poisson point measure P in step (i)
above by P ′ described in step (i)′ below:

(i)′ Let e be a standard exponential random variable. Conditionally on e, define
P ′ to be a Poisson point measure on R+, with intensity measure eex 1R+(x) dx to
which we add an atom in 0.

The decoration point measure Q(x) remains the same.

The variable Z is not Ft -measurable, and in this sense Theorem 2.1 is a conditional
statement. However, it is clear that if one replaces ¯N (t) by

ˆN (t) := N (t) − mt + log(C Z(t)) =
∑

i=1,...,N (t)

δXi (t)−mt +log(C Z(t))

which is Ft -measurable, then the same result still holds.
Theorem 2.1 above should not be considered a new result when the decoration

point measure Q is not specified. Indeed, the convergence to a limiting point process
was already implicit in the results of Brunet and Derrida [7] and is also proved inde-
pendently in [4] by Arguin et al. See Sect. 3 for a detailed discussion.

We next give a precise description of the decoration point measure Q which is the
main result of the present work. For each s ≤ t , recall that X1,t (s) is the position at
time s of the ancestor of X1(t), i.e., s �→ X1,t (s) is the path followed by the leftmost
particle at time t . We define

Yt (s) := X1,t (t − s) − X1(t), s ∈ [0, t]

the time reversed path back from the final position X1(t). Let us write t ≥ τ1(t) >

τ2(t) > . . . for the (finite number of) successive splitting times of branching along
the trajectory X1,t (s), s ≤ t (enumerated backward). We define Ni (t) to be the point
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410 E. Aïdékon et al.

Fig. 1 (Y, Q) is the limit of the path s �→ X1,t (t −s)− X1(t) and of the points that have branched recently
off from X1,t

measure corresponding to the set of all particles at time t which have branched off
from X1,t at time τi (t) relative to the final position X1(t) (see Fig. 1). We will also
need the notation τi, j (t) which is the time at which Xi (t) and X j (t) share their most
recent common ancestor. Observe that

Ni (t) =
∑

j≤N (t):τ1, j (t)=τi (t)

δX j (t)−X1(t).

We then define

Q(t, ζ ) := δ0 +
∑

i :τi (t)>t−ζ

Ni (t)

i.e., the point measure of particles at time t which have branched off X1,t (s) after time
t − ζ , including the particle at X1(t) itself.

We will first show that ((Yt (s), s ∈ [0, t]),Q(t, ζ )) converges jointly in distribution
(by first letting t → ∞ and then ζ → ∞) towards a limit ((Y (s), s ≥ 0),Q) where the
second coordinate is our point measure Q which is described by growing conditioned
branching Brownian motions born at a certain rate on the path Y . We first describe the
limit ((Y (s), s ≥ 0),Q) and then we state the precise convergence result.

The following family of processes indexed by a real parameter b > 0 plays a key
role in this description. Let B := (Bt , t ≥ 0) be a standard Brownian motion and let
R := (Rt , t ≥ 0) be a three-dimensional Bessel process started from R0 := 0 and
independent from B (see Fig. 2). Let us define Tb := inf{t ≥ 0 : Bt = b}. For each
b > 0, we define the process �(b) as follows:

�(b)
s :=

{
Bs, if s ∈ [0, Tb],
b − Rs−Tb , if s ≥ Tb.

(2.1)
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Branching Brownian motion seen from its tip 411

Fig. 2 The process �(b)

Let us define

Gt (x) := P0(X1(t) ≤ x) = P−x (X1(t) ≤ 0)

the probability of presence to the left of x at time t , where we write Px for the law of
the branching Brownian motion started from one particle at x . Hence, by (1.2) we see
that Gt (x + mt ) → P(W ≤ x).

We can now describe the law of the backward path Y : for any measurable set A of
C(R+, R) and b ≥ 0,

P(Y ∈ A,− inf
s≥0

Y (s) ∈ db) = 1

c1
E
[
e−2

∫∞
0 Gv(σ�

(b)
v ) dv1−σ�(b)∈A

]
,

where

c1 :=
∞∫

0

E
[
e−2

∫∞
0 Gv(σ�

(b)
v ) dv

]
db

(observe that by Eq. (6.7) this constant is finite).
Observe that − infs≥0 Y (s) is a random variable with values in (0, ∞) whose

density is given by

P
(

− inf
s≥0

Y (s) ∈ db

)
= 1

c1
E
[
e−2

∫∞
0 Gv(σ�

(b)
v ) dv

]
db.
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Now, conditionally on the path Y , we let π be a Poisson point process on [0,∞)

with intensity 2
(
1 − Gt (−Y (t))

)
dt = 2

(
1 − PY (t)(X1(t) < 0)

)
dt . For each point

t ∈ π start an independent branching Brownian motion (N ∗
Y (t)(u), u ≥ 0) at position

Y (t) conditioned to have min N ∗
Y (t)(t) > 0.1 Then define Q := δ0 +∑t∈π N ∗

Y (t)(t).

Theorem 2.3 The following convergence holds jointly in distribution:

lim
ζ→∞ lim

t→∞((Yt (s), s ∈ [0, t]), Q(t, ζ ), X1(t) − mt ) = ((Y (s), s ≥ 0), Q, W ),

where the random variable W is independent of the pair ((Y (s), s ≥ 0), Q), and Q
is the point measure which appears in Theorem 2.1.

Observe that the parameter ζ only matters for the decoration point measure in the
second coordinate.

The following Theorem 2.4 characterizes the joint distribution of the path s �→
X1,t (s) that the particle which is the leftmost at time t has followed, of the point
measures of the particles to its right, and of the times at which these particles have
split in the past, all in terms of a Brownian motion functional. The proof borrows
some ideas from [1] but is more intuitive in the present setting of branching Brownian
motion. Moreover, it also serves as a first step in the (much) more involved proof of
Theorem 2.3 in Sect. 6

For any positive measurable functional F : C([0, t], R) �→ R+ and any positive
measurable function f : [0, t] → R+, for n ∈ N, (α1, . . . , αn) ∈ R

n+ and A1, . . . , An

a collection of Borel subsets of R+ define

I (t) := E
{

F(X1,t (s), s ∈ [0, t]) exp
(

−
∑

i

f (t − τi (t))
n∑

j=1

α j

∫

A j

dNi (t)
)}

,

where for a point measure N and a set A we write
∫

A dN in place of N (A).
For each r ≥ 0 and every x ∈ R recall that Gr (x) = P{X1(r) ≤ x}, and further

define

G
( f )

r (x) := E
[
e
− f (r)

∑n
j=1 α j [

∫
x+A j

dN (r)]
1{X1(r)≥x}

]
.

Hence, when f ≡ 0 we have G
( f )

r (x) = 1 − Gr (x).

Theorem 2.4 We have

I (t) = E
[
eσ Bt F(σ Bs, s ∈ [0, t]) e−2

∫ t
0 [1−G

( f )
t−s (σ Bt −σ Bs )] ds

]
, (2.2)

where B in the expectation above is a standard Brownian motion. In particular, the
path (s �→ X1,t (s), 0 ≤ s ≤ t) is a standard Brownian motion in a potential:

1 By convention, for a point measure N , min N is the infimum of the support of N .
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Fig. 3 The events E1(x, η), E2(x, η) and E3(x, η) together are the event that the paths of particles ending
within distance η of mt avoid all the dashed regions

E
[

F(X1,t (s), s ∈ [0, t])
]

= E
[
eσ Bt F(σ Bs, s ∈ [0, t]) e−2

∫ t
0 Gt−s (σ Bt −σ Bs ) ds

]
.

(2.3)

This result, which can be seen as a Feynman–Kac representation formula is hardly
surprising and is reminiscent of the approach in Bramson’s work.

In addition to this “Brownian motion in a potential” description we also present
some properties of a typical path (X1,t (s), s ∈ [0, t]). Let us fix a constant η > 0
(that we will take large enough in a moment). For t ≥ 1 and x > 0, we define the
good event At (x, η) by

At (x, η) := E1(x, η) ∩ E2(x, η) ∩ E3(x, η) (2.4)

where the events Ei (see Fig. 3) are defined by

E1(x, η) :=
{
∀is.t.|Xi (t) − mt | < η, min

s∈[0,t] Xi,t (s) ≥ −x,

min
s∈[t/2,t] Xi,t (s) ≥ mt − x

}
,

E2(x, η) :=
{
∀is.t.|Xi (t) − mt | < η,∀s ∈

[
x,

t

2

]
, Xi,t (s) ≥ s1/3

}
,

E3(x, η) :=
{
∀is.t.|Xi (t) − mt | < η,∀s ∈

[
x,

t

2

]
,

Xi,t (t − s) − Xi (t) ∈ [s1/3, s2/3]
}

.

We will show that the event At (x, η) happens with high probability, the reason being
that s �→ X1,t (s) looks very much like a Brownian excursion over the curve s → ms .
We observe that the events Ei depend on t but we omit to write the dependency for
sake of brevity.

Proposition 2.5 (Arguin, Bovier and Kistler [2]) Let η > 0. For any ε > 0, there
exists x > 0 large enough such that P(At (x, η)) ≥ 1 − ε for t large enough.
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Observe in particular, that since P(|X1,t (t) − mt | > η) → 0 when η → ∞ we
know that for η and x large enough, the path s �→ X1,t (s) has the properties described
in the event E1, E2, E3 with arbitrary high probability. Here the exponents 1/3 and
2/3 have been chosen arbitrarily in the sense that one could replace them with 1/2±ε

for any 0 < ε < 1/2 (Fig. 3).
The rest of this paper is organized as follows. Section 3 is devoted to discussions

on related results. The main goal of the paper is to prove Theorem 2.3, which is
also the hardest. We start by proving Theorem 2.4 in Sect. 4 which is much easier,
thus introducing some tools and ideas we will use throughout the paper. Next, in
Sect. 5, we prove Proposition 2.5 which gives us estimates on the localization of the
path followed by the rightmost particle. Section 6 contains the main arguments for the
proof of Theorem 2.3, and Sects. 7, 8 and 9 are devoted to technical intermediary steps.

The proof of Theorem 2.1 is given last in Sect. 10. We show that by stopping
particles when they first hit a certain position k and then considering only their leftmost
descendants one recovers a Poisson point measure of intensity ex dx as k → ∞. Then,
we show that two particles near mt have separated in a branching event that was either
very recent or near the very beginning of the process and we finally combine those
two steps to complete the proof of Theorem 2.1.

3 Related results and discussion

The goal of this section is to discuss the relevant literature and to give a brief account
of the main differences and similarities between the present work and some related
papers.

The description of the extremal point process of the branching Brownian motion is
also the subject of [7,8] by Brunet and Derrida. There, using the McKean representation
and Bramson’s convergence result for the solutions of the F-KPP equation [6], the
authors show that the limit point process exists and has the superposability property.
From there, using classical arguments (see for instance [26]) it can then be shown
that the only point processes having this property are those of the type “decorated
exponential Poisson point processes”, proving in essence our Theorem 2.1. Recently,
pursuing and adding to those ideas Arguin et al. have also shown the convergence of

¯N (t) to a limiting point process with the superposability property (see [4, Proposition
2.2 and Corollary 2.4]). Therefore, it is really Theorem 2.3—the description of the
decoration measure Q—which is the main contribution of the present work. Finally
we mention that Madaule [25] has proved the analogue of our Theorem 2.1 for non-
lattice branching random walks by using the recent result in [1] on the maximum of
branching random walks.

Most of the results presented here are identical or very closely related to those
obtained independently by Arguin, Bovier and Kistler in a series of papers [2–4]. For
reference we include here a brief description of their results, stated in the context of
our normalization to ease comparison.

The main results of [2] concern the paths followed by the extremal particles and their
genealogy. Our Proposition 10.2 is the same result as Theorem 2.1 of [2] which says
that particles near mt have either branched near time 0 or near time t . Theorems 2.2, 2.3
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Branching Brownian motion seen from its tip 415

and 2.5 in [2] concern the localization of paths of particles which end up near mt at time
t . Arguin et al. show that at intermediary times s, with arbitrarily large probability, they
lie between s

t mt − (s ∧ (t − s))α and s
t mt − (s ∧ (t − s))β for 0 < α < 1/2 < β < 1.

This, of course, corresponds exactly to our Proposition 2.5. Since their arguments rely
essentially on many-to-one calculations and Bessel bridge estimates, the methods of
proof are also very similar. We include the proofs of Propositions 2.5 and 10.2 for the
sake of self-containedness.

In [3], Arguin, Bovier and Kistler using the path localization argument obtained in
[2] are able to show that if one only considers particles that have branched off from
one another far enough into the past (the point process of maxima of the clusters), then
it converges to a Poisson point process with exponential intensity ([3], Theorem 2).
This of course very closely resembles our Proposition 10.1. Their proof relies on the
convergence of Laplace functionals (for which a first Lalley–Sellke type representation
is given) whereas we simply deduce this from the classical results about records of iid
variables.

