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SUMMARY

Mass vaccination programmes aim to maintain the effective reproduction numbg&an infection
below unity. We describe methods for monitoring the valu®afsing surveillance data. The models are
based on branching processes in whits identified with the offspring mean. We derive unconditional
likelihoods for the offspring mean using data on outbreak size and outbreak duration. We also discuss
Bayesian methods, implemented by Metropolis—Hastings sampling. We investigate by simulation the
validity of the models with respect to depletion of susceptibles and under-ascertainment of cases. The
methods are illustrated using surveillance data on measles in the USA.

1. INTRODUCTION

Vaccination programmes represent one of the most effective ways of controlling infectious diseases.
For example, measles, though still endemic in many countries of Africa and Asia, has been eliminated
from large parts of Europe and America. Local elimination is the necessary precursor of global eradication,
and also represents a desirable public health objective in its own right.

Global eradication of an infection is the reduction of the number of infections to zero. Elimination,
on the other hand, is the interruption of sustained endemic transmission, which may be achieved by the
maintenance of a high level of vaccination coverage. Elimination is best characterized in terms of the
effective reproduction number of the infectioR, namely the average number of infectious individuals
produced by one infectious case during his or her infectious period (Anderson and May, 1991; Dietz,
1993; Farringtoret al., 2001). Elimination of an infection may then be defined as the maintenance of the
reproduction number below unity. Under conditions of elimination, infections can still occur, for example
due to spread from imported cases, but such spread cannot lead to large-scale epidemics. Since each
infectious case is replaced by no more than one other, the infection cannot become endemic, and outbreaks
peter out with probability 1. The lower the value Bf the smaller and the shorter the outbreaks will be.
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While all valuesR < 1 in theory result in the chain of transmission being interrupted with probability 1,
in practice it is advisable to maintaR well below unity.

An important aim for the surveillance of mass vaccination programmes is to monitor the vaue of
ove time. If the reproduction number gets too close to unity, intervention is required to reduce its value.
For example, a special vaccination campaign against measles was undertaken in the UK in 1994 following
such warnings (Gagt al., 1995). It has recently been proposed to extend the surveillance of vaccination
programmes by supplementing the surveillance of cases with the surveillance outbreaks (Det Skerres
2000). In this paper we develop the statistical aspects of these new surveillance methods.

Our methods rely on the theory of branching processes. These are well suited for the purpose of epi-
demiological surveillance, since they require data only on cases. However, the simplicity of the branching
process approach comes at a price: the methods rely on an approximation to the epidemic process. More
accurate methods, such as those based on chain binomial models (Becker, 1989), require information on
the denominator of susceptible individuals. Such information is only ever available in very special, much
analysed datasets on single outbreaks (Bailey, 1975; Becker, 1989). It is seldom, if ever, available in a
surveillance setting. We show in this paper that branching process models, applied to surveillance of mass
vaccination programmes in conditions of elimination, are of direct practical use for public health.

Branching processes play a fundamental role in epidemic theory, underpinning our understanding of
the threshold behaviour of epidemics and the calculation of the critical vaccination threshold, and provid-
ing a simple model for the early stages of epidemic spread. Thus, much recent work on complex epidemic
models makes use of branching process approximations (Marschner, 1992; Ball and Donnelly, 1995;
Clancy and O’Neill, 1998; Caraaa al., 1998; Muller and Kirkilionis, 2000; Ball and Lyne, 2001). More
directly, branching processes have been proposed as statistical models on which to base inferences about
the reproduction numbeR, represented by the offspring mean (Becker, 1974a,b, 1976, 1977; Heyde,
1979; Farrington and Grant, 1999; Yanev and Tsokos, 1999). Nevertheless, in contrast to the widespread
use of other types of models, particularly the deterministic models of Anderson and May (1991), statistical
models based on branching processes are seldom used in practice for infectious disease control.

In this paper we describe a framework for monitoring the value of the reproduction niRrihghe
context described above, using data on outbreak size and duration. Existing methods based on such data
condition on ultimate extinction of the process (Becker, 1974a; Farrington and Grant, 1999). However,
the resulting conditional likelihoods are ill-suited to making inferences about whBtkerl or R > 1.

Instead, we use an unconditional modelling approach using censored likelihoods similar to those used in
survival analysis. We derive surveillance thresholds based on upper profile likelihood confidence limits
on R. These likelihoods may also be used in conjunction with the Bayesian approach of Heyde (1979),
in which the threshold criterion is based on the posterior probabilityhat 1. In our application the
posterior distribution is evaluated by Metropolis—Hastings sampling.

