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Abstract

This is a review on brane effective actions, their symmetries and some of their applications.
Its first part covers the Green–Schwarz formulation of single M- and D-brane effective actions
focusing on kinematical aspects: the identification of their degrees of freedom, the importance
of world volume diffeomorphisms and kappa symmetry to achieve manifest spacetime covari-
ance and supersymmetry, and the explicit construction of such actions in arbitrary on-shell
supergravity backgrounds.

Its second part deals with applications. First, the use of kappa symmetry to determine
supersymmetric world volume solitons. This includes their explicit construction in flat and
curved backgrounds, their interpretation as Bogomol’nyi–Prasad–Sommerfield (BPS) states
carrying (topological) charges in the supersymmetry algebra and the connection between su-
persymmetry and Hamiltonian BPS bounds. When available, I emphasise the use of these
solitons as constituents in microscopic models of black holes. Second, the use of probe approx-
imations to infer about the non-trivial dynamics of strongly-coupled gauge theories using the
anti de Sitter/conformal field theory (AdS/CFT) correspondence. This includes expectation
values of Wilson loop operators, spectrum information and the general use of D-brane probes
to approximate the dynamics of systems with small number of degrees of freedom interacting
with larger systems allowing a dual gravitational description.

Its final part briefly discusses effective actions for N D-branes and M2-branes. This in-
cludes both Super-Yang-Mills theories, their higher-order corrections and partial results in
covariantising these couplings to curved backgrounds, and the more recent supersymmetric
Chern–Simons matter theories describing M2-branes using field theory, brane constructions
and 3-algebra considerations.
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1 Introduction

Branes have played a fundamental role in the main string theory developments of the last twenty
years:

1. The unification of the different perturbative string theories using duality symmetries [312,
495] relied strongly on the existence of non-perturbative supersymmetric states carrying
Ramond–Ramond (RR) charge for their first tests.

2. The discovery of D-branes as being such non-perturbative states, but still allowing a pertur-
bative description in terms of open strings [423].

3. The existence of decoupling limits in string theory providing non-perturbative formulations in
different backgrounds. This gave rise to Matrix theory [48] and the anti de Sitter/conformal
field theory (AdS/CFT) correspondence [366]. The former provides a non-perturbative for-
mulation of string theory in Minkowski spacetime and the latter in AdS Ö M spacetimes.

At a conceptual level, these developments can be phrased as follows:

1. Dualities guarantee that fundamental strings are no more fundamental than other dynamical
extended objects in the theory, called branes.

2. D-branes, a subset of the latter, are non-perturbative states1 defined as dynamical hyper-
surfaces where open strings can end. Their weakly-coupled dynamics is controlled by the
microscopic conformal field theory description of open strings satisfying Dirichlet boundary
conditions. Their spectrum contains massless gauge fields. Thus, D-branes provide a win-
dow into non-perturbative string theory that, at low energies, is governed by supersymmetric
gauge theories in different dimensions.

3. On the other hand, any source of energy interacts with gravity. Thus, if the number of
branes is large enough, one expects a closed string description of the same system. The
crucial realisations in [48] and [366] are the existence of kinematical and dynamical regimes
in which the full string theory is governed by either of these descriptions: the open or the
closed string ones.

The purpose of this review is to describe the kinematical properties characterising the super-
symmetric gauge theories emerging as brane effective field theories in string and M-theory, and
some of their important applications. In particular, I will focus on D-branes, M2-branes and
M5-branes. For a schematic representation of the review’s content, see Figure 1.

These effective theories depend on the number of branes in the system and the geometry they
probe. When a single brane is involved in the dynamics, these theories are abelian and there exists
a spacetime covariant and manifestly supersymmetric formulation, extending the Green–Schwarz
worldsheet one for the superstring. The main concepts I want to stress in this part are

a) the identification of their dynamical degrees of freedom, providing a geometrical interpreta-
tion when available,

b) the discussion of the world volume gauge symmetries required to achieve spacetime covariance
and supersymmetry. These will include world volume diffeomorphisms and kappa symmetry,

c) the description of the couplings governing the interactions in these effective actions, their
global symmetries and their interpretation in spacetime,

1 Non-perturbative in the sense that their mass goes like 1/gs, where gs is the string-coupling constant.
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6 Joan Simón

d) the connection between spacetime and world volume supersymmetry through gauge fixing,

e) the description of the regime of validity of these effective actions.

For multiple coincident branes, these theories are supersymmetric non-abelian gauge field theories.
The second main difference from the abelian set-up is the current absence of a spacetime covariant
and supersymmetric formulation, i.e., there is no known world volume diffeomorphic and kappa
invariant formulation for them. As a consequence, we do not know how to couple these degrees of
freedom to arbitrary (supersymmetric) curved backgrounds, as in the abelian case, and we must
study these on an individual background case.

