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by
*
Walter L. Smith and William E. Wilkinson
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Summary. A positive recurrent Markov transition matrix P generates a

~

Markovian sequence {Vn} of states called omens. A branching process
{Zn} develops in the usual way except that families born to the n-th
generation are all (independently) governed by a pef 7 (s), 0<s <1,
n
where {gn} is the sequence of envirommental variables. The distri-
bution of Cn depends on the omen Vn but the environment variables
are otherwise independent. A necessary and sufficient condition for
immortality of the process, that is 1imn_mP{Zn > 0} > 0, is given.
This assumes a particularly simple form when P is finite, involving P
only through its stationary distribution {wj}, say. This simple form
of the condition is also shown to be sufficient for immortality, even
when E is infinite. However, an example is given of two related pro-—
cesses, which demonstrates that when P is infinite there cannot be a
necessary and sufficient condition for immortality involving no more
specific information about P than is contained in the stationary dis-

~

tribution {wj}.

* The work described in this report was done under Contract
N00014-67-A-0321-0002 with the Office of Naval Research.



1. Introduction.

In this paper, we shall generalize the theory given in Smith and
Wilkinson (1969) for the Branching Process with Random Environments
(BPRE) to cover situations where a certain kind of Markov dependence
holds between successive environmental variables. We shall call the new
process a Branching Process with Markovian Environments (BPME).

We imagine first an irreducible Markov transition matrix E = l’pij
(i,j f 1,2,3,...) of a positive recurrent chain {Vn}, which we shall
call the guiding chain; the states of this chain shall be called the
omens. We shall assume V0 to be given and non-random.

For each i = 1,2,..., let {y(i,i)} (i = 1,2,..) be a sequence
of 1iid random variables taking values in some subset ¢S] of a finite
dimensional Euclidean spaceT, and call the points € in 0 the
environments. Let us further assume that the random variables com—
prising the double sequence {y(i,j)} (i,3 = 1,2,...) are mutually
independent.

To simplify notation as much as possible we shall write y(i)
for a random variable with the same d.f. as any one of the {y(i,j)}

(j =1,2,...), whenever no confusion can thereby arise. Thus y(i)
represents a "typical" member of {y(i,i1.

We now define a sequence of environmental variables {Cn} by the

equation

T Since the set of all pgf's can be put into (1,1) correspondence
with a subset of the interval [0,1], the reader will soon see that ©
could be taken as uni-dimensional; we adopt, however, what seems a more
convenient assumption.



(1.1) t, = y(Vn, n+l), n=20,1,2,...

A very special case of the above process which merits particular
mention is the pure case. This arises when the omen Vn uniquely de-
termines the environment. In other words, to each omen i (1 =1,2,..)
corresponds an environment 0. in © and P{y(i,j) = ei} =1 for
all j =1,2,... If the BPME is not pure we shall, when the emphasis
is desirable, call it mixed.

Corresponding to each environment 6 € O is to be a pgf ¢6(s),
0 <s <1, of anon-negative integer-valued random variable. We can

then define the expected value of this random variable by

1- ¢e(S)

£(0) = lim 1= s

s 41
and we shall assume that £(8) < « for all © ¢ 0 T
We shall assume that ¢e(s), for each fixed s, 1is a Borel meas-
urable function of 6. Some consequences of this assumption are:
(i) for fixed s, {¢y(i,j)(s)} is a double sequence of mutually in-
dependent random variables; (ii) for fixed s and 1, {¢y(i,j)(s)}
is a sequence of iid variables; (iii) {e(y@E, M, i =1,2,...,

j =1,2,... are mutually independent random variables and any subse-

quence obtained by holding i fast will be a sequence of iid random

variables.

T This for convenience; by suitable incantations about events of
probability zero it could be "generalized" to an a.s. condition.



