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Abstract

Developing a branching scheme that is compatible with the column generation procedure can

be challenging. Application specific and generic schemes have been proposed in the literature, but

they have their drawbacks. One generic scheme is to implement standard branching in the space

of the compact formulation to which the Dantzig-Wolfe reformulation was applied. However, in

the presence of multiple identical subsystems, the mappingto the original variable space typically

induces symmetries. An alternative, in an application specific context, can be to expand the com-

pact formulation to offer a wider choice of branching variables. Other existing generic schemes

for use in branch-and-price imply modifications to the pricing problem. This is a concern because

the pricing oracle on which the method relies might become obsolete beyond the root node. This

paper presents a generic branching scheme in which the pricing oracle of the root node remains

of use after branching (assuming that the pricing oracle canhandle bounds on the subproblem

variables). The scheme does not require the use of an extended formulation of the original prob-

lem. It proceeds by recursively partitioning the subproblem solution set. Branching constraints

are enforced in the pricing problem instead of being dualized via Lagrangian relaxation, and the

pricing problem is solved by a limited number of calls to the pricing oracle. This generic scheme

builds on previously proposed approaches and unifies them. We illustrate its use on the cutting

stock and bin packing problems. This is the first branch-and-price algorithm capable of solving

such problems to integrality without modifying the subproblem or expanding its variable space.

Keywords: Integer Programming, Dantzig-Wolfe reformulation, Branch-and-Price.

1 Introduction

Many mixed integer programming problems have a decomposable structure, which makes them

well suited for Dantzig-Wolfe reformulation and for which Branch-and-Price can be a competitive

solution approach. However, branching can be challenging.One needs a scheme that not only has
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good properties in terms of leading to integrality of the solution and yielding dual bound improve-

ments, but that is also “compatible” with column generation. In particular, branching constraints may

result in modifications to the structure of the pricing problem and impair its tractability. This is a main

concern since the competitiveness of the decomposition approach typically relies on the availability

of an efficient pricing problem solver.

The issue of branching in a branch-and-price context has notbeen explored in full detail to date,

because, for many practical applications, branching is straightforward. In particular, branching can be

implemented in a standard way in the space of the compact formulation to which the Dantzig-Wolfe

reformulation was applied and this implementation is competitive in many situations. Villeneuve et

al. [26] suggest that one can always proceed by using standard branching in an “original” formula-

tion and re-apply Dantzig-Wolfe reformulation to the problem augmented with branching constraints.

However, when the decomposition involves multiple identical subproblems, this typically induces

symmetries. As an alternative, specialized branching rules for use in Branch-and-Price have been

developed. Ryan and Foster [14] proposed a scheme for applications that can be reformulated as set

partitioning problems, a generalization of which was developed by Vanderbeck [20]. However, both

of these specialized schemes may result in structural modifications to the pricing problem. Another

line of branching schemes reported in the literature can be understood as implicitly using an extended

(“original”) formulation and branch on the new variables ofthe reformulation (as in Belov et al. [3]

or Valério de Carvalho [17]). Such approach is application specific and requires to a pricing problem

solver that works in this expanded variable space.

The scheme proposed in this paper builds on and unifies previously proposed generic approaches,

while avoiding their drawbacks. It can be seen as special case of the implementation of the scheme of

[20] in which fractional solutions are cut off by bounding the number of columns selected from spe-

cific subsets. This particular implementation permits the use of the original pricing problem oracle

after branching, as does the scheme of [26]. The new scheme can also be understood as a refine-

ment of the scheme of [26]: the branching constraints of the new scheme are shown to implicitly

fix bounds on the variables of the original formulation, while [26] implements explicit bounds on

the original variables. This refinement allows us to avoid the symmetry drawback of the scheme of

[26] in the case of multiple identical subproblems, as we will show. In the new scheme, as in that of

[26], branching constraints can be enforced directly in thesubproblem if the pricing oracle can handle

bounds on the subproblem variables. Since branching constraints are not dualized (i.e., not placed in

the master as in [20]), they induce better improvements of dual bounds. Finally, when the master is

a set partitioning problem, the proposed scheme resembles that of [14], but with a different pricing

procedure.

A motivation for this work is the development of a generic code for branch-and-price. Previously
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existing framework for implementing branch-and-price such as Abacus [16], BCP [11], G12 [13],

or Minto [15] are tool boxes that leave it to the user to implement an application specific branching

scheme. Other existing codes have been developed for specific classes of applications (such as the

vehicle routing problem and its variants); examples include Gencol [6] and Maestro [5]. In these ref-

erences, the branching issue has been seen so far as a barrierto the automation of branch-and-price.

The branching scheme of this paper allows the overcoming of this barrier. The proposed scheme is

valid for any column generation application; the only requirement is a pricing oracle that can handle

upper and lower bounds on the subproblem variables. The scheme requires no input from the user

since the same pricing problem solver can be used after branching. Hence, the scheme leads to a

possible black box implementation of branch-and-price. Weare currently working on a prototype of

a generic branch-and-price implementation, calledBaPCod[24].

The presentation given herein is not limited to the principles underlying the new scheme. As the

implementation of the proposed scheme is not trivial, the paper makes specific proposals regarding

the separation of fractional solutions and the pricing procedure after branching. An analysis of the

scheme properties allows us to show that the worst case complexity of the enumeration is no worse

than when branching in the original variable space.

The paper is organized as follows. Section 2 reviews the Dantzig-Wolfe reformulation principle.

Section 3 provides an overview of the new scheme, explainingits principle and introducing the fea-

tures needed for its implementation. A formal presentationfollows for the special case of a binary

integer program in Sections 4 to 10, detailing a mapping fromthe Dantzig-Wolfe reformulation to the

original problem variable space; presenting how to branch at the root node and beyond, and how col-

umn generation is implemented after branching; giving the expression of the resulting dual bound and

showing how preprocessing yields simplifications, specifically in the special case where the master

is a set partitioning problem. In Section 11, we briefly explain how the scheme can be extended to a

general mixed integer program. Section 12 presents computational experiments on cutting stock and

bin packing problems. The conclusion summarizes the scheme, its contributions, and its limitations.

2 The Dantzig-Wolfe approach

Let us introduce our notation and briefly review the Dantzig-Wolfe approach: the decomposition

of a mixed integer program, its reformulation, the column generation procedure, and Lagrangian

duality results. To simplify the presentation, we assume a pure integer program (IP) whose variables

are bounded. The extension to the unbounded case is presented in [20], while the extension to the

mixed integer case is presented in [25]. We consider a well structured IP whose constraint matrix is
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of the form 









A1 A2 . . . AR

B1 0 . . . 0

0 B2 . . . 0
...

...
...

0 0 . . . BR











, (1)

whereAr andBr , for r = 1, . . . ,R, are rational matrices. I.e., there areR diagonal blocks and the

problem can be formulated as

ZP = min
R

∑
r=1

cr xr (2)

[P]
R

∑
r=1

Ar xr ≥ a (3)

Br xr ≥ br for r = 1, . . . ,R (4)

l r ≤ xr ≤ ur for r = 1, . . . ,R (5)

xr ∈ Z
n for r = 1, . . . ,R (6)

wherecr , a, andbr are rational vectors of appropriate dimension andl r (resp. ur ) are lower (resp.

upper) bound vectors. LetPLP denote its linear programming (LP) relaxation andZP
LP its optimal LP

value. A subsystem

Xr ≡ {x∈ Z
n : Br x≥ br

, l r ≤ x≤ ur} (7)

can be associated with each blockr. Let Xr
LP be the polyhedron associated to its LP relaxation.

Throughout the paper, we shall distinguish two cases. Either we havenon-identical subsystems:

Ar and the data of subsystemsXr depend onr. Or thesubsystems are identical: Ar and the data of

subsystemsXr do not depend onr. The combined case could also occur for which matrixB is made

of non-identical blocks, each of which decomposes into identical sub-blocks: an example would be a

Vehicle Routing Problem (VRP) with different vehicle typesand several vehicles of each type.

The Dantzig-Wolfe reformulation of problem[P] can be introduced in several ways. For this

paper, we adopt the discretization approach of [25]. LetGr be an enumerated set of generators (a

terminology introduced in [25]) for subsystemXr . Since we assume a bounded and pure integer

program,Gr is simply the enumerated set of all discrete integer solutions ofXr , i.e.,Xr = {xg}g∈Gr ,

wherexg is the solution vector associated to generatorg, andXr can be reformulated as

Xr ≡ {x = ∑
g∈Gr

xgλg : ∑
g∈Gr

λg = 1,λg ∈ {0,1} ∀g∈ Gr} .

Then, the Dantzig-Wolfe reformulation principle refers tothe application of this variable change to
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[P], which gives rise to the reformulation:

ZDM = min
R

∑
r=1

∑
g∈Gr

cr xg λ r
g

[DM]
R

∑
r=1

∑
g∈Gr

Ar xg λ r
g ≥ a (8)

∑
g∈Gr

λ r
g = 1 for r = 1, . . . ,R

λ r
g ∈ {0,1} for r = 1, . . . ,R,g∈ Gr .

Thus, in our notation,g denotes the generator (g is also used as an index referring to the generator),

xg denotes its characteristic vector,(cr xg, Ar xg) is the associated column vector in formulation [DM],

andλ r
g is the associated decision variable. For simplicity, we shall commonly refer tog as a column

in the sequel. LetDMLP denote the LP relaxation of [DM] andZDM
LP be its optimal LP value.

In the case where all subsystems are identical, i.e.,Ar = A, Br = B, cr = c, Xr = X andGr = G

for r = 1, . . . ,R, one can aggregateλ r
g variables using:

νg =
R

∑
r=1

λ r
g . (9)

Then, the Dantzig-Wolfe reformulation takes the form:

ZM = min ∑
g∈G

cxg νg (10)

[M] ∑
g∈G

A xg νg ≥ a (11)

∑
g∈G

νg = R (12)

νg ∈ IN ∀g∈ G (13)

Let MLP denote its LP relaxation andZM
LP be its optimal LP value. Observe that the aggregation (9)

removes the symmetry inr that is present in the original formulation [P] (where a permutation of the

r indexing in vectorx gives rise to an alternative representation of the same solution) or in [DM]. We

assume the equality convexity constraint (12) although considering convexity constraints of the form

L ≤ ∑g∈G νg ≤U is a straightforward extension.

The enumeration of setG (or Gr in the case of non-identical subsystems) is only theoretical. In

practice, the solution of the Dantzig-Wolfe reformulationis handled through dynamic generation of

its variables and associated columns in the course of the optimization, a procedure known ascolumn

generation. In this context, the reformulation is called themasterprogram: we refer to [DM], given

in (8), as the disaggregated master used in the case of non-identical subsystems, while [M] is the
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commonly used form of the master in the case of identical subsystems.

Thus, solving the LP relaxation of [M] by column generation proceeds as follows. (The LP

solution of [DM] is analogous.) The master LP is initialized with a subset of(possibly artificial)

columns. This restricted program is solved to LP optimality. Let π be the dual solution vector

associated with constraints (11). Then, apricing problemis solved:

ζ (π) := min{(c−πA)x : B x≥ b, l ≤ x≤ u,x∈ Z
n

︸ ︷︷ ︸

x∈X

} . (14)

When its solution,xg := x∗, defines a negative reduced cost column, the column(c xg,A xg) and as-

sociatedνg variable are added to the master and the procedure reiterates. Otherwise, the current LP

solution has been proven optimal.

The principal assumption underlying the Dantzig-Wolfe approach is that (14) is a problem that

can be solved rather efficiently, compared to [P]. Throughout this paper, we assume that a solver is

available for (14) that requires reasonable computing time(although typically not polynomial time).

It can be a specialized combinatorial algorithm or one mighteven use a general purpose commercial

MIP solver. We refer to this solver as theoracle. Observe that we have included bounds on the vari-

ables in the definition of the pricing problem, as our branching scheme proceeds by amending these

bounds. In some applications, the bounded version of the pricing problem can be harder (complexity

wise) than the unbounded case. On the other hand, considering a bounded pricing problem often

yields a stronger dual boundZM
LP or ZDM

LP (see [23]).

At each iteration of the column generation procedure, a dualbound can be computed from the

pricing problem solutions: dualizing (11) in [M] gives rise to the Lagrangian dual bound

θ(π) := π a+Rζ (π) , (15)

whereζ (π) is defined by (14). These bounds,θ(π), are computed for each dual solution,π , to the

restricted master LP. They converge (although not monotonically) towards the optimal value of the

master LP. The latter is known to be equivalent to the Lagrangian dual that results from dualizing

constraints (3) in [P] (see [9]), i.e.,

ZM
LP = max

π≥0
θ(π) = min{∑

r
cxr : ∑

r
A xr ≥ a, xr ∈ conv(Xr) ∀r} , (16)

where the third form is the Lagrangian bi-dual (see [4]), reminding us that the Dantzig-Wolfe approach

produces a bound equal to the LP solution over a polyhedron where the subproblem is “convexified”.

Thus, the comparison of the LP and IP values of the above formulations isZP
LP ≤ ZM

LP = ZDM
LP ≤ ZM =

ZDM = ZP. When conv(Xr) 6= Xr
LP, the master gives rise to an LP bound that can be better than that

of [P].
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Thus, Dantzig-Wolfe reformulation allows a solution approach that exploits the availability of an

efficient specialized oracle for a subproblem; it avoids symmetry in r in the case of identical sub-

systems; and it often leads to better quality dual bounds. Toapply a branch-and-bound approach

based on the Dantzig-Wolfe reformulation, one needs to embed a column generation procedure into a

branch-and-bound algorithm. The combined algorithm is known asbranch-and-price[2]. This raises

several issues:(i) the choice of branching on variables of the original formulation or those of the

reformulation, or branching on constraints, and the equivalence that may or may not exist between

these approaches;(ii) where to enforce the branching constraint (in the master or in the subproblem)

and the impact on the strength of resulting Lagrangian dual bound after branching;(iii ) potential

structural modifications to the pricing problem that may only be compatible with specific solution

methods or may make it much harder to perform pricing.

Branching directly on individual variablesνg (resp. λ r
g), using disjunctive constraintsνg ≤

⌊v⌋ or νg ≥ ⌈v⌉, was tested, for instance, by [12, 18]. The resulting branch-and-bound tree is un-

balanced (constraintνg ≤ ⌊v⌋ is weak) and it combines badly with column generation (in thebranch

νg ≤ ⌊v⌋, one must avoid regenerating the specific columng∈ G either by adding constraints to the

pricing problem or by looking for the next best subproblem solution). The alternative is to branch on

constraints.