The covariant abelian brane actions provide a generalisation of the standard charged particle
effective actions describing geodesic motion to branes propagating on arbitrary on-shell super-
gravity backgrounds. Thus, they offer powerful tools to study the dynamics of string/M-theory
in regimes that will be precisely described. In the second part of this review, I describe some of
their important applications. These will be split into two categories: supersymmetric world volume
solitons and dynamical aspects of the brane probe approximation. Solitons will allow me to

a) stress the technical importance of kappa symmetry in determining these configurations, link-
ing Hamiltonian methods with supersymmetry algebra considerations,

b) prove the existence of string theory Bogomol’nyi–Prasad–Sommerfield (BPS) states carrying
different (topological) charges,

c) briefly mention microscopic constituent models for certain black holes.

Regarding the dynamical applications, the intention is to provide some dynamical interpretation to
specific probe calculations appealing to the AdS/CFT correspondence [13] in two main situations

a) classical on-shell probe action calculations providing a window to strongly coupled dynamics,
spectrum and thermodynamics of non-abelian gauge theories by working with appropriate
backgrounds with suitable boundary conditions,

b) probes approximating the dynamics of small systems interacting among themselves and with
larger systems, when the latter can be reliably replaced by supergravity backgrounds.

Content of the review: I start with a very brief review of the Green–Schwarz formulation of
the superstring in Section 2. This is an attempt at presenting the main features of this formulation
since they are universal in brane effective actions. This is supposed to be a reminder for those
readers having a standard textbook knowledge of string theory, or simply as a brief motivation for
newcomers, but it is not intended to be self-contained. It also helps to set up the notation for the
rest of this review.

Section 3 is fully devoted to the kinematic construction of brane effective actions. After describ-
ing the general string theory set-up where these considerations apply, it continues in Section 3.1
with the identification of the relevant dynamical degrees of freedom. This is done using open
string considerations, constraints from world volume supersymmetry in p+ 1 dimensions and the
analysis of Goldstone mode in supergravity. A second goal in Section 3.1 is to convey the idea
that spacetime covariance and manifest supersymmetry will require these effective actions to be
both diffeomorphic and kappa symmetry invariant, where at this stage the latter symmetry is just
conjectured, based on our previous world sheet considerations and counting of on-shell degrees of
freedom. As a warm-up exercise, in Section 3.2, the bosonic truncations of these effective actions
are constructed, focusing on diffeomorphism invariance, spacetime covariance, physical considera-
tions and a set of non-trivial string theory duality checks that are carried in Section 3.3. Then, I
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Figure 1: Layout of the main relations covered in this review.

proceed to discuss the explicit construction of supersymmetric brane effective actions propagating
in a fixed Minkowski spacetime in Section 3.4. This has the virtue of being explicit and provides a
bridge towards the more technical and abstract, but also more geometrical, superspace formalism,
which provides the appropriate venue to covariantise the results in this particular background to
couple the brane degrees of freedom to arbitrary curved backgrounds in Section 3.5. The main
result of the latter is that kappa symmetry invariance is achieved whenever the background is
an on-shell supergravity background. After introducing the effective actions, I discuss both their
global bosonic and fermionic symmetries in Section 3.6, emphasising the difference between space-
time and world volume (super)symmetry algebras, before and after gauge fixing world volume
diffeomorphisms and kappa symmetry. Last, but not least, I include a discussion on the regime of
validity of these effective theories in Section 3.7.

Section 4 develops the general formalism to study supersymmetric bosonic world volume soli-
tons. It is proven in Section 4.1 that any such configuration must satisfy the kappa symmetry
preserving condition (215). Reviewing the Hamiltonian formulation of these brane effective actions
in 4.2, allows me to establish a link between supersymmetry, kappa symmetry, supersymmetry al-
gebra bounds and their field theory realisations in terms of Hamiltonian BPS bounds in the space
of bosonic configurations of these theories. The section finishes connecting these physical concepts
to the mathematical notion of calibrations, and their generalisation, in Section 4.3.

In Section 5, I apply the previous formalism in many different examples, starting with vacuum
infinite branes, and ranging from BIon configurations, branes within branes, giant gravitons, baryon
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vertex configurations and supertubes. As an outcome of these results, I emphasise the importance
of some of these in constituent models of black holes.

In Section 6, more dynamical applications of brane effective actions are considered. Here, the
reader will be briefly exposed to the reinterpretation of certain on-shell classical brane action cal-
culations in specific curved backgrounds and with appropriate boundary conditions, as holographic
duals of strongly-coupled gauge theory observables, the existence and properties of the spectrum of
these theories, both in the vacuum or in a thermal state, and including their non-relativistic limits.
This is intended to be an illustration of the power of the probe approximation technique, rather
than a self-contained review of these applications, which lies beyond the scope of these notes. I
provide relevant references to excellent reviews covering the material highlighted here in a more
exhaustive and pedagogical way.

In Section 7, I summarise the main kinematical facts regarding the non-abelian description of N
D-branes and M2-branes. Regarding D-branes, this includes an introduction to super-Yang–Mills
theories in p+ 1 dimensions, a summary of statements regarding higher-order corrections in these
effective actions and the more relevant results and difficulties regarding the attempts to covariantise
these couplings to arbitrary curved backgrounds. Regarding M2-branes, I briefly review the more
recent supersymmetric Chern–Simons matter theories describing their low energy dynamics, using
field theory, 3-algebra and brane construction considerations. The latter provides an explicit
example of the geometrisation of supersymmetric field theories provided by brane physics.