In [4] a complete description of the extremal point process of the branching Brown-
ian motion is given. There, they show that ¯N (t) (actually in [4] the point process N
is centered by mt instead of mt −log(C Z)) converges in distribution to a limiting point
process which is necessarily an exponential Poisson point process whose atoms are
“decorated” with iid point measures. They give a complete description of this decora-
tion point measure as follows. Let D(t) =∑∞

i=1 δXi (t)−X1(t) which is a random point
measure on R+. Conditionally on the event X1(t) < 0 it converges in distribution to
a limit D . Theorem 2.1 in [4] thus coincides with our Theorem 2.1 via Q = D .

One of the key argument in [4] is to identify the limit extremal point process of the
branching Brownian motion with the limit of an auxiliary point process. This auxiliary
point process is constructed as follows. Let (ηi , i ∈ N) be the atoms of a Poisson point
process on R+ with intensity

a(xebx ) dx

for some constants a and b. For each i , they start form ηi an independent branching
Brownian motion (with the same λ, σ, � parameters as the original one) and call �(t)
the point process of the position of all the particles of all the branching Brownian
motions at time t . Theorem 2.5 in [4] shows that limt→∞ �(t) = limt→∞ ¯N (t).
This solves what Lalley and Sellke [23] call the conjecture on the standing wave of
particles. The proof is based on the analysis of Bramson [6] for the solution of the
F-KPP equation with various initial conditions and the subsequent work of Lalley and
Sellke [23] and Chauvin and Rouault [10] which allows them to show convergences
of Laplace type functionals of the extremal point process.

In the present work we also prove the convergence of the extremal point process to
a decorated exponential Poisson point process. Our main result, Theorem 2.3, gives
a description of the decoration measure Q which is very different from [4]. The
methods we use are also different since we essentially rely on path localization and
decomposition. It is our hope to exploit the description of Q given in Theorem 2.3 to
prove a conjecture of Brunet and Derrida [7] concerning the asymptotic distribution
of the extremal point measure L .
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4 Proof of Theorem 2.4

We will use repeatedly the following approach which is known as the spinal decom-
position. The process

Mt :=
∑

i≤N (t)

e−Xi (t), t ≥ 0,

is a so-called additive martingale, which is critical, not uniformly integrable and con-
verges almost surely to 0. Let Q be the probability measure on F∞ such that, for each
t ≥ 0,

Q|Ft
= Mt • P|Ft

.

Following Chauvin and Rouault ([10], Theorem 5), Q is the law of a branching dif-
fusion with a particle behaving differently. More precisely, for each time s ≥ 0
we let �s ∈ {1, . . . , N (s)} be the label of the distinguished particle (the process
(�s, s ∈ [0, t]) is called the spine). The particle with label �s at time s branches at
(accelerated) rate 2 and gives birth to normal branching Brownian motions (with-
out spine) with distribution P, whereas the process of the position of the spine
(X�s (s), s ∈ [0, t]) is a driftless Brownian motion of variance σ 2 = 2. Further-
more, for each t ≥ 0 and each i ≤ N (t),

Q{�t = i | Ft } = e−Xi (t)

Mt
.

We use this principle repeatedly in the present work in the following manner. For each
i ≤ N (t) consider �i a random variable which is measurable in the filtration of the
branching Brownian motion up to time t (i.e., it is determined by the history of the
process up to time t) and suppose that we wish to compute EP[∑i≤N (t) �i ]. Then,
thanks to the above, we have

EP

⎡

⎣
∑

i≤N (t)

�i

⎤

⎦ = EQ

⎡

⎣ 1

Mt

∑

i≤N (t)

�i

⎤

⎦ = EQ

[
eX�t (t)��t

]
. (4.1)

We will refer to (4.1) as the many-to-one principle.
For any positive measurable function F : C(R+, R) → R+, any positive mea-

surable function f : [0, t] → R+, n ∈ N, (α1, . . . , αn) ∈ R
n+ and A1, . . . , An a

collection of Borel subsets of R+ define

I (t) := E

⎧
⎪⎨

⎪⎩
F(X1,t (s), s ∈ [0, t]) exp

⎛

⎜⎝−
∑

i

f (t − τi (t))
n∑

j=1

α j

∫

A j

dNi (t)

⎞

⎟⎠

⎫
⎪⎬

⎪⎭
,
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as in Sect. 2. Letting Xi,t (s) be the position of the ancestor at time s of the particle at
Xi (t) at time t , we have

I (t) = E

⎡

⎣
∑

i≤N (t)

1{i=1} F(Xi,t (s), s ∈ [0, t])�i (t)

⎤

⎦ ,

with �i (t) := exp{−∑k f (t − τ
(i)
k (t))

∑n
j=1 α j [

∫
A j

dN (i)
k ]} where the sequence

of times τ
(i)
k (t) are the successive branching times along Xi,t (s) enumerated backward

from t , and the point measures N (i)
k are the particles which have branched off from

Xi,t (s) at time τ
(i)
k (t)

N (i)
k :=

∑

�:τi,�(t)=τ
(i)
k (t)

δ(X�(t)−Xi (t)).

Using the many-to-one principle and the change of probability presented in Eq. (4.1)
we see that

I (t) = EQ

[
eX�t (t) 1{�t =1} F(X�s (s), s ∈ [0, t])��t (t)

]

= EQ

[
eX�t (t) F(X�s (s), s ∈ [0, t])��t (t)

∏

k

1{min N (�t )
k >0}

]

where we recall that by convention, for a point measure N , min N is the infimum of
the support of N .

Conditioning on the σ -algebra generated by the spine (including the successive
branching times) we obtain

I (t)=EQ

[
eX�t (t) F(X�s (s), s ∈ [0, t])

∏

i

G
( f )

t−τ
(�t )
i (t)

(X�t (t)−X�t ,t (τ
(�t )
i (t)))

]
,

where, for any r ≥ 0 and any x ∈ R,

G
( f )

r (x) := E
[
e
− f (r)

∑n
j=1 α j [

∫
A j +x dN (r)]

1{min N (r)≥x}
]
. (4.2)

Since (τ
(�t )
i (t), i ≥ 0) is a rate 2 Poisson process under Q, we arrive at:2

I (t) = EQ

[
eX�t (t) F(X�s (s), s ∈ [0, t]) e−2

∫ t
0 [1−G

( f )
t−s (X�t (t)−X�s (s))] ds

]

= E
[
eσ Bt F(σ Bs, s ∈ [0, t]) e−2

∫ t
0 [1−G

( f )
t−s (σ Bt −σ Bs )] ds

]
, (4.3)

2 We recall the Laplace functional of a point Poisson process P: E[exp(− ∫ f dP)] = exp[− ∫ (1 −
e− f ) dμ], where μ is the intensity measure.
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where, in the last identity, we used the fact that (X�s (s), s ∈ [0, t]) under Q is a
centered Brownian motion (with variance σ 2 = 2). This yields Theorem 2.4. ��

Remark Although we do not need it in the present paper, we mention that (4.3) gives
the existence and the form of the density of X1(t) by taking f ≡ 0 and F to be the
projection on the coordinate s = t :

P{X1(t) ∈ dy} = ey E
[
e−2

∫ t
0 Gt−s (σ Bt −σ Bs ) ds 1{Bt ∈ dy

σ
}
]

= ey E(t)
0,

y
σ

[
e−2

∫ t
0 Gt−s (σ Bt −σ Bs ) ds

]
P
{

Bt ∈ dy

σ

}
.

5 Properties of the path followed by the leftmost particle:
proof of Proposition 2.5

When applying the many-to-one principle as in (4.1), if the functional �� only depends
on the path of X�s (s) then the last expectation is simply the expectation of a certain
event for the standard Brownian motion. For instance, suppose that we want to check
if there exists a path (Xi,t (s), s ∈ [0, t]) with some property in the tree. Let A be a
measurable subset of continuous functions [0, t] �→ R. Then

P(∃i ≤ N (t) : (Xi,t (s), s ∈ [0, t]) ∈ A) ≤ P(eσ Bt ; (σ Bs, s ∈ [0, t]) ∈ A) (5.1)

where (Bs, s ≥ 0) is a standard Brownian motion under P. This is the main tool we
use in proving Proposition 2.5.

Let (Bs, s ≥ 0) denote a standard Brownian motion. Before proceeding to the
proof of Proposition 2.5, let us recall (see, for example, Revuz and Yor [30], Exercise
III.3.14) the joint distribution of min[0,t] Bs and Bt : for any x > 0, y > 0 and t > 0,

P
(

min[0,t] Bs > −x, Bt + x ∈ dy
)

=
( 2

π t

)1/2
e− x2+y2

2t sinh
( xy

t

)
dy

≤
( 2

π t3

)1/2
xy dy , (5.2)

the last inequality following from the facts that sinh z ≤ zez for z ≥ 0, and that

e− x2+y2

2t + yx
t ≤ 1.

We now turn to the proof of Proposition 2.5. Let Jη(t) := {i ≤ N (t) : |Xi (t) −
mt | < η} where mt = 3

2 log t + CB by (1.3). We recall that for t ≥ 1 and x > 0, we
define the good event At (x, η) by

At (x, η) := E1(x, η) ∩ E2(x, η) ∩ E3(x, η)
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where the events Ei are defined by

E1(x, η) :=
{
∀i ∈ Jη(t), min[0,t] Xi,t (s) ≥ −x, min

[ t
2 , t]

Xi,t (s) ≥ mt − x
}
,

E2(x, η) :=
{
∀i ∈ Jη(t),∀s ∈

[
x,

t

2

]
, Xi,t (s) ≥ s1/3

}
,

E3(x, η) :=
{
∀i ∈ Jη(t),∀s ∈

[ t

2
, t − x

]
, Xi,t (s)−Xi (t) ∈ [(t−s)1/3, (t−s)2/3]

}
.

We now prove the claim of Proposition 2.5: For any ε > 0 and η > 0, there exists
x > 0 large enough such that P(At (x, η)) ≥ 1 − ε for t large enough.

Proof The notation c denotes a constant (that may depend on η) which can change
from line to line. We deal separately with the events Ei (x, η). We want to show that
for any i ∈ {1, 2, 3}, there exists x large enough such that P((Ei (x, η))�) ≤ ε for t
large enough.

Bound of P(E1(x, η)�).
First, observe that min{Xi (t), i ≤ N (t), t ≥ 0} is an a.s. finite random variable and

therefore

P
(

min
i∈Jη(t),s∈[0,t] Xi,t (s) ≤ −x

)
≤ P

(
min{Xi (t), i ≤ N (t), t ≥ 0} ≤ −x

)
≤ ε

for x large enough. It remains to bound the probability to touch level mt − x between
t
2 and t . By the previous remarks, we can assume that min[0,t] Xi,t (s) ≥ −z for all
i ∈ Jη(t). We claim that, for any z, η ≥ 0, there exists c > 0 and a function εt → 0
such that for any x ≥ 0 and t ≥ 1,

P
{
∃i ∈ Jη(t), min

s∈[0, t] Xi,t (s) ≥ −z, min
s∈[ t

2 , t]
Xi,t (s) = mt − x ± 1

}
≤ ce−cx + εt

(5.3)

where y = u ± v stands for y ∈ [u − v, u + v]. This will imply the bound on
E1(x, η)�. Let us prove the claim. We see that the probability on the left-hand side is 0
if x > mt +z+1 (indeed, if x > mt +z+1 and mins∈[ t

2 , t] Xi,t (s) ≤ mt −x +1 < −z,

then it is impossible to have mins∈[0, t] Xi,t (s) ≥ −z). We then take x ≤ 7
4 log t (any

constant lying in ( 3
2 , 2) would do the job in place of 7

4 ).
Let a ∈ (0, t

2 ) (at the end, a = ex/2). We discuss whether {mins∈[t/2,t−a] Xi,t (s) =
mt − x ± 1} or {mins∈[t−a,t] Xi,t (s) = mt − x ± 1}. We denote by p[t/2,t−a]

claim (x) (resp.

p[t−a,t]
claim (x)) the probability in (5.3) on the event {mins∈[t/2,t−a] Xi,t (s) = mt − x ± 1}

(resp. {mins∈[t−a,t] Xi,t (s) = mt − x ± 1}). Equation (5.1) provides us with the
following bound

p[t/2,t−a]
claim (x) ≤ eη+CB t3/2P(B) (5.4)
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where

P(B) := P
{
σ B[0,t] ≥ −z, σ B[ t

2 ,t−a] = mt − x ± 1,

σ B[t/2,t] = mt − x ± 1, σ Bt = mt ± η
}

and B[b1,b2] := mins∈[b1,b2] Bs . By reversing time, we see that

P(B) ≤ P
{
σ B[0,t] ≥ −mt − (z + η), σ B[0,a] ≥ −η − x − 1,

σ Bt = −mt ± η, σ B[a,t/2] = −x ± (η + 1)
}
.