In Section 2 we introduce the branching process model, describe the likelihoods based on outbreak
surveillance data, and discuss the Bayesian criterion. However, as already noted, the branching process
is only an approximate model for the spread of infection. In particular, it does not take into account the
depletion of susceptibles in the population. Furthermore, in a practical surveillance setting, ascertainment
of cases is unlikely to be complete. So in Section 3 we use simulations to investigate the effects of
depletion of susceptibles and under-ascertainment on the estimatesnoBection 4 we illustrate the
methods by applying them to surveillance data on the spread of measles in the USA.

2. UNCONDITIONAL LIKELIHOODS

We approximate the spread of infection by means of a homogeneous Galton—Watson branching
process. Thus we assume that each case infects a raAdutivers, known as the offspring of the case
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who infected them. The distribution & is called the offspring distribution, and we shall assume that it
belongs to the power series family

r

%
P(Z=r)=
( ) =& NG
whered is the canonical parameter add) = > a6, a4 > 0. For more details see, for instance,
Guttorp (1991). In this paper we will specifically be concerned with the Poisson distribution, for which
a; = 1/r!andA(¥) = ¢, and the geometric distribution, for whieh = 1 and A (9) = (1 — 0)~1. The
offspring mean. = E(Z) is

N ()
AW

For the Poisson offspring distribution, = 6, while for the geometricA = 6 (1 — #)~L. In applications
to infectious diseases, the offspring meanorresponds to the reproduction number, usually denBted
in the epidemiological literature.

The extinction probability (1) (which we shall sometimes writg of a branching process originating
from one case, with offspring distribution from the power series family, is the smallest root of

A@QF) =qA(®).

Wheni < 1,q(A) = 1, and, wherk > 1,q (1) < 1 (Guttorp, 1991). For example, for the geometric
offspring distribution,q (A) = min{1, 1/A}. If A > 1 then, conditional on extinction, the offspring
distribution is a power series distribution with canonical paran#tet q6 (Waugh, 1958).

Standard methods for inference abauatre based on the likelihood given observation of the process up
to some pre-determined generatlos 0. Let X denote the total size of the outbreak up to and including
the kth generation; the outbreak starts from generation zero, ¥ith= s. The maximum likelihood
estimator of is

Xk —S

n= .
Xk-1

This is consistent and asymptotically unbiased in the limit wisetends to infinity (Yanev, 1975). In
the alternative limit wheré& tends to infinity, the MLE is inconsistent; this has motivated considerable
recent research (Lockhart, 1982; Sriram, 1991; Jacob and Peccoud, 1998). In this paper we shall only
be concerned with the limit in which the number of outbreaks— oo. Since the size of an outbreak
starting froms cases may be regarded as the sum of the sizesnofependent outbreaks starting with a
single case, the limits — oo ands — oo are equivalent for outbreak sizes; this is not so for outbreak
durations.

In practice, however, generations of spread are not observed with any accuracXyTand Xy_1,
for givenk, are not readily observable unless the outbreak has ended by gené&ratibnin which case
Xk = Xk—1 = X, the outbreak size. Thus it makes sense to base inferences on outbreak,sizesh
are readily observable. The problem, however, is that when 1, not all outbreaks become extinct,
so that the distribution oK is improper. It is common practice to condition on extinction, since the
resulting conditional distribution oX is proper: see Becker (1974a) and Guttorp (1991, pages 100-102).
However, inference conditional on extinction provides no information on whether or not the observed data
are consistent with > 1, and so is of little direct use for surveillance purposes. Guttorp (1991) discusses
various informal ways round this problem, while Heyde (1979) goes so far as to suggest that there is no
satisfactory solution outside a Bayesian framework. Similar issues arise with observations on outbreak
duration, though these have received rather less attention in the literature (Farrington and Grant, 1999).
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In this paper we develop an unconditional likelihood approach using observations, possibly censored,
on outbreak sizes and durations. We observe all or a random sample of outbreaks originating in some time
interval [0, =] over which it is reasonable to expect thats roughly constant. For each such outbreak we
make observations ofs, T, X, U) whereS > 1 isthe initial number of cases (generally on€)ge [0, 7]
is the time at which the outbreak startetl,> Sis the outbreak size arld > 0 the outbreak duration,
namely the time between the onset of symptoms in the initial introductory case and the onset of symptoms
in the final case. We regaid as having domaifs, s+ 1, ...} U {oo} andU as having domaif0, oo], the
valuesoco corresponding to non-extinction. Note that extending the domainé afdU in this way to
includecc is simply a device to ensure that non-extinction is included in the evéntsx andU > u;
the valuesX = oo andU = oo never arise in calculations and are never observed. The initial number of
casesS and the originating tim@ depend on the pattern of importations of infections. We shall assume
thatSandT are uninformative about and hence condition o8, T.