The review closes with a brief discussion on some of the topics not covered in this review
in Section 8. This includes brief descriptions and references to the superembedding approach to
brane effective actions, the description of NS5-branes and KK-monopoles, non-relatistivistic kappa
symmetry invariant brane actions, blackfolds or the prospects to achieve a formulation for multiple
M5-branes.

In appendices, I provide a brief but self-contained introduction to the superspace formulation
of the relevant supergravity theories discussed in this review, describing the explicit constraints
required to match the on-shell standard component formulation of these theories. I also include
some useful tools to discuss the supersymmetry of AdS spaces and spheres, by embedding them as
surfaces in higher-dimensional flat spaces. I establish a one-to-one map between the geometrical
Killing spinors in AdS and spheres and the covariantly-constant Killing spinors in their embedding
flat spaces.

Living Reviews in Relativity
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2 The Green–Schwarz Superstring: A Brief Motivation

The purpose of this section is to briefly review the Green–Schwarz (GS) formulation of the su-
perstring. This is not done in a self-contained way, but rather as a very swift presentation of the
features that will turn out to be universal in the formulation of brane effective actions.

There exist two distinct formulations for the (super)string:

1. The worldsheet supersymmetry formulation, called the Ramond–Neveu–Schwarz (RNS) for-
mulation2, where supersymmetry in 1+1 dimensions is manifest [432, 404].

2. The GS formulation, where spacetime supersymmetry is manifest [256, 257, 258].

The RNS formulation describes a 1+1 dimensional supersymmetric field theory with degrees
of freedom transforming under certain representations of some internal symmetry group. After
quantisation, its spectrum turns out to be arranged into supersymmetry multiplets of the internal
manifold, which is identified with spacetime itself. This formulation has two main disadvantages:
the symmetry in the spectrum is not manifest and its extension to curved spacetime backgrounds
is not obvious due to the lack of spacetime covariance.

The GS formulation is based on spacetime supersymmetry as its guiding symmetry principle.
It allows a covariant extension to curved backgrounds through the existence of an extra fermionic
gauge symmetry, kappa symmetry, that is universally linked to spacetime covariance and supersym-
metry, as I will review below and in Sections 3 and 4. Unfortunately, its quantisation is much more
challenging. The first volume of the Green, Schwarz and Witten book [260] provides an excellent
presentation of both these formulations. Below, I just review its bosonic truncation, construct
its supersymmetric extension in Minkowski spacetime, and conclude with an extension to curved
backgrounds.

Bosonic string: The bosonic GS string action is an extension of the covariant particle action
describing geodesic propagation in a fixed curved spacetime with metric gmn

Sparticle = −m
∫
dτ

√
−ẊmẊngmn(X). (1)

The latter is a one-dimensional diffeomorphic invariant action equaling the physical length of the
particle trajectory times its mass m. Its degrees of freedom Xm(τ) are the set of maps describing
the embedding of the trajectory with affine parameter τ into spacetime, i.e., the local coordinates
xm of the spacetime manifold become dynamical fields Xm(τ) on the world line. Diffeomorphisms
correspond to the physical freedom in reparameterising the trajectory.

The bosonic string action equals its tension Tf times its area

Sstring = −Tf
∫
d2σ

√
− detG. (2)

This is the Nambu–Goto (NG) action [402, 249]: a 1+ 1 dimensional field theory with coordinates
σµ µ = 0, 1 describing the propagation of a Lorentzian worldsheet, through the set of embeddings
Xm(σ) m = 0, 1 . . . d − 1, in a fixed d-dimensional Lorentzian spacetime with metric gmn(X).
Notice, this is achieved by computing the determinant of the pullback Gµν of the spacetime metric
into the worldsheet

Gµν = ∂µX
m∂νX

n gmn(X). (3)

2 The discovery of the RNS model of interacting bosons and fermions in d = 10 critical dimensions is due to
joining the results of the original papers [432, 404]. This was developed further in [405, 232].
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Thus, it is a nonlinear interacting theory in 1+1 dimensions. Furthermore, it is spacetime covari-
ant, invariant under two-dimensional diffeomorphisms and its degrees of freedom {Xm} are scalars
in two dimensions, but transform as a vector in d-dimensions.

Just as point particles can be charged under gauge fields, strings can be charged under 2-forms.
The coupling to this extra field is minimal, as corresponds to an electrically-charged object, and
is described by a Wess–Zumino (WZ) term

S = Qf

∫
B(2), (4)

where the charge density Qf was introduced and B stands for the pullback of the d-dimensional
bulk 2-form B(2), i.e.,

B(2) =
1

2
∂µX

m∂νX
nBmn(X) dσµ ∧ dσν . (5)

Thus, the total bosonic action is:

Sstring = −Tf
∫
d2σ

√
− detG +Qf

∫
B(2). (6)

Notice the extra coupling preserves worldsheet diffeomorphism invariance and spacetime covari-
ance. In the string theory context, this effective action describes the propagation of a bosonic
string in a closed string background made of a condensate of massless modes (gravitons and Neveu–
Schwarz Neveu–Schwarz (NS-NS) 2-form B2(X)). In that case,

Tf = Qf =
1

2πα′ =
1

2π`2s
, (7)

where `s stands for the length of the fundamental string.
For completeness, let me stress that at the classical level, the dynamics of the background

fields (couplings) is not specified. Quantum mechanically, the consistency of the interacting theory
defined in Eq. (6) requires the vanishing of the beta functions of the general nonlinear sigma models
obtained by expanding the action around a classical configuration when dealing with the quantum
path integral. The vanishing of these beta functions requires the background to solve a set of
equations that are equivalent to Einstein’s equations coupled to an antisymmetric tensor3. This is
illustrated in Figure 2.