A natural combination of variablesνg (resp.λ r
g) on which to branch is that expressing the value

of the variables of the original formulation [P]: mappingν (resp. λ ) solutions intox solutions and

implementing a branching scheme based on disjunctive constraints for the original variables. In the

case of non-identical subsystems, this scheme will suffice to enforce integrality since the mapping

xr = ∑
g∈Gr

xg λ r
g , (17)

defines a unique projection to the original variable space and disjunctive branching constraints of the

form ∑g∈Gr xg
i λ r

g ≤ ⌊α⌋ or ∑g∈Gr xg
i λ r

g ≥ ⌈α⌉ in [DMLP] are therefore equivalent to enforcing

xr
i ≤ ⌊α⌋ or xr

i ≥ ⌈α⌉ , (18)

in the original problem for each subproblemr and componenti that would have fractional valueα 6∈Z

(see [2]). Branching can then be enforced directly in the pricing problem: one simply needs to reset a

component bound in the subproblem.

However, in the case of identical subsystems, one is workingwith reformulation [M]. Then, the

disaggregated original variable values,xr , are not available through a uniquely defined mapping. Note

that using [DM] even in the case of identical subsystems would allow one to branch on the original

variables but it has an obvious symmetry drawback due to the artificial re-introduction of ther indices
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on identical subsystems. With [M], one can only enforce the integrality of aggregate variables

x =
R

∑
r=1

xr = ∑
g∈G

xg νg , (19)

using disjunctive branching constraints of the form

∑
g∈G

xg
i νg ≤ ⌊α⌋ or ∑

g∈G

xg
i νg ≥ ⌈α⌉ , (20)

for componentsi that have fractional valueα 6∈ Z. But branching constraints on aggregate variables

are typically not sufficient to eliminate all fractional solutions, and they cannot in general be enforced

directly in the pricing problem. In the literature, alternative “original formulations” have sometimes

been considered to allow branching on the aggregate value oforiginal variables. Such reformulations

typically imply an expanded variable space which can even beof pseudo-polynomial size [3, 17].

Other forms of branching-on-constraint strategies have been developed to handle the case of iden-

tical subsystems. When the master takes the form of a set partitioning problem, i.e.,

min{∑
g∈G

cxg νg : ∑
g∈G

xg
i νg = 1∀i, ∑

g∈G

νg = R, νg ∈ {0,1} ∀g∈ G} (21)

with xg ∈ {0,1}n, integrality can be enforced using Ryan and Foster’s scheme[14]. For any frac-

tional solution,ν̃ 6∈ {0,1}|G|, there exists a pair of items(i, j) such that the fractional solutioñν can

be separated using the disjunction∑g:xg
i =xg

j =1 νg ≤ 0 or ∑g:xg
i =xg

j =1 νg ≥ 1. In the first branch, as no

column that has bothxg
i = 1 andxg

j = 1 can be used, the pricing problem is augmented with constraint

xi +x j ≤ 1. In the second branch, as itemsi and j are entirely covered by columns withxg
i = xg

j = 1,

the pricing problem is augmented with constraintxi = x j . The modifications to the pricing problem

may change its structure.

Vanderbeck [20] proposes a scheme that generalizes that of Ryan and Foster to master programs

not restricted to set partitioning problems. It consists inconsidering progressively more specific

subsetsĜ⊂ G and enforcing∑g∈Ĝνg ∈ Z through disjunctive branching constraints of the form:

∑
g∈Ĝ

νg ≤ L−1 or ∑
g∈Ĝ

νg ≥ L (22)

for L ∈ IN. In practice, setŝG are defined as subsets of columns whose vectorxg satisfy prescribed

bounds on some of its components:Ĝ = G∩ {sx≥ l}, where l ∈ Z
n is a vector of bounds and

s∈ {−1,1}n defines the sign of each component bound. Then the pricing problem must be modified

to account for the dual variable associated with branching constraint (22) for the columns of̂G and

not for those ofG\ Ĝ.
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3 Overview of the proposed scheme

The branching scheme of this paper addresses the case of identical subsystems: the master pro-

gram is [M] given by (10-13) and branching on the aggregate value of theoriginal variables does not

suffice to achieve integrality. The complete generic schemeconsists in using first branching disjunc-

tions of the form (20) to achieve integrality of the aggregate value of the “original” variables, and then

to apply the scheme proposed herein to finalise the elimination of fractional solution if needed. This

complete scheme can serve as a default branching for a generic branch-and-price solver: an informed

user might want to use application specific branching rules (such as branching on constraints) before

using the default scheme. Applying the new scheme to the caseof non-identical subsystems amounts

to reproducing the standard branching scheme (18).

The idea underlying the new scheme is to return to the non-identical subsystem situation, by mak-

ing use of a progressivesubproblem differentiation, introducing new subsystems dynamically. Using

formulation [DM] in the case of identical subsystems amounts to an “a priori”subproblem differentia-

tion, but it induces symmetry. Instead, one can differentiate the subsystem progressively in the course

of branching. Viewing the aggregate convexity constraint (12) as a “special ordered set” (SOS), one

can branch by progressively partitioning subsystemX, or equivalently the generator setG, and en-

forcing separate convexity constraints on each subset. A natural scheme is to partition subsystemX

by imposing disjunctive constraints on the integer subproblem variablesxi ∈ Z: a generator subset,

Ĝ⊆ G, which we call a “column class”, is defined in terms of bound restrictions on some components

of xg. Then, one can do the pricing overĜ using the oracle for (14). To allow us to price columns

from each individual column class,̂G, independently, we need to implement further branching by

partitioning previously defined subsystems, i.e. a nested partition scheme is required.

The proposed scheme can be seen as a specific implementation of the scheme of [20]: instead

of selecting sets,̂G, arbitrarily (as illustrated on the left part of Figure 1), they are defined so as to

form a nested partition of the pricing problem solution set (as illustrated on the right part of Figure 1).

Moreover, instead of modifying the pricing problem by introducing indicator variables associated

with each column clasŝG, we solve separate pricing subproblems. Thus, branching constraints are

enforced directly in the pricing problem through this enumeration procedure.

To guarantee that the number of newly introduced subproblems is bounded byR, the number of

diagonal blocks in (1), we use only branching constraints that enforce lower bound on column classes:

∑
g∈Ĝ

νg ≥ L , (23)

with L ≥ 1. By the pigeon hole principle, there cannot be more thanRsuch constraints that are active.

This is implemented using a non binary enumeration tree: thebranch∑g∈Ĝ νg ≤ U is replaced by
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Ĝ1

Ĝ2
→

Ĝ1

Ĝ2

Ĝ3

Figure 1: Partitioning of the pricing problem solution set:using the scheme of [20] on the left, and

the nested partition of the new scheme on the right.

enumerating ways in which∑g∈G\Ĝ νg ≥ R−U . We show that each branching constraint of the form

(23) induces progress in reaching primal integrality that can be measured in the compact space of the

original variables: each branching constraint implicitlyfixes a bound on at least one original variable.

To establish such equivalence we consider the projection ofthe master solution in the original formu-

lation. This shows that integrality of the solution must be achieved after adding a polynomial number

of branching constraints (assuming fixed bounds on the original variables), even though the number

of column classes on which one could branch is exponential.

The dynamic introduction of differentiated pricing subproblems is similar to what is done in the

scheme of Villeneuve et al. [26] in its dynamic implementation where pricing subproblems are intro-

duced as needed. Our proposal goes further by providing a practical way of iteratively refining the

column class definitions to separate fractional solutions.But, more importantly, our scheme differs by

the fact that branching constraints concern groups of subproblems instead of one at the time. Column

classes,Ĝ, on which we branch expand over several subsetsGr of formulation [DM] given in (8)

but with no explicit reference to anyr index. The link between master and original solution spaces

established through our projection tool is only implicit (there is no one-to-one correspondence) and it

must remain so to avoid symmetry.

Our proposal is completed by a practical strategy to handle the multiple pricing subproblems as-

sociated with the various column classes defined at a given branch-and-price node. As column classes

are nested, one can organize the enumeration of the associated pricing subproblem in a tree. Then,

using appropriate tree search strategies, one can truncatethe enumeration of pricing subproblems as

soon as a negative reduced cost column is found and still get adual bound on the best reduced cost.

Finally, we show that preprocessing yields significant simplifications to the generic scheme and, in

particular, in the special case of a set partitioning problem. The Ryan and Foster scheme is shown to

be closely related to the form taken by our scheme when the master is a set partitioning problem.

To simplify the detailed presentation, we assume from now onthat the subsystem involves binary
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variables only :

X = {x∈ {0,1}n : B x≥ b} . (24)

Then,column classes, Ĝ, are defined as subsets of columns,g, whose indicator vector,xg, has some

components fixed to zero or one. For instance,S=< x1,x2,x3 > denotes a sequence of component

bounds in whichx1 is fixed to one,x2 to zero andx3 to one. The associated class of columns is

G(S) = {g ∈ G : xg
1 + xg

2 + xg
3 = 3}, wherexg

2 = 1− xg
2. Note that this model can correspond to a

practical strategy that consists in branching on the binaryvariables resulting from a 0-1 transformation

of an integer program. Extensions to the general mixed integer case are outlined in Section 11.

4 A mapping that preserves integrality

Each solutionν to [M] (resp. λ to [MLP]) can be transformed into a solutionx to [P] (resp.

[PLP]). One can disaggregate the solutionν to [M] into a solution{λ r}r=1,...,R to [DM] and then

use transformation (17) to getR solution vectorsxr ∈ [0,1]n for [P]. The procedure is not unique.

A possible disaggregation for an LP solution is:λ r
g =

νg
R ∀r = 1, . . . ,R,g ∈ G. But it can yield a

fractional solutionx, even whenν happens to be integer. An alternative disaggregation that preserves

integrality can be defined recursively as follows. Assume anordering of the generator set, defined by

a precedence operator:g1 ≺ g2 if g1 precedesg2 in the list of generatorsG. Then, let

λ r
g = min{1,νg−

r−1

∑
ρ=1

λ ρ
g ,(r − ∑

γ :γ≺g
νγ)

+} ∀r = 1, . . . ,R,g∈ G . (25)

An integer solutionν decomposes into an integer solutionλ : λ r
g = 1 if ∑γ≺g νγ ≤ r−1 and∑γ�g νγ ≥

r. The resulting mapping procedure into theX space is given in Table 1 and illustrated in Example 1.

Each ordering yields a valid mapping, however a lexicographic ordering provides a better chance to

generate an integer solution.

Example 1 We shall use the following numerical example to illustrate the developments to come. The

constraints of [M] are defined by

A =






1 0 1 0

0 1 0 1

1 1 0 2




 and a=






5

5

10




 .

Assume R= 5 identical subsystems and a set G of feasible columns given below, as well as a master

LP solutionν̃g:

ν̃g 0 1
2 1 1

2 0 0 1 1 0 0 1
2 0 1

2 0 0

x1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

x2 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

x3 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

x4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
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Using the mapping of Table 1, we get a solution to the originalformulation{x̃r}r=1,...,5 :

x̃1 =








1

1

0
1
2








, x̃2 =








1
1
2
1
2
1
2








, x̃3 =








1

0

0

0








, x̃4 =








0

1

1

1








, x̃5 =








0
1
2
1
2

0








.

Table 1: Transforming a solutioñν to [M] (resp. [MLP]) into a solution for [P] (resp. [PLP])

1. LetΛ = {g : ν̃g > 0}.

2. Sort the columnsg∈ Λ in lexicographic decreasing order of vectorsxg.

3. Initialize x̃r
i = 0 for all i, r; let z= 0 andr = 1.

4. For eachg∈ Λ in lexicographic order, do

while (ν̃g > 0), do

let λ̃ r
g = min{ν̃g, r −z};

for all i = 1, . . . ,n, do x̃r
i = x̃r

i +xg
i λ̃ r

g;

ν̃g = ν̃g− λ̃ r
g;

z= z+ λ̃ r
g;

if (z== r) thenr = r +1 ;

In the sequel, we refer to a figurative representation of a master solution. We define a “strip”

associated with a column or a column class as follows:

Definition 1 Consider a master solutioñν where columns are sorted lexicographically. Let us rep-

resent the solution geometrically by a rectangle with height n and width R. In this rectangle, each

column, g, defines a “strip” of “ width” ν̃g at a specific position in the sequence of sorted columns.

More generally, any column clasŝG of consecutive columns in lexicographic order defines a “Ĝ-strip”

of “ width” ν̃(Ĝ) = ∑g∈Ĝ ν̃g.

The mapping of master solutioñν into anx̃ solution requires slicing the rectangle of widthR to parti-

tion it into R sub-stripsof width 1, each of which shall be associated with an indexr. Each columng

that is involved in therth strip contributes to the definition of ˜xr proportionally to its valuẽλ r
g which

represents its width in therth strip: see (17). In Table 1,zstands for the current position in theG-strip

of width R.

The mapping of Table 1 was designed to preserve integrality.Inversely, the resulting ˜x solution

can only be binary if̃ν is integer:
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Proposition 1 If x̃ is a solution generated from a solutionν̃ to [MLP] using the procedure of Table 1,

then

x̃r
i ∈ {0,1} ∀i, r ⇐⇒ ν̃g ∈ IN ∀g

Proof: It is trivial to note that ifν̃g ∈ IN ∀g, thenx̃r
i ∈ {0,1} ∀i, r. Let us prove the reverse implication

by contradiction. AssumingF = {g : ν̃g−⌊ν̃g⌋ > 0} 6= /0, we show that ˜xr
i 6∈ {0,1} for some pair

(i, r). Let g1 be the first fractional column ofF in lexicographic order. Letr = argmax{ρ : λ ρ
g1 > 0}

be the last index of a vector ˜xr to the definition of whichg1 contributes. Observe that 0< λ r
g1

=

(ν̃g1 −⌊ν̃g1⌋) < 1. Hence, there exists another columng2 : g1 ≺ g2 with 0 < λ r
g2

< 1. Let i be the first

component in whichg1 andg2 differ: xg1
i = 1 whilexg2

i = 0. Then, 0< λ r
g1

< x̃r
i ≤ 1−λ r

g2
< 1.