We imagine the BPME to develop as follows. Initially there are

Z0 particles and the omen for the environment is V Every particle

0"
in this zero-th generation then experiences an environment

CO = y(VO,l), and the sizes of their families, though independent, are

to be governed by the same pgf ¢C (s). 1In this way, Zl new particles,
0]

forming generation one, are created; the families of these Zl particles
will then, in their turn, be produced under the influence of omen Vl'
The process then develops in an obvious way.

If P{Zn > 0} » 0, we say the process {Zn} is mortal; otherwise

it is immortal. We shall see that mortality cannot be affected by

choice of the initial omen or by the initial size Z0 (so long as it

be finite).



2. Necessary and Sufficient conditions for Mortality of the BPME.

Let us select an arbitrary omen i and let us suppose Vo = 1i. By

the term i-cycle we mean any finite sequence of omens {vl,vz,...,vz}
for which S i and Vi # i for every k, 2 <k < £. We call £
the length of the i-cycle.

Holding the omen i fixed, let {ﬂil)}, r=1,2,..., be any enu-

meration of the i-cycles. Suppose that, in fact,

1) _ g
. = {i, Vos Vas cees VK},
and define
(1)
P = P,._P o P
T iv, v, Vs vl

Since the guiding chain is positive recurrent, the omen i will,

is the

almost surely, recur infinitely often. It is clear that pil)

probability that, given that the guiding chain is initially in omen 1,

it will move through the omens of the i-cycle ﬂil) in returning to

@ _ .

omen 1i. Evidently Z:=l P,

We shall study the {Zn} process with the aid of these i-cycles.
When the guiding chain enters omen 1 we shall say an epoch Qi occurs.
Let Qi occur at generations ng = o, Nys Oy eees etc., and call its
initial occurrence the zero-th. Then between the k-th and (k+1)-th oc-
currence of Qi will be some i-cycle, c¢ say, the length of which is

k

Zk = n(k+l) - o Let the environments encountered in this i-cycle be



and denote this vector by Ly Then we define

(1) -
<1>C (s) = ¢c (qbg (... (¢ (s)...0)N.

< n, nk+l an+ﬂk—1

Routine, but tedious, measure-theoretic discussion will establish
that {@éi)(s)}, k = 0,1,2,..., is a sequence of independent and iden-
tically distributed random variables for each fixed s, 0 <s < 1.

If the guiding chain had only one state, the environmental vari-
ables {En} would merely be a sequence of iid random variables and the
BPME would become the BPRE discussed in Smith and Wilkinson (1969). The
latter paper coupled with Smith (1968) provide the following Theorem A.
Let a BPRE be based on iid environmental variables {gn}, taking values

in some abstract space 0, with associated pgf's {¢C (s)} assumed to
n

be random variables for each fixed s, 0 <s < 1l. Let ¢§ (s) =

n
o0

zr=0 pr(n)sn be the Taylor expansion of ¢Cn(S) and set gn =

zm 0 rpr(cn). To avoid triviality, assume the following conditions
r"_“

A1) P{po(cn) <1} =1

AGL) Plpg(cy) +py(c) < 1} > O

We can now state:

THEO » Suppose that P{En < o} = 1 and that Elﬂog£n| < ©, Then,

subject to A(i), (ii) above, it is necessary and sufficient for immor-

tality of the BPRE that both the following conditions hold:




C(i) E Log £, >0

c(ii) E Log [1 - ¢c (0)] > = =.

n

Let us now return to our BPME {Zn}. It should be clear that, if
we observe this BPME only at successive epochs Qi’ then we are effec-

tively observing a BPRE; i.e., {an}, k =0,1,2,..., 1is a BPRE, and

Theorem A may be applied. The sequence of environmental variables for
this BPRE is {Ek
@

N

For ease of writing, we shall let ©(l)(s) stand for ®ég)(s) and sup-

} and the corresponding sequence of pgf's is

{6,7(s)}, from which the other relevant quantities must be derived.

~
© r

pose Q(i)(s) = 2r=0 p.s -

Necessarily, each P T = 0,1,2,..., 1is
a random variable. It also transprires, after a fairly obvious argument,

that if £ = ).

r=1 TPp> then necessarily P{f < =} = 1.