Supersymmetric extension: The addition of extra internal degrees of freedom to overcome the
existence of a tachyon and the absence of fermions in the bosonic string spectrum leads to super-
symmetry. Thus, besides the spacetime vector {Xm}, a set of 1+ 1 scalars fields θα transforming
as a spinor under the bulk (internal) Lorentz symmetry SO(1, d− 1) is included.

Instead of providing the answer directly, it is instructive to go over the explicit construction,
following [260]. Motivated by the structure appearing in supersymmetric field theories, one looks
for an action invariant under the supersymmetry transformations

δθA = εA , δXm = ε̄AΓmθA , (8)

where εA is a constant spacetime spinor, ε̄A = εAtC with C the charge conjugation matrix and
the label A counts the amount of independent supersymmetries A = 1, 2, . . .N . It is important to
stress that both the dimension d of the spacetime and the spinor representation are arbitrary at
this stage.

3 The calculations of beta functions in general nonlinear sigma models were done in [17, 215]. For a general
discussion of string theory in curved backgrounds see [124] or the discussions in books [260, 425].
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In analogy with the covariant superparticle [118], consider the action

S1 = −Tf
2

∫
d2σ

√
hhµνΠµ ·Πν . (9)

This uses the Polyakov form of the action4 involving an auxiliary two-dimensional metric hµν . Πµ

stands for the components of the supersymmetric invariant 1-forms

Πm = dXm + θ̄AΓmdθA, (10)

whereas Πµ ·Πν ≡ Πm
µ Πn

νηmn.
Even though the constructed action is supersymmetric and 2d diffeomorphic invariant, the

number of on-shell bosonic and fermionic degrees of freedom does not generically match. To re-
produce the supersymmetry in the spectrum derived from the quantisation of the RNS formulation,
one must achieve such matching.

The current standard resolution to this situation is the addition of an extra term to the action
while still preserving supersymmetry. This extra term can be viewed as an extension of the
bosonic WZ coupling (4), a point I shall return to when geometrically reinterpreting the action so
obtained [294]. Following [260], it turns out the extra term is

S2 = Tf

∫
d2σ

(
−εµν∂µXm

(
θ̄1Γm∂νθ

1 − θ̄2Γm∂νθ
2
)
+ εµν θ̄1Γm∂µθ

1θ̄2Γm∂νθ
2
)
. (11)

Invariance under global supersymmetry requires, up to total derivatives, the identity

δεS2 = 0 ⇐⇒ 2ε̄Γmψ[1ψ̄2Γ
mψ3] = 0 , (12)

for (ψ1, ψ2, ψ3) = (θ, θ′ = ∂θ/∂σ1, θ̇ = ∂θ/∂σ0) . This condition restricts the number of spacetime
dimensions d and the spinor representation to be

❼ d = 3 and θ is Majorana;

❼ d = 4 and θ is Majorana or Weyl;

❼ d = 6 and θ is Weyl;

❼ d = 10 and θ is Majorana–Weyl.

Let us focus on the last case, which is well known to match the superspace formulation of N = 2
type IIA/B5 Despite having matched the spacetime dimension and the spinor representation by
the requirement of spacetime supersymmetry under the addition of the extra action term (11), the
number of on-shell bosonic and fermionic degrees of freedom remains unequal. Indeed, Majorana–
Weyl fermions in d = 10 have 16 real components, which get reduced to 8 on-shell components
by Dirac’s equation. The extra N = 2 gives rise to a total of 16 on-shell fermionic degrees of
freedom, differing from the 8 bosonic ones coming from the 10-dimensional vector representation
after gauge-fixing worldsheet reparameterisations.

The missing ingredient in the above discussion is the existence of an additional fermionic gauge
symmetry, kappa symmetry, responsible for the removal of half of the fermionic degrees of freedom.6

4 Polyakov used the formulation of classical string theory in terms of an auxiliary world sheet metric [116, 176]
to develop the modern approach to the path integral formulation of string theory in [427, 428].

5 Recently, it was pointed out in [390] that there may exist quantum-mechanically consistent superstrings in
d = 3. It remains to be seen whether this is the case.