Thus, when the subsystems are binary problems, checking theintegrality of the solutioñν in [MLP]

is equivalent to checking the integrality of the associatedsolutionx̃ in [PLP]. However, when some of

the x̃ variables are general integer, the mapped solution can be integer whileν̃ is not.

5 Separation of a fractional solution at the root node

Branching is implemented by bounding the“value” of “column classes”that are defined by

“component bound sequences”.

Definition 2 A “component bound sequence”, S, is an ordered set of bounding restrictions on the

components of the subproblem solution vector, x. For the binary case, bounding restrictions amount

to fixing components to zero or one:

S=< ẍ[1], ẍ[2], . . . , ẍ[|S|] >, (26)

where[p] is the index of the component bound in the pth position in the sequence, and the notationẍ[p]

stands for either the case in which the variable is fixed to one(ẍ[p] = x[p]) or fixed to zero (̈x[p] = x[p]).

The “last” component of the sequence is the component xi defined by index i= [|S|]. The “column

class” associated with S is defined as

G(S) = {g∈ G : ∑
i∈S

ẍg
i = |S|}

where the notation i∈ S is a short cut for saying that sequence S includes a bound on component xi ,

also denoted as xi ∈ S orxi ∈ S. The “value” of the class is the cumulative value of its columns in the

current master solution,̃ν :

ν̃(S) = ν̃(G(S)) = ∑
g∈G(S)

ν̃g .

The column class value is its “width” in the geometric solution representation of Definition 1.

13



At the root node, the separation of a fractional solution,ν̃, to [MLP] proceeds as follows. Identify

a “column class”,G(S), whose value,̃ν(S), is fractional, and impose disjunctive constraints to en-

force its integrality. The proof of Proposition 1 provides apossible selection ofSdefined by the first

i components of the characteristic vector,xg1, of the first fractional column,g1. However, the imple-

mentation of the branching scheme is sensitive to the size ofthe chosen sequenceS: a smaller sizeS

shall induce fewer branch-and-bound nodes and a more balanced branch-and-bound tree. Hence, we

seek to implement separation based on sequences,S, with few component bounds.

Reference [20] presents two separation procedures, one that yields a minimal size subset of com-

ponent bounds (using an enumeration scheme that has exponential worst case complexity) and an-

other that achieves the best complexity in the worst case. The procedure proposed here, in Table 2,

is a compromise between these two: it partially relies on enumeration in search for a minimal size

component sequence,S, while guaranteeing a polynomial worst case complexity. Its use is illustrated

in Example 2. Amongst component sequences with the same sizethat are candidates for branch-

ing, we select the sequenceSwhose “last component” has the highest branching priority (assuming

branching priorities and directions are defined for the “original” variables of the subproblem). We

shall indeed show later that branching onG(S) is equivalent to implicitly fixing the last component

of S in the original formulation. One could give more emphasis onselecting a last component of

higher priority by allowing the size ofS to increase. In Table 2,F = {g : ν̃g−⌊ν̃g⌋ > 0} denotes the

set of fractional columns;̃ν(F) = ∑g∈F ν̃g denotes its value;F(S) = F ∩G(S) is the set of fractional

columns satisfying component bounds inS; record is the list of identified sequencesSwith fractional

value f = ν̃(F(S)) 6∈ IN on which we could branch; andpriorityi denotes the branching priority level

associated with componentxi of subproblem solution vectorx∈ {0,1}n.

Example 2 (Example 1 continued)Consider the fractional master solutioñν provided in Exam-

ple 1. It yields

ν̃(F(xi)) = ν̃(F(xi)) = 1 for i = 1, . . . ,4 .

Assume that subproblem variables are indexed in order of non-increasing priority. Hence, we make

recursive calls to the routine Separate of Table 2 to split further the column class defined by S=< x1 >

and< x1 >. In the first call to Separate, we getν̃(F(x1,xi)) = ν̃(F(x1,xi)) = 1
2 for i = 2,3 and pick

the highest priority set: S=< x1,x2 > or S=< x1,x2 > depending on priority in branching directions.

On the other hand, in the second call, further splitting the column class defined by S=< x1 > yields

the branching sequence S=< x1,x2 > or S=< x1,x2 >.

Observe that|F| ≤ m, wherem is the number of constraints in the master formulation at thecur-

rent branch-and-bound node (assuming thatν̃ is obtained as an extreme LP solution to the master

program). Each call to subroutine Separate(F , I , S, record) of Table 2 requiresO(n |F|) operations

wheren is the number of binary components. Routine Separate is called recursively. The depth of

14



Table 2: Separation of a fractional master solution,ν̃, at the root node.

1. LetF = {g : ν̃g−⌊ν̃g⌋ > 0}, I = {1, . . . ,n}, S=<>, record= /0.

2. Separate(F , I , S, record)

(a) Check whether the current set of columns has fractional columns:If F = /0, return.

(b) Compute values of aggregate variables(αi)i∈I :

For all i ∈ I , let αi = ∑g∈F xg
i ν̃g.

(c) Detect fractionalαi if any:

Found = false;

For all i ∈ I , do

if ( f = αi −⌊αi⌋ > 0)

add the pair (< S,xi >, f ) to record;

Found = true;

If (Found), return.

(d) Identify discriminating components: J= {i ∈ I : 0 < αi < ν̃(F)}.

(e) Partition according to the component with highest branching priority:

Let i∗ = argmaxj∈J{priority j};

Separate(F(< S,xi∗ >), J\{i∗}, < S,xi∗ >, record);

Separate(F(< S,xi∗ >), J\{i∗}, < S,xi∗ >, record);

return;

3. Select a branching sequenceSin recordaccording to branching priorities on its last component.

the tree of recursive calls is bounded byn. The number of leaf nodes in the tree of recursive calls

is bounded by|F|, since the fractional column set is partitioned at each stage and we only explore

non-empty subsets. Therefore, the overall complexity isO(n2|F|2). One could reduce the complexity

to O(n|F| log|F|) by applying the recursive call to only one side of the partition in Step (f), selecting

the subset of fractional columns with the smallest value.

Given a component bound sequenceSwhose associated class has fractional valueν̃(S) 6∈ IN for the

current master solutioñν, one implements branching by adding a disjunctive constraint that eliminates

this fractional solution. A natural scheme would be to use a binary disjunction

ν(S) ≤ ⌊ν̃(S)⌋ or ν(S) ≥ ⌈ν̃(S)⌉ .

However, the branching constraintν(S) ≤ ⌊ν̃(S)⌋ of the first branch is typically weaker than that of

the second branch (leading to an unbalanced tree). A stronger disjunctive constraint can be derived
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by using a non binary branching tree, as illustrated in Example 3 below. A general presentation of the

branching scheme follows the example. An important remark concerning the proposed scheme is that

the solution sets associated with the descendant nodes are not necessarily disjoint (we do not have a

partition of the master solution space). We prove however that the scheme yields a valid separation:

Proposition 2 shows that the fractional solution is eliminated and no integer solution is lost. The

finiteness of the scheme shall be proved in Section 6: we show that the size of the branch-and-price

tree is bounded (in particular, we give a polynomial bound onthe depth of the tree).

Example 3 (Example 2 continued)Assume that set S=< x1,x2 > was selected for branching and

that one uses a binary disjunction:ν(x1,x2) ≤ 1 or ν(x1,x2) ≥ 2 . In the first branch, one may have

the solution:
ν̃g 0 0 1 3

4 0 0 1 1 0 1
2

1
4 0 1

2 0 0

x1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

x2 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

x3 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

x4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

(this fractional solution can easily be seen to satisfy the master constraints of Example 1). An alter-

native scheme can be derived considering the following intuitive argument. The branching constraint

ν(x1,x2) ≤ 1 force the LP solver to use fewer columns from class G(x1,x2) compared to the current

solution,ν̃ . As the total number of columns is fixed,ν(G) = R, this can only be achieved by increasing

the number of columns selected from G\G(x1,x2) = G(x1,x2)∪G(x1). Hence, from an IP perspec-

tive, we can define two new branches: eitherν(x1,x2) ≥ 2 (assuming implicitly thatν(x1) ≥ 3), or

ν(x1) ≥ 3 (which impliesν(x1) ≤ 2). In total, we define 3 descendant nodes (defined by a branching

constraint) as follows:

Node(1) ≡ ν(x1) ≥ 3 ,

Node(2) ≡ ν(x1,x2) ≥ 2 ,

Node(3) ≡ ν(x1,x2) ≥ 2 .

Observe that the above solution is not feasible in any of Node(1), Node(2), or Node(3), which illus-

trates that this non-binary scheme can be stronger. However, the solution spaces associated with each

node are not disjoint: for instance, solutions withν(x1,x2)≥ 2 can also arise in node 2, ifν(x1) ≥ 4,

or, in node 1, ifν(x1,x2) = 0. Nevertheless, as we see in this example, the identical solutions that

could arise at several tree nodes would be solutions that deviated largely from the current solution

and hence would probably yield a significant increase in the dual bound.

The general scheme is characterized by a generic definition of successor nodes:

Definition 3 Let ν̃ be the master LP solution at the current node and S be the “component bound

sequence” (see Definition 2) that has been selected for branching. For p= 1, . . . , |S|−1, let Sp be the

subsequence composed of the first p component bounds of S and Lp = ν̃(Sp) ∈ IN. Let L|S| = ⌈ν̃(S)⌉
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be the round-up value of column class G(S), while S0 =<> and L0 = ν̃(G) = R. Let Gp = G(Sp)

for p = 0, . . . , |S|. Observe that L0 ≥ L1 ≥ L2 ≥ . . . ≥ L|S| are nonincreasing integer values, while

G= G0 ⊇ G1 ⊇ G2 ⊇ . . .⊇ G|S| = G(S). LetG
p
= Gp−1\Gp = G(Sp−1

, ẍ[p]) for p= 1, . . . , |S|, where

ẍ[p] = 1− ẍ[p] is the complement of the pth component bound of S. Then, the|S|+1 “successor nodes”

are defined as follows: for p= 1, . . . , |S|, the branching constraint defining node p is:

Node(p) ≡ ν(Gp−1\Gp) ≥ Lp−1−Lp +1 ; (27)

while node|S|+1 is defined by:

Node(|S|+1)≡ ν(G|S|) ≥ L|S|
. (28)

Figure 2 illustrates branching at a node for which the branching sequence,S, involves 4 compo-

nent bounds:|S| = 4, yielding 5 descendant nodes. The node numbers refer to theassociated node

definitions (27-28). The definition of thestrip (see Definition 1) associated with each nested column

class could, for instance, take the form illustrated in Figure 3: vertical lines define the boundaries

of thestripsassociated with nested column classes and their complement. The disjunctive branching

constraint can be understood as follows: in an integer solution either the value of classG4 is increased

to the next integer value, i.e.,ν(G4) ≥ L4 (the width of theG4-strip in Figure 3 must increase), or

it is rounded down, i.e.,ν(G4) < L4 (the width of theG4-strip decreases) and some otherstrip of

Figure 3 must have an increased value, i.e., eitherν(G
4
) = ν(G3\G4) ≥ L3−L4 +1, orν(G3) < L3,

or both. Similarly, the caseν(G3) < L3 decomposes recursively intoν(G2 \G3) ≥ L2−L3 + 1, or

ν(G1\G2)≥ L1−L2+1, orν(Q\G1)≥ L0−L1+1, which are the different ways in which the value

of the complementary classG\G3 can increase its value in an integer solution.

The dotted nodes that appear in Figure 2 are not explicitly defined in our scheme, i.e., constraints

ν(Gp)< Lp on the branches leading to the dotted nodes are not strictly enforced. The subtrees hanging

from those branches include solutions that do not satisfy these constraints because our scheme does

not define a partition of the solution space. However, all integer solutions that do not belong to the

left subtree satisfy the constraint on the right branch:

Lemma 1 The only integer solutions,ν̃, that are not represented in any of the nodes l= p, . . . , |S|+1

are those for which̃ν(Gp) < Lp.

Proof: We show this by induction. Forp= |S|+1, the result is trivial. Let us derive the result for any

p≤ |S|, assuming the result holds forp+1. Take an integer solution,ν̃, that does not satisfy any of

the branching constraints defining nodel = p, . . . , |S|+1. By the induction hypothesis, we must have

ν̃(Gp+1) < Lp+1 and hencẽν(Gp+1) ≤ Lp+1−1. Moreover, as̃ν must violate the branching con-

straint defining Node(p), we haveν̃(Gp\Gp+1)≤ Lp−Lp+1. As ν(Gp) = ν(Gp\Gp+1)+ν(Gp+1),

the two previous inequalities implỹν(Gp) ≤ Lp−1 < Lp.
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Although our branching can yield up ton+1 branches, Lemma 1 shows that nodes 1, . . . , p−1 only

serve the purpose of enumerating integer solution in whichν(Gp) < Lp. This shall be exploited in

Sections 6 and 9 to show how the scheme simplifies in practice.

5

4

3

2

1

ν(G4) ≥ L4

ν(G4
) ≥ L4

ν(G
3
) ≥ L3

ν(G
2
) ≥ L2

ν(G
1
) ≥ L1

ν(G4) < L4

ν(G3) < L3

ν(G2) < L2

ν(G1) < L1

ν(G0) < L0

Figure 2: Example of implicit branching tree when|S| = 4: G
k
= Gk−1\Gk andL

k
= Lk−1−Lk +1.

G0

G
1

G1

G2 G
2

G
3

G3

G4 G
4

Figure 3: Example of a partitioning of columns into nested classes when|S| = 4: eachstrip bounded

by vertical lines has a width that represents the valueν(Ĝ) of the associated clasŝG.
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Let us now show that the branching scheme yields a valid separation that cuts off the current

fractional solution and eliminates no integer solution.

Proposition 2 The descendant nodes, Node(1), . . . ,Node(|S|+1), of Node(0) define a valid separa-

tion scheme, i.e.,

(i) the fractional solutioñν of Node(0) is not feasible in any of the descendant nodes;

(ii) any integer solution to Node(0) is feasible in at least one of the descendant nodes.