By the Markov property at time t/2, we obtain

P(B) ≤ E
[
1{σ B[a,t/2]=−x±(η+1)}1{σ B[0,a]≥−η−x−1}

×PBt/2

{
σ B[0,t/2] ≥ −mt − (z + η), σ Bt/2 = −mt ± η

}]
,

where, for any y ∈ R, Py is the probability under which B starts at y: Py(B0 = y) = 1.
(So P0 = P). By (5.4) and (5.2), it follows that

p[t/2,t−a]
claim (x) ≤ c(z + 2η)2E

[
1{σ B[a,t/2]=−x±(η+1),σ B[0,a]≥−η−x−1}

(σ Bt/2 + mt + (z + η))
]

≤ c(z + 2η)2(E1 + E2)

where

E1 := E
[
1{σ B[a,t/2]=−x±(η+1),σ B[0,a]≥−η−x−1}(σ Bt/2 + η + x + 1)

]
,

E2 := (mt + z − x − 1)P
{
σ B[a,t/2] = −x ± (η + 1), σ B[0,a] ≥ −η − x − 1

}
.

To bound E2 is easy. We have |E2| ≤ O(log t) P(σ B[0,t/2] ≥ −η − x − 1) =
O((log t)2) t−1/2 uniformly in x ≤ 7

4 log t . Now consider E1. We note that (σ Bt/2 +
η + x + 1)1{σ B[0,t/2]≥−η−x−1} is the h-transform of the three-dimensional Bessel
process, and we denote by (Rs, s ≥ 0) a three-dimensional Bessel process. Then,

E1 = (η + x + 1)Pη+x+1(σ R[a,t/2]) ≤ 2(η + 1) ≤ (η + x + 1)

× Pη+x+1(min
s≥a

σ Rs ≤ 2(η + 1))

with natural notation. The infimum of a three-dimensional Bessel process starting from
x is uniformly distributed in [0, x] (see Revuz and Yor [30], Exercise V.2.14). Applying
the Markov property at time a, we get E1 ≤ 2(η+1)

σ
(η + x + 1)Eη+x+1[1/Ra] ≤
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c(η + x + 1)a−1/2. We take a = ex/2. The preceding inequality implies that for any
x ≥ 0 and t ≥ 1,

p[t/2,t−a]
claim (x) ≤ c(η + x + 1)2e−x/4 + c(log t)2t−1/2. (5.5)

We deal now with the probability p[t−a,t]
claim (x). In this case, the minimum on [t − a, t]

belongs to [mt − x − 1, mt − x + 1]. Since we know that p[t/2,t−a]
claim (x) is small, we

can restrict to the case where the minimum on [t/2, t − a] is greater than mt − x + 1,
i.e.,

p[t−a,t]
claim (x) ≤

�2 log t�∑

y=x

p[t/2,t−a]
claim (y)

+P
{
∃i ∈ Jη(t) : X [0,t]

i,t ≥−z, X [t/2,t−a]
i,t > mt −x + 1, X [t−a,t]

i,t ≤ mt − x + 1
}
.

From (5.5), we know that
∑�2 log t�

y=x p[t/2,t−a]
claim (y) ≤ o(t) + c e−x/8 with as usual

X [a,b]
i,t := mins∈[a,b] Xi,t (s).
Suppose that we kill particles as soon as they hit the position −z during the time

interval [0, t/2] and as soon as they are left of or at position mt − x + 1 during the
time interval [t/2, t]. Call S[t−a,t] the number of particles that are killed during the
time interval [t − a, t]. Hence,

p[t−a,t]
claim (x) ≤ o(t) + ce−x/8 + E[#S[t−a,t]]. (5.6)

We observe that by stopping particles either at time t or when they first hit −z
during [0, t/2] or mt − x + 1 during the time interval [t/2, t], we are defining a so-
called dissecting stopping line. Stopping lines were introduced and studied—among
others—by [11,20] essentially for branching random walks. More recently, they have
been used with great efficacy by e.g. Kyprianou in the context of branching Brownian
motion to study traveling wave solutions to the F-KPP equation [22]. More precisely,
for a continuous path X : R+ → R let us call T (X) the stopping time

T (X) := inf{s ≤ t/2 : X (s) ≤ −z} ∧ inf{s ∈ [t/2, t] : X (s) ≤ mt − x + 1} ∧ t

and for i ≤ N (t) define Ti := T (Xi,t (·)). We also need a notation for the label of the
progenitor at time Ti of the particle at Xi (t) at time t : let Ji ≤ N (Ti ) be the almost
surely unique integer such that

X Ji (Ti ) = Xi,t (Ti ).

We now formally define the stopping line � by

� := enum((Ji , Ti )i≤N (t))
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where enum means that � is an enumeration without repetition. In general, stopping
lines can be far more sophisticated objects, and � is a particularly simple example of
this class, which is bounded by t (and thus dissecting).

We now need a generalization of the many-to-one principle (4.1) to stopping lines.
Although this can now be considered common knowledge, surprisingly only [27,
Lemmas 3.1 and 3.2] gives the result in sufficient generality for our purposes.

Fact 5.1 Let g : (x, t) �→ g(x, t), R × R+ → R be measurable. Then, if X (t) =
σ Bt + �t where B is a standard Brownian motion

EP

⎡

⎣
∑

(i,t)∈�

g(Xi (t), t)

⎤

⎦ = E[eλT (X)g(XT (X), T (X))].

To see this, one can for instance adapt the proofs for the fixed-time many-to-one
lemma in [14,17] to the case of dissecting stopping lines.

Once one factors in the Girsanov term to get rid of the drift, one sees that

EP

⎡

⎣
∑

(i,t)∈�

g(Xi (t), t)

⎤

⎦ = E[eσ BT (σ B) g(σ BT (σ B), T (σ B)]

= EQ[eX�T (�)
(T (X�))g(X�T (�)

(T (X�)), T (X�))].

By applying this with g(x, s) = 1s∈(t−a,t) we see that

E[#S[t−a,t]] = eCB t3/2e−x+1P
{
σ B[0,t/2] ≥ −z, T t/2

(mt −x+1)/σ ∈ [t − a, t],
σ Bt/2 ≥ mt − x + 1

}
.

where T t/2
y := min{s ≥ t/2 : Bs = y}. As usual, we apply the Markov property at

time t/2 so that

P
{
σ B[0,t/2] ≥ −z, T t/2

(mt −x+1)/σ ∈ [t − a, t], σ Bt/2 ≥ mt − x + 1
}

= E
[
1{σ B[0,t/2]≥−z}PBt/2

{
T(mt −x+1)/σ ∈ [t/2 − a, t/2]

}]

where Ty := min{s ≥ 0 : Bs = y} is the hitting time at level y. We know that

P(Ty ∈ du) = y√
2π

u−3/2e− y2

2u du ≤ cyu−3/2 du for u ≥ 0. It follows that for some
constant c > 0 and any a ∈ [1, t/3]

P
{
σ B[0,t/2] ≥ −z, T t/2

(mt −x+1)/σ ∈ [t − a, t], σ Bt/2 ≥ mt − x + 1
}

≤ cat−3/2E[Bt/21{σ B[0,t/2]≥−z}] = cat−3/2z.
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Thus, E[#S[t−a,t]] ≤ caze−x = cze−x/2 for a = ex/2. Claim (5.3) now follows from
equations (5.5) and (5.6).

Bound of P((E2(x, η))�).
We can restrict to the event E1(z, η) for z large enough. By the many-to-one prin-

ciple, we get

P(E2(x, η)�, E1(z, η)) ≤ eη+CB t3/2P(B̂)

where P(B̂) is defined by

P(B̂) : = P
{
∃s ∈ [x, t/2] : σ Bs ≤ s1/3, σ B[0,t/2] ≥ −z,

σ B[t/2,t] ≥ mt − z, σ Bt ≤ mt + η
}
.

We will actually bound the probability

P(B̂, dr) := P
{
∃s ∈ [x, t/2] : σ Bs ≤ s1/3, σ B[0,t/2] ≥ −z,

σ B[t/2,t] ≥ mt − z, σ Bt ∈ mt + dr
}
. (5.7)

Applying the Markov property at time t/2 yields that

P(B̂, dr)

= E
[
1{∃s∈[x,t/2]:σ Bs≤s1/3}1{σ B[0,t/2]≥−z}PBt/2

{
σ B[0,t/2] ≥mt −z, σ Bt/2 ∈mt + dr

}]

≤ c(r +z)t−3/2E
[
1{∃s∈[x,t/2]:σ Bs≤s1/3}1{σ B[0,t/2]≥−z}(σ Bt/2 − mt +z)+

]
dr

≤ c(r + z)t−3/2E
[
1{∃s∈[x,t/2]:σ Bs≤s1/3}1{σ B[0,t/2]≥−z}(σ Bt/2 + z)

]
dr

where the second inequality comes from Eq. (5.2), and we set y+ := max(y, 0). We
recognize the h-transform of the Bessel process. Therefore

P(B̂, dr) ≤ cz(r + z)t−3/2Pz(∃s ∈ [x, t/2] : σ Rs ≤ z + s1/3) dr (5.8)

where as before (Rs, s ≥ 0) is a three-dimensional Bessel process. In particular,
P(B̂) = ∫ η

−z P(B̂, dr) ≤ cz(z + η)2t−3/2Pz(∃s ∈ [x, t/2] : σ Rs ≤ z + s1/3). This
yields that

P(E2(x, η)�, E1(z)) ≤ eη+CB cz(z + η)2Pz(∃s ∈ [x, t/2] : σ Rs ≤ z + s1/3)

≤ eη+CB cz(z + η)2Pz(∃s ≥ x : σ Rs ≤ z + s1/3)

and we deduce that P(E2(x, η)�, E1(z)) ≤ ε for x large enough.
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Bound of P((E3(x, η))�).
The bound on P((E3(x, η)�)) works similarly. We have by the many-to-one prin-

ciple

P(E3(x, η)�, E1(z, η), E2(z, η)) ≤ eη+CB t3/2P(B̃) (5.9)

with P(B̃) defined by

P
{
∃s ∈ [t/2, t − x] : σ(Bs − Bt ) /∈ [(t − s)1/3, (t − s)2/3],
σ B[0,t/2] ≥ −z, σ B[t/2,t] ≥ mt − z, σ Bt = mt ± η

}
.

Let

P(B̃, dr) := P
{
∃s ∈ [t/2, t − x] : σ(Bs − Bt ) /∈ [(t − s)1/3, (t − s)2/3],

σ B[0,t/2] ≥ −z, σ B[t/2,t] ≥ mt − z, σ Bt ∈ mt + dr
}
. (5.10)

Reversing time, we get

P(B̃, dr) ≤ P
{
∃s ∈ [x, t/2] : σ Bs /∈ [s1/3, s2/3], σ B[t/2,t] ≥ −mt − z − η,

σ B[0,t/2] ≥ −z − η, σ Bt + mt ∈ dr
}
. (5.11)

By Eq. (5.2), we have for any y > − 3
2 log t − z − η, and t ≥ 1

Py

{
σ B[0,t/2] ≥ −mt − z − η, σ Bt/2 + mt ∈ dr

}

≤ c(y + mt + z + η)(r + z + η)t−3/2 dr.

Applying the Markov property at time t/2 in (5.11), we get for t ≥ 1

P(B̃, dr) ≤ c(r + z + η)t−3/2E
[
1{∃s∈[x,t/2]:σ Bs /∈[s1/3,s2/3],σ B[0,t/2]≥−z−η}

(σ Bt/2 + mt + z + η)
]

dr

≤ c(r + z + η)t−3/2
(

mt√
t

+ E
[
1{∃s∈[x,t/2]:σ Bs /∈[s1/3,s2/3],σ B[0,t/2]≥−z−η}

(σ Bt/2 + z + η)
])

dr.

On the other hand,

E
[
1{∃s∈[x,t/2]:σ Bs /∈[s1/3,s2/3],σ B[0,t/2]≥−z−η}(σ Bt/2 + z + η)

]

= (z + η)Pz+η(∃s ≥ x : σ Rs − z − η /∈ [s1/3, s2/3])
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where, as before, (Rs, s ≥ 0) is a three-dimensional Bessel process. This implies that

P(B̃, dr)≤c(r +z+η)t−3/2
(

mt√
t
+(z+η)Pz+η(∃s ≥ x : σ Rs −z−η /∈[s1/3, s2/3])

)
dr.

(5.12)

We get that

P(B̃)≤c(z+2η)2t−3/2
(

mt√
t
+(z + η)Pz+η(∃s ≥ x : σ Rs − z − η /∈ [s1/3, s2/3])

)

which is less than c(z + 2η)2t−3/2ε for x large enough (as t → ∞) and we conclude
by (5.9). ��

For future reference we now prove the following lemma which shows that the
probability for a Brownian path conditioned to end up near mt of satisfying event E1

but not E2 or E3 decreases like 1/t . Let P(t)
a,b denote the probability under which B is a

Brownian bridge from a to b of length t . The notation ox (1) designates an expression
depending on x (and also on r and z, but independent of t) which converges to 0 as
x → ∞. We recall that B[a,b] := mins∈[a,b] Bs .