6 The existence of kappa symmetry as a fermionic gauge symmetry was first pointed out in superparticle actions
in [169, 170, 451, 171]. Though the term kappa symmetry was not used in these references, since it was later coined
by Townsend, the importance of WZ terms for its existence is already stated in these original works.
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This feature fixes the fermionic nature of the local parameter κ(σ) and requires θ to transform by
some projector operator

δκθ = (✶+ Γκ)κ, with Γ2
κ = ✶. (13)

Here Γκ is a Clifford-valued matrix depending non-trivially on {Xm, θ}. The existence of such
transformation is proven in [260].

The purpose of going over this explicit construction is to reinterpret the final action in terms
of a more geometrical structure that will be playing an important role in Section 3.1. In more
modern language, one interprets S1+S2 as the action describing a superstring propagating in super-
Poincaré [259]. The latter is an example of a supermanifold with local coordinates ZM = {Xm, θα}.
It uses the analogue of the superfield formalism in global supersymmetric field theories but in
supergravity, i.e., with local supersymmetry. The superstring couples to two of these superfields,
the supervielbein EA

M (Z) and the NS-NS 2-form superfield BAC , where the index M stands for
curved superspace indices, i.e., M = {m, α}, and the index A for tangent flat superspace indices,
i.e., A = {a, α}7.

In the case of super-Poincaré, the components EA
M are explicitly given by

Ea
m = δam , E

α
α = δ

α
α , E

α
m = 0 , Ea

α =
(
θ̄Γa

)
α
δ
α
α . (14)

These objects allow us to reinterpret the action S1 + S2 in terms of the pullbacks of these bulk
objects into the worldsheet extending the bosonic construction

Gµν = Πµ ·Πν = ∂µZ
MEa

M (Z)∂νZ
NEb

N (Z)ηab ,

Bµν = ∂µZ
MEA

M (Z)∂νZ
NEC

N (Z)BAC(Z). (15)

Notice this allows us to write both Eqs. (9) and (11) in terms of the couplings defined in Eq. (15).
This geometric reinterpretation is reassuring. If we work in standard supergravity components,
Minkowski is an on-shell solution with metric gmn = ηmn, constant dilaton and vanishing gauge
potentials, dilatino and gravitino. If we work in superspace, super-Poincaré is a solution to the
superspace constraints having non-trivial fermionic components. The ones appearing in the NS-NS
2-form gauge potential are the ones responsible for the WZ term, as it should for an object, the
superstring, that is minimally coupled to this bulk massless field.

It is also remarkable to point out that contrary to the bosonic string, where there was no a priori
reason why the string tension Tf should be equal to the charge density Qf , its supersymmetric and
kappa invariant extension fixes the relation Tf = Qf . This will turn out to be a general feature
in supersymmetric effective actions describing the dynamics of supersymmetric states in string
theory.

Curved background extension: One of the spins of the superspace reinterpretation in Eq. (15)
is that it allows its formal extension to any N = 2 type IIA/B curved background [263]

S = − 1

2πα′

∫
d2σ
√
− detGµν +

1

2πα′

∫
B(2). (16)

The dependence on the background is encoded both in the superfields EA
M and BAC .

The counting of degrees of freedom is not different from the one done for super-Poincaré. Thus,
the GS superstring (16) still requires to be kappa symmetry invariant to have an on-shell matching
of bosonic and fermionic degrees of freedom. It was shown in [89] that the effective action (16) is
kappa invariant only when the N = 2 d = 10 type IIA/B background is on-shell8. In other words,
superstrings can only propagate in properly on-shell backgrounds in the same theory.

7 For a proper definition of these superfields, see Appendix A.1.
8 See Appendix A.1 for a better discussion of what this means.
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curved background

on-shell supergravity

RNS superstring GS superstring

vanishing β function

kappa symmetry
invariance

superfield constraints

Weyl
invariance

quantum consistency spacetime supersymmetry

Figure 2: Different superstring formulations require curved backgrounds to be on-shell.

It is important to stress that in the GS formulation, kappa symmetry invariance requires the
background fields to be on-shell, whereas in the RNS formulation, it is quantum Weyl invariance
that ensures this self-consistency condition, as illustrated in Figure 2.

The purpose of Section 3.1 is to explain how these ideas and necessary symmetry structures
to achieve a manifestly spacetime covariant and supersymmetric invariant formulation extend to
different half-BPS branes in string theory. More precisely, to M2-branes, M5-branes and D-branes.
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3 Brane Effective Actions

This review is concerned with the dynamics of low energy string theory, or M-theory, in the presence
of brane degrees of freedom in a regime in which the full string (M-) theory effective action9 reduces
to

S ≈ SSUGRA + Sbrane. (17)

The first term in the effective action describes the gravitational sector. It corresponds to N =
2 d = 10 type IIA/IIB supergravity or N = 1 d = 11 supergravity, for the systems discussed in this
review. The second term describes both the brane excitations and their interactions with gravity.

More specifically, I will be concerned with the kinematical properties characterising Sbrane when
the latter describes a single brane, though in Section 7, the extension to many branes will also be
briefly discussed. From the perspective of full string theory, it is important to establish the regime
in which the full dynamics is governed by Sbrane. This requires one to freeze the gravitational
sector to its classical on-shell description and to neglect its backreaction into spacetime. Thus, one
requires

|T background
mn | � |T brane

mn |, (18)

where Tmn stands for the energy-momentum tensor. This is a generalisation of the argument used
in particle physics by which one decouples gravity, treating Newton’s constant as effectively zero.