Proof: By construction, the current solutioñν violates some of the branching constraints in each

descendant node. It remains to ensure that no integer solution has been lost in the process. All integer

solutions useR columns in total (counting multiple copies of the same column). Clearly, integer so-

lutions that use at leastL|S|−1 columns in classG(S|S|−1) shall use either at leastL|S| columns in class

G(S|S|) or use at leastL|S|−1−L|S|+1 in the complementary class,G|S|−1\G|S|, or both. Other integer

solutions use strictly less thanL|S|−1 columns in classG|S|−1. In the latter case, the complementary

class,G\G|S|−1, must hold a leastR−L|S|−1 +1 columns, i.e., one more than in the current solution

ν̃. The complementary class,G\G|S|−1, can be partitioned intoGp−1 \Gp for p = 1, . . . , |S| − 1:

G\G|S|−1 = ∪p=1,...,|S|−1(G
p−1 \Gp) and these classes are disjoint. Thus, the case where the value

of the complementary set,G\G|S|−1, must increase by one unit can be decomposed into|S|−1 sub-

cases depending on which subset of the partition sees its value increased by one unit compared to the

current solutioñν. These subcases are defined by Node(1) to Node(|S|−1).

6 Maintaining a nested separation scheme beyond the root node

Assume that the current branch-and-price node is defined by branching constraints,ν(Sk) ≥ Lk,

for k = 1, . . . ,K, where the associated classes,Gk = G(Sk), define a nested partition ofG. We show

how to eliminate a current fractional master solution,ν̃, while maintaining a nested partition ofG.

Next, we observe that, in practice, many of the successor nodes of Definition 3 can be eliminated by

a dominance rule. Then, we derive a key property of our scheme: each branching constraint implies

primal progress in reaching integrality that can be measured in the space of the original variables. We

begin by making several observations that characterize basic properties of a branching scheme based

on a nested partition of the column set.

Observation 1 In the nested collection of component sets and associated bounds,

{(Sk,Lk)}k=1,...,K, that defines a branch-and-price node, no two(Sk,Lk) are identical.

Indeed, at the stage where a branching constraint,ν(S) ≥ L, was added, it had to cut off the current

fractional master solution,̃ν , and therefore, eitherS 6= Sk held for all previously definedSk, or else

S= Sk andL = ⌈ν̃(Sk)⌉ > Lk for some previously defined branching constraintk.
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Observation 2 At a given branch-and-price node, the branching constraints define a collection of

nested column classes. Therefore, the inclusion relationsbetween the classes can be represented in a

tree where ascendancy represents inclusion.

Example 4 Let n= 4 and R= 10. Assume that the current branching constraints are:

ν(x2,x3,x4) ≥ 1 , (29)

ν(x2,x3,x4,x1) ≥ 1 , (30)

ν(x2,x3,x1) ≥ 1 , (31)

ν(x2,x1) ≥ 4 , (32)

ν(x2,x1,x4) ≥ 2 , (33)

ν(x2,x1) ≥ 3 , (34)

ν(x2,x1,x3,x4) ≥ 1 . (35)

The associated tree of column classes is given in Figure 4.

G

G(x2,x3,x4)

G(x2,x3,x4,x1)

G(x2,x3,x1)

G(x2,x1)

G(x2,x1,x4)

G(x2,x1)

G(x2,x1,x3,x4)

Figure 4: Tree of column classes for Example 4.

Definition 4 Given a collection{Gk}k=1,...,K of nested column classes, we define the associated “tree

of column classes” as follows. The root node is associated with G. The leaf nodes represent classes

Gl that have no subclass in the collection, i.e., Gj 6⊂ Gl for all j = 1, . . . ,K with j 6= l. The node

associated with Gl hangs from that associated with Gj , if Gl ⊂ G j and there is no k such that Gl ⊂

Gk ⊂ G j . In that case, Gl is a “direct successor” of Gj and Gj a “direct predecessor” of Gl . More

generally, we say that class Gl is a “predecessor” of Gj if Gl ⊃ G j , and Gl is a “successor” of

G j if Gl ⊂ G j . The set of column classes that are direct successors of Gl is denoted dsucc(l); the

direct predecessor is denoted dpred(l); the set of all predecessors (resp. successors) of Gl is denoted

pred(l) (resp. succ(l)).
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Observation 3 At a given branch-and-price node, the branching constraints induce a specific order-

ing of the columns.

Because the collection of column classes{Gk}k=1,...,K defines a nested partition ofG, all the associ-

ated component bound sequencesSk, k = 1, . . . ,K, must start with a bound on the same component

(as illustrated in Example 4):Gl ⊂ G j ⇔ Sj ⊂ Sl ⇔ ẍ[p](S
l) = ẍ[p](S

j) for p = 1, . . . , |Sj |. The order

induced by the collection of component bound sequences,{Sk}k=1,...,K, consists in sorting columns

primarily according to the components in the order in which they appear in the sequences defining the

column classes to which the columns belong. Beyond the component order prescribed by component

sequencesSk, one uses a standard lexicographic order. Table 3 presents acomparison operator that

implicitly defines the ordering induced by a nested collection of branching sequences. Its parame-

ters are defined as follows:C denotes a set of nested branching sequences,S denotes the sequence

of component bounds already tested,I denotes the set of components that have not been fixed by a

component bound so far, andp denotes the next position in branching sequences ofC that needs to

be considered.C(S) denotes the subset of sequences starting withS, i.e.,C(S) = {Sk ∈C : S⊆ Sk}.

Columng1 precedes columng2 in the induced order if the operatorg1 ≺ (C,S, I , p)g2 returns true for

C = {Sk}k=1,...K, S=<>, I = {1, . . . ,n}, andp = 1. Here is an example of its application:

Example 5 (Example 4 continued)Assume that the node is defined by branching constraints (29-

35) and that the current fractional master solution is

g 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ν̃g 0 3
4

1
4 1 1 1 1 1 0 0 1 1 3

2
1
2 0

x1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

x2 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

x3 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

x4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

The ordering induced by the nested branching sequences is

g 8 1 9 2 3 10 11 4 6 5 7 12 13 14 15

ν̃g 1 0 0 3
4

1
4 0 1 1 1 1 1 1 3

2
1
2 0

x2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

x3 1 1 1 0 0 0 0 x1 1 1 1 1 0 0 0 0

x4 1 0 0 x1 1 1 0 0 x4 1 1 0 0 x3 1 1 0 0

x1 0 1 0 x4 1 0 1 0 x3 1 0 1 0 x4 1 0 1 0

Definition 5 Given a nested collection of component bound sequences{Sk}k=1,...,K, the so-called

“induced lexicographic order” (ILO) is the ordering definedby sorting the columns, g∈ G, using the

operator of Table 3 called with parameters C= {Sk}k=1,...K, S=<>, I = {1, . . . ,n}, and p= 1.
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Table 3: Definition of the operatorg1 ≺ (C,S, I , p)g2.

1. If C = /0, returnxg1
I ≺ xg2

I wherexg
I stands for the characteristic vector of columng restricted to

its componentsi ∈ I andxa ≺ xb is the standard lexicographic operator that returns true ifxa is

beforexb in lexicographic order and false otherwise.

2. Let i be the component such thatẍ[p] = ẍi in all Sk ∈C.

3. If xg1
i = xg2

i = 1, returng1 ≺ (C(< S,xi >),< S,xi >, I \{i}, p+1)g2 ;

4. If xg1
i = xg2

i = 0, returng1 ≺ (C(< S,xi >),< S,xi >, I \{i}, p+1)g2 ;

5. return true if(xg1
i > xg2

i ) and false otherwise.

In the sequel, we always assume that columns are sorted usingthe ILO. To simplify the notation,

the precedence relationg1 ≺ g2 is now meant to sayg1 precedesg2 in the ILO. Furthermore, any

reference to the mapping procedure of Table 1 assumes an ILO sorting of the columns.

The procedure to separate a fractional master solution,ν̃ , can now be easily described. To achieve

a nested partition of the column set, separation must be doneeither by further partitioning a class

Gk of the current collection{Gk}k=1,...,K or its complementary class,G
k
, or by resetting the bound

on an existing class,Gk. Intuitively, a candidate component sequence on which to branch is identi-

fied by taking the set of fractional columns down the tree of column classes and checking the value of

column classes for fractionality, as illustrated in Figure5. Three cases may arise as outlined in Table 4.

G

a:ν̃(x1) 6∈ IN ? c: partitionG(x1)

G(x1,x2) b: ν̃(x1,x2) 6∈ IN ?

c: partitionG(x1,x2)

Figure 5: Testing the fractionality of column subsets in Node(3) of Example 3 to identify a branching

set.
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Table 4: Cases arising when separating a fractional master solution assuming a current collection of

column classes{Gk}k=1,...,K.

case a: An intermediate class,̂G, with Gl ⊂ Ĝ ⊂ G j for some j and l ∈ {1, . . . ,k} is identified as

having fractional value; then one can branch on the associated sequencêS.

case b: An existing class,Gl , has fractional value; then one can branch onSl which implies resetting

the associatedLl bound.

case c: An existing leaf class or the complementary class to any intermediate class, is partitioned

further by applying the procedure Separate of Table 2 to the fractional columns of this class;

this yields a fractional value class on which to branch.

Formally, separation proceeds as follows. Leti be the first component present in all previous

branching sequencesSk, k= 1, . . . ,K, i.e.,ẍ[1] is eitherxi orxi in all Sk. LetF = {g : ν̃g−⌊ν̃g⌋> 0} 6= /0

and ν̃(xi) = ∑q∈F :xg
i =1(ν̃g − ⌊ν̃g⌋). If ν̃(xi) 6∈ IN, we can branch onS=< xi >. Otherwise, we

recursively explore both sets of fractional columnsF(< xi >) , F(< xi >) (if not empty) in search of

a setSon which to branch. When no more previous branching sequencedictates the next component,

we call the subroutine Separate of Table 2. The complete separation procedure is presented in Table 5.

As above,C stands for the set of component bound sequences associated with branching constraints

defining the current node,S is the component bound sequence defining the current column class,p

denotes the next position to be considered in the sequences of C, C(S) is the subset of sequences

starting withS, I is the set of components that are candidate for further partitioning of the current

column class, andrecord gathers the set of possible branching sequences. Its use is illustrated in

Example 6.

Example 6 (Example 5 continued)It is more convenient to follow the separation procedure in the

second table of Example 5 that represents the master LP solution sorted in ILO. Note that̃ν(F) = 3.

The future branching sequence, S, must start with x2 or x2. Partitioning according to component 2

splits the set of fractional columns, with̃ν(F(x2)) = 1 and ν̃(F(x2)) = 2. Component 3 does not

allow us to partition F(x2) further since all the fractional columns of G(x2) havex3 = 1; neither does

component 1. Thus,̃ν(F(x2,x3,x1)) = 1 must be further split using routine Separate which returns

S1 =< x2,x3,x1,x4 >. On the other hand, set F(x2) cannot be partitioned further with component

1, but component 3 yields a fractional value subset. Thus, another possible branching sequence

is S2 =< x2,x1,x3 >. One of these two branching sequences is selected accordingto branching

priorities.

Let us consider the complexity of the separation procedure of Table 5. The routine Explore is

called recursively and, on each leaf of the tree of recursivecalls to Explore, routine Separate is called
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Table 5: Separation of a fractional master solution at a nodeother than the root

1. LetF = {g : ν̃g−⌊ν̃g⌋ > 0}, I = {1, . . . ,n}, S=<>, record= /0, p = 1, andC = {Sk}k=1,...K.

2. Explore(C, p, F, I , S, record)

(a) If C = /0, return Separate(F , I , S, record).

(b) Let i be the component such thatx[p] = ẍi in all Sk ∈C.

(c) Let αi = ∑g∈F xg
i ν̃g and f = αi −⌊αi⌋.

(d) Check whether class G(< S,xi >) has fractional value:

If f > 0, add the pair (< S,xi >, f ) to recordand return.

(e) Recursively explore the first subclass of columns, G(< S,xi >):

If αi > 0, Explore(C(< S,xi >), p+1, F(< S,xi >), I \{i}, < S,xi >, record).

(f) Recursively explore the second subclass of columns, G(< S,xi >):

If αi < ν̃(F), Explore(C(< S,xi >), p+1, F(< S,xi >), I \{i}, < S,xi >, record).

3. Select a branching sequenceSin recordaccording to branching priorities on its last component.

recursively. However, the overall depth of the tree of recursive calls is bounded by the number of

components,n, and the overall number of leaf nodes in the tree of recursivecalls to Explore and

Separate is bounded by|F|, since the fractional column set is partitioned at each stage and we only

explore non-empty subsets. The work done in a call to Exploreis in O(|F|) while that in a call to

Separate isO(n|F|). Hence, the overall complexity of the procedure isO(n2 |F|2) as it was at the root

node. Here too, one can reduce the complexity by exploring only the smallest value subset of frac-

tional columns (selecting step (e) or (f)). However, exploring both sides often allows us to identify a

branching sequenceSwith fewer component bounds (as illustrated in Example 5) orhigher branching

priority.

In practice, the branching sequence,S, is in most cases obtained by adding a single component

bound to a previously defined setSk associated with an active branching constraint, whetherSk is

associated with a leaf node class or not. Case b of Table 4 often consists in resetting the bound

of a class whose parent class defines an active branching constraint. Exploiting Lemma 1 in these

situations yields a restriction in the number of successor nodes to only two nodes. More generally,

Proposition 3 The set of descendant nodes defined in (27-28) can be restricted to only nodes: k, . . . , |S|+

1, where S is the sequence chosen for branching to eliminate the current fractional solution,̃ν, and

k is the size of the largest subsequence Sk of S for which a previously defined branching constraint

ν(Gk) ≥ Lk is active, i.e., Lk = ν̃(Gk).
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The proof is a straightforward application of Lemma 1: if constraint ν(Gk) ≥ Lk is enforced, no

integer solution exists withν(Gk) < Lk, and hence, there is no need to enumerate descendant nodes

whose only purpose was to consider integer solutions withν(Gk) < Lk. Moreover, one can further

prune the enumeration tree by dominance:

Observation 4 A branch-and-price node, N1, defined by a branching constraintν(Gk) ≥ Lk needs

not be generated if it has an ancestor node, N0, whose direct successor, N2, is defined by the same

constraint.

Indeed, in such case, integer solutions satisfying all branching constraints defined at nodeN0 and

constraintν(Gk) ≥ Lk are already enumerated in nodeN2. Thus, Proposition 3 and Observation 4

explain why in practice the branch-and-bound tree can be close to be binary.

To conclude this section, we analyse the impact of our branching constraints in the variable space

of the original formulation. We begin by an informal illustration. Returning to Example 3, we indicate

the progress in reaching primal integrality that is made implicitly with each new branching constraint.