Lemma 5.2 Fix r ∈ R and z > 0. We have

P(t)
0,

mt +r
σ

(
σ B[0,t/2] ≥ −z, σ B[t/2,t] ≥ mt − z,

∃s ∈ [x, t − x] : σ Bs < min(s1/3, mt + (t − s)1/3)
)

= 1

t
ox (1)

in the sense that lim supt→∞ tP(t)
0,

mt +r
σ

(. . .) = ox (1). Furthermore, there exists a con-

stant c > 0 such that for any t ≥ 1, z > 0 and r ∈ R such that |r | ≤ √
t ,

P(t)
0,

mt +r
σ

(
σ B[0,t/2] ≥ −z, σ B[t/2,t] ≥ mt − z

)
≤ c

t
z|r + z|.

Proof We have

P(t)
0,

mt +r
σ

(
σ B[0,t/2] ≥ −z, σ B[t/2,t] ≥ mt − z,

∃s ∈ [x, t − x] : σ Bs < min(s1/3, mt + (t − s)1/3)
)

≤ P(t)
0,

mt +r
σ

(
σ B[0,t/2] ≥ −z, σ B[t/2,t] ≥ mt − z, ∃s ∈ [x, t/2] : σ Bs < s1/3

)

+P(t)
0,

mt +r
σ

(
σ B[0,t/2] ≥ −z, σ B[t/2,t] ≥ mt − z,

∃s ∈ [t/2, t − x] : σ Bs < mt + (t − s)1/3
)
.
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We treat the two terms on the right-hand side successively. Using the definition of the
Brownian bridge, we observe that, as t → ∞

P(t)
0,

mt +r
σ

(
σ B[0,t/2] ≥ −z, σ B[t/2,t] ≥ mt − z, ∃s ∈ [x, t/2] : σ Bs < s1/3

)

= σ
√

2π t e
(mt +r)2

2σ2 t lim
dr→0

1

dr
P(B̂, dr)

with P(B̂, dr) defined in (5.7). By Eq. (5.8), P(B̂, dr) ≤ ct−3/2(r + z)Pr (∃s ∈
[x, t/2] : σ Rs ≤ s1/3) dr , where (Rs, s ≥ 0) is a three dimensional Bessel process.
Hence

P(t)
0,

mt +r
σ

(
σ B[0,t/2] ≥−z, σ B[t/2,t] ≥mt −z, ∃s ∈ [x, t/2] : σ Bs <s1/3

)
∼ 1

t
ox (1).

Similarly, notice that

P(t)
0,

mt +r
σ

(
σ B[0,t/2] ≥ −z, σ B[t/2,t] ≥ mt − z,

∃s ∈ [t/2, t − x] : σ Bs < mt + (t − s)1/3
)

≤ σ
√

2π t e
(mt +r)2

2σ2 t lim
dr→0

1

dr
P(B̃, dr)

with P(B̃, dr) defined in (5.10). Then, Eq. (5.12) implies that

P(t)
0,

mt +r
σ

(
σ B[0,t/2] ≥ −z, σ B[t/2,t] ≥ mt − z,

∃s ∈ [t/2, t − x] : σ Bs < mt + (t − s)1/3
)

is 1
t ox (1), which proves the first assertion. Let us prove the second one. We can suppose

that r + z ≥ 0, since the statement is trivial otherwise. We have that

P(t)
0,

mt +r
σ

(
σ B[0,t/2] ≥ −z, σ B[t/2,t] ≥ mt − z

)

= σ
√

2π t e
(mt +r)2

2σ2 t lim
dr→0

1

dr
P(σ B[0,t/2] ≥−z, σ B[t/2,t] ≥ mt −z, σ Bt ∈mt + dr).

By the Markov property at time t/2 and equation (5.2), we see that

P(σ B[0,t/2] ≥ −z, σ B[t/2,t] ≥ mt − z, σ Bt ∈ mt + dr)

≤ ct−3/2(r + z)E
[
1{σ B[0,t/2]≥−z}(σ Bt/2 + z − mt )+

]
dr
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where y+ stands for max(y, 0). We notice as before that E
[
1{σ B[0,t/2]≥−z}(σ Bt/2+

z − mt )+
] ≤ E

[
1{σ B[0,t/2]≥−z}(σ Bt/2 + z)

]
= z, which completes the proof.

6 The decoration point measure Q: Proof of Theorem 2.3

This section is devoted to the study of the decoration point measure Q.

Proof of Theorem 2.3 Recall that Xi,t (s) is the position at time s ∈ [0, t] of the
ancestor of Xi (t) and that we have defined

Yt (s) := X1,t (s) − X1(t).

Let ζ > 0, and let f := 1[0, ζ ]. Let t ≥ ζ . Let

L j (t, ζ ) :=
∫

A j

dQ(t, ζ )

=
∑

i : t−τi (t)≤ζ

∫

A j

dNi (t), 1 ≤ j ≤ n.

Let F1 : C(R+, R) → R+ be a bounded continuous function and F2 := 1[η1,η2] for
some η2 > η1. Fix x > 0 and let

as :=
{

−x if s ∈ [0, t/2],
mt − x if s ∈ (t/2, t]. (6.1)

We define for any function X : [0, t] → R, the event

A(X) := {X (s) ≥ as ∀ s ∈ [0, t − ζ ]} ∩ {X (s) − X (t) ≥ −x, ∀ s ∈ [t − ζ, t]} ∩
{X (t − ζ ) − X (t) ∈ (ζ 1/3, ζ 2/3)} ∩ {inf{s : X (t − s) = min

u∈[0,t/2] X (t − u)} ≤ x}.

We easily check that Proposition 2.5 implies that {X1(t)−mt ∈ [η1, η2]}∩(A(X1,t ))
�

is of probability arbitrary close to 0 when x and ζ are large enough. Therefore, we fix
x large and we work on the event A(X1,t ) and we will let t → ∞ then ζ → ∞ then
x → ∞. By (4.3), for t ≥ ζ :

E
{

1A(X1,t ) F1(Yt (s), s ∈ [0, ζ ]) e−∑n
j=1 α j L j (t, ζ ) F2(X1(t) − mt )

}

= E
[
1A(σ B) F1(σ Bt − σ Bt−s , s ∈ [0, ζ ]) eσ Bt e−2

∫ t
0 [1−G

( f )
t−u(σ Bt −σ Bu)] du

F2(σ Bt − mt )
]
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= E
[
1A(σ B)

F1(σ Bs , s ∈ [0, ζ ]) eσ Bt e−2
∫ t

0 [1−G
( f )
v (σ Bv)] dv F2(σ Bt − mt )

]

=
∫

R

P{Bt ∈ dy

σ
} ey F2(y−mt ) E(t)

0,
y
σ

[
1A(σ B)

F1(σ Bs , s ∈[0, ζ ]) e−2
∫ t

0 [1−G
( f )
v (σ Bv)] dv

]
,

where Bs := Bt − Bt−s, s ∈ [0, t] (so Bt = Bt ), and E(t)
0,

y
σ

denotes expectation with

respect to the probability P(t)
0,

y
σ

, under which (Bv, v ∈ [0, t]) is a Brownian bridge of

length t , starting at 0 and ending at y
σ

. Since f = 1[0, ζ ], the function G
( f )

r in (4.2)
becomes

G
( f )

r (x) =
⎧
⎨

⎩
E
[
e
−∑n

j=1 α j
∫

x+A j
dN (r)

1{min N (r)≥x}
]
, if r ∈ [0, ζ ],

1 − Gr (x), if r > ζ .

So, if we write

G∗
v(x) := 1 − E

[
e
−∑n

j=1 α j
∫

x+A j
dN (v)

1{min N (v)≥x}
]
, (6.2)

then for t ≥ ζ , we have
∫ t

0 [1 − G
( f )

v (σ Bv)] dv = ∫ ζ

0 G∗
v(σ Bv) dv + ∫ t

ζ
Gv(σ Bv) dv,

so that by writing3

I(6.3)(t, ζ ) := t E(t)
0,

y
σ

[
1A(σ B) F1(σ Bs, s ∈ [0, ζ ]) e−2

∫ ζ
0 G∗

v(σ Bv) dv−2
∫ t
ζ Gv(σ Bv) dv

]
,

(6.3)

we have

E
{

1A(X1,t ) F1(Yt (s), s ∈ [0, ζ ]) e−∑n
j=1 α j L j (t, ζ ) F2(X1(t) − mt )

}

= 1

t

∫

R

P
{

Bt ∈ dy

σ

}
ey F2(y − mt ) I(6.3)(t, ζ )

= 1

t3/2

∫

R

ey− y2

2σ2 t

σ(2π)1/2 F2(y − mt ) I(6.3)(t, ζ ) dy.

Let y := z + mt . Since F2 := 1[η1,η2], we have when t → ∞, ey− y2

2σ2 t ∼ ey =
t3/2eCB ez where the numerical constant CB is in (1.3). Therefore, for t → ∞,

3 Attention: I(6.3)(t, ζ ) depends also on y.
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E
{

1A(X1,t ) F1(Yt (s), s ∈ [0, ζ ]) e−∑n
j=1 α j L j (t, ζ ) F2(X1(t) − mt )

}

∼ eCB

η2∫

η1

ez

σ(2π)1/2 I(6.3)(t, ζ ) dz. (6.4)

We need to treat I(6.3)(t, ζ ) when z ∈ [η1, η2]. As we will let ζ → ∞ before making
x → ∞, we can suppose ζ > x . Let us write θ = θB(ζ ) := inf{s ∈ [0, ζ ] : Bs =
maxu∈[0,ζ ] Bu}. Applying the Markov property at time v = ζ (for the Brownian bridge
which is an inhomogeneous Markov process, see Fact 7.4), gives

I(6.3)(t, ζ ) = t

−ζ 1/3∫

−ζ 2/3

E
[
1{max[0,ζ ] σ Bs≤x, θ≤x} F1(σ Bs , s ∈ [0, ζ ]) e−2

∫ ζ
0 G∗

v(σ Bv) dv 1{σ Bζ ∈dw}
]

×
(

t

t − ζ

)1/2 e
− (y−w)2

2σ2(t−ζ )

e− y2

2σ2 t

E(t−ζ )

0,
y−w
σ

[
1{σ Bs≥as , s∈[0,t−ζ ]}e

−2
∫ t−ζ

0 Gv+ζ (w+σ Bv) dv
]

where now Bs := Bt−ζ − Bt−ζ−s . We recall that we look at the case z = y − mt ∈
[η1, η2]. It yields that (y−w)2

t−ζ
and y2

t are ot (1), so that, for t → ∞,

I(6.3)(t, ζ ) ∼ t

−ζ 1/3∫

−ζ 2/3

E
[
1{max[0,ζ ] σ Bs≤x, θ≤x} F1(σ Bs , s ∈ [0, ζ ]) e−2

∫ ζ
0 G∗

v(σ Bv) dv 1{σ Bζ ∈dw}
]

× E(t−ζ )

0,
y−w
σ

[
1{σ Bs≥as , s∈[0,t−ζ ]}e

−2
∫ t−ζ

0 Gv+ζ (w+σ Bv) dv
]
. (6.5)

At this stage, we need a couple of lemmas, stated as follows. We postpone the proof of
these lemmas, and finish the proof of Theorem 2.3. Recalling the family of processes
�(b) from (2.1), we write

ϕx (z) := σ

x/σ∫

0

E
[
e−2

∫∞
0 FW (z+σ�

(b)
v ) dv

]
db, z ∈ R, (6.6)

where FW is the distribution function of the random variable W introduced in (1.2).

Lemma 6.1 Let z ∈ R, y := z +mt , x > 0 and (as, s ∈ [0, t]) defined in (6.1). There
exists a function f : R × R+ → R such that for any w < x + z and ζ > 0

lim
t→∞ t E(t)

0,
y−w
σ

[
1{σ(Bt −Bt−s )≥as ,s∈[0,t]}e−2

∫ t
0 Gζ+v(w+σ Bv) dv

]
= ϕx (z) f (w, ζ ).

Moreover f (w, ζ ) ∼ |w| as w → −∞ and uniformly in ζ > 0.
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Lemma 6.2 Let �(b) be the family of processes defined in (2.1), and let Tb := inf{t ≥
0 : Bt = b}. We have

lim
ζ→∞ E

[
1{max[0,ζ ] σ Bs≤x, σ Bζ ∈(−ζ 2/3,−ζ 1/3),θ≤x} F1(σ Bs , s ∈ [0, ζ ]) e−2

∫ ζ
0 G∗

v(σ Bv) dv |Bζ |
]

=
x/σ∫

0

E
[

F1(σ�(b)
s , s ≥ 0)e−2

∫∞
0 G∗

v(σ�
(b)
v ) dv1{Tb≤x}

]
db.

Remark 6.3 It is possible, with some extra work, to obtain the following identity. Let
ϕ(z) := limx→∞ ϕx (z) be the limit of (6.6). Then for any z ∈ R,

ϕ(z) =
√

2π

c1
e−(z+CB ) fW (z),

where CB is the constant in (1.3), W the random variable in (1.2), fW the density
function of W , and

c1 :=
∞∫

0

E
[
e−2

∫∞
0 Gv(σ�

(b)
v ) dv

]
db,

with �(b) as defined in (2.1). The appearance of fW here is due to the fact that standard
arguments in the study of parabolic p.d.e.’s show that the density of X1(t) − mt

converges to that of W . More precisely, using the classical interior parabolic a priori
estimate [13], it is possible to show that v(t, ·) ≡ u(t, mt + ·) converges to w(·) in
locally C2(R) topology.