Observations are subject to censoring. For example, we might censor observations beyond some time
pointv > . Thus each observation is either of the fof®=s, T = t, X = x, U = u) for an outbreak
starting at timet in [0, ] and ending before time, or of the form(S=s, T =t, X > x,,U > v —1t)
if the outbreak has not ended before timeatotal x, cases having been observed up to that time. Other
censoring schemes are possible: for example we might observe all outbreaks upttodhse, in which
case censored observations are of the f@Ba=s, T =t, X > &, U > vg —t) whereuvg is now the time
at which thetth case occurs. Whatever the censoring scheme, the key point is that non-extinct processes
are censored with probability 1. Note that in the application envisaged here, in which we extpdu
well below 1, it is usually possible to arrange the surveillance system to ensure that, in practice, censoring
rarely occurs. However, allowing for the possibility that it might occur, as it would if in Xagere close
to or above 1, is essential in developing a coherent inferential framework.

For the likelihood-based analyses described below, our surveillance threshold will be the upper 95%
profile likelihood confidence limit on. If this exceeds 1, then appropriate action is taken. We consider
inference about on the basis of observations on outbreak s{zer outbreak duratiokJ .

2.1 Outbreak size

Inference abouf. from outbreak size data, conditional on extinction, has been discussed by Becker
(1974a). LetX denote the size of an outbreak generated fi®m& s initial cases. The distribution of
X belongs to the power series family and is of the form

X—S

P(X=x;8)=b(x,s) o

whereb (x, s) is a constant. For example, when the offspring distribution is Poisson the total outbreak size
follows the Borel-Tanner distribution (Haight and Breuer, 1960):

SXX_S_l)»X_Se_X)“

P(X=x;s) = x 9! , X=s5S+1.... (2.2)

When the offspring distribution is geometric, the total outbreak size follows the distribution

S 2X —S AX—S
P(X=xX;s) = _— X=55S+1.... 2.3
( ) 2x—s<x—s)<1+x)”—s i 23

In this caseX — s has a Lagrangian generalized negative binomial distribution (Johetsalny 1992,
Chapter 5, Section 12). These distributions are define¥ fer co. If A > 1they are improper. We extend
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Fisher information
Fisher information

lambda lambda
(a) (b)

Fig. 1. Fisher information for a single observation on outbreak size, with censoring=ab, 50, 150; (a) Poisson
offspring, (b) geometric offspring.

them to the whole domain of, {s,s+ 1, ...} U {oo} by defining
P(X =00;8) =1—-q(»)°.

Let X* denote the outbreak size at which observation is censerethay be random or determinate,
depending on the censoring scheme. We assBii¢* < o) = 1,andseC = 1if X < X*,C =0
if X > X*. We thus observe mifX, X*} andC. Given observationsgs;, X1, C1), ..., (Sh, Xn, Ch) ON A
sample ofn outbreaks, the likelihood fox is thus

n Xi—1 1-g
Leusx0=[]1PX=x:8)" (1—ZP<X=j;a>> : (2.4)
i=1 j=s
When all thes = 1, the likelihood has the same form as that for a parametric survival model in discrete
time with time to evenX, X = oo denoting non-occurrence of the event. The MLE. @ asymptotically
unbiased and consistent; the asymptotic limit considered here is the usual one innwhicbho. The
MLE X can take any value if0, co), and profile likelihood confidence intervals farcan straddle the
value) = 1; this threshold does not cause any particular problem.

It is of interest to examine the Fisher informatiof) from a single outbreak wits = 1. Figure 1
shows graphs off(1) for three censoring schemes, in which valuesxofbove fixed thresholds are
censored. The information in the neighbourhood ef 1 grows sharply for larger values 6f This may
be explained heuristically as follows. Whens just below 1, all outbreaks are finite with large expected
size. When is just above 1, most outbreaks are finite, with large expected size conditional on remaining
finite. The remainder are unbounded and hence censored. If the thréshdidh, then the combination
of few censored outbreaks, and large size for those that are uncensored, is expected onlysvetese
to 1, and hence conveys substantial information abodthis information increases with, and in fact
becomes unbounded at= 1 as¢ — oc.