Example 7 (Example 3 continued)Assume a fractional solutioñν and associated column class

valuesν̃(x1,x2), ν̃(x1,x2) andν̃(x1) given by:

ν̃g 0 1
2 1 1

2 0 0 1 1 0 0 1
2 0 1

2 0 0

x1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

x2 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

x3 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

x4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

(x1) (x1)

(x1,x2) (x1,x2)

1.5 1.5 2

Let x̃r for r = 1, . . . ,5 be the associated solution obtained from the mapping procedure of Table 1.

Observe that for r= 1 vector x̃r is entirely determined from columns of class G(x1,x2); for r = 3,

from columns of class G(x1,x2); for r = 4 and5 from columns of class G(x1); while for r = 2, x̃r is

partially derived from columns of class G(x1,x2) and partially from columns of class G(x1,x2). Now

let us see the consequence of branching constraints on the projected solutions̃xr . Branching induces

modification of the widths of the “strips” (see Definition 1) associated with the different column

classes:

• In Node(1), ν(x1) ≥ 3 implies that threẽxr vectors resulting from the mapping of Table 1 after

branching will be derived from the columns of class G(x1) and hencẽxr
1 = 0 for at least3 r-

indices (while before branching we hadx̃r
1 = 0 for only2 r-indices). We say that component xr

1

is now “covered” (or fixed) for3 r-indices.
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• In Node(3), ν(x1,x2)≥ 2⇒ x̃r
1 = x̃r

2 = 1 for at least2 r-indices (while before branching we had

x̃r
1 = x̃r

2 = 1 for a single index r). We say that xr
1 and xr2 are now “covered” for2 r-indices.

• In Node(2), we would expect that constraintν(x1,x2) ≥ 2 implies x̃r
1 = 1 and x̃r

2 = 0 for at

least2 r-indices (while at the ancestor nodex̃r
1 = 1 andx̃r

2 = 0 for a single index r). But class

G(x1,x2) that precedes class G(x1,x2) in the lexicographic order can take a fractional value.

If it does so, the “strip” of width 2 associated with class G(x1,x2) would not coincide exactly

with two xr vectors in the mapped solution. We say that the G(x1,x2)-strip is “ floating” over 2

r-indices.

A more formal presentation requires the definition of what wecall a “frame” for each branching

constraintν(S) ≥ L. Following up on Definition 1, the branching constraint can be seen intuitively

as imposing a minimum widthL to aG(S)-strip (remember that columns ofG(S) are consecutive in

the ILO sorting). Thisstrip can be later subdivided if branching constraints are introduced on subsets

of classG(S). Nevertheless, the branching constraintν(S) ≥ L already fixes part of thex solution

obtained through the mapping of Table 1: the contribution ofthe columns of thestrip to the definition

of xr vectors is fixed for alli ∈ S. Hence, we refine the concept of astrip by introducing aframethat

can be understood as astrip on a specific selection of consecutive linesi ∈ S in the table representing

a master solution in ILO.

Definition 6 Let S be a component bound sequence and L∈ IN be the associated width. Then, the

“ (S,L)-strip” relative to a master solutioñν is made of the first columns of G(S) up to value L in the

table representing the master solution in ILO: it is a G(S)-strip of width L. It is precisely defined by

an interval of cumulative values of columns in the ILO sequence:

V(S,L) = [ ∑
g:g≺G(S)

ν̃g, ∑
g:g≺G(S)

ν̃g +L) .

The interval is closed on the left and open on the right. The notation g≺ G(S) says that column g is

prior to those of G(S) in the ILO.

An “(S,L)-frame” is the restriction of an “(S,L)-strip” to a selection of consecutive lines i∈ S.

We say that a component xr
i of thex̃ solution obtained through the procedure of Table 1 is “covered”

by the(S,L)-frameif i ∈ S and(r −1)∈V(S,L) (in other words, thestripof width 1 that is associated

with x̃r begins in the(S,L)-strip). Thus, an(S,L)-framecovers L|S| components xri .

Example 8 (Examples 4 and 5 continued)The table below illustrates theframesassociated with

branching constraints (29-35) for a different master solution, ν̃, represented in ILO. It shows only the

columns withν̃g > 0 and duplicates the columns that lie over several slices (associated with different

index r). The bold face xgi components are those contributing to the definition of xr
i components that
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are “covered” by theseframes. On the bottom of the table are represented the boundaries ofthe R

stripsof width 1 associated with thẽxr vectors.

g 8 9 2 2 3 11 4 6 5 7 12 13 13 14

λ̃ r
g 1 1

2
1
2

1
4

1
4

1
2 1 1 1 1 1 1 1

2
1
2

−−− −−−−−−−−− −−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−

x2 1 1 1 1 1 1 0 0 0 0 0 0 0 0

x3 1 1 0 0 0 0 x1 1 1 1 1 0 0 0 0

−−−−−−− −−−−−−−−− −− −−−−−−−−−−−−−

x4 1 0 x1 1 1 1 0 x4 1 1 0 0 x3 1 1 1 0

−−−− −−−−−−−−− −−−−−−−

x1 0 0 x4 1 1 0 0 x3 1 0 1 0 x4 1 0 0 1

−−− −−

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10

Components xri are covered by the(< x2,x3,x4 >,1)-framefor r = 1 and i∈ {2,3,4}; there are

covered by the(< x2,x3,x4,x1 >,1)-frame for r = 1 and i∈ {2,3,4,1}, by the(< x2,x3,x1 >,1)-

framefor r = 3 and i∈ {2,3,1}, by the(< x2,x1 >,4)-framefor r ∈ {4,5,6,7} and i∈ {2,1} by the

(< x2,x1,x4 >,2)-framefor r ∈ {4,5} and i∈ {2,1,4} by the(< x2,x1 >,3)-framefor r ∈ {8,9,10}

and i∈ {2,1}, and by the(< x2,x1,x3,x4 >,1)-frame for r = 8 and i∈ {2,1,3,4}. Although the

(S,L)-framesare not disjoint, the(S,L)-stripsare nested. A component can be covered by multiple

frames.

To formalize the impact of branching constraint,ν(S)≥ L, on the ˜x solution obtained through the

mapping of a master solution,ν̃, note that:

Observation 5 If the columns preceding those defining an(S,L)-framein the ILO have a total value

that is integer, i.e., if v= ∑g:g≺G(S) ν̃g ∈ IN, then interval V(S,L) has integer extreme points and each

component xri “covered” by the(S,L)-framehas integer value in thẽx solution obtained through the

mapping of Table 1. More precisely,x̃r
i = 1 if xi ∈ S andx̃r

i = 0 if xi ∈ S∀i ∈ S, r = v+1, . . . ,v+L.

If v∈ IN, the(S,L)-frameboundaries definestripsthat encompass exactlyL consecutivexr vectors.

Thus, the(S,L)-frameassociated with branching constraintν(S) ≥ L can be understood as defin-

ing a set ofxr
i components that are potentially fixed to an integer value in the mappedx solution.

However, theframeis “floating” around, i.e., the specificr-indices for which this fixing shall occur

may change. The boundaries of theframefall precisely in betweenr-indices only when ILO preced-

ing columns sum up to an integer value. Allowing such “floating” is a way to avoid the symmetry in

r. Nevertheless, the integrality of the associatedx solution shall be achieved at some stage:

Proposition 4 Consider a branch-and-price node defined by a nested collection of component sets

and associated bounds{(Sk,Lk)}k=1,...,K and a master solutioñν. If, in thex̃ solution derived through
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the mapping of̃ν as defined in Table 1,every xr
i componentis “covered” by some(Sk

,Lk)-framefor

i = 1, . . . ,n and r= 1, . . . ,R, then thẽx solution obtained through the mapping of Table 1 is integer.

Proof: We prove that if the ˜x solution derived through the mapping of Table 1 is fractional, there

exists anxr
i component that is not covered by any(S,L)-frame. By Proposition 1, if the mapped ˜x

solution is fractional, then the master solutionν̃ must be fractional. Letg1 be the first column in the

ILO with fractional value: 0< λ̃ r
g1

< 1 for r = ∑g≺g1
ν̃g + ⌈ν̃g1⌉. Let g2 be the first column in ILO

such thatg1 ≺ g2 andλ̃ r
g2

> 0. Let i be the first index in the index ordering underlying the ILO for

which xg1
i 6= xg2

i . Then, x̃r
i 6∈ {0,1}. Assume by contradiction that componentxr

i is covered by an

(S,L)-frameassociated with some branching constraint of the nested collection defining the current

node. By Definition 6, this means thati ∈ S and(r −1) ∈ V(S,L). Let i be thepth component for

which a bound is defined in sequenceS: S=< ẍ[1], . . . , ẍ[|S|] >, ẍ[p] = xi or xi, and p ≤ |S|. Now

observe that by definition ofg1, ∑g≺g1
ν̃g ∈ IN. Thus, by definition ofr, columng1 is the first col-

umn of therth-strip. I.e., columng1 is found at position(r −1) in the ILO: ∑g≺g1
ν̃g ≤ r − 1 and

∑g≺g1
ν̃g + ν̃g1 > r −1. Therefore, ifxr

i is covered by an(S,L)-frame, we must haveg1 ∈ G(S). This

implies that the firstp component bounds ofSare satisfied by the characteristic vectorxg1. But, by

definition of i, xg1
i 6= xg2

i . As i ∈ S, g2 6∈ G(S). Becauseg1 ∈ G(S) is the first column with fractional

value in the ILO andg2 6∈ G(S) is the first column with positive value followingg1 in the ILO, the

(S,L)-framemust have its right boundary at value∑g≺g2
νg 6∈ IN. This is a contradiction. Indeed, the

right boundary of the(S,L)-frameshould have been at an integer value since its left boundary is at an

integer value andL ∈ IN. Hence, no(S,L)-framecan coverxr
i .

Although a componentxr
i can be covered by severalframes, the nested definition of branching

constraints guarantees that each(Sk,Lk)-frame that covers anxr
i imposes the same bound onxr

i . More

specifically:

Observation 6 When thẽx solution derived through the mapping of Table 1 is integer,each xri compo-

nent that is covered by an(S,L)-framehas a value iñx that is prescribed by the associated component

bound in S.

This observation results from Proposition 1 and Observation 5. Indeed, ˜x being integer implies that

∑g:g≺G(S) ν̃g ∈ IN, for all (S,L)-frames.

To guarantee that progress is made in reaching primal integrality in the x-space with each new

branching constraint, we need to show that eachframe yields coverage of at least one “new”xr
i

component. This property is only implicit as we cannot exhibit a fixed pair(i, r) for which xr
i is

covered by the new branching constraint.

Definition 7 The “representative” of an(S,L)-frame is the covered xri component such that i is the

last component of S in the sense of Definition 2, and r is the largest index such as(r −1) ∈V(S,L),

where V(S,L) is the interval of Definition 6.
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In other words, the “representative” of an(S,L)-frameis the “bottom-right” component from amongst

all thexr
i that are covered by thisframe. We can show that a givenxr

i component can be the represen-

tative of only oneframe:

Proposition 5 Consider a branch-and-price node defined by a nested collection of component sets

and associated bounds,{(Sk,Lk)}k=1,...,K, and any feasible solution,ν̃, to the master LP at that node.

In the associated̃x solution, obtained through the mapping procedure of Table1, a given xri component

can be the “representative” of at most one(Sk,Lk)-frame.

Proof: Assume by contradiction that componentxr
i is the representative of two distinctframes:

the (S1,L1) and the(S2,L2)-frame. The fact that componentxr
i is covered by both frames im-

plies that(r −1) ∈ V(S1,L1)∩V(S2,L2). Take the columng with ν̃g > 0 that lies at width(r −1)

in the G-strip of columns sequenced in ILO, i.e.,∑γ≺g ν̃γ ≤ r − 1 and∑γ≺g ν̃γ + ν̃g > r − 1. As

(r − 1) ∈ V(S1,L1)∩V(S2,L2), we must haveg ∈ G(S1)∩G(S2). Hence, the component bounds

definingS1 andS2 must be set to the value found inxg. Moreover, asi is the last component of both

S1 andS2, in the sense of Definition 2, we must have|S1| = |S2|, and thusS1 = S2. Now, as the

G(S1)-strip and theG(S2)-strip start at the same point in the ILO table, and asr is the furthest right

index for both the(S1,L1) and the(S2,L2)-frame, we must haveL1 = L2. Thus, bothframesmust be

identical in contradiction to our assumption.

Thus, althoughframesmay overlap, Proposition 5 gives us a way to show that the number of

coveredxr
i components increases in each branch. Intuitively, each(S,L)-frameis unique and has its

own “representative”. Hence, eachframecan be given credit for ensuring the covering of at least its

“bottom-right” component. Observation 6 says that anxr
i component that is covered is implicitly fixed

to a binary value. In that sense,each branching constraint implicitly fixes at least one xr
i component

to its integer value in the mapped solution obtained throughthe procedure of Table 1. Building on

this intuition, we can show formally that the scheme ends up with an integer solution after adding at

mostnRbranching constraints. What is more, even though the branching tree is not binary, we can

show that the number of leaf nodes is bounded by 2nR.

Proposition 6 With the proposed branching scheme, the depth of the branch-and-price tree is bounded

by nR and the number of leaf nodes is bounded by2nR.

Proof: Each branching constraint defining a node is different (see Observation 1) and defines its

own (S,L)-frame relative to the current master LP solution that coversL |S| components of the ˜x

solution obtained through the procedure of Table 1 (see Definition 6), including its “bottom-right

representative”. By Proposition 5, anyxr
i component can be the representative of at most oneframe.

Hence, by the pigeon hole principle, eachxr
i component must be “covered” after at mostnRbranches.

Once eachxr
i component is covered, the mapped ˜x solution is integer (by Proposition 4) and so is the

associated master solutionν̃ (by Proposition 1). Thus, we have shown that after at mostnRbranches,
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we get an integer solution. Now, Observation 6 tells us that,in this integer solution, eachxr
i component

takes the value that is prescribed by theS associated with the coveringframe: x̃r
i = 1 if xi ∈ S and

x̃r
i = 0 if xi ∈ S. Thus, there are 2 possible values for each of then Rcomponents and hence at most

2nR leaf nodes in the branch-and-price tree.