We now continue with the proof of Theorem 2.3. Let us go back to (6.5). To apply
Lemma 6.1, we want to use dominated convergence. First, fix ζ > 0. Notice that

E(t−ζ )

0,
y−w
σ

[
1{σ Bs≥as ,s∈[0,t−ζ ]}e

−2
∫ t−ζ

0 Gv+ζ (w+σ Bv) dv
]

≤ P(t−ζ )

0,
y−w
σ

(
σ Bs ≥ as, s ∈ [0, t − ζ ]

)

= P(t−ζ )

0,
y−w
σ

(
σ Bs ≥ as, s ∈ [0, t − ζ ]

)
,

the last identity being a consequence of the fact that (Bs, s ∈ [0, t − ζ ]) and
(Bs, s ∈ [0, t − ζ ]) have the same distribution under P(t−ζ )

0,
y−w
σ

. Using Lemma 5.2

the last probability is smaller than c
t−ζ

x |z − w + x | for some constant c > 0. Hence,
we have for t > 2ζ

t E(t−ζ )

0,
y−w
σ

[
1{σ Bs≥as ,s∈[0,t−ζ ]}e

−2
∫ t−ζ

0 Gv+ζ (w+σ Bv) dv
]

≤ c

2
x |z − w + x |.
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We check that

−ζ 1/3∫

−ζ 2/3

E
[
1{max[0,ζ ] σ Bs≤x}F1(σ Bs, s ∈ [0, ζ ]) e−2

∫ ζ
0 G∗

v(σ Bv) dv 1{σ Bζ ∈dw}
]
|z − w + x |

≤ ||F1||∞ E[ |z − σ Bζ + x | ]

which is finite. Hence, we can apply the dominated convergence, to see that

lim
t→∞ I(6.3)(t, ζ ) = ϕx (z)E

[
1{max[0,ζ ] σ Bs≤x, σ Bζ ∈(−ζ 2/3,−ζ 1/3), θ≤x}

×F1(σ Bs, s ∈ [0, ζ ]) e−2
∫ ζ

0 G∗
v(σ Bv) dv f (σ Bζ , ζ )

]
.

Since f (w, ζ ) ∼ |w| when w → −∞ and uniformly in ζ > 0, we have as ζ → ∞,

lim
t→∞ I(6.3)(t, ζ ) ∼ ϕx (z)E

[
1{max[0,ζ ] σ Bs≤x, σ Bζ ∈(−ζ 2/3,−ζ 1/3), θ≤x}

×F1(σ Bs, s ∈ [0, ζ ]) e−2
∫ ζ

0 G∗
v(σ Bv) dv σ |Bζ |

]
,

which, in view of Lemma 6.2, gives that

lim
ζ→∞ lim

t→∞ I(6.3)(t, ζ )=ϕx (z)σ

x/σ∫

0

E
[

F1(σ�(b)
s , s ≥ 0) e−2

∫∞
0 G∗

v(σ�
(b)
v ) dv1{Tb≤x}

]
db.

Going back to (6.4), this tells that

lim
ζ→∞ lim

t→∞ E
{

1A(X1,t ) F1(Yt (s), s ∈ [0, ζ ]) e−∑n
j=1 α j L j (t, ζ ) F2(X1(t) − mt )

}

= eCB

(2π)1/2

⎛

⎝
η2∫

η1

ϕx (z)e
z dz

⎞

⎠

×
⎛

⎝
x/σ∫

0

E
[

F1(σ�(b)
s , s ≥ 0) e−2

∫∞
0 G∗

v(σ�
(b)
v ) dv1{Tb≤x}

]
db

⎞

⎠ .

Letting x → ∞ yields that {(Yt (s ∈ [0, t]);Q(t, ζ )} converges in distribution to
{(Y (s), s ≥ 0);Q}, that X1(t) − mt converges in distribution, necessarily to W (by
(1.2)), and that {(Yt (s ∈ [0, t]);Q(t, ζ )} and X1(t) − mt are asymptotically indepen-
dent. Theorem 2.3 is proved. �
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We observe that by letting x → ∞ the last identity proves that

∞∫

0

E
[
e−2

∫∞
0 G∗

v(σ�
(b)
v ) dv

]
db < ∞,

∞∫

−∞

∞∫

0

E
[
e−2

∫∞
0 FW (z+σ�

(b)
v ) dv

]
ez db dz < ∞.

(6.7)

It remains to check Lemmas 6.1 and 6.2. Their proof relies on some well known
path decomposition results recalled in Sect. 7. Lemmas 6.1 and 6.2 are proved in
Sects. 9 and 8, respectively.

Before proceeding with this program, observe that the arguments used above
also yield the following Laplace transform characterization of Q. For any n ∈
N, (α1, . . . , αn) ∈ R

n+ and A1, . . . , An a collection of Borel subsets of R+ and ζ > 0
define

Iζ (t) := E

⎧
⎪⎨

⎪⎩
exp

⎛

⎜⎝−
∑

i

1{t−τi (t)≤ζ }
n∑

j=1

α j

∫

A j

dNi (t)

⎞

⎟⎠

⎫
⎪⎬

⎪⎭
,

(i.e., only the particles whose common ancestor with X1(t) is more recent than ζ are
taken into account). Clearly, the functional Iζ (t) characterizes the law of Q(t, ζ ).

Then, for all n and all bounded Borel sets A1, . . . , An of R+, the Laplace transform
of the distribution of the random vector (Q(A1), . . . ,Q(An)) is given by: ∀α j ≥ 0
(for 1 ≤ j ≤ n),

E
{

e−∑n
j=1 α j Q(A j )

}
= lim

ζ→∞ lim
t→∞ Iζ (t)

=
∫∞

0 E(e−2
∫∞

0 G∗
v(σ�

(b)
v ) dv) db

∫∞
0 E(e−2

∫∞
0 Gv(σ�

(b)
v ) dv) db

, (6.8)

where

G∗
v(x) := 1 − E

[
e
−∑n

j=1 α j
∫

x+A j
dN (v)

1{min N (v)≥x}
]
.

Observe that the first equality in (6.8) is a consequence of the convergence in distrib-
ution of Q(ζ, t) given in Theorem 2.3.

7 Meander, bridge and their sample paths

We collect in this section a few known results of Brownian motion and related
processes. Recall that if g := sup{t < 1 : Bt = 1}, then (mu := (1 − g)−1/2

|Bg+(1−g)u |, u ∈ [0, 1]) is called a Brownian meander. In particular, m1 has the

Rayleigh distribution: P(m1 > x) = e−x2/2, x > 0.
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Let B be Brownian motion, R a three-dimensional Bessel process, andm a Brownian
meander. The processes B and R are assumed to start from a under Pa (for a ≥ 0) if
stated explicitly; otherwise we work under P := P0 so that they start from 0.

Fact 7.1 (Denisov [12]) Let θ := inf{s ≥ 0 : Bs = supu∈[0, 1] Bu} be the loca-
tion of the maximum of B on [0, 1]. The random variable θ has the Arcsine law:
P(θ ≤ x) = 2

π
arcsin

√
x, x ∈ [0, 1]. The processes (

Bθ−B(1−u)θ

θ1/2 , u ∈ [0, 1]) and

(
Bθ−Bθ+u(1−θ)

(1−θ)1/2 , u ∈ [0, 1]) are independent copies of the Brownian meander, and are
also independent of the random variable θ .

Fact 7.2 (Imhof [19]) For any continuous function F : C([0, 1], R) → R+, we have

E
[

F(ms, s ∈ [0, 1])
]

=
(π

2

)1/2
E
[ 1

R1
F(Rs, s ∈ [0, 1])

]
.

In particular, for any x > 0, the law of (ms, s ∈ [0, 1]) given m1 = x is the law of
(Rs, s ∈ [0, 1]) given R1 = x.

Corollary 7.3 Let r > 0 and q > 0. Let Ta := inf{s ≥ 0 : Bs = a} for any a ∈ R.

(i) The law of (m1 − m1−s, s ∈ [0, 1]) under P( • | m1 = r) is the law of
(q−1/2 Bqs, s ∈ [0, 1

q Tq1/2r ]) under P( • | Tq1/2r = q).
(ii) For any t > 0, the law of (R1 − R1−s, s ∈ [0, 1]) under P( • | R1 = r) is the
law of (q−1/2(B0 − Bqs), s ∈ [0, T0

q ]) under Pq1/2r ( • | T0 = q).

Proof By Imhof’s theorem (Fact 7.2), (ms, s ∈ [0, 1]) given m1 = r , as well as
(Rs, s ∈ [0, 1]) given R1 = r , are three-dimensional Bessel bridges of length 1,
starting from 0 and ending at r . By Williams [31], this is equivalent to saying that both
(m1 − m1−s, s ∈ [0, 1]) given m1 = r , and (R1 − R1−s, s ∈ [0, 1]) given R1 = r ,
have the distribution of (Bs, s ∈ [0, Tr ]) given Tr = 1.

By scaling, this gives (i).
To get (ii), we use moreover the fact that, by symmetry, (Bs, s ∈ [0, Tr ]) under

P( • | Tr = 1) has the law of (−Bs, s ∈ [0, T−r ]) under P( • | T−r = 1), and thus has
the law of (B0 − Bs, s ∈ [0, T0]) under Pr ( • | T0 = 1). This yields (ii) by scaling.

��
Finally, we will use several times the Markov property for the Brownian bridge

which is an inhomogeneous Markov process. Recall that E(t+s)
0,x is expectation with

respect to P(t+s)
0,x ( · ) := P0( · | Bt+s = x).

Fact 7.4 Fix t, s ≥ 0 and x ∈ R. For any measurable functions F : C([0, t], R) →
R+ and G : C([0, s], R) → R+, we have

E(t+s)
0,x

[
F(Bs, s ∈ [0, t])G(Br , r ∈ [t, t + s])

]

= E0

[√
t + s

s
e

x2
2(t+s) − (x−B−t)2

2s F(Bs, s ∈ [0, t])E(s)
Bt ,x

{G(Br , r ∈ [t, t + s])}
]

.
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8 Proof of Lemma 6.2

Let x > 0 and let F1 : C(R+, R) → R+ be a bounded continuous function. We need
to check

lim
ζ→∞ E

[
1{max[0,ζ ] σ Bs≤x,σ Bζ ∈(−ζ 2/3,−ζ 1/3),θ≤x} F1(σ Bs , s ∈ [0, ζ ]) e−2

∫ ζ
0 G∗

v(σ Bv) dv |Bζ |
]

=
x/σ∫

0

E
[

F1(�
(b)
s , s ≥ 0) e−2

∫∞
0 G∗

v(σ�
(b)
v ) dv

]
db,

where �(b) is the process defined in (2.1), θ = θB(ζ ) := inf{s ∈ [0, ζ ] : Bs =
maxu∈[0,ζ ] Bu}, and Gv(·) is the function defined in (6.2) (we do not use any particular
property of Gv except its measurability and positivity).

The random variable θ
ζ

has the Arcsine law. According to Denisov’s theo-

rem (Fact 7.1), the two processes4 (Yu := Bθ−B(1−u)θ

θ1/2 , u ∈ [0, 1]) and (Zu :=
Bθ−Bθ+u(ζ−θ)

(ζ−θ)1/2 , u ∈ [0, 1]) are independent Brownian meanders, and are also inde-
pendent of the random variable θ .

By definition,

ζ∫

0

G∗
v(σ Bv) dv = θ

1∫

0

G∗
uθ (σθ(Y1 − Y1−u)) du

+(ζ − θ)

1∫

0

G∗
θ+u(ζ−θ)(σθ1/2Y1 − σ(ζ − θ)1/2 Zu) du. (8.1)

Also, Bζ = θ1/2Y1 − (ζ − θ)1/2 Z1, and

Bs =
{

θ1/2(Y1 − Y1− s
θ
), if s ∈ [0, θ ],

θ1/2Y1 − (ζ − θ)1/2 Z s−θ
ζ−θ

, if s ∈ [θ, ζ ]. (8.2)

Lemma 8.1 Let (ms, s ∈ [0, 1]) be a Brownian meander. Let ε1 : R+ → R+
and ε2 : R+ → R+ be two measurable functions such that limt→∞ ε1

t = 0 and
limt→∞ ε2

t = ∞. For x ∈ R, � ∈ R, a ≥ 0, b ≥ 0 and bounded continuous function
F : C([0, 1], R) → R+, we have

lim
t→∞ E

[
1{m1∈(ε1

t ,ε2
t )}m1 F(t1/2m bs

t
, s ∈ [0, 1]) e−at

∫ 1
0 G∗

x+ut (�−σ t1/2mu) du
]

=
(π

2

)1/2
E
[

F(Rbs, s ∈ [0, 1]) e−a
∫∞

0 G∗
x+v(�−σ Rv) dv

]
,

where R is a three-dimensional Bessel process.