} if we can
x

We are thus in a position to apply Theorem A to {Z
find a suitable parallel to the triviality-avoiding conditions A(1),
(ii). To this end, it is helpful at this point to introduce the station-
ary distribution {wv}, say, v =1,2,..., over the omens of the posi-
tive recurrent guiding chain. It is well known that this distribution
has the property that w, > 0 for all v. Suppose A(V,y(V)) is any

event defined by a random omen V and the corresponding random variable

y(V). Then we shall write

0

Plav,y(M} = ] w PlA(V,y(M)].
v=1
Thus, if V, were assigned the stationary distribution {wv} instead

of being fixed at i, then ‘P{A(V,y(V))} would be the stationary prob-
ability of the event A(Vn,y(Vn)). Similarly, if £(V,y(V)) is any

Borel function of the omen V and y(V), then we write



Er(v,y(V)) = ] w BE(v,y(V)
v=0
for the stationary expectation of f(Vn,y(Vn)). We can now introduce

the following conditions on the BPME:

B(1)  Plpyy(N) <1} =1

B(ii) Plpy(y(M)) + p (y(V)) < 1} > 0.

Because W, > 0 for all v, it will be seen that the above conditions
prevent the same trivial situations for the BPME as did A(i), (ii) for
the BPRE. In particular, if the BPME satisfies B(i), (ii), it is easy

to see that the BPRE {Z satisfies A(i), (ii). We now prove:

nk}

]lﬁﬂﬂﬂﬂﬂj&;l- Suppose that B(i), (ii) hold and that E|£Og£(y(v))| < oo,

Then it is necessary and sufficient for immortality of the BPME that the

following conditions both hold

D(i) € 4Log &(y(V)) > O
D(ii) For some initial omen 1,

E Log [1 - <I>(i)(0)‘] > = =,

where Q(i)(s) is defined with reference to i-cycles as explained above.

EBQQE_l It is apparent that the BPME {Zn} is immortal if and only if
the BPRE {an} is immortal. Thus we can deduce from Theorem A neces-
sary and sufficient conditions for immortality of the BPME. Condition

C(ii) translates directly into D(ii). To see that the other conditions

translate as claimed, we prove:



LﬁﬂEEL24l¢_ If we define the random variable

l—®(i)(s)
1-s

(1]
|

= 1lim
s + 1

and if we assume that &|Loge(y(V))| < = then: (a) E|Logz| < =

and: (b) E Log = = l/u, € Log e(y(M).

PROOE OF LEMMA, Let us write

p..(n) = P{Vn=j\v0=i}.

Then, since the guiding chain is positive recurrent (though not neces-

sarily aperiodic) there exists

where the {wj} constitute the stationary distribution over the omens.
0f course, when the chain s aperiodic we can replace these Cesaro
limits by ordinary ones. It is known that wj = l/Lj, where Lj is
the mean recurrence time of the epoch Qj'

Let ngl)(r) be the number of occurrences of omen j in the i-

cycle ﬂil). Then it can be shown that
°3 5 @@
(2.1) L = ¥ pn;(n)
wy r ]

r=1
a relation we shall need presently.
Suppose the initial i-cycle is <y = (i,vl,vz,...,vz_l), say, and

suppose that %o = (Qo,cl,...,cﬂ_l). Then, conditional upon ¢, the
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cj's, 0 < j < £-1, are independent random variables and cj has a dis-

tribution depending only on the omen vj (with vy = i). Let

gj = lims+l[l—¢¢j(s)]/[l—s]. Then, given Zo» by a familiar property

of iterated pgf's we have that E = glgz...gz_l and that
£-1
Log £ = ) Kogéj,
3=1
£-1
[Logs| < ] |Logt,]|
i=1
Thus, if co = W(i) we see that
r
(2.2) E{ﬂogslco=n£i)} = ) ngi)(r)Eﬂoga(y(j))
j=1
- _ (@D (i) .
(2.3) E{|LogZ|[co=n '} < ] 0 (0E[Logey(N] -
j=1
From (2.3) we infer that
Eleogs] < ¥ ) pil)n§l)(r)E|£09£(y(j))|
j=1 r=1

1
= €[Logt(y ()| .

i
Since wy > 0, it is clear that (a) is proved. To prove (b), we merely
repeat on (2.2) the argument we have used on (2.3) and appeal to the ab-
solute convergence we have now proved to justify the reversal of the

double summation.
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We now make some observations on Theorem 2.1.