In the absence of censoring, the MRE= 1 — (Z5)/(2xi), and Xx; is sufficient fora (Becker,
1974a). Thus, provided that the censoring scheme is organized so that censoring rarely occurs, there is
little gain in efficiency in making use of information on outbreak duration. However, as will be shown
later in the paper, if ascertainment of cases is incomplete then estimation from data on outbreak duration
might be less biased.
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2.2 Outbreak duration

The duration of outbreaks when< 1 has been studied in Farrington and Grant (1999Y. éfenotes the
number of generations of spread from a single introductory case at generation zero, then its distribution
function fx = P (Y < k) satisfies the recursive relation

fo=¢©), fkrri=0(f k=0,12,...

wheregp (X) = A(x0) /A(9) is the probability generating function of the offspring distribution (Guttorp,
1991). IfY is the number of generations of spread freimtroductory cases, the distribution function is
given by fi s = { fk}5. When the offspring distribution is Poisson with meart 1,

fy = e Ex (ef\e“) (2.5)

where Ex (x) denotes the iterated exponential functifp (x) = 1, Exz1(X) = xF®_ When the
offspring distribution is geometric with mean< 1,

l _ )“k+l

fi k=0,12,.... (2.6)

T 1ok
Whena = 1this reduces tdyx = (1 + k) / (2 + k).

Expressions (2.5) and (2.6) are also valid when 1, though the distributions are improper. We thus
define

foos = P(Y =00|S=5) =1-q*)°

to obtain proper distributions on the whole domaiYof0, 1, 2, ... }U{oo}. If the numbers of generations

of spread are known exactly or censored, then these distributions can be used in exactly the same ways as
the distributions of outbreak size to obtain likelihoods which are then maximized to yield estimates of
Figure 2 shows the Fisher informatio¢t) for a single outbreak witk = 1, for three censoring schemes

in which values ofy above fixed thresholds are censored. The shapei@f) is very similar to that in

Figure 1.

However, the precise number of generations is usually not known. In Farrington and Grant (1999) a
simple method of analysis is described using generalized linear models, based on whether or not secondary
spread has occurred. However this disregards information on the duthtibthe outbreak, wherd is
the time between the onset of symptoms in the initial introductory case and the onset of symptoms in the
final case. Such data are often available in a surveillance setting. The number of generations can then be
imputed using knowledge about the mean serial interval, that is, the mean interval between the appearance
of symptoms in a case and the appearance of symptoms in a secondary case infected by the first.

Alternatively, a stochastic imputation method may be used to allow for the random variation in serial
intervals. We assume that serial intervalare distributed ah (z), and leth,, (z) denote the distribution
of the sum ofn independent serial intervals. In general, the serial interval distribution may depend on
the offspring mean., though in practice this dependence is ignorable for infections with short infectious

periods. We shall assume that the first and last cases in the outbreak are necessarily those separated by the

maximum number of generations of spread in the outbreak. This is reasonable provided that the variance
of the serial interval distribution is small. The distribution of the outbreak duratiagivens introductory
cases, is then

Po (A;S), u=0
fus)=4 Yolihh@Wpn(h;s), O<u<oo 2.7)
1-q®)®, U=o00
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Fisher information
Fisher information

lambda lambda
(a) b)
Fig. 2. Fisher information for a single observation on number of generations of spread, with censeriag?atlO
and 25; (a) Poisson offspring, (b) geometric offspring.

wherepn (A;8) = fns — fn—1s is the probability mass function of the distribution of the number of
generations of spread, with offspring mearstarting withs cases at generation 0. This method requires
knowledge of the serial interval distributidn(x).

Maximum likelihood estimation af may thus be based on observatigsis ui, 1), ... , (S, Un, Cn)
on a sample ofn outbreaks; as previously thg are censoring indicators: 1 if the observation is
uncensored, 0O if it is censored. The likelihood is thus

Ui 1-g

n
L(A;s,u,c):l_[ f(uj; )% 1—/ f(x;s)dx . (2.8)
i=1 5
When thes = 1, this may be recognized as the likelihood for a parametric survival model, in continuous
time, with time to event, in which there is a probabilityg (A; 1) of immediate failure and a probability
1 — g(») of never failing. Standard likelihood theory again applies, and the MLE is consistent and
asymptotically unbiased in the limit — oo.