Condition (18) is definitely necessary, but not sufficient, to guarantee the reliability of Sbrane. I
will postpone a more thorough discussion of this important point till Section 3.7, once the explicit
details on the effective actions and the assumptions made for their derivations have been spelled
out in Sections 3.1 – 3.6.

Below, I focus on the identification of the degrees of freedom and symmetries to describe brane
physics. The distinction between world volume and spacetime symmetries and the preservation of
spacetime covariance and supersymmetry will lead us, once again, to the necessity and existence
of kappa symmetry.

3.1 Degrees of freedom and world volume supersymmetry

In this section, I focus on the identification of the physical degrees of freedom describing a single
brane, the constraints derived from world volume symmetries to describe their interactions and the
necessity to introduce extra world volume gauge symmetries to achieve spacetime supersymmetry
and covariance. I will first discuss these for Dp-branes, which allow a perturbative quantum open
string description, and continue with M2 and M5-branes, applying the lessons learnt from strings
and D-branes.

Dp-branes: Dp-branes are p + 1 dimensional hypersurfaces Σp+1 where open strings can end.
One of the greatest developments in string theory came from the realisation that these objects are
dynamical, carry Ramond–Ramond (RR) charge and allow a perturbative worldsheet description
in terms of open strings satisfying Dirichlet boundary conditions in p + 1 dimensions [423].The
quantisation of open strings with such boundary conditions propagating in 10-dimensional R1,9

Minkowski spacetime gives rise to a perturbative spectrum containing a set of massless states that
fit into an abelian vector supermultiplet of the super-Poincaré group in p+1 dimensions [425, 426].
Thus, any physical process involving open strings at low enough energy, E

√
α′ � 1, and at weak

coupling, gs � 1, should be captured by an effective supersymmetric abelian gauge theory in p+1
dimensions.

9 See [490, 421] for reviews and textbooks on what an effective field theory is and what the principles behind
them are.
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Such vector supermultiplets are described in terms of U(1) gauge theories to achieve a manifestly
ISO(1, p) invariance, as is customary in gauge theories. In other words, the formulation includes
additional polarisations, which are non-physical and can be gauged away. Notice the full ISO(1, 9)
of the vacuum is broken by the presence of the Dp-brane itself. This is manifestly reflected in
the spectrum. Any attempt to achieve a spacetime supersymmetric covariant action invariant
under the full ISO(1, 9) will require the introduction of both extra degrees of freedom and gauge
symmetries. This is the final goal of the GS formulation of these effective actions.

To argue this, analyse the field content of these vector supermultiplets. These include a set of
9−p scalar fields XI and a gauge field V1 in p+1 dimensions, describing p−1 physical polarisations.
Thus, the total number of massless bosonic degrees of freedom is

Dp-brane: 10− (p+ 1) + (p− 1) = 8 .

Notice the number of world volume scalars XI matches the number of transverse translations
broken by the Dp-brane and transform as a vector under the transverse Lorentz subgroup SO(9−
p), which becomes an internal symmetry group. Geometrically, these modes XI(σ) describe the
transverse excitations of the brane. This phenomena is rather universal in brane physics and
constitutes the essence in the geometrisation of field theories provided by branes in string theory.

Since Dp-branes propagate in 10 dimensions, any covariant formalism must involve a set of 10
scalar fields Xm(σ), transforming like a vector under the full Lorentz group SO(1, 9). This is the
same situation we encountered for the superstring. As such, it should be clear the extra bosonic
gauge symmetries required to remove these extra scalar fields are p+1 dimensional diffeomorphisms
describing the freedom in embedding Σp+1 in R

1,9. Physically, the Dirichlet boundary conditions
used in the open string description did fix these diffeomorphisms, since they encode the brane
location in R

1,9.
What about the fermionic sector? The discussion here is entirely analogous to the superstring

one. This is because spacetime supersymmetry forces us to work with two copies of Majorana–Weyl
spinors in 10 dimensions. Thus, matching the eight on-shell bosonic degrees of freedom requires
the effective action to be invariant under a new fermionic gauge symmetry. I will refer to this as
kappa symmetry, since it will share all the characteristics of the latter for the superstring.

M-branes: M-branes do not have a perturbative quantum formulation. Thus, one must appeal
to alternative arguments to identify the relevant degrees of freedom governing their effective actions
at low energies. In this subsection, I will appeal to the constraints derived from the existence of
supermultiplets in p+1 dimensions satisfying the geometrical property that their number of scalar
fields matches the number of transverse dimensions to the M-brane, extending the notion already
discussed for the superstring and Dp-branes. Later, I shall review more stringy arguments to check
the conclusions obtained below, such as consistency with string/M theory dualities.