Observation 1. The theorem makes no reference to ZO’ the initial

number of particles, which is merely supposed to be a (finite) strictly
positive integer. This is reasonable because, from the theory of the
BPRE, we know that the BPRE is immortal if and only if it is so for the
special case ZO = 1. Thus, since the BPME is immortal if and only if
the BPRE {an} is immortal, then the BPME is immortal if and only if

it is so when Z0 =1,

Observation 2. Suppose v 1is any omen distinct from the initial omen

i. Since the guiding chain is irreducible positive recurrent, the omen
v will almost surely arise after a finite number of generations. Thus,
bearing Observation 1 in mind, if the BPME is mortal when it starts in
v (with any initial number of particles) it must be mortal when its

initial omen is i. We, therefore, have the following:

ggRQLLAEﬁLl&;LLlL 1f D(ii) holds for one initial omen i it holds for

any initial omen.

Observation 3. The assumption &|£og&(y(V))| < « 1is needed to justify

a number of arguments in the theory of the BPRE. Suppose however that

€ Log E(y(V)) = + o
and

€lLog E(y(V))| < =

while D(ii) is satisfied. Select a large integer A and construct a
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new "truncated" BPME from the given one as follows. If
. n
b () = ) P, (0)s
n=0
is a pgf of the given BPME then replace it by the pgf
A-1 oo
n A
wc(s) = pn(E)s + ) pn(c) s .
n=0 n=A
In other words, whenever a family size exceeds A then imagine it re-
duced by fiat to 4. If £'(y(V)) denotes a typical mean family size in

the "truncated" process then we can choose A finite, but so large that

€lLoge' (y(V) ] < =
and

€ Log £'(y(V)) > 0 .

Clearly condition D(ii) is unaffected, so the "truncated" process will

be immortal. Plainly, whatever the initial omen and ZO’ the probabil-
ity of ultimate extinction of the "truncated" process will not be less
than that of the original process. Thus the original process is immortal,

and we have:

£LE§HJJ¥§LJZL1¢2} Condition D(i) can be replaced by

D(iii) E|Log (V)| < € Kog+€(V) < + =

Theorem 2.1 and the two Corollaries 2.1.1 and 2.1.2 are the most
we have been able to achieve in the way of necessary and sufficient con-

ditions for immortality of the BPME. The obvious drawback to any
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application of these results is the checking of D(ii); presumably such

a check would be difficult. Until the counterexample described in the
next section was obtained, we devoted some considerable effort to a
search for a substitute for D(ii), one which would be easier to verify.
We are now inclined to believe that such a more amenable condition does
not exist. However, if we ask for reasonably verifiable suffictent con-
ditions for immortality, the picture is brighter and we have the

following.

ILEKH&&iJ&J&- Suppose the BPME satisfies B(i) and (ii) and that

€| Loge(y(V))| < =. Then

a) If € Log £(y(V)) < 0 the process is mortal, i.e., P{Zn >0} >0

as n -+ «;

b) If the following two conditions hold:

(2.4) € Log £(y(V)) > 0,

(2.5) € Kog[l-¢y(v)(0)] > - =,

then P{Zn > 0} tends to some strictly positive limit as n > =,

which will depend on Z0 and VO’ i.e., the BPME is immortal.