7 Solving the master after branching

At a given branch-and-price node, the master LP takes the form:

min ∑
g∈G

cxg νg (36)

[M(node)] ∑
g∈G

A xg νg ≥ a (π) (37)

∑
g∈G

νg = R (σ0) (38)

∑
g∈Gk

νg ≥ Lk (σk) ∀k= 1, . . . ,K (39)

νg ≥ 0 ∀g∈ G (40)

where constraints∑g∈Gk νg ≥ Lk are branching constraints and(π,σ) denotes the dual solution.

As underlined in Observation 1, each branching constraint is different. However, the collection

{(Sk,Lk)}k=1,...,K could include(S1,L1) and(S2,L2) with S1 = S2 butL1 < L2 (such(S2,L2) can result

from case b of Table 4). Then, branching constraintν(S2)≥ L2 clearly dominatesν(S1)≥ L1 and the

latter can be deleted from the formulation. Hence, in the sequel we assume that each branch-and-price

node is defined by the nested collection of component sets andassociated bounds,{(Sk
,Lk)}k=1,...,K

where no two of the associated branching constraints,ν(Sk) ≥ Lk, concern the same column class,

Gk = G(Sk). Even then, some branching constraints may be dominated by others:

Definition 8 We say that branching constraintν(Sk) ≥ Lk is “redundant” if

∑
l∈dsucc(k)

Ll ≥ Lk (41)

(using the notation of Definition 4). The “marginal lower bound” imposed on a column class Gk by

branching constraintν(Sk) ≥ Lk is defined as

L
k
= Lk− ∑

l∈dsucc(k)

Ll
.

It is strictly positive if and only if the branching constraint is non-redundant.

In example 4, illustrated in Figure 4, branching constraint(29) is redundant: its marginal lower bound

is zero.
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Observe that redundant branching constraints will remain so at descendant nodes. Hence, in

the sequel, we assume that redundant branching constraintshave been eliminated from the set of

branching constraints defining the current branch-and-price node. These simplifications allow us to

derive a useful property:

Proposition 7 The number of non-redundant branching constraints at a branch-and-price node is at

most R; otherwise, the node problem is infeasible.

Proof: Assume a branch-and-price node defined by the collection{(Sk,Lk)}k=1,...,K. The non-

redundant branching constraints can be equivalently reformulated asν(Ck) ≥ L
k

for k = 1, . . . ,K,

where classCk ⊆ G is defined as,Ck := (Gk \ (∪i∈dsucc(k)G
i)), andL

k is the marginal lower bound

which according to Definition 8 must be strictly positive, i.e.,L
k
≥ 1 for k = 1, . . . ,K. Observe that

classes{Ck}k=1,...,K are disjoint (because classes{Gk}k=1,...,K are nested and all different). Master

constraint (12) impliesν(G) ≤ R. Hence, the systemν(Ck) ≥ L
k
≥ 1 for k = 1, . . . ,K, ν(G) ≤ R, is

infeasible ifK > R (this statement formalizes what is known as the “pigeon holeprinciple”).

After elimination of redundant branching constraints, themaster program, [M(node)], is solved

by column generation using a pricing procedure that relies only on the oracle of the root node. To

each non-redundant branching constraint,ν(Sk)≥ Lk, k = 1, . . . ,K, we associate a subproblem,[SPk],

to price the columns ofGk:

[SPk] ζ k(π) := min{(c−πA)x : x∈ Xk} , (42)

whereXk := {x∈ {0,1}n : B x≥ b, ẍi = 1 ∀i ∈ Sk}. While [SP0] is defined by (14), or equivalently

(42) with X0 := X. Each of these pricing subproblems can be solved with the oracle provided for

pricing problem (14): additional constraints consist onlyin fixing the value of some binary variables.

If pricing problem[SPk] is infeasible (i.e.,Xk = /0), letζ k(π) = ∞. The column generation procedure

can be carried out by solving each pricing problem (42), fork = 0, . . . ,K, and returning columns that

have negative reduced costs, i.e., returningxk := argminζ k(π), if ζ k(π)−∑l∈pred(k) σl < 0 (using the

notation of Definition 4). If none can be found, the current master LP value is optimal.

Observe however that pricing subproblems (42) are not independent. Solving pricing problem

l over a classGl ⊃ G j is solving a relaxation of problemj since the objective functions of both

problems are identical:

Observation 7 If Gl ⊃ G j (i.e., Sl ⊂ Sj ), ζ l (π) ≤ ζ j(π) (i.e.,ζ l (π) defines a dual bound for[SPj ]).

If the solution to[SPl ], seen as a relaxation of[SPj ], is feasible for[SPj ], then it is optimal for it:

Observation 8 If xl := argminζ l(π) and xl ∈ G j ⊂ Gl , then xl = argminζ j(π).
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To exploit the relationships that exist between pricing subproblems,[SPk], column generation can

proceed by enumerating subproblems following a breadth first search in the associated tree of column

classes of Definition 4. Then, one can interrupt the procedure as soon as a negative reduced cost

column is found and still have a dual bound on the reduced costof unsolved subproblems. Indeed, for

the unsolved pricing subproblems, a dual bound is provided by the value of any of their predecessor in

the column class tree that has been solved. Such a procedure is outlined in Table 6. As the procedure

stops at the first identified negative reduced cost column, the order in which subproblems are treated

is important (we use a heuristic rule to break ties in the sorting of step 1, giving priority to subproblem

SPk with the largestLkσk).

Table 6: The column generation procedure. (Notationspred(k), dpred(k), dsucc(k) are from Defini-

tion 4;xk denotes the solution of subproblem[SPk], i.e.,xk = argminζ k(π).)

1. Sort subproblems,SPk, following the partial order defined by the precedence relation between

the associated column classes in the tree representation ofDefinition 4.

2. For each pricing subproblemSPk in the sorted list, do

(a) If xdpred(k) ∈ Gk, continue(xdpred(k) also solves SPk).

(b) If ζ dpred(k)(π)−∑ j∈pred(k) σ j −σk ≥ 0, continue(SPk shall not yield a negative reduced

cost column).

(c) Computeζ k(π) andxk.

(d) If ζ k(π)−∑ j∈pred(k) σ j −σk < 0, returnxk and Stop(xk yields a negative reduced cost

column).

(e) If xk is feasible for anySPl with l ∈ dsucc(k), let xl = xk. If, moreover, ζ k(π) −

∑ j∈pred(l) σ j −σl < 0, returnxl and Stop(xl yields a negative reduced cost column).

8 Lagrangian dual bounds

At each iteration of the column generation procedure, a valid dual bound on the master solution

can be obtained by Lagrangian relaxation. Dualizing constraints (37) yields

π a+min{∑
g∈G

(c−π A)xg νg : ∑
g∈G

νg = R; ∑
g∈Gk

νg ≥ Lk
, k = 1, . . . ,K; νg ≥ 0,g∈ G} . (43)

Because column classes are nested, this problem admits a closed form solution.
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Proposition 8 The solution of problem (43) is

θ(π) := π a+
K

∑
k=0

L
kζ k(π) (44)

where G0 = G, L0 = R, andL
k

are the marginal lower bounds of Definition 8.

Proof: The result follows from Observation 7 that implies∑g∈Gk ν∗
g = Lk ∀k in an optimal solution

ν∗ to (43). More specifically,ν∗
g = L

k
for g∈ Gk such thatxg = argminζ k(π).

Observe that a Lagrangian dual bound can be computed even if the column generation procedure

falls short of solving every pricing subproblemsSPk defined by (42). Replacingζ k(π) by a dual

bound,ζ
k
(π), onSPk in (44) yields a valid dual bound for [M(node)]. Observation 7 points naturally

to a pricing subproblem dual bound,ζ
k
(π) = ζ l (π), obtained when pricing on a predecessor class,

l ∈ pred(k). Thus, provided that we enumerate the pricing subproblems following a breadth first

search in the associated tree of column classes, an approximation ofθ(π) can easily be computed at

any stage of the column generation procedure:θ̂(π) := π a+ ∑k∈GL
k
Gζ k(π), whereG is the set of

solved subproblems andL
k
G = Lk−∑l∈dsucc(k)∩GLl .

An important property of our branching scheme is that branching constraints are enforced in the

subproblem, which yields stronger dual bounds than when they are enforced in the master and hence

dualized.

Proposition 9 Upon completion of the column generation procedure, the dual bound (44) yields the

value of a Lagrangian dual problem whose primal formulationis

min{∑
r

cxr : ∑
r

Axr ≥ a,xr ∈ conv(Xk) for r = ρk−1
, . . . ,ρk−1, k = 0, . . . ,K} (45)

whereρ−1 = 1, andρk = ρk−1 +L
k

for k = 0, . . . ,K.

Proof: Note that formulation [M(node)] given in (36-40) is equivalent to the disaggregatedmaster:

min{
K

∑
k=0

ρk−1

∑
r=ρk−1

∑
g∈Gk

cxg λ r
g :

K

∑
k=0

ρk−1

∑
r=ρk−1

∑
q∈Gk

A xg λ r
g ≥ a;

∑
g∈Gk

λ r
g = 1 ∀k, r = ρk−1

, . . . ,ρk−1; λ r
g ≥ 0∀r,q} . (46)

By Geoffrion [9], (46) has an optimal LP value equal to that of(45).

Observation 9 The Lagrangian dual problem value given by (45) is tighter than the bound given by

(16) for which the dualized branching constraints are included in∑r A xr ≥ a.
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9 Preprocessing at a branch-and-price node

The first preprocessing operation at a node consists in deleting redundant branching constraints:

keep at most one constraint per classGk (that with the largestLk); then delete constraints with no

strictly positive marginal lower bounds, i.e., withL
k
≤ 0. The remaining constraints must satisfy

∑K
k=1L

k
≤ R, otherwise the node is pruned by infeasibility. For the restof this section, we include in

the collection of branching constraints, the master convexity constraint (12) with indexk = 0, letting

G0 = G, S0 be the empty sequence, andL
0
= R−∑k∈dsucc(0) Lk.

Observe that constraints defined by the collection{(Sk,Lk)}k=0,...,K induce bounds on the value

of aggregate subproblem variables defined in (19):(∑k:Sk∋xi
L

k
) and(∑k:Sk 6∋xi

L
k
) define respectively

a lower and an upper bound on the value of aggregate variablexi . One must check that these bounds

are compatible with the bounds induced by constraints (3) and (5). The latter are denoted bygli and

gui (for global lower and upper bounds):

gli ≤ ∑
r

xr
i ≤ gui i = 1, . . . ,n . (47)

The current node master problem [M(node)] is infeasible if

∑
k:Sk∋xi

L
k

> gui or (48)

∑
k:Sk 6∋xi

L
k

< gli (49)

for somei.

On the other hand, if the branching constraints imply that the global upper bound for component

i is reached, i.e., if

∑
k:Sk∋xi

L
k
= gui , (50)

then the classes where componenti is not fixed,{k : i 6∈Sk}, can be augmented with component bound

restrictionxi = 0. This restriction takes the form of implied branching constraints: given a component

i satisfying (50), we define a new branching constraint,

ν(Sk
,xi) ≥ Lk− ∑

l∈dsucc(k):Sl∋xi

Ll
, (51)

for all k : Sk 6∋ i (the notationdsucc(.) is from Definition 4). Observe that constraint (51) makes

branching constraintk redundant and hence it simply replaces it. Also note that this operation pre-

serves the nested partition property. Indeed, once all branching constraintsk : Sk 6∋ i are processed in

this way, all the redefined branching sequencesSk for k = 1, . . . ,K include a component bound oni

(i.e., eitherxi or xi). Thus, this component can be brought in the first position inall sequences and
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this guarantees that the branching constraints still definea nested partition of the solution space.

Reciprocally, if the global lower bound on a componenti can only be met by settingxg
i = 1 in all

columns of classes,k : Sk 6∋ i, i.e., if ∑k:Sk 6∋xi
L

k
= gli , then, branching constraints indexed byk : Sk 6∋ i

can be reset as

ν(Sk
,xi) ≥ Lk− ∑

l∈dsucc(k):Sl∋xi

Ll (52)

and this component is placed in first position in all sequences. We refer to such preprocessing as

“ further specification of column classes”.

Another form of preprocessing consists in “deleting columns” that are no longer needed. Note

that when classG is redundant, i.e., when∑k∈dsucc(root) Lk = R, columns inG\∪k∈dsucc(root)G
k can

be deleted from the formulation. Such preprocessing can be generalized to any classk such that

∑
l∈dsucc(k)

Ll = Uk
, (53)

whereUk is a valid upper bound on classk value. Then, columns ofGk\∪l∈dsucc(k)G
l can be deleted.

The upper boundUk can be set for instance to

min{R− ∑
l :l 6=k,l 6∈succ(k)

Ll , min
i:xi∈Sk

{gui − ∑
l :l 6=k,l 6∈succ(k),Sl∋xi

Ll}, min
i:xi∈Sk

{R− ∑
l :l 6=k,l 6∈succ(k),Sl∋xi

Ll −gli}} .

Note that, asLk ≤Uk, (53) implies thatLk
≤ 0, i.e., classGk is associated with a redundant branch-

ing constraint. Hence, in our pricing procedure, we will notgenerate columns from classGk \

∪l∈dsucc(k)G
l , but we shall only consider its active subclasses,Gl for l ∈ succ(k).

10 The set partitioning special case

When the master program is a set partitioning problem of the form (21), preprocessing is particu-

larly effective as global bounds (47) are tight:gli = gui = 1 ∀i. Example 9 illustrates this on the bin

packing problem.

Example 9 The bin packing problem takes the form (21) where G is the set of solutions to a binary

knapsack problem:

X = {x∈ {0,1}n : ∑
i

wixi ≤W} . (54)
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Let n= 5, w= (6,4,3,2,7), W = 10 and R= 3. The generators are:

g 1 2 3 4 5 6 7 8 9 10 11 12 13 14

x1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

x2 1 0 0 1 1 1 1 0 0 0 0 0 0 0

x3 0 1 0 1 1 0 0 1 1 1 0 0 0 0

x4 0 0 1 1 0 1 0 1 0 0 1 1 0 0

x5 0 0 0 0 0 0 0 0 1 0 1 0 1 0

The master LP solution is73 with ν̃1 = 2
3, ν̃3 = ν̃4 = 1

3, ν̃9 = 2
3, ν̃11 = 1

3, ν̃14 = 2
3. Then, branching on

S=< x1,x2 > yields 3 nodes:

Node(1) ≡ ν(x1) ≥ 3 ;

Node(2) ≡ ν(x1,x2) ≥ 1 ;

Node(3) ≡ ν(x1,x2) ≥ 1 .