2.3 Bayesian inference

Bayesian methods for branching processes have been applied in an epidemiological context by Heyde
(1979) and more recently by Yanev and Tsokos (1999), who discuss a variety of Bayesian estimators. One
of the attractions of the Bayesian approach is that, given a suitable prior distribution, it allows calculation
of the posterior probability that > 1. This provides an alternative to thresholds based on confidence
intervals: for example, an intervention might be considered if the posterior probability thal were
greater than, say, 2.5%.

The Bayesian approach is readily applicable to data on outbreak size or outbreak duration of the type
considered above. Given a prior distributian(1), the posterior distribution of given observations,
possibly censored, on outbreak size or duration, is

L) (A)

Ty = & L@ @ dz

(2.9)

whereL (1) denotes either of the likelihoods from equation (2.4) or (2.8).
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Heyde (1979) and Yanev and Tsokos (1999) make use of conjugate prior distributions. For outbreak
size distributions, these are most easily expressed in terms of the canonical patana¢her tham;
the conjugate distributions are the gamma for the Borel-Tanner, and the beta for the Lagrangian negative
binomial. However, there are no simple conjugate priors for outbreak duration distributions. In any case,
for our surveillance application, it would make sense to specify a single prior for all models, that is in
some sense neutral with respect to whether 1 or A > 1. We shall therefore eschew conjugacy. Sikce
is in effect a multiplier, it seems natural to choose a prior for which the distribution ¢f)ag symmetric.

We shall thus select priors from the lognormal famiWN (z; u, o) ~ exp{N (M 02)}. Whenu = 0,

the median is 1; we shall refer to the corresponding ptiéz) = LN (z; 0, o) as neutral since < 1

and 1 > 1 have the same prior probability.B. We emphasize that the term ‘neutral’ relates specifically
to P(A > 1);if the aim was to estimatewe might prefer to use a different prior distribution, for example
one with mode at 1.

The computational burden involved in calculating the posterior distribution ( 2.9), especially in
the case of outbreak durations, is considerable. We therefore use Metropolis—Hastings sampling to
evaluate the posterior distribution. Lettiggw|z) denote the proposal density, we accept proposals with
probability

a(w, Z)=min{ L@ (2 g w|2) }

L(w)r (w) g (Zlw)’

A natural choice of proposal density is the lognormatv|z) = LN (w;log(z), y) with dispersion
parametely. With a neutral lognormal prior, the acceptance probability then becomes

_ L@ (log2)® — (logw)?
a(w,z)_mln{mexp(— 552 )1}

As already stated, the Bayesian approach may be implemented for both data on outbreak size and
outbreak duration, the appropriate likelihood (2.4) or (2.8) being substituted @y in the above
equations.

3. SMULATIONS

The branching process model provides only an approximation to the initial stages of the spread of an
infection in a large population, since no account is taken of the depletion of susceptibles as the outbreak
progresses. Generally, depletion of susceptibles will act to limit outbreak sizes and durations, and will
therefore tend to bias the estimated valug tdwards 0. In the application we consider here we expect that
A < 1, the aim being to signal whenbecomes too close to 1. We are thus in a situation in which extensive
spread of the infection is unlikely, and we would therefore expect the branching process approximation to
be valid, at least for outbreaks in large communities.

Outbreaks are usually identified by space—time clustering of infections within a defined community
such as a town or perhaps an institution such as a university or large school, rather than by identification of
chains of transmission. This method of defining outbreaks is reasonable under conditions of elimination, in
which relatively few infections occur. In these circumstances, clustering of cases provides good evidence
that they are part of the same outbreak. However, not all the infections occurring in an outbreak may
be ascertained. Such under-ascertainment will also tend to bias towards O the estimabssed on
outbreak sizes and outbreak durations.

In this section we investigate the impact of these biases by simulation.
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3.1 Depletion of susceptibles

The simulations were set up using the Reed—Frost model (Frost, 1976; Kotz and Johnson, 1986). Each
outbreak was simulated by introducing a single infective in a susceptible population ahsitais

the total effective population size im + 1. The escape probability was taken to pe= 1 — A/m

rather than the perhaps more natural’@ to ensure that the reproduction number in this population
was . According to the Reed—Frost model, the number of cases arising in gendcatidnis Xy1 ~

Bin(m+41— Z'é Xi,1— pxk), with Xo = 1. These chain binomials were iterated unjl = 0 for

somek. Thus the total outbreak size for each outbreak waXy and the number of generations of spread
wasmin{k : Xxy+1 = 0}. To simulate outbreak durations, we sampled individual serial intervals from a
gamma distribution with mean 14 days and shape 2, and hence standard deviati@=19.9 days. We
chose this distribution because it corresponds to the sum of two independent exponential variables with
mean 7 days, representing the latent and infectious periods. The large standard deviation gives a stringent
test of performance. We then estimatedy stochastic imputation using equations (2.7) and (2.8) and
using the same gamma serial interval distribution, which we assumed known.