Note. As explained in Observation 3, we can again deal with the situ-~

ation where € Zog+£(y(V)) = + o, provided 8|£Og-£(y(v))| < w,

Proof. Part (a) of the theorem follows at once from Theorem 2.1. To
prove part (b) we have to show that (2.5) implies D(ii). To this end,

for each 8 ¢ © define



14

Vg(s) = 64(0) + [1-4.(0)]s .
Evidently,
(2.6) ¢e(s) < we(s), 0<s <1, 6 € O.

Furthermore,

0

vy vy @)

6. (0) + [1-¢, (0)14, (0)
1 6 ) %

1

L= [0y (©][1-0 (O]

and, by an induction argument,

k
(2.7) by (W Coonhg O)en) = 1= T [1-0g (O,

1 2 k j=1 3

for k=1,2,...

Construct a pgf ng(s) from the pgf's {we(s)} in the same way
~0
as @él%s) is constructed from the pgf's {¢e(s)} and, for ease, let
~0 . .
¥(s) stand for W%J(s) as QCDG) stands for o (s). From (2.6) it
~0 ~)
follows that
oMoy < v,

so that

120g(1-02) (0)) | = |Log(1-¥(0))].

IN

Hence, if o again denote the initial i-cycle,

Elﬂog(l—é(i)(o))|

) pii) E{lﬂog(l—w(o))||co = 1Tii)}

r=1
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- eV
- (1) @)
= 1 e, E{l ] fLogll-o, (D1[cy = 7 771,
r=1 j=0 ]
by (2.7), when we write Kii) for the length of the i-cycle nii). But
the last expression must equal
(1) 1) _ = L -
R D) ny () E|Log[1 ¢y(j)(0)]l ™ € Logl1 ¢y(v)(0)]|,
r=1 j=1

by (2.1). Thus (2.5) implies D(ii) and the theorem is proved.

Observation 4. It should be remarked that D(ii) does not imply (2.5)

and, in general, (2.5) is not necessary. The counterexample of §3
underscores this remark. However, when the guiding chain has a finite
number of omens we can show (2.5) 78 necessary, and we obtain the fol-

lowing satisfactory corollary.

(o Y 2 2.1. If the BPME satisfies B(i), and (ii) and if there are

only finitely-many omens then (2.4) and (2.5) are necessary and suffi-

cient for immortality of the BPME.

EBQQEJ We have merely to show that, when there are finitely many omens,

D(ii) implies (2.5). But it is easy to see that
(1)
¢ 0 > . 0
ORERENNG
and hence that

S (1)
E Kog[l—¢y(i)(0)] > E fLogl[l-9 0]
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Corollary 2.1.1 shows that if D(ii) holds for one omen i it holds

for all values of 1i. Thus
E £0g[1-¢, (O] > - =

for all i, and, since there are finitely many such, (2.5) must hold.
Thus the Corollary is proved.

Let An be the event {Zn > 0}. We close this section with the
proof of a theorem which shows that when the BPME is immortal An and

Vn are asymptotically independent.

IHEQBE&L;LJE- If the guiding chain is aperiodic and if P{Zn >0} »c>0

as n - =, then, for every v,

P{Zz >0, V. =v} > cw_,
n n v
where w_ = lim P{V =v}.
— Ty ne n

EBQQE, Let the improper random variable N be the least integer k

such that Zk = 0. Then, if A is fixed and large, and n > 4,

n
(2.8) P{z =0, V =v} ) PBIN=j, V_=v}

j=1

Y
o~ >

P{N,, V _=v}
] n
j=1
A A'
> Y ) Pp{N=j, V=, v_=v},
j=1 r=1

where A' 1is a second large number. But

P N=', V.= R V =v = P{N:', V.=r}P{V =v V.=r}
{N=3 PRLTIAA } 35 Yy a | ;



and, by the familiar properties of an ergodic chain, this means that,

as n > ®,
P{N=j, Vj=r, Vn=v} > va{N=j, Vj=r}.