4 The processes Y and Z depend, of course, on ζ .
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Proof of Lemma 8.1 By Imhof’s theorem (Fact 7.2), we have, for t ≥ b,

E
[
1{m1∈(ε1

t ,ε2
t )}m1 F(t1/2m bs

t
, s ∈ [0, 1]) e−at

∫ 1
0 G∗

x+ut (�−σ t1/2mu) du
]

=
(π

2

)1/2
E
[
1{R1∈(ε1

t ,ε2
t )}F(t1/2 R bs

t
, s ∈ [0, 1]) e−at

∫ 1
0 G∗

x+ut (�−σ t1/2 Ru) du
]

=
(π

2

)1/2
E
[
1{Rt t−1/2∈(ε1

t ,ε2
t )}F(Rbs, s ∈ [0, 1]) e−a

∫ t
0 G∗

x+v(�−σ Rv) dv
]
,

the second identity being a consequence of the scaling property. Let t → ∞. Since
P(Rt t−1/2 /∈ (ε1

t , ε
2
t )) → 0, Lemma 8.1 follows by dominated convergence. ��

Proof of Lemma 6.2 Recall (8.1) and (8.2). Let F1,a(Y, Z) := F1(a1/2σ(Y1 −
Y1− s

a
)1{s≤a} + σ(a1/2Y1 − (ζ − a)1/2 Z s−a

ζ−a
)1{s≥a}, s ∈ [0, ζ ]). Then

E
[
1{max[0,ζ ] σ Bs≤x,σ Bζ ∈(−ζ 2/3,−ζ 1/3),θ≤x} F1(σ Bs , s ∈ [0, ζ ]) e−2

∫ ζ
0 G∗

v(σ Bv) dv |Bζ |
]

=
x∫

0

P(θ ∈ da) E
[
1{σa1/2Y1≤x} F1,a(Y, Z)e−2a

∫ 1
0 G∗

av(σa1/2(Y1−Y1−v)) dv

e−2(ζ−a)
∫ 1

0 G∗
a+v(ζ−a)

(σa1/2Y1−(ζ−a)1/2σ Zv) dv |a1/2Y1 − (ζ − a)1/2 Z1|1{−σ Bζ ∈[ζ 1/3,ζ 2/3]}
]

=
x∫

0

ζ 1/2P(θ ∈ da) E
{

1{σa1/2Y1≤x}e−2a
∫ 1

0 G∗
av(σa1/2(Y1−Y1−v)) dv

E
[

F1,a(Y, Z)e−2(ζ−a)
∫ 1

0 G∗
a+v(ζ−a)

(σa1/2Y1−(ζ−a)1/2σ Zv) dv |a1/2Y1 − (ζ − a)1/2 Z1|
ζ 1/2

1{Z1∈[ε1
ζ ,ε2

ζ ]}
∣∣ Ys , s ≤ 1

]}
,

where ε1
ζ := (

ζ 1/3

σ
+ a1/2Y1)(ζ − a)−1/2 and ε2

ζ := (
ζ 2/3

σ
+ a1/2Y1)(ζ − a)−1/2.

By Lemma 8.1, we get that for each a ∈ [0, x] when ζ → ∞, the conditional
expectation E[ . . . | Ys, s ≤ 1] on the right-hand side converges to

(π

2

)1/2
E
[

F̄1,a(Y, R)e−2
∫∞

0 G∗
v+a(σa1/2Y1−σ Rv) dv

∣∣Ys, s ≤ 1
]

where

F̄1,a(Y, R) := F1(σa1/2(Y1 − Y1− s
a
)1{s≤a} + σ(a1/2Y1 − Rs−a)1{s≥a}, s ∈ [0,∞)),

with R and Y being independent. Since we only allow a to vary between 0 and x we
may conclude that
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lim
ζ→∞ E

[
1{max[0,ζ ] σ Bs≤x,σ Bζ ∈(−ζ 2/3,−ζ 1/3),θ≤x} F1(σ Bs , s ∈ [0, ζ ]) e−2

∫ ζ
0 G∗

v(σ Bv) dv |Bζ |
]

=
x∫

0

da

(2πa)1/2 E
[
1{σa1/2m1≤x} F̄1,a(m, R)

× e−2a
∫ 1

0 G∗
au (σa1/2(m1−m1−u )) du−2

∫∞
0 G∗

a+v(σa1/2m1−σ Rv) dv
]

=: I(8.3), (8.3)

where the Brownian meander m and the three-dimensional Bessel process R are
assumed to be independent. Let V (a)

s := a1/2(m1 − m1− s
a
) if s ∈ [0, a] and

V (a)
s := a1/2m1 − Rs−a if s ≥ a. We observe that a

∫ 1
0 G∗

ua(σa1/2(m1 −m1−u)) du +∫∞
0 G∗

a+v(σa1/2m1 − σ Rv) dv is, in fact,
∫∞

0 G∗
s (σ V (a)

s ) ds. So

I(8.3) =
x∫

0

da

(2πa)1/2 E
[
1{σa1/2m1≤x}F1(σ V (a)

s , s ≥ 0) e−2
∫∞

0 G∗
s (σ V (a)

s ) ds
]

=
x∫

0

da

(2πa)1/2

x
σ
√

a∫

0

dr re−r2/2

× E
[

F1(σ V (a)
s , s ≥ 0) e−2

∫∞
0 G∗

s (σ V (a)
s ) ds

∣∣∣m1 = r
]
,

where, in the last identity, we used the fact that m1 has the Rayleigh distribution.
Applying Corollary 7.3 (i) to q := a, and recalling the process �(a1/2r) from (2.1),
this yields

I(8.3) =
x∫

0

da

(2πa)1/2

x
σ
√

a∫

0

dr re−r2/2

× E
[

F1(σ�(a1/2r)
s , s ≥ 0) e−2

∫∞
0 G∗

v(σ�
(a1/2r)
v ) dv

∣∣∣ Ta1/2r = a
]
.

By a change of variables r := a−1/2b and Fubini’s theorem, the expression on the
right-hand is

=
x/σ∫

0

db

x∫

0

da
be−b2/(2a)

(2πa3)1/2 E
[

F1(σ�(b)
s , s ≥ 0) e−2

∫∞
0 G∗

v(σ�
(b)
v ) dv

∣∣∣ Tb = a
]

=
x/σ∫

0

db E
[

F1(σ�(b)
s , s ≥ 0) e−2

∫∞
0 G∗

v(σ�
(b)
v ) dv1{Tb≤x}

]
,

completing the proof of Lemma 6.2. ��
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9 Proof of Lemma 6.1

We first recall the following fact concerning the F-KPP equation. As already pointed
out, u(t, x) := Gt (x) is the solution of a version of the F-KPP equation with heavyside
initial data. Define mt (ε) := inf{x : Gt (x) = ε} for ε ∈ (0, 1). Bramson [6] shows
that, for any ε ∈ (0, 1), there exists a constant C(ε) ∈ R such that mt (ε) = 3

2 log t +
C(ε) + o(1), t → ∞.

Fact 9.1 (McKean [24, pp. 326–327]) For any ε ∈ (0, 1), let cε = w−1(ε), i.e.,
P(W ≤ cε) = ε. Then, for ε ∈ (0, 1), the following convergences are monotone as
t → ∞:

Gt (x + mt (ε)) ↗ P(W ≤ x + cε) = w(x + cε) forx ≤ 0,

Gt (x + mt (ε)) ↘ P(W ≤ x + cε) = w(x + cε) for x ≥ 0.

Recall that Gt (mt + x) → w(x),∀x ∈ R, and that mt := 3
2 log t + CB . Since

P(W ≤ y) ∼ C |y|ey, y → −∞ (see (1.6)), a consequence of Fact 9.1 (in the case
x ≤ 0) is that for some constant c > 0, and any v > 0 and r ∈ R,

Gv(mv + r) ≤ c (|r | + 1)er . (9.1)

Let us turn to the proof of Lemma 6.1. Let B be Brownian motion (under P = P0).
Recall that E(t)

0,
y
σ

is expectation with respect to P(t)
0,

y
σ

:= P( • | Bt = y
σ
). We further

subdivise the proof of Lemma 6.1 into two lemmas.

Lemma 9.2 Let κ : R+ → R be a bounded Borel function with compact support.
Take x > 0 and recall the definition of (as, s ∈ [0, t]) in (6.1). Then, for any b > a0

σ
,

lim
t→∞ t3/2 Eb

[
1{σ Bs≥as ,s∈[0,t]} κ(σ Bt − at )

] = σb − a0

2
√

π

∫

R+

rκ(r) dr.

Lemma 9.3 Let FW be the distribution function of W , where W is the random variable
in (1.2). For any z ∈ R,

lim
M→∞ E

[
1{σ Bs≥−x, s∈[0,M]}e−2

∫ M
0 FW (z−σ Bv) dv(x + σ BM )

]

= x E x
σ

[
e−2

∫∞
0 FW (z+x−σ Rv) dv

]

= ϕx (z),

with the notation of (6.6), and where (Rv)v≥0 is a three-dimensional Bessel process.

Before proving Lemmas 9.2 and 9.3, let us see how we use them to prove Lemma 6.1.
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Proof of Lemma 6.2 Recall that y = z + mt and (as, s ∈ [0, t]) is defined in (6.1).
Take ζ > 0 and w < x + z where x = −a0. Let

hv(r) := Gζ+v(w + r), v ≥ 0, r ∈ R.

So if we write

I(9.2) := t E(t)
0,

y−w
σ

[
1{σ(Bt −Bt−s )≥as , s∈[0,t]} e−2

∫ t
0 Gζ+v(w+σ Bv) dv

]

= t E(t)
0,

y−w
σ

[
1{σ(Bt −Bt−s )≥as , s∈[0,t]} e−2

∫ t
0 hv(σ Bv) dv

]
, (9.2)

then we need to check that limt→∞ I(9.2) = ϕx (z) f (w, ζ ) for some f (w, ζ ) such
that f (w, ζ ) ∼ |w| as w → −∞ and uniformly in ζ > 0.

Since (Bt − Bt−s, s ∈ [0, t]) and (Bs, s ∈ [0, t]) have the same distribution under
P(t)

0,
y−w
σ

, we have

I(9.2) = t E(t)
0,

y−w
σ

[
1{σ Bs≥as , s∈[0,t]} e−2

∫ t
0 ht−v(y−w−σ Bv) dv

]
.

Recall from (9.1) that

Gv(mv + r) ≤ c (|r | + 1)er ,

for some constant c > 0, and any v > 0 and r ∈ R. Therefore, there exists a
constant cx,z , depending on (x, z), such that hv(mv + r) ≤ cx,z(|r | + 1)er . Thus,
on the event {σ Bs > min(s1/3, mt + (t − s)1/3), ∀s ∈ [M, t − M]}, we have∫ t−M

M ht−v(y − Bv) dv ≤ ε(M) for any t > 1, where ε(M) is deterministic and
statisfies limM→∞ ε(M) = 0.

On the other hand recall from Lemma 5.2 that

P(t)
0,

y−w
σ

(
σ Bs ≥ as, s ∈ [0, t], ∃s ∈ [M, t−M] : σ Bs <min(s1/3, mt + (t − s)1/3)

)

= 1

t
oM (1),

in the sense that lim supt→∞ tP(t)
0,

y−w
σ

(. . .) = oM (1), where, as before, oM (1) desig-

nates an expression which converges to 0 as M → ∞. Therefore, we see that

lim
t→∞ I(9.2) = lim

M→∞ lim
t→∞ t E(t)

0,
y−w
σ

[
1{σ Bs≥as , s∈[0,t]} 1{σ Bt−M −at ∈[M1/3, M2/3]}

×e−2
∫
[0,M]∪[t−M,t] ht−v(y−w−σ Bv) dv

]
.
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Define

κM (r) := 1{r∈[M1/3, M2/3]} e− (x+z−w−r)2

2σ2 M ×
× E(M)

r
σ

, x+z−w
σ

[
1{min[0,M] B>0} e−2

∫ M
0 hM−v(x+z−w−σ Bv) dv

]
. (9.3)

By the Markov property (applied at time t − M , and then at time M for the second
identity), we get, for t → ∞,

t E(t)
0,

y−w
σ

[
1{σ Bs≥as , s∈[0, t]} 1{σ Bt−M −at ∈[M1/3, M2/3]} e−2

∫
[0,M]∪[t−M,t] ht−v(y−w−σ Bv) dv

]

∼ t3/2

M1/2 E0

[
1{σ Bs≥as , s∈[0, t−M]} e−2

∫ M
0 ht−v(y−w−σ Bv) dvκM (σ Bt−M − at )

]

= t3/2

M1/2 E0

[
1{σ Bs≥as , s∈[0, M]} e−2

∫ M
0 ht−v(y−w−σ Bv) dv ×

×EBM

(
1{σ Bs≥aM+s , s∈[0, t−2M]}κM (σ Bt−2M − at )

)]
. (9.4)

By Lemma 9.2, almost surely,

lim
t→∞ t3/2 EBM

(
1{σ Bs≥aM+s , s∈[0,t−2M]}κM (σ Bt−2M − at )

)

= x + σ BM

2
√

π

∫

R+

rκM (r) dr.