In the following simulation experiments, 100 outbreaks were generated for fixed valoearud 1.
It was assumed that no observations were censored. For each set of 100 outbreakestimated by
maximum likelihood based on total outbreak size, on number of generations of spread and on outbreak
duration. The analysis based on numbers of generations of spread corresponds to the serial interval being a
known constant, and provides a contrast with the assumption of gamma serial intervalanWhervo,
the offspring distribution tends to a Poisson distribution with meakccordingly, we used the likelihoods

based on Poisson offspring. This whole procedure was then repeated 100 times to obtain average estimates.

Figure 3 shows the average estimates plotted against the Xdrufor values of A =
0.5,0.6,0.7,0.8,0.9, 0.95, 1, and initial susceptible population sizes= 10, 100, 1000, 10 000, 100 000.
Unsurprisingly, when the pool of susceptibles is only 10, then the estimates are seriously biased. However,
form > 100, the bias is moderate. There is little difference in the bias according to whether outbreak sizes,
numbers of generations or duration are used.

To get an idea of the kind of population in which the model would be valid, suppose that vaccine
coverage and efficacy are both about 95%. Then about 10% remain susceptible, so the total population
size would need to be in excess of about 1000.

3.2 Under-ascertainment of cases

Werepeated the simulations assuming individual case ascertainment probapiti®s and Q75. Thus,
after simulating the outbreaks, we picked cases with probalplifjfon-ascertainment of the index case
may change the observed valuespthe number of index cases in the outbreak. We assumed, however,
that the cases ascertained were still regarded as part of the same outbreak. For example, the outbreak
represented in Figure 4 starts from a single cAssothats = 1, and involves a total 12 cases in 5
generations of spread and duratidno B. Howeer, the observed outbreak starts from ca3esdD, so
thats = 2, and involves a total 7 cases. The duration for the observed outbreak is the time iBteéoval
E. This method of introducing incomplete asertainment is realistic when, as described above, outbreaks
are defined in terms of spatio-temporal clustering within defined communities, rather than by explicitly
identifying the chains of transmission.

The plots of the mean estimated values versus the true valuefooksusceptible populations of initial
sizem = 10000, using the outbreak size and duration with ascertainment probalyplite8.75 and 05
are shown in Figures 5(a) and (b), respectively. For comparison, the results with complete ascertainment
of cases are also shown.

220z 1snBny 0z uo 1senb Aq 901.5+2/6.2/2/v/o101e/SonseSolq/ w00 dno olwspese//:Sdiy Woly papeojumoq



288 C. P. ARRINGTON ET AL.
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True True
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©
Fig. 3. Plots of average simulation estimates againsttmith population sizes = 10——, 100 ....... ,1000.._._._ ,
10000 — — — —, 10000Q......._..... The linea = A is also shown. (a) Outbreak size, (b) number of generations, (c)
outbreak duration.

® O
A

Fig. 4. Schematic representation of an outbreakase ascertained; case not ascertained.

Figure 5 shows that the bias due to under-ascertainment reducesnaseases within the range

0 to 1. Also, estimation based on outbreak size is more severely biased than ascertainment based on

outbreak duration, the difference being particularly marked for larger valueslIdiis is not unexpected,

since under-ascertainment always affects observed outbreak size, but may sometimes not affect observed

outbreak duration. Similar results were obtained using other population rsizEsr some infections,

such as mumps or whooping cough, not all infected individuals exhibit clinical symptoms and hence only
aproportion are likely to be ascertained. For such infections, estimation based on outbreak duration may

yield results that are less biased than those based on outbreak size.
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Fig. 5. Average simulation estimates against true values.foutbreak size—— complete ascertainment, ...... under

ascertainment. Duration-.._._complete ascertainment, - - - under ascertainment. Ascertainment probability: (a) 0.75
and (b) 0.5. The ling. = A is also shown.

4, EXAMPLE: MEASLES IN THEUSA

We illustrate the methods with a dataset on measles in the USA. The dataset includes outbreaks
occurring between 1997 and 1999, observed until the end of 1999. No outbreaks were censored. Further
details of the data collection are given in Gayal. (2002, to appear). In all the examples based on
Bayesian methods we report results using a neutral prior distributionawita 1. We repeated the
calculations with non-neutral prior distributions with= 4-0.5; in all cases the results were insensitive
to the choice of prior.