It therefore follows from (2.8) that

A A
lim inf P{Z =0, V. =v} 2 w_ ) Y P{N=j, V,=r}
n n v 3

n->r®

j=1 r=1

If we let A' >~ » on the right, and then A > , we obtain

lim inf P{Z =0, V. =v} = w_ P{N < =}
n n A
n > «
= wv(l - c).
Hence
(2.9) lim sup P{Z =0, V =v} < w_c.
n n v

n-—>®

However, since P{Zn > 0} ¥, from the equation

[e ]

p{z >0} = ) P{z >0, V_=k}
n n n
k=1
we may infer that for any large fixed A4,

A
¢ < ) P{z >0, V_=k} + P{V >A}.
n n n
k=1

Thus, from (2.9), which is true for all v, for any fixed £ < A

A o
c = z oy + llm»lzf P{Zn>0, Vn=£} + ) Wy s
k=1 o =0+1

k#L



and this implies, since 2:=1 Wy = 1, that

[.¢]

lim inf P{z >0, V =} = cup + (1-0) ) w -

n > x

k=A+1

Now let A - «» and we infer that, for any omen £,

(2.10) lim inf P{Zn>0, Vn=£} z cwp.

n > ®

The theorem follows from (2.9) and (2.10).

A similar theorem will hold in the periodic case; its proof will

differ little from the above.

18
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3. Some important counterexamples.

The conditions for immortality of the BPME in Theorem 2.1 do not in-
volve the transition probabilities (pij)’ but only the numbers {wj},
which, when the guiding chain is aperiodic, constitute the unique sta-
tionary distribution of the guiding chain. Bearing this observation in
mind, and comparing Theorem 2.1 with Theorem A, one is tempted to con-
jecture that there are necessary and sufficient conditions for immor-
tality of the BPME which involve the transition matrix ||pij|| only
through the numbers {wj}. In this section, we shall show that such a
conjecture is false. We shall construct two BPME's which are identical
in all respects except for their guiding chains. 1In each case, the
guiding chain is aperiodic and, what is important, they have identiecal
stationary distributions {wj}. However, one of these BPME's is mortal,
the other immortal.

Therefore, we are forced to conclude that any necessary and suf-
ficient condition for immortality of the BPME must involve more specific
information about the matrix ||Pijll than is contained in the station-
ary distribution {wj} alone.

We find the existence of these two BPME's somewhat surprising.

The long-term averages of occurrence of the various pgf's of family
size are the same in each process, but in some strange way it is the
pattern of these occurrences that is crucial.

For convenient reference, we shall refer to these two processes as
the ladder process and the mock process, the choice of names having been

suggested by their particular constructions.



Ladder Process.

consisting of the positive integers and with a transition probability

matrix of the form

o

The probabilities

(3.1)

l—rl ry 0 0
= l—r2 0 r, 0
l—r3 0 0 T,
{ri} are defined by the equations
1 - r, =
rl(l—rz) =
rlrz(l—r3) =
r,r, ... rn_l(1~rn) =

Let {V 1}
m

be a Markov chain on the state space

c
c/2

c/3

c/n

3

3

3

b

20

where c¢ = 1/(2:=l l/n3). Adding the first n equations in (3.1), we

obtain

so that

(3.2)

Since the right-hand side of (3.2) is strictly positive for all n,

follows that

r,
1

>0

=
~ B

l1~-xr,r,...Tr = C

for all

i.

[N
Il

[ 0]

- ¢ 7

i=n+1

1/1

1/1i

3

it

From the equations (3.1), it follows
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that l—ri > 0 for all i. Hence 0 < r, < 1 for all i, so that

P is indeed a transition probability matrix.

~

We now want to define a pure BPME with {Vm} as the guiding chain.

We shall assume that V0 = 1 and, for notational convenience, shall

drop the superscript denoting the initial omen. If ™ represents the

l-cycle {1,2,...,n-1}, then

- - 3 -
(3.3) P, = rlrz...rn_l(l—rn) = ¢/n°, =n=1,2,...