Preprocessing allows us to prune Node(1) by infeasibility (by (49) for i= 1). Now, let us examine

Node(3) (the preprocessing of Node(2) being symmetric). Preprocessing detects that, as item 1 is

entirely covered by columns of class G(x1,x2), we can add an implied branching constraintν(x1) ≥

R−1 = 2. Similarly item 2 is entirely covered by class G(x1,x2). Thus, the branching constraints

are redefined asν(x2,x1) ≥ 1 andν(x2,x1) ≥ 2. Then, class G becomes redundant and columns 2 to

7 can be deleted. Now, the master solution at Node(3) is5
2 with ν̃1 = 1, ν̃8 = ν̃9 = ν̃11 = ν̃14 = 1

2.

Assume that for separation we choose S=< x2,x1,x3,x4 >. Although|S| = 4, only three successor

nodes need to be defined according to Proposition 3. Indeed, Node (3.1) and (3.2) would only aim

at enumerating solutions whereν(x2,x1) < 2 which contradicts the previous constraintν(x2,x1)≥ 2.

Hence, there remain

Node(3.3)







ν(x2,x1) ≥ 1

ν(x2,x1) ≥ 2

ν(x2,x1,x3) ≥ 2

;

Node(3.4)







ν(x2,x1) ≥ 1

ν(x2,x1) ≥ 2

ν(x2,x1,x3,x4) ≥ 1

;

Node(3.5)







ν(x2,x1) ≥ 1

ν(x2,x1) ≥ 2

ν(x2,x1,x3,x4) ≥ 1

.

In Node(3.3), the second constraint is made redundant by thethird. Applying (52), the constraints

becomeν(x3,x2,x1) ≥ 1 andν(x3,x2,x1) ≥ 2. The former constraint makes the problem infeasible,

as G(x3,x2,x1) = /0. In Node (3.4), preprocessing leads to redefining the branching constraints as

ν(x3,x2,x1) ≥ 1, ν(x3,x2,x1) ≥ 1 andν(x3,x2,x1,x4) ≥ 1. While, in Node (3.5), they take the form
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ν(x4,x3,x2,x1) ≥ 1, ν(x4,x3,x2,x1) ≥ 1 and ν(x4,x3,x2,x1) ≥ 1. Then, Node (3.4) and Node (3.5)

have both an integer master LP solution.

Thus, for set partitioning problems, the branching scheme takes a simpler form:

Proposition 10 When the master program is a set partitioning problem of the form (21), our branch-

ing scheme has the following properties (after preprocessing):

(i) Lk = 1 for all branching constraints k such that Sk includes a “setting-to-one bound”, i.e., for all

k : Sk ∋ xi for some i.

(ii) The tree of column classes has depth 1, with K−1 classes that involve at least one “setting-to-

one bound” (each of these classes has its own set of “setting-to-one bounds”) and one class, say

G1, that involves only “setting-to-zero bounds”; more specifically, G1 = G({xi : xi ∈ Skfor somek ∈

{2, . . . ,K}}) with L1 = R−∑K
k=2Lk.

(iii ) ∑K
k=1L

k
= R and hence columns of G\ (∪kGk) can be deleted.

(iv) A fractional solutionν̃ satisfies all branching constraints at equality, i.e.,ν̃(Gk) = Lk for all k.

Hence, eliminating it requires further splitting an existing column class.

(v) When further splitting a column class that involves a “setting-to-one-bound”, only one more

“setting-to-one-bound” is needed to identify a set S on which to branch and there are only two feasi-

ble successor nodes.

(vi) When further splitting a class that involves “setting-to-zero-bounds” only (G1 in our notation),

identifying a set S on which to branch requires at most two “setting-to-one-bounds” and there are at

most three successor nodes.

Proof: (i) if xi ∈ Sk, thenν(Sk) ≤ gui = 1. Thus, the only feasible strictly positive bound isLk = 1.

(ii) A class that involves a setting-to-one-bound cannot have a non-redundant predecessor class whose

definition also involves setting-to-one-bounds, because both would have boundLk = 1. If xi ∈Sk, then,

asLk = gui = 1, xi is added to all other class definitions. In particular addingboundsxi to classG

yieldsG1. By construction,G1 is the only class that does not involves a setting-to-one-bound andG1

has no successor.

(iii ) is a direct consequence of(ii).

(iv) In a fractional solution to the master, all column classes have integer value becauseLk is both a

lower bound and an upper bound on the class (even for classG1).

(v) Assume∃k : xi ∈ Sk, ν̃(Gk) = 1, and|Fk| > 1 whereFk = {g ∈ Gk : ν̃g−⌊ν̃g⌋ > 0}. As all

columns inFk are different,∃ j : j 6∈ Sk such that 0< ν̃(Sk,x j) < 1. Proposition 3 implies that only

two successor nodes need to be defined.

(vi) Say ν̃(G1) = L1 > 0. Let I(Gk) = {i : ∑g∈Gk xg
i (ν̃g−⌊ν̃g⌋) > 0}. Consider two cases: either

I(G1)∩ I(Gk) = /0 for all k = 2, . . . ,K or not. In the latter case, one could branch as in case(iv). But

one can also splitG1: a single setting-to-one-bound,xi , suffices to define a setS=< S1,xi > on which

to branch, as one can simply select some componenti in I(G1)∩ I(Gk) for somek. In the former

case whereI(G1)∩ I(Gk) = /0 for all k = 2, . . . ,K, we haveν̃(S1,xi) = 1 for anyi ∈ I(G1). But, as all
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columns are different,∃ j ∈ I(G1), j 6= i : 0 < ν̃(S1
,xi,x j) < 1. ChooseS=< S1

,xi,x j > for such pair

(i, j). By Proposition 3, descendant nodes 1, . . . , |S|−2 need not be generated as they are enumerating

solutions whereν(G1) < L1.

With the above characterization, our branching scheme for set partitioning like problems can be

compared to the specialized scheme of Ryan and Foster. Our scheme yields 2 or 3 successor nodes

while, in Ryan and Foster’s scheme, the branch-and-price tree is binary. However, the depth of our

tree isO(n R) while that of Ryan and Foster’s scheme isO(n2) (note thatR≤ n). Columns can

be deleted after branching in both schemes. The main difference therefore is that the pricing prob-

lem is solved by enumerating the active subproblems in our scheme while, under Ryan and Foster’s

scheme, a modified subproblem is solved that can become intractable because of the extra constraints

resulting from branching. Moreover, our intermediate Lagrangian bounds (44) can lead to a stronger

Lagrangian dual bound than under Ryan and Foster’s scheme because we impose tighter restrictions

on the pricing problem. This is illustrated in Example 10 andinformally stated in Observation 11.

Example 10 Assume that we are at a branch-and-bound node defined under Ryan and Foster’s

scheme by branching constraints

ν(x1,x2) ≥ 1 , (55)

ν(x2,x3) ≥ 1 , (56)

ν(x4,x5) ≤ 0 . (57)

Constraints (55-56) are enforced by adding x1 = x2 and x2 = x3 in the subproblem while constraint

(57) amounts to adding x4 +x5 ≤ 1 in the subproblem. The modified subproblem polyhedron is

X̂ = X∩{x : x1 = x2, x2 = x3, x4 +x5 ≤ 1} .

Note that constraint (57) is equivalent to enforcingν(x4,x5) ≥ 1 or symmetrically,ν(x4,x5) ≥ 1.

Under our scheme the “equivalent” node problem could be defined by branching constraints:

ν(x1,x2,x3,x4) ≥ 1 (58)

ν(x1,x2,x3,x4,x5) ≥ 1 (59)

ν(x1,x2,x3,x4) ≥ R−2 (60)

(assuming that successive branching sequences were S1 =< x1,x2 >, S2 =< x1,x2,x3 >, and S3 =<

x1,x2,x3,x4,x5 >). Then, we would have 3 subproblems with respective polyhedron

X1 = X∩{x : x1 = x2 = x3 = 1,x4 = 0} ,

X2 = X∩{x : x1 = x2 = x3 = 0,x4 = 1,x5 = 0} ,

X3 = X∩{x : x1 = x2 = x3 = x4 = 0} .

Note that Xk ⊆ X̂ for k= 1,2,3.
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Observation 10 Under Ryan and Foster’s scheme, intermediate dual bounds ata branch-and-price

node take the form

θRF(π) = π a+Rζ̂ (π) (61)

where ζ̂ (π) is the solution of the modified subproblem and the Lagrangiandual bound has value

equal to

min{∑
r

cxr : ∑
r

A xr ≥ a,xr ∈ conv(X̂) for r = 1, . . . ,R}, (62)

whereX̂ is the polyhedron of the modified subproblem.

Observation 11 Assuming an “equivalent” set of branching constraints (“equivalence” is only loosely

defined by way of Example 10), intermediate bounds (44) dominate (61) and the Lagrangian dual

bound (45) dominates (62).

Indeed, for allXk used in the expression of (45), we haveXk ⊆ X̂ (X0 needs not be considered since

Proposition 10 says that classG is redundant) and thereforêζ (π) ≤ ζ k(π) andconv(Xk) ⊆ conv(X̂)

for all k.

11 Extensions

The above presentation of our branching scheme assumes a pure binary subproblem, and a master

convexity constraint of the form∑g∈Gνg = R. Extensions are possible beyond these assumptions.

First consider the case where subsystems are general mixed integer programs. Then, the mapping

of Table 1 becomes a useful tool to check whether a master solution implicitly defines an integer solu-

tion for the original formulation: the mapped solution ˜x could define an integer solution even though

ν̃ was fractional. The lexicographic ordering remains well defined in the presence of non-binary in-

teger variables or continuous variables. Column classes are defined by integer bounds on the integer

variables, e.g.,xi ≤ ⌊α⌋ or xi ≥ ⌈α⌉. In the mixed integer case, it is indeed sufficient to impose inte-

grality condition on integer subproblem variables (see [25]). A “component bound sequence”S, is a

sorted list of triplets including the index of the integer component, the sense of the inequality (upper

or lower bound), and the value of the bound. The extension of routine “Separate” of Table 2 implies

choosing a bound value for a fractional mapped componentxi (a balanced partition of the column set

can be achieved by selecting the median value of those encountered in fractional columns); moreover,

one must leave the indexi as a potential component for further separation in the recursive calls to

“Separate”. For the preprocessing of Section 9, the lower and upper bounds on aggregate variables

take the form(∑kbk
i L

k
) and(∑kb

k
i L

k
), wherebk

i andb
k
i define respectively the value of the lower and

upper bounds onxi in column classk. When the class defines no component bound onxi , the default

bound values (5) are used.
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In the case of convexity constraints of the formL ≤ ∑g∈Gνg ≤ U , one needs to check whether

ν(G) is fractional. If so, branching starts by fixing the number ofcolumns used in the solution. Then,

in Definition 3, the branching scheme based on component sequenceS must include an extra node

defined by a branching constraint of the formν(G) ≤ L0−1, which yields|S|+2 descendant nodes

in total. The separation routine of Table 2 shall then returnclassG as the branching set as long as

ν(G) 6∈ IN. Standard disjunctive branching on classG implicitly serves the purpose of enumerating

different possible values forR. As Proposition 2 holds for each of thoseR, the result extends to the

case of convexity constraints of the formL ≤ ∑g∈Gνg ≤U .

12 Numerical Testing

The proposed branching scheme is implemented in our genericbranch-and-price code prototype,

calledBaPCod[24]. The current implementation is relatively basic: it does not include all the pre-

processing features of Section 9 and does not exploit computation done at previous branch-and-price

nodes (column class tree, ILO sorting, and the like are computed from scratch). Computing times

also include important overhead for several validity checks such as previous existence of generated

columns. Tests on the cutting stock problem (CSP) and its special case, the bin packing problem

(BPP) have been carried out on a PC bi-pro dual-core Intel(R)Xeon(R) X5460 3.16GHz with 16GB

of RAM under Scientific Linux 5.0. This experimentation illustrates the fact that our proposal is not

just a theoretic scheme, but one that behaves relatively well in the computational practice. In par-

ticular, our results show that(i) our non-binary branching tree does not grow too large in practice

(as predicted by our theoretical arguments) when compare toa more “standard” binary scheme,(ii)

that the routines used for the separation of fractional solutions are not too cumbersome (although our

rough implementation becomes time consuming on large problems), and(iii ) that the increase in the

number of calls to the pricing oracles is significant, but theresulting increase in overall time spent in

the oracle does not grow in the same proportion since these extra subproblems are easier (this is not

reflected in our numerical results because the reported timespent in the pricing procedure includes

overhead for managing the tree of subproblems).

To benchmark our results, we compare them with the closest alternative branching scheme that

could be used for the CSP and the BPP. Of course, the efficiencyof a branching scheme is very sen-

sitive to parametrization (branching priorities and directions). We did not attempt to optimize the

parametrization, but we use the same framework for all comparisons. Moreover, we do not make any

use of primal heuristics and rely only on the branching scheme to produce integer solutions. A full

blown comparison/competition between the branching schemes proposed in the literature for these

problems would require competitive implementations usingthe same framework, parameter tuning

and combination with primal heuristics. This is beyond the scope of this paper. Our numerical exper-

iment only aims at demonstrating the practical viability ofour theoretical proposal.
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The standard column generation formulation for the bin packing problem is given in Example 9.

Its generalization to cutting stock problem involves integer right-hand-sidesdi ∈ IN for the master

constraint and a bounded integer knapsack as pricing problem:

max{∑
i

πixi : ∑
i

wixi ≤W ;0≤ xi ≤ ui ∀i,x∈ INn} (63)

whereui = min{di,

⌊
W
wi

⌋

}. The subproblem can be transformed into a binary problem with class

bound [22]:

max{∑
i

ni

∑
j=1

πi 2
j xi j : ∑

i

ni

∑
j=1

wi 2
j xi j ≤W,

ni

∑
j=1

2 jxi j ≤ ui ∀i, xi j ∈ {0,1}∀i j} (64)

wherexi j = 1 iff the binary component of multiplicity 2j associated with itemi is selected, and

ni = ⌊log2ui⌋+1. If one uses the latter extended formulation, one can branch using standard binary

disjunctive branching constraint of the form

∑
g∈G

xg
i j νg ≤ ⌊α⌋ or ∑

g∈G

xg
i j νg ≥ ⌈α⌉ . (65)

Constraints (65) enforce the integrality of the values of aggregate variablesxi j . They induce modified

item costs,πi j 6= πi 2 j . Problem (64) can be solved using the branch-and-bound algorithm of [22] that

can handle item costsπi j 6= πi 2 j (the algorithm is a generalization of the standard branch-and-bound

approach of Horowitz and Sahni [10] for the 0-1 knapsack).