Let us start with the more geometrical case of an M2-brane. This is a 2+1 surface propagating
in d = 1 + 10 dimensions. One expects the massless fields to include 8 scalar fields in the bosonic
sector describing the M2-brane transverse excitations. Interestingly, this is precisely the bosonic
content of a scalar supermultiplet in d = 1+ 2 dimensions. Since the GS formulation also fits into
a scalar supermultiplet in d = 1 + 1 dimensions for a long string, it is natural to expect this is
the right supermultiplet for an M2-brane. To achieve spacetime covariance, one must increase the
number of scalar fields to eleven Xm(σ), transforming as a vector under SO(1, 10) by considering
a d = 1 + 2 dimensional diffeomorphic invariant action. If this holds, how do fermions work out?

First, target space covariance requires the background to allow a superspace formulation in d =
1 + 10 dimensions10. Such formulation involves a single copy of d = 11 Majorana fermions, which
gives rise to a pair of d = 10 Majorana–Weyl fermions, matching the superspace formulation for

10 I will introduce this notion more thoroughly in Section 3.4 and Appendix A.
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the superstring described in Section 2. d = 11 Majorana spinors have 2[11/2] = 32 real components,
which are further reduced to 16 due to the Dirac equation. Thus, a further gauge symmetry is
required to remove half of these fermionic degrees of freedom, matching the eight bosonic on-shell
ones. Once again, kappa symmetry will be required to achieve this goal.

What about the M5-brane? The fermionic discussion is equivalent to the M2-brane one. The
bosonic one must contain a new ingredient. Indeed, geometrically, there are only five scalars
describing the transverse M5-brane excitations. These do not match the eight on-shell fermionic
degrees of freedom. This is reassuring because there is no scalar supermultiplet in d = 6 dimensions
with such number of scalars. Interestingly, there exists a tensor supermultiplet in d = 6 dimen-
sions whose field content involves five scalars and a two-form gauge potential V2 with self-dual
field strength. The latter involves 6-2 choose 2 physical polarisations, with self-duality reducing
these to three on-shell degrees of freedom. To keep covariance and describe the right number of
polarisations, the d = 1 + 5 theory must be invariant under U(1) gauge transformations for the
2-form gauge potential. I will later discuss how to keep covariance while satisfying the self-duality
constraint.

Brane scan: World volume supersymmetry generically constrains the low energy dynamics of
supersymmetric branes. Even though our arguments were concerned with M2, M5 and D-branes,
they clearly are of a more general applicability. This gave rise to the brane scan programme [3, 196,
193, 191]. The main idea was to classify the set of supersymmetric branes in different dimensions
by matching the number of their transverse dimensions with the number of scalar fields appearing
in the list of existent supermultiplets. For an exhaustive classification of all unitary representations
of supersymmetry with maximum spin 2, see [468]. Given the importance of scalar, vector and
tensor supermultiplets, I list below the allowed multiplets of these kinds in different dimensions
indicating the number of scalar fields in each of them [73].

Let me start with scalar supermultiplets containing X scalars in d = p + 1 dimensions, the
results being summarised in Table 1. Notice, we recover the field content of the M2-brane in d = 3
and X = 8 and of the superstring in d = 2 and X = 8.

Table 1: Scalar multiplets with X scalars in p+1 worldvolume dimensions.

p + 1 X X X X

1 1 2 4 8
2 1 2 4 8
3 1 2 4 8
4 2 4
5 4
6 4

Concerning vector supermultiplets with X scalars in d = p + 1 dimensions, the results are
summarised in Table 2. Note that the last column describes the field content of all Dp-branes,
starting from the D0-brane (p = 0) and finishing with the D9 brane (p = 9) filling in all spacetime.
Thus, the field content of all Dp-branes matches with the one corresponding to the different vector
supermultiplets in d = p + 1 dimensions. This point agrees with the open string conformal field
theory description of D branes.

Finally, there is just one interesting tensor multiplet with X = 5 scalars in six dimensions,
corresponding to the aforementioned M5 brane, among the six-dimensional tensor supermultiplets
listed in Table 3.
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Table 2: Vector multiplets with X scalar degrees of freedom in p + 1 worldvolume dimensions.

p + 1 X X X X

1 2 3 5 9
2 1 2 4 8
3 0 1 3 7
4 0 2 6
5 1 5
6 0 4
7 3
8 2
9 1
10 0

Table 3: Tensor multiplets with X scalar degrees of freedom in p + 1 world volume dimensions.

p + 1 X X

6 1 5

Summary: All half-BPS Dp-branes, M2-branes and M5-branes are described at low energies by
effective actions written in terms of supermultiplets in the corresponding world-volume dimension.
The number of on-shell bosonic degrees of freedom is 8. Thus, the fermionic content in these
multiplets satisfies

8 =
1

4
M N , (19)

where M is the number of real components for a minimal spinor representation in D spacetime
dimensions and N the number of spacetime supersymmetry copies.

These considerations identified an N = 8 supersymmetric field theory in d = 3 dimensions
(M2 brane), N = (2, 0) supersymmetric gauge field theory in d = 6 (M5 brane) and an N = 4
supersymmetric gauge field theory in d = 4 (D3 brane), as the low energy effective field theories de-
scribing their dynamics11. The addition of interactions must be consistent with such d dimensional
supersymmetries.