So far we have used the term ‘outbreak’ to include importations of infected individuals not resulting
in any further spread. In this study, outbreaks were defined to include at least one generation of spread and
hence at least two cases including the introductory case. Importations not involving secondary spread were
excluded, because most are singletons and hence are likely to be under-reported. The likelihoods must
therefore be conditioned on spread having occurred. The dataset comprises 41 outbreaks, each originating
from a single case.

4.1 Outbreak size data

The total number of cases in the 41 outbreaks was 207. The frequency distribution of outbreak sizes
(minimum 2 cases, maximum 33) is shown in Figure 6. All likelihoods are conditioned on the event that
each of the outbreaks involves at least two cases, including the introductory case. The probability of this

eventis(1— e"\)41 for the Poisson offspring distribution and® (1 + 1)~4! for the geometric offspring
distribution.

For the measles data the log likelihood kernels are therefore 16&)Jog 207» — 41 Iog(l — e‘*)
assuming Poisson offspring, and 125 {ay — 332 log1 + 1) assuming geometric offspring. Figure 7(a)
shows the log likelihood profiles. The estimates and profile 95% confidence intervals ar@.66
(0.55, 0.78) assuming Poisson offspring, and= 0.60 (0.48, 0.75) assuming geometric offspring. The
results using the Poisson and geometric models differ slightly, owing in part to the effect of conditioning.
The fit was very goodp > 0.4) for both models, as assessed by Chi-squared tests.
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Fig. 6. Frequency distribution of 41 measles outbreaks with secondary spread.
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Fig. 7. Estimation from outbreak size from outbreaks of 2 or more cases: (a) log likelihooas (foy posterior
distribution forx. —— geometric offspring, - - - Poisson offspring.

Figure 7(b) shows the posterior distributionofising outbreak size. Clearly, the posterior probability
thatAd > 1is negligible; the corresponding prior probability was 0.5. Both likelihood and Bayesian criteria
lead us to conclude that elimination of measles was maintained.

4.2 Outbreak duration data

The 41 outbreak durations, calculated as the number of days between the first and last onsets, are shown
in Table 1.
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Table 1.Durations (days) of 41 measles outbreaks with secondary spread

Duration 9 10 11 12 13 14 15 17 19 20
Frequency 1 2 4 3 6 4 4 1 1 3
Duration 21 27 28 33 3 37 46 65 66 100
Frequency 1 1 2 1 1 2 1 1 1 1

All likelihoods are conditioned on the number of generations in each outbreak being at least one, and
hence orJ > 0. Thus the densitie§(u; s) in (2.8) are replaced by

Zhn() Pn (3 9) O<u<oo

f(U’ S) — n— pO()L S)
’ 1-qm)°
Po(%; S)

uU=o00

where the terms + po(%; s) are 1— e5* and 1— (1+ A)~S, respectively, for Poisson and geometric
offspring distributions.

In order to model outbreak durations we first need an estimate of the serial interval distribution for
measles. One approach is to use the durations of outbreaks involving two cases; there were 13 such
outbreaks, with a mean serial interval of 12.6 days. However, 13 outbreaks are too few to obtain a reliable
estimate of the serial interval distribution. We therefore use Hope Simpson’s data on measles in 264
households of two (Bailey, 1975). This much-used data set has been analysed by Bailey (1975), Becker
(1989) and more recently by O’'Neitt al. (2000), who estimate the infectious period to be very short
(2-3 days). Two measles cases were observed in 219 out of the 264 households. We shall exclude the 32

households in which the two cases were separated by 5 days or less; these pairs of cases are most probably

co-primary. Fitting a gamma distribution to the remaining 187 observations on the serial ifftegyiveds

the distribution shown in Figure 8. We also fitted a gamma distributioh te§ for some values to be
estimated,; this produced a nearly identical fit (see Figure 8). The fitted gamma distribution has rd@an 11
days and shape 8. The standard deviation of DB/+/20.68 = 2.42 days is quite short, so that there
should be relatively little overlap between generations. In what follows we shall assume that the serial
interval follows a gamma distribution with these parameter values. The models fitted to the 41 outbreak
durations gave the profile log likelihoods and posterior distributions shown in Figure 9. The estimates and
95% profile confidence intervals ate= 0.53 (0.40, 0.68) based on Poisson offspring, and= 0.56
(0.42,0.73) based on geometric offspring. The posterior probability that 1 is negligible; again, the
corresponding prior probability was 0.5. As with the analysis based on outbreak sizes, we conclude that
elimination of measles was maintained in this population.