The pgf ¢n(s) determined by omen n 1is defined by

1l
—

s if n

¢n(S) =

- . A
(1-e n) + e P n’ if n

il

2,3...

where, with {x} denoting the greatest integer in x+1,
A = (2e™eog2}. Thus ¢1(D) =1 and ¢! (1) = e 2™ p0g2}, n 2 2,

so that ¢$(l) >1 for n =2 and
¢;(1) ~ 2el0g2 as n > o,

Furthermore, if @n(s) is defined by

Qn(S) = ¢1(¢2(---¢n(5)..-)),
we have
n
ot =TT e I(2e p0g2y
j=2

from which it follows that

ﬂog@é(l) ~ (n-1)£og(2efog2), as n > .



Hence, using (3.3), we see that
pnﬁog®;(l) ~ c(n—l)ﬁOg(ZeEOgZ)/nB, as n > o,

The series z:=l pn£0g®;(l) therefore converges; its sum is clearly
positive.

If for each positive integer n, we define

(1-5e~ (PTD),y *n ,

yn =
then
Log v, = An Kog(l—%e_(m-l))
< -1 e—(n+l)
“"n
< - Zfog 2.

Hence for all n, Yo < %. Using this inequality, we see that for

n>2,

A
- -
n e (n+l)) n

-
~
[
S
|
~
'—l
1
o
|
3
~
+
()

1

Since ¢n(0) < 1—%e_n, we obtain

0, (85C0n 8 (0)...))

-n

< 0y(yCa0 (5T L))

N ORI S e e D WD

n~-2
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<
< 4,1k )
< 1 - %e_z.

Hence
2 (0) = 406,Cug (0).00))
= 4, (65( 08 (0)..2))
< 1";2/9—2 ’
so that

Kog(l—@n(O)) > Kog%e_z ,

and, consequently,

[e o]

I b Log(1-o_(0)) > Logke > > -,

n=1
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It therefore follows from Theorem A that the ladder process is immortal.

If {wn} is the stationary distribution of the guiding chain

{v_}, then
m

0 oo

IS
I

n z pi/ z ipi

i=n i=1

oo

6 3
= — 1/4 R
TT2 z /1

1=n

since P; = c/i3 and thus z:=1 ipi = ﬂ2C/6. We note here, for later
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reference, that wy > %. Furthermore,

e o]

. 6 —3d _ 3
“n T T2 ¥ &= m oo
™ ™ N
n
so that
w Log(1-¢_(0)) ~ - —
n n 2 ’
T n
and therefore
) wlog(l-¢ (0)) = == .

=1

Mock Process. For this process, the guiding chain {Va} is de-
fined as a Markov chain on the state space consisting of the positive

integers and with a transition probability matrix of the form

ay a, cen a T
ﬁ - 1 0 0
1 0 - 0 .
We again assume that VO = 1; the l-cycles in this case may be
represented by my s {1} and M= {i1,n}, n=2,3,... . The probability

P associated with the n-th l-cycle is then given simply by

if nj(r) is the number of occurrences of omen j in s then
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In particular, then, we can choose the sequence {aj} so that the
guiding chain of the mock process has the same stationary distribution
{wj} as has the guiding chain of the ladder process. With the sequence
{aj} thereby obtained, we define a BPME with {Vﬁ} as guiding chain
by using the same sequence {¢n(s)} of pgf's as were defined in the
ladder process.

For the mock process, we have

o (s) = 6,06 (s)) = 9 (s),

since ¢l(s) = s. Thus @i(

1) =1, and for n = 2,
6;(1) = e_n{2en+1£092} ~ 2ef0g2, as n > =,

Since w_ ~ 3/n2n2, it follows that

2 2
(3.5) P, = 23, 3/m wn”

and thus Z:=l E;ﬂoggg(l) is positive and finite. Furthermore, since
Log (1-¢ (0)) = XLog (1-¢ (0)) = -nm

for n 2 2, it follows from (3.5) that

o]

Y 5; Log (1—6;(0)) = - o,

n=1

By Theorem A, the particular mock process we have considered is mortal.
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