On the other hand, hs(ms + r) = Gζ+s(ms + w + r) → FW (w + r) as s → ∞
[see (1.2)]. Hence, almost surely,

lim
t→∞ e−2

∫ M
0 ht−v(y−w−σ Bv) dv = e−2

∫ M
0 FW (z−σ Bv) dv.

In view of the Brownian motion sample path probability bound given in (9.6),
below, we are entitled to use dominated convergence to take the limit t → ∞ in (9.4):

lim
t→∞ t E(t)

0,
y−w
σ

[
1{σ Bs≥as , s∈[0,t]} 1{σ Bt−M −at ∈[M1/3, M2/3]} e−2

∫
[0,M]∪[t−M,t] ht−v(y−w−σ Bv) dv

]

= E
[
1{σ Bs≥−x, s∈[0,M]} e−2

∫ M
0 FW (z−σ Bv) dv(x + σ BM )

] 1

2(Mπ)1/2

∫

R+

rκM (r) dr.

By Lemma 9.3,

lim
M→∞ E

[
1{σ Bs≥−x, s∈[0,M]} e−2

∫ M
0 FW (z−σ Bv) dv(x + σ BM )

]
= ϕx (z),
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with the notation of (6.6). So it remains to check that

lim
M→∞

1

2(Mπ)1/2

∫

R+

rκM (r) dr = f (w, ζ ), (9.5)

for some f (w, ζ ) such that f (w, ζ ) ∼ |w| as w → −∞ and uniformly in ζ > 0.
Recalling the definition of κM in (9.3), we have

∫

R+

rκM (r) dr =
M2/3∫

M1/3

r e− (z−w+x−r)2

2σ2 M E(M)
r
σ

, x+z−w
σ

[
1{min[0,M] B>0}

×e−2
∫ M

0 hM−v(x+z−w−σ Bv) dv
]

dr

=
M2/3∫

M1/3

r e− (z−w+x−r)2

2σ2 M E(M)
x+z−w

σ
, r
σ

[
1{min[0,M] B>0}

×e−2
∫ M

0 hv(x+z−w−σ Bv) dv
]

dr

= σ(2π M)1/2 E x+z−w
σ

[
σ BM 1{σ BM ∈[M1/3, M2/3]} 1{min[0,M] B>0}

×e−2
∫ M

0 hv(x+z−w−σ Bv) dv
]
,

which, by the h-transform of the Bessel process, is

= σ(2π M)1/2 (x + z − w) E x+z−w
σ

[
e−2

∫ M
0 hv(x+z−w−σ Rv) dv1{σ RM ∈[M1/3, M2/3]}

]
.

Dominated convergence implies that

lim
M→∞

1

M1/2

∫

R+

rκM (r) dr =σ(2π)1/2 (x + z − w) E x+z−w
σ

[
e−2

∫∞
0 hv(x+z−w−σ Rv) dv

]

=σ(2π)1/2 (x+z− w) E x+z−w
σ

[
e−2

∫∞
0 Gζ+v(x+z−σ Rv) dv

]
.

This yields (9.5) with

f (w, ζ ) := (x + z − w) E x+z−w
σ

[
e−2

∫∞
0 Gζ+v(x+z−σ Rv) dv

]
,

and thus the first part of Lemma 6.1. It remains to check that f (w, ζ ) ∼ |w| as
w → −∞, uniformly in ζ > 0. We only have to show that, uniformly in ζ > 0,

lim
w→−∞ E x+z−w

σ

[
e−2

∫∞
0 Gζ+v(x+z−σ Rv) dv

]
= 1.
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Using again (9.1), Gv(mv + r) ≤ c (|r | + 1)er for any v ≥ 0 and r ∈ R, we have that

∞∫

0

Gζ+v(x + z − Rv) dv ≤ ex+z

∞∫

0

e−Rv dv,

and we conclude by limr→∞ Er [e−c
∫∞

0 e−Rv dv] = 1 for any fixed c > 0. ��

The rest of the section is devoted to the proof of Lemmas 9.2 and 9.3.

Proof of Lemma 9.2 For any a, η > 0, we have by (5.2)

Pa

(
min[0,t] σ Bs > 0, σ Bt ∈ dη

)
=
( 2

πσ 2t

)1/2
e− σ2a2+η2

2σ2 t sinh
(ηa

σ t

)
dη.

In particular, if aη
t → 0 as t → ∞, we have (recalling that σ 2 = 2)

Pa

(
min[0,t] σ Bs > 0, σ Bt ∈ dη

)
∼ 1√

2π

aη

t3/2 e− σ2a2+η2

2σ2 t dη.

Fix η > 0. By the Markov property at time t
2 , and using the fact that B t

2
is of order

t1/2, we have, for t → ∞,

Pb

(
{σ Bs ≥ as, s ∈ [0, t]} ∩ {σ Bt ∈ at + dη}

)

= Eb

[
1{σ Bs≥−x, s∈[0, t

2 ]} PB t
2
− at

σ

(
min
[0, t

2 ]
Bs > 0, σ B t

2
∈ dη

)]

∼ 2√
π

η

t3/2 Eb

[
1{σ Bs≥−x, s∈[0, t

2 ]} B t
2

e− B2
t/2
t

]
dη.

Going from the killed Brownian motion to the three-dimensional Bessel process,
we see that, as t → ∞,

Eb

[
1{σ Bs≥−x, s∈[0, t

2 ]} B t
2

e− B2
t/2
t

]
∼ (b + x

σ
) E0

[
e− R2

t/2
t

]
= 2−3/2

(
b + x

σ

)
.

Hence,

Pb

(
{σ Bs ≥ as, s ∈ [0, t]} ∩ {σ Bt ∈ at + dη}

)
∼ σb + x

2
√

π

η

t3/2 dη.

To complete the proof, we have to use dominated convergence. It is enough to show
that (recalling that the function κ is bounded with compact support) for any K > 0,
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sup
t≥1

t3/2 Pb

(
{Bs ≥ as, s ∈ [0, t]} ∩ {Bt − at ≤ K }

)
< ∞. (9.6)

This can easily be deduced from (5.2). ��
Proof of Lemma 9.3 We have

E
[
1{σ Bs≥−x, s∈[0,M]}e−2

∫ M
0 FW (z−σ Bv) dv(x + σ BM )

]

= E x
σ

[
1{σ Bs≥0, s∈[0,M]}e−2

∫ M
0 FW (z+x−σ Bv) dvσ BM

]

= xE x
σ

[
e−2

∫ M
0 FW (z+x−σ Rv) dv

]
,

giving the first identity by dominated convergence. To prove the second identity, we
recall the following well known path decomposition for the three-dimensional Bessel
process R: under P x

σ
, infs≥0 Rs is uniformly distributed in (0, x

σ
). Furthermore, if

we write ν := inf{s ≥ 0 : Rν = infs≥0 Rs}, the location of the minimum, then
conditionally on infs≥0 Rs = r ∈ (0, x

σ
), the pre-minimum path ( x

σ
− Rs, s ∈

[0, ν]) and the post-minimum path (Rs+ν − r, s ≥ 0) are independent, the first being
Brownian motion starting at 0 and killed when hitting x

σ
− r for the first time, and the

second a three-dimensional Bessel process starting at 0. Accordingly,

xE x
σ

[
e−2

∫ M
0 FW (z+x−σ Rv) dv

]

= x

x
σ∫

0

σ

x
dr E

[
e−2

∫ T x
σ −r

0 FW (z+σ Bs ) ds−2
∫∞

0 FW (z+x−σr−σ Rs ) ds
]
,

where, as before, the three-dimensional Bessel process R and the Brownian motion
B are assumed to be independent, and Tb := inf{s ≥ 0 : Bs = b} for b ∈ R. By a
change of variables b := x

σ
− r , we see that the expression on the right-hand is

= σ

x
σ∫

0

E
[
e−2

∫ Tb
0 FW (z+σ Bs ) ds−2

∫∞
0 FW (z+σb−σ Rs ) ds

]
db,

which is ϕx (z) in (6.6). ��

10 Proof of Theorem 2.1

In this section, we prove Theorem 2.1. The key result is Theorem 2.3. The ingredients
needed in addition are Proposition 10.1 which explains the appearance of the point
measure P , and Proposition 10.2 which shows that particles sampled near X1(t) either
have a very recent common ancestor or have branched at the very beginning of the
process. This last result has been first proved by Arguin et al. in [2].
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We employ a very classical approach: we stop the particles when they reach an
increasing family of affine stopping lines and then consider their descendants inde-
pendently. The same kind of argument with the same stopping lines appear in [22] and
in [1].

Fix k ≥ 1 and consider Hk the set of all particles which are the first in their line
of descent to hit the spatial position k (for the formalism of particle labelling, see
Neveu [28]). Under the conditions we work with, we know that almost surely Hk is a
finite set. The set Hk is again a dissecting stopping line at which we can apply the the
strong Markov property (see e.g. [11]). We see that conditionally on FHk —the sigma-
algebra generated by the branching Brownian motion when the particles are stopped
upon hitting the position k—the subtrees rooted at the points of Hk are independent
copies of the branching Brownian motion started at position k and at the random time
at which the particle considered has hit k. Define Hk := #Hk and

Zk := ke−k Hk .

Neveu ([28], equation (5.4)) shows that the limit Z of the derivative martingale in
(1.4) can also be obtained as a limit of Zk (it is the same martingale on a different
stopping line)

Z = lim
k→∞ Zk = lim

k→∞ ke−k Hk (10.1)

almost surely. Let us further define Hk,t as the set of all particles which are the first
in their line of descent to hit the spatial position k, and which do so before time t .

For each u ∈ Hk,t , let us write Xu
1 (t) for the minimal position at time t of the

particles which are descendants of u. If u ∈ Hk\Hk,t we define Xu
1 (t) = 0. This

allows us to define the point measure

P∗
k,t :=

∑

u∈Hk

δXu
1 (t)− mt +log(C Zk ).

We further define

P∗
k,∞ :=

∑

u∈Hk

δk+W (u)+log(C Zk )

where, conditionally on FHk , the W (u) are independent copies of the random variable
W in (1.2).

Proposition 10.1 The following convergences hold in distribution

lim
t→∞ P∗

k,t = P∗
k,∞

and
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lim
k→∞(P∗

k,∞, Zk) = (P, Z)

where P is as in Theorem 2.1, Z is as in (1.5), and P and Z are independent.

Proof Fix k ≥ 1. Recall that Hk is the set of particles absorbed at level k, and
Hk = #Hk . Observe that for each u ∈ Hk, Xu

1 (t) has the same distribution as k +
X1(t − ξk,u), where ξk,u is the random time at which u reaches k. By (1.2) and the
fact that mt+c − mt → 0 for any c, we have, for all k ≥ 1 and all u ∈ Hk ,

Xu
1 (t) − mt

law→ k + W, t → ∞.

Hence, the finite point measure Pk,t :=∑u∈Hk
δXu

1 (t)−mt converges in distribution
as t → ∞, to Pk,∞ := ∑

u∈Hk
δk+W (u), where conditionally on Hk , the W (u) are

independent copies of W . This proves the first part of Proposition 10.1.
The proof of the second part relies on some classical extreme value theory. We refer

the reader to [29] for a thorough treatment of this subject. Let us state the result we
will use. Suppose we are given a sequence (Xi , i ∈ N) of i.i.d. random variables such
that

P(Xi ≥ x) ∼ Cxe−x , as x → ∞.

Call Mn = maxi=1,...,n Xi the record of the Xi . Then it is not hard to see that if we let
bn = log n + log log n we have as n → ∞

P(Mn − bn ≤ y) = (P(Xi ≤ y + bn))n

= (1 − (1 + o(1))C(y + bn)e−(y+bn))n

∼ exp
(

− nC(y + bn)
1

n log n
e−y
)

∼ exp(−Ce−y)

and therefore

P (Mn − bn − log C ≤ y) ∼ exp(−e−y).

By applying Corollary 4.19 in [29] we immediately see that the point measure

ζn :=
n∑

i=1

δXi −bn−log C

converges in distribution to a Poisson point measure on R with intensity e−x dx .
This result applies immediately to the random variables −W (u) (recalling from

(1.6) that P(−W ≥ x) ∼ Cxe−x , x → ∞) and thus the point measure

∑

u∈Hk

δW (u)+(log Hk+log log Hk+log C)
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converges (as k → ∞) in distribution towards a Poisson point measure on R with
intensity ex dx (it is ex instead of e−x because we are looking at the leftmost particles)
independently of Z [this identity comes from (10.1)]. By definition Hk = k−1ek Zk ,
thus

log Hk = k + log Zk − log k

log log Hk = log k + log(1 + ok(1))

where the term ok(1) tends to 0 almost surely when k → ∞. Hence,

log Hk + log log Hk = log Zk + k + ok(1).

We conclude that for u ∈ Hk

k + W (u) + log(C Z) = W (u) + (log Hk + log log Hk + log C) + ok(1).