We also fitted a simpler model in which the numbers of generations were imputed directly from the
mean serial interval of 11 days, outbreak durations betwegradd 165 days corresponding to one
generation of spread, those betweerbl&hd 275 days corresponding to two generations of spread and
so on. The results were very similar.

5. DISCUSSION

The statistical methods we have described provide a simple framework for analysing surveillance data
for infectious diseases after elimination of sustained endemic transmission, a situation characterized by
maintenance of the effective reproduction numbéelow 1. Epidemiological aspects of the methods and
their practical implementation have been discussed in De Seiraks(2000). In the measles application
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Fig. 8. Distribution of serial interval for measles: observed frequencies, gamma (——) and shifted gamma (- - -) fitted
to intervals> 5 days.
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Fig. 9. Estimation from outbreak duration:(a) log likelihoods for(b) posterior distribution fokh. —— geometric
offspring, - - - Poisson offspring.

described above, all three methods, based on outbreak size and outbreak duration, yield the same broad
results: measles is well-controlled in this population.

Branching processes have a long pedigree in infectious disease epidemiology, but are seldom used
directly for statistical modelling in public health applications. The particular context of estimation in the
presence of mass vaccination programmes gives these methods new relevance. In this paper we used a
modelling framework based on outbreak sizes and durations. By avoiding conditioning on extinction, the
cases. < 1andx > 1can be considered together. Our models are similar to censored survival models.

Several methodological issues are worthy of further investigation. (a) De Saraks(2000) also
proposed basing surveillance bfon the proportion of cases that are imported. Suppose that in a time
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interval [0, ] atotal x cases are observed, of whishare found to have been imported.Af< 1, all

cases must originate from importations. If end effects due to censoring atOamedgnorable, we may
regardx as corresponding approximately to an observation on the total outbreak size trases, and

hence estimaté = 1 — s/x. It would be useful to cast this method in a framework valid for all values

of A so as to derive surveillance thresholds. (b) In his elegant paper Yanev (1975) described, amongst
other things, the asymptotic properties of the MLE= 1 — s/x based on outbreak size in the absence

of censoring when = 1. In this special case, standard regularity conditions no longer hold. TheMLE

is still asymptotically unbiased and consistent, atti— 1) —p 02x2 ass — oo, whereo? is the
variance of the offspring distribution. For example, for Poisson offspring, vithert,

2s
(s+1)2%(s+2)°

It would be interesting to obtain corresponding asymptotic results for the MLE based on numbers of
generations of spread and durations with= 1 when the number of outbreaks — oo. (c) Our
derivation of the likelihood for outbreak durations was based on the assumption that the first and last
case are necessarily those separated by the maximum number of generations. It would be useful to relax
this assumption. (d) The presence of censoring destroys the sufficiency of outbreak size. It would be
interesting to know, in situations where censoring occurs frequently, how much gain in efficiency would
be achieved by jointly modelling outbreak size and duration. (e) Finally, it would be useful to extend the
methods to incorporate heterogeneity in contact rates. For exampieild be allowed to vary between
outbreaks according to some distribution reflecting the variation in contact rates, andihé&eteeen
communities. This would be useful if, for instance, the model with fixedere found not to provide a
good fit to the data. Note that in this case a new surveillance criterion would need to be specified, possibly
based on an upper quantile of the distributior. of

Clearly, our methods are limited in scope, in that they do not take account of depletion of susceptibles
and heterogeneities in contact rates. However, they provide a simple surveillance tool, and as such have
been welcomed by practitioners (Hinmanhal., 2000). As we have shown, bias due to ignoring the
depletion of susceptibles is only really a problem in communities with fewer than 100 susceptibles. If,
say, 10% of the population are susceptible, then the methods are applicable with little bias in communities
in excess of 1000. Allowing for heterogeneities in contact rates, on the other hand, is difficult, though
the randont model suggested above provides one simple method. Various approaches to take account of
mixing within and between households have recently been suggestedst(Bh)I1997; Ball and Lyne,
2001), though it seems rather unlikely that they can be applied in a surveillance setting. Alternatively,
serological survey methods provide a contrasting population-based approach to the surveillance of
vaccination programmes (Gayal., 1995; Farringtoret al., 2001).

~ S ~
EA)=—— and V(L) =
(A) sr1 (A)
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