We compare the branching scheme of this paper to branching rule (65) that was initially tested in

[19]. In theory, this rule alone does not suffice to obtain an integer solution; but experimentally it does

for some instances. When it does not, [19] completes it by more complex rules of the generic scheme

of [20], but these lead to pricing problem modifications. Here, we shall simply stop the algorithm

when no more branching constraints of the form (65) can be found even though the solution might

still be fractional. The size of the branch-and-price tree obtained so far defines a lower bound on what

would be the size of the complete tree. When (65) suffices to achieve integrality, our comparative

results show that the size of branch-and-price tree obtained with the newly proposed scheme is of the

same order of magnitude. The same remark holds for computingtimes.

Table 7 presents our numerical results for the CSP. We compare three branching schemes.(i)

We use branching rule (65), which we denote AG. Notation AG refers to branching on the aggregate

value of the original variables.(ii) We apply the scheme of the present paper, setting component

bounds on binary variablesxi j from the above 0-1 form (64) of the knapsack subproblem, which we

denote CS(xi j ). Notation CS refers to Component bound Sequence.(iii ) We apply our new scheme

setting component bounds directly on integer variablesxi , which we denote CS(xi) (we implemented
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the extension of the branching scheme to the non-binary caseas described in Section 11). We use the

same oracle (the branch-and-bound algorithm of [22]) in allthree cases, setting the knapsack pricing

problem in the form (64) although we could use a standard binary or integer knapsack solver when

using the scheme of the present paper. The master is initialized with artificial columns (vectors of

the canonical basis associated with the item covering constraints) in all cases. Note that, for the CSP,

the master formulation does not include convexity constraint (12). Hence, we have implemented the

generalization of our branching scheme by which we first branch onν(G) if the latter is fractional.

The only feasible branch is the round-up branch, where∑g∈Gνg ≥ R= ⌈ZM
LP⌉

1.

For our test we use the randomly generated instances of [19].There are 6 classes of instances char-

acterized by the item weight distribution and the average item demanddi : for class 1w∼U [1,7500],

di ∼U [1,100], and henced = 50; for class 2,w∼U [1,5000] andd = 50, for class 3:w∼U [1,2500]

andd = 50; for class 4a:w∼U [500,5000] andd = 50; for class 4b,w∼U [500,5000], di ∼U [1,200],

and henced = 100; for class 5w∼ U [500,2500] andd = 50. In all cases, the knapsack capacity is

set toW = 10000. There are 20 instances per class withn = 50 items (the data are available on

http://hal.inria.fr/inria-00311274/fr/). Class 5, thatinvolves medium size items, is the hardest for

branching. For this class, we increase the number of items upto n = 200, withd = 50, to show how

the performance of our scheme evolves with the instance size. The associated results are average over

10 random instances forn ∈ [60,100] and 5 instances forn > 100. In all these tests, when select-

ing variables for branching, priority is given to the component i with largest width weighted by its

fractional part and bound value, i.e., priorityi = wi ∗ (xi −⌊xi⌋) ∗ ⌈xi⌉. The branch-and-price tree is

searched using depth first priority amongst node with the minimum dual bound.

Table 7 presents the average results for each class or size. The table reports the branching rule

used (br-rule), the number of nodes (nod) in the branch-and-price tree, its depth (dep), the best dual

bound (DB), the number of calls to the oracle (#Sp), the number of columns generated (#Col), the

time spent in solving the master (tMAST) with Xpress-MP LP solver [27], the time spent in the pric-

ing procedure of Table 6 (tSP), the time spent for separation in subroutine Explore (tEX), the overall

time (tTotal), and the number of instances solved to integer optimality out of 20, or 10 whenn> 50, or

5 whenn > 100 (this number is in bold face when some instances could notbe solved to optimality).

Time units are ticks (1 tick = 1
100 of a second). The comparison between branching rule CS and AG

is somewhat biased by the fact that under AG the hardest problems have not been solved to integer

optimality. Nevertheless, it seems to indicate that the size of the AG branch-and-price tree is at least

of the same order of magnitude as that with CS(xi) branching. Comparing CS(xi j ) to CS(xi) shows

that the extension of our new scheme to the integer case givesrise to a scheme with good practical

performance. The size of the branch-and-price tree varies more widely from one instance to the next

one under CS(xi j ): in the casen= 100, the node limit of 10000 was reached for 2 instances out of10.

We tested CS(xi ) on larger instances. The average tree size is not strictly increasing withn because of
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the variations that arise from one instance to the next.

On pure bin packing instances (whendi = 1 ∀i), the above branching rules CS(xi j ) and CS(xi)

are the same, sincexi ∈ {0,1} in the knapsack subproblem, whileAG does not permit any cutting of

fractional solutions. The only branching scheme proposed in the literature for the BPP that does not

require any specific oracle is the approach of [26], but it suffers from a symmetry drawback. Instead,

we reformulate the BPP as a Facility Location (FL) problem:

min{
n

∑
i=1

xii :
n

∑
i=1

xi j = 1∀ j,
n

∑
j=1

w jxi j ≤W xii ,xi j ∈ {0,1} ∀(i, j)} ,

wherexi j = 1 if item j is in the same bin as itemi (it is only defined ifi ≤ j) andxii = 1 if a bin

labelled by itemi (seen as a facility) is open. The master is set up in the form (8) with n binary knap-

sack subproblems of decreasing size. Branching is then performed on the value of aggregate variables

xi j of this extended formulation. This approach is denoted by FL. To the best of our knowledge, the

FL approach has not been tested in previous work reported in the literature. Computational tests

are carried out under the same framework as for the CSP (same initialization, no primal heuristics,

depth first search amongst nodes with minimum dual bound). Table 8 reports average comparative

results on 10 randomly generated instances forn = 100 ton = 250, 5 randomly generated instances

for n = 300, and 3 randomly generated instances forn = 350. The item width is drawn uniformly in

[500,2500] andW = 10000 (class 5); all items are different. The comparison between the CS scheme

and the FL approach shows that the new scheme yields a significant reduction in tree size, number of

subproblems that are solved and computing time.

Conclusion

We have detailed a generic branching scheme for use when applying a Dantzig-Wolfe decompo-

sition approach to a problem with identical subsystems. Thepricing problem after branching decom-

poses into independent subproblems associated with each column class, each of which can be solved

with the oracle provided for the pricing problem of the root node. The scheme relies on four novel

features:(i) a dynamic nested partition of the generator set,(ii) an implicit grouping of subsytems

to avoid individualr-indices that yield symmetry,(iii ) an exclusive use of branching constraints that

enforce lower bounds on column classes to guarantee a polynomial number of active column classes

(the branching disjunction may require more than two branches), and(iv) a tree-search enumeration

of active pricing subproblems that may permit pruning or early termination. The proposed branching

scheme is shown to have good theoretical properties both in terms of achieving integrality (as each

branching constraint amounts to implicitly fixing a bound onsome variable of the original formula-

tion) and in terms of improving dual bounds (the Lagrangian dual bounds are shown to be equivalent
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inst-size/class br-rule nod dep DB #Sp #col tMAST tSP tEX tTotal opt

AG 45 30 992.3 165 132 27 36 104 12

n = 50, C1 CS(xi j ) 33 30 992.3 185 135 13 42 0 91 20

CS(xi) 36 35 992.35 153 137 13 37 1 85 20

AG 343 149 635.5 586 180 419 138 980 3

n = 50, C2 CS(xi j ) 148 143 635.5 535 249 67 405 29 929 20

CS(xi) 140 137 635.5 356 232 84 202 20 610 20

AG 911 245 317.05 3217 333 2144 291 6207 1

n = 50, C3 CS(xi j ) 277 243 317.05 4778 718 256 3538 92 5672 20

CS(xi) 270 260 317.05 3825 742 303 1525 87 3715 20

AG 93 65 690.9 180 146 76 144 317 7

n = 50, C4a CS(xi j ) 82 79 690.9 221 170 37 251 9 428 20

CS(xi) 74 72 690.9 231 169 38 237 7 391 20

AG 119 86 1381.1 184 148 83 216 426 14

n = 50, C4b CS(xi j ) 114 91 1381.1 229 161 39 309 12 566 20

CS(xi) 100 98 1381.1 187 160 38 263 10 459 20

AG 305 204 372.6 617 277 450 98 960 0

n = 50, C5 CS(xi j ) 455 190 372.6 3584 521 300 2911 116 6318 20

CS(xi) 260 245 372.6 5060 649 355 2392 82 4460 20

AG 401 269 450.4 669 340 701 154 1514 0

n = 60, C5 CS(xi j ) 251 235 450.4 4075 673 304 5740 105 7879 10

CS(xi) 321 308 450.4 7110 811 527 3485 173 7451 10

AG 436 304 525.8 722 414 952 193 1995 0

n = 70, C5 CS(xi j ) 340 296 525.8 6692 811 492 9210 231 13393 10

CS(xi) 346 341 525.8 5530 923 662 6598 246 11577 10

AG 453 312 609.8 801 481 1275 268 2568 0

n = 80, C5 CS(xi j ) 378 337 609.8 6504 996 789 14127 315 20452 10

CS(xi) 417 389 609.8 15128 1173 1308 10726 396 19166 10

AG 521 370 681.8 982 558 1695 369 3411 0

n = 90, C5 CS(xi j ) 1113 377 681.8 14142 1184 1601 22651 923 51938 10

CS(xi) 504 481 681.8 17875 1430 1902 11562 681 26225 10

AG 560 391 764.3 991 617 2268 454 4309 0

n = 100, C5 CS(xi j ) 1946 430 764.3 36212 1335 4245 40968 2589 141981 8

CS(xi) 496 489 764.3 20084 1637 2230 19401 874 36268 10

n = 120, C5 CS(xi) 605 588 925.4 21925 2123 3767 30854 1452 59691 5

n = 140, C5 CS(xi) 997 777 1095.2 146900 3158 8778 67536 4030 185442 5

n = 160, C5 CS(xi) 1186 912 1252.4 112044 3681 9475 81810 5551 205453 5

n = 180, C5 CS(xi) 1227 1106 1395.6 283865 4451 16215 105542 9658 356423 5

n = 200, C5 CS(xi) 1036 1025 1558.6 111334 4109 14273 94214 11375 305741 5

Table 7: Comparative results for Cutting Stock Problems
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inst-size br-rule nod dep DB #Sp tMAST tSP tEX tTotal opt

n = 100 CS 27 26 15.5 1411 630 113 5 1583 10

n = 100 FL 70 69 15.5 7491 1005 310 5367 10

n = 150 CS 39 38 23 2857 3220 284 11 7026 10

n = 150 FL 104 103 23 19037 4488 1485 25337 10

n = 200 CS 51 50 30.5 5045 15197 608 23 26966 10

n = 200 FL 148 147 30.5 40079 20871 10272 89749 10

n = 250 CS 63 62 38.2 8095 46682 1184 35 79865 10

n = 250 FL 185 184 38.2 45507 31996 6106 108008 10

n = 300 CS 72 71 46 11090 186470 1765 49 233832 5

n = 300 FL 237 236 46 116783 165018 306455 768864 5

n = 350 CS 85 84 54.3 17858 588988 3270 72 719174 3

n = 400 CS 96 95 61.6 20409 1796555 4393 98 1955008 3

Table 8: Comparative results for Bin Packing Problems.

to solving an LP over a polyhedron where both sets of subproblem constraints and branching con-

straints are convexified). The worst case size of the branch-and-price tree is not worse than if one had

implemented branching in the compact space of the original variables.

Computational testing on cutting stock and bin packing problems seems to indicate that the pro-

posed scheme is a practical way to get to integrality while not modifying the structure of the pricing

problem and avoiding symmetry. Observe that every previousapproach for these problems required

either modification of the pricing problem or the use of an extended variable space (which require in

turn a specific pricing problem solver). These computationsalso illustrate that the generalization of

the proposed scheme to the case of a non-binary integer subproblem and generalized master convexity

constraints works fine.

Our generic scheme assumes that adding bounds on the subproblem variables does not impair its

solution. In some applications the oracle cannot handle bounds on the subproblem variables and fix-

ing some variables may destroy the subproblem structure (asfixing an arbitrary arc in a constrained

shortest path subproblem). However, there might be ad-hoc ways to get around this issue by be-

ing more prescriptive for the selection of branching set. For instance, the so called “path-splitting”

branching rule used for multi-commodity flow in [1] or for theVehicle Routing Problems with split

delivery in [8] can be understood as a special case of our scheme where one branches on a subset of

binary variables associated with arcs where the sequence ofarcs that are fixed to 1 must form an ele-

mentary path (this restriction is enforced at the stage of separating a fractional solution). Branching

constraints that bound the number of routes that use a commonstarting path are consistent with the
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use of a resource constrained shortest path oracle.

Notes
1There is a technical remark regarding our theoretical result on the size of the branch-and-price tree: we proved that

the depth of the tree is polynomial inn andR, but, for the CSP,R is not polynomial in the input size. Thus, the so-called

original formulation in its form (2-6) is not compact neither. These considerations remain theoretical. In fact, the number

of different cutting patterns used in an optimum solution, which we may denoteR′, is polynomial in the input size as

proven in [7].R′ is much smaller thanRwhen item demandsdi are large. To satisfy the theoretical need for a polynomial

depth of the branch-and-bound tree, we could use an alternative original formulation that is compact and an associated

Dantzig-Wolfe reformulation with a polynomial number of columnsR′, where a column is defined by a cutting pattern and

its multiplicity in the solution [21]. However, even if we use the traditional formulation (that of Example 9 with integer

right-hand-sidesdi ∈ IN), the depth of the branch-and-price tree will be experimentally in O(nR′). There are typically

O(R′) non-zero variables in master solution and non-zeroνg have value much larger than 1. Hence, the(S,L)-frames

defined through branching tend to have a large width and ensure the covering of severalxr
i components at a time (and

implicitly fix them to an integer value).
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