Hence we conclude that

P∗
k,∞ =

∑

u∈Hk

δk+W (u)+log(C Z)

also converges (as k → ∞) towards a Poisson point measure on R with intensity ex dx
independently of Z = limk Zk . This concludes the proof of Proposition 10.1.

Recall that Jη(t) := {i ≤ N (t) : |Xi (t) − mt | ≤ η} is the set of indices which
correspond to particles near mt at time t and that τi, j (t) is the time at which the
particles Xi (t) and X j (t) have branched from one another.

Proposition 10.2 (Arguin, Bovier and Kistler [2]) Fix η > 0 and any function
ζ : [0,∞) → [0,∞) which increases to infinity. Define the event

Bη,k,t := {∃i, j ∈ Jη(t) : τi, j (t) ∈ [ζ(k), t − ζ(k)]} .

One has

lim
k→∞ lim

t→∞ P
[Bη,k,t

] = 0. (10.2)

The following proof is included for the sake of self-containedness.

Proof Fix η > 0 and k → ζ(k) an increasing sequence going to infinity. We want to
control the probability of

Bη,k,t = {∃i, j ∈ Jη(t) : τi, j (t) ∈ [ζ(k), t − ζ(k)]}

the “bad” event that particles have branched at an intermediate time when t → ∞ and
then k → ∞.
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By choosing x large enough, we have for all ζ ≥ 0 and t large enough

P(∃i, j ∈ Jη(t) : τi, j (t) ∈ [ζ, t − ζ ])
≤ P(At (x, η)�) + P(∃i, j ∈ Jη(t) : τi, j (t) ∈ [ζ, t − ζ ], At (x, η))

≤ ε + E

⎡

⎣1At (x,η)

∑

i∈Jη(t)

1{∃ j∈Jη(t):τi, j (t)∈[ζ,t−ζ ]}

⎤

⎦ .

Using the many-to-one principle [see (4.1)], we have

E

⎡

⎣1At (x,η)

∑

i∈Jη(t)

1{∃ j∈Jη(t):τi, j (t)∈[ζ,t−ζ ]}

⎤

⎦

= EQ

[
eX�t (t)1At (x,η)1{|X�t (t)−mt |≤η,∃ j∈Jη(t):τ�, j (t)∈[ζ,t−ζ ]}

]

where τ�, j (t) is the time at which the particle X j (t) has branched off the spine �.
In particular, using the description of the process under Q, we know that X�t (t)
is σ times a standard Brownian motion, and that independent branching Brownian
motions are born at rate 2 (at times (τ

(�t )
i (t), i ≥ 1)) from the spine �. The event

{∃ j ∈ Jη(t) : τ�, j (t) ∈ [ζ, t − ζ ]}} means that there is an instant τ
(�t )
i (t) between

ζ and t − ζ , such that the branching Brownian motion that separated from � at that
time has a descendant at time t in [mt − η, mt + η]. In particular, the minimum of this
branching Brownian motion at time t is lower than mt + η. Thus

EQ

[
eX�t (t)1At (x,η)1{|X�t (t)−mt |≤η,∃ j∈Jη(t):τ�, j (t)∈[ζ,t−ζ ]}

]

≤ EQ

⎡

⎣eX�t (t)1At (x,η)1{|X�t (t)−mt |≤η}
∑

τ∈[ζ,t−ζ ]
1{Xτ

1,t ≤mt +η}

⎤

⎦

where X τ
1,t is the leftmost particle at time t descended from the particle which branched

off � at time τ , and the sum goes over all times τ = τ
(�t )
i (t) ∈ [ζ, t − ζ ] at which

a new particle is created. Recall that Gv(x) = P(X1(v) ≤ x) so that by conditioning
we obtain

EQ

[
eX�t (t)1At (x,η)1{|X�t (t)−mt |≤η,∃ j∈Jη(t):τ�, j (t)∈[ζ,t−ζ ]}

]

≤ EQ

⎡

⎣eX�t (t)1At (x,η)1{|X�t (t)−mt |≤η}
∑

τ∈[ζ,t−ζ ]
Gt−τ (mt + η − X�τ (τ ))

⎤

⎦ .
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For all continuous function X : [0, t] → R recall that we define X [a,b] :=
mins∈[a,b] X (s), and define the event A(X)

t (x, η) by

A(X)
t (x, η) :={σ X [0,t/2] ≥−x} ∩ {X [t/2,t] ≥ mt −x} ∩ {∀s ∈ [x, t/2] : X (s) ≥ s1/3}

∩{∀s ∈ [t/2, t − x] : X (s) − X (t) ∈ [(t − s)1/3, (t − s)2/3]}.

Then, At (x, η) ∩ {|X�t (t) − mt | < η} ⊂ A
(X�t ,t (·))
t (x, η) ∩ {|X�t (t) − mt | < η},

hence

EQ

⎡

⎣eX�t (t)1At (x,η)1{|X�t (t)−mt |≤η}
∑

τ∈[ζ,t−ζ ]
1{Xτ

1,t ≤mt +η}

⎤

⎦

≤ EQ

⎡

⎣eX�t (t)1
A

(X�t ,t (·))
t (x,η)

1{|X�t (t)−mt |≤η}
∑

τ∈[ζ,t−ζ ]
Gt−τ (mt + η − X�τ (τ ))

⎤

⎦

= E

⎡

⎣eσ B(t)1
A(σ B(·))

t (x,η)
1{|σ B(t)−mt |≤η}

∑

τ∈[ζ,t−ζ ]
Gt−τ (mt + η − σ B(τ ))

⎤

⎦

where in the last expectation B is a standard Brownian motion and the τ over which
the sums run are the atoms of a rate 2 Poisson process independent of B. Since we
are on the good event A(σ B)

t (x, η), we know that for x ≤ s ≤ t/2, σ Bs > s1/3 and
σ Bt−s > mt + s1/3. Therefore

EQ

⎡

⎣eσ Bt 1
A(σ B)

t (x,η)
1{|σ Bt −mt |≤η}

∑

τ∈[ζ,t−ζ ]
Gt−τ (mt + η − σ B(τ ))

⎤

⎦

≤ t3/2eη+CB P
(

A(σ B)
t (x, η), |σ Bt − mt | ≤ η

)
⎧
⎪⎨

⎪⎩

t/2∫

ζ

2Gt−s(mt − s1/3 + η) ds

+
t/2∫

ζ

2Gs(−s1/3 + η) ds

⎫
⎪⎬

⎪⎭

≤ c

⎧
⎪⎨

⎪⎩

t/2∫

ζ

2Gt−s(mt − s1/3 + η) ds +
t/2∫

ζ

2Gs(−s1/3 + η) ds

⎫
⎪⎬

⎪⎭

where the constant c only depends on η and where we have used (5.2) for the last
inequality.

Now, observe that Gt−s(mt − s1/3 + η) = Gt−s(mt−s(
1
2 ) + �(η, t, s)) where, as

before, mt−s(
1
2 ) is such that Gt−s(mt−s(

1
2 )) = 1

2 , and �(η, t, s) := η − s1/3 + mt −
mt−s(

1
2 ). Since mt = 3

2 log t + CB by definition, and mt−s(
1
2 ) = 3

2 log(t − s) + C +
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o(1), t − s → ∞, for some constant C ∈ R, we see that there exists a sufficiently
large ζ0 such that �(η, t, s) ≤ − 1

2 s1/3,∀t > ζ ≥ ζ0,∀s ∈ [ζ, t
2 ]. This implies, for

t > ζ ≥ ζ0 and s ∈ [ζ, t
2 ],

Gt−s(mt − s1/3 + η) = Gt−s(mt−s

(
1

2

)
+ �(η, t, s)) ≤ P

(
W ≤ η − 1

2
s1/3

)
,

the last inequality being a consequence of Fact 9.1.
Since P(W ≤ −y) ∼ cye−y, y → ∞, we conclude that

∫ t/2
ζ

2Gt−s(mt − s1/3 +
η) ds → 0 as ζ → ∞. A similar argument also shows that

∫ t/2
ζ

2Gs(−s1/3 +η) ds →
0 as ζ → ∞.

The conclusion here is that by choosing ζ large enough (depending only on η), we
have P(∃i, j ∈ Jη(t) : τi, j (t) ∈ [ζ, t − ζ ]) < ε uniformly in t .

Recall that ∀u ∈ Hk, Xu
1 (t) is the position at time t of the leftmost descendent of

u (or 0 if u �∈ Hk,t ), and let Xu
1,t (s), s ≤ t be the position at time s of the ancestor of

this leftmost descendent (or 0 if u �∈ Hk,t ). For each t, ζ and u ∈ Hk define

Q(u)
t,ζ = δ0 +

∑

i :τ u
i >t−ζ

N u
i

where the τ u
i are the branching times along the path s �→ Xu

1,t (s) enumerated backward
from t and the N u

i are the point measures of particles whose ancestor was born at τ u
i

(this measure has no mass if u �∈ Hk,t ). Thus, Q(u)
t,ζ is the point measure of particles

which have branched off the path s �→ Xu
1,t (s) at a time which is posterior to t − ζ ,

including the particle at Xu
1 (t).

In the same manner we define Qζ as the point measure obtained from Q (in The-
orem 2.3) by only keeping the particles that have branched off s �→ Y (s) before
ζ . More precisely, conditionally on the path Y, we let π be a Poisson point process
on [0,∞) with intensity 2

(
1 − Gt (−Y (t))

)
dt = 2

(
1 − PY (t)(X1(t) < 0))

)
dt . For

each point t ∈ π such that t < ζ, start an independent branching Brownian motion
(N ∗

Y (t)(u), u ≥ 0) at position Y (t) conditioned to have min N ∗
Y (t)(t) > 0. Then define

Qζ := δ0 +∑t∈π,t<ζ N ∗
Y (t)(t).

Lemma 10.3 For each fixed k and ζ , the following limit holds in distribution

lim
t→∞(P∗

k,t , (Q
(u)
t,ζ )u∈Hk ) = (P∗

k,∞, (Q(u)
ζ )u∈Hk )

where (Q(u)
ζ )u∈Hk is a collection of independent copies of Qζ , independent of P∗

k,∞.

Proof Conditionally on Hk , the random variables (Xu
1,t (·), Q(u)

t,ζ )u∈Hk are inde-
pendent by the branching property. By Theorem 2.3, for every u ∈ Hk , the pair
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(Xu
1 (t) − mt , Q(u)

t,ζ ) converges in law to (k + W (u), Q(u)
ζ ) where Q(u)

ζ is a copy of
Qζ independent of W (u).

To conclude, observe that
∑

u∈Hk
δk+W (u) = P∗

k,∞ − log(C Zk) by Proposi-

tion 10.1. Since for each u ∈ Hk the point measure Q(u)
ζ is independent of W (u)

and of all W (v) for v ∈ Hk and v �= u, it follows that Q(u)
ζ is independent of P∗

k,∞.
We conclude that

lim
t→∞(P∗

k,t , (Q
(u)
t,ζ )u∈Hk ) = (P∗

k,∞, (Q(u)
ζ )u∈Hk )

in distribution where the two components of the limit are independent. ��
Armed with these tools let us proceed to give the

Proof of Theorem 2.1 Let ¯N (k)(t) be the extremal point measure seen from the posi-
tion mt − log(C Zk)

¯N (k)(t) := N (t) − mt + log(C Zk).

Let ζ : [0,∞) → [0,∞) be any function increasing to infinity. Observe that on
B�

η,k,t (an event of probability tending to one when t → ∞ and then k → ∞ by
Proposition 10.2) we have

¯N (k)(t)|[−η,η] =
∑

u∈Hk

(
Q(u)

t,ζ(k) + Xu
1,t − mt + log(C Zk)

)
|[−η,η)].

Now by Lemma 10.3 we know that in distribution

lim
t→∞

∑

u∈Hk

(
Q(u)

t,ζ(k) + Xu
1,t − mt + log(C Zk)

)
=

∑

x∈P∗
k,∞

(x + Q(x)
ζ(k))

where the Q(x)
ζ(k) are independent copies of Qζ(k), and independent of Hk . Moreover,

we know that limt→∞ Z(t) = Z almost surely.
By the second limit in Proposition 10.1, we have that (

∑
x∈P∗

k,∞(x + Q(x)
ζ(k)), Zk)

converges as k → ∞ to (L , Z) in distribution, L being independent of Z . In particu-
lar, (L , Z) is also the limit in distribution of (

∑
x∈P∗

k,∞(x +Q(x)
ζ(k)), Z). We conclude

that in distribution

lim
k→∞ lim

t→∞( ¯N (k)(t)|[−η,η)], Z(t)) = (L |[−η,η)], Z).

Hence, limk→∞ limt→∞( ¯N (k)(t), Z(t)) = (L , Z) in distribution. Since ¯N (t) is
obtained from ¯N (k)(t) by the shift log(C Z) − log(C Zk), which goes to 0 by (10.1),
we have in distribution limt→∞( ¯N (t), Z(t)) = (L , Z) which yields the content of
Theorem 2.1.
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