By construction, an effective action written in terms of these on-shell degrees of freedom can
neither be spacetime covariant nor ISO(1, D − 1) invariant (in the particular case when branes
propagate in Minkowski, as I have assumed so far). Effective actions satisfying these two symmetry
requirements involve the addition of both extra, non-physical, bosonic and fermionic degrees of
freedom. To preserve their non-physical nature, these supersymmetric brane effective actions must
be invariant under additional gauge symmetries

❼ world volume diffeomorphisms, to gauge away the extra scalars,

❼ kappa symmetry, to gauge away the extra fermions.

3.1.1 Supergravity Goldstone modes

Branes carry energy, consequently, they gravitate. Thus, one expects to find gravitational config-
urations (solitons) carrying the same charges as branes solving the classical equations of motion

11 Here, N stands for the number of world volume supersymmetries.
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capturing the effective dynamics of the gravitational sector of the theory. The latter is the effec-
tive description provided by type IIA/B supergravity theories, describing the low energy and weak
coupling regime of closed strings, and N = 1 d = 11 supergravity. The purpose of this section
is to argue the existence of the same world-volume degrees of freedom and symmetries from the
analysis of massless fluctuations of these solitons, applying collective coordinate techniques that
are a well-known notion for solitons in standard, non-gravitational, gauge theories.

In field theory, given a soliton solving its classical equations of motion, there exists a notion of
effective action for its small excitations. At low energies, the latter will be controlled by massless
excitations, whose number matches the number of broken symmetries by the background soli-
ton [243] 12. These symmetries are global, whereas all brane solitons are on-shell configurations
in supergravity, whose relevant symmetries are local. To get some intuition for the mechanism
operating in our case, it is convenient to review the study of the moduli space of monopoles or
instantons in abelian gauge theories. The collective coordinates describing their small excitations
include not only the location of the monopole/instanton, which would match the notion of trans-
verse excitation in our discussion given the pointlike nature of these gauge theory solitons, but
also a fourth degree of freedom associated with the breaking of the gauge group [431, 288]. The
reason the latter is particularly relevant to us is because, whereas the first set of massless modes are
indeed related to the breaking of Poincaré invariance, a global symmetry in these gauge theories,
the latter has its origin on a large U(1) gauge transformation.

This last observation points out that the notion of collective coordinates can generically be
associated with large gauge transformations, and not simply with global symmetries. It is precisely
in this sense how it can be applied to gravity theories and their soliton solutions. In the string
theory context, the first work where these ideas were applied was [127] in the particular set-up of
5-brane solitons in heterotic and type II strings. It was later extended to M2-branes and M5-branes
in [332]. In this section, I follow the general discussion in [6] for the M2, M5 and D3-branes. These
brane configurations are the ones interpolating between Minkowski, at infinity, and AdS times a
sphere, near their horizons. Precisely for these cases, it was shown in [236] that the world volume
theory on these branes is a supersingleton field theory on the corresponding AdS space.

Before discussing the general strategy, let me introduce the on-shell bosonic configurations to
be analysed below. All of them are described by a non-trivial metric and a gauge field carrying
the appropriate brane charge. The multiple M2-brane solution, first found in [198], is

ds2 = U− 2
3 ηµνdx

µdxν + U
1
3 δpqdy

pdyq ,

A3 = ± 1

3!
U−1εµνρdx

µ ∧ dxν ∧ dxρ . (20)

Here, and in the following examples, xµ describe the longitudinal brane directions, i.e., µ = 0, 1, 2
for the M2-brane, whereas the transverse Cartesian coordinates are denoted by yp, p = 3, . . . 10.
The solution is invariant under ISO(1, 2)×SO(8) and is characterised by a single harmonic function
U in R

8

U = 1 +

(
R

r

)6

, r2 = δpqy
pyq. (21)

The structure for the M5-brane, first found in [273], is analogous but differs in the dimensionality
of the tangential and transverse subspaces to the brane and in the nature of its charge, electric for
the M2-brane and magnetic for the M5-brane below

ds2 = U− 1
3 ηµνdx

µdxν + U
2
3 δmndy

mdyn,

R4 = dA3 = ± 1

4!
δmn∂mUεnpqsudy

p ∧ dyq ∧ dys ∧ dys. (22)

12 The first examples of this phenomena were reported by Nambu [401] and Goldstone [242].
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In this case, µ = 0, 1 . . . , 5 and p = 6, . . . , 10. The isometry group is ISO(1, 5) × SO(5) and again
it is characterised by a single harmonic function U in R

5

U = 1 +

(
R

r

)3

, r2 = δpqy
pyq . (23)

The D3-brane, first found in [195], similarly has a non-trivial metric and self-dual five form RR
field strength

ds2 = U− 1
2 ηµνdx

µdxν + U
1
2 δmndy

mdyn,

F5 = ± 1

5!
(δmn∂mUεnpqstudy

p ∧ dyq ∧ dys ∧ dyt ∧ dyu

+5∂mU
−1εµνρσdy

m ∧ dxµ ∧ dxν ∧ dxρ ∧ dxσ), (24)

with isometry group ISO(1, 3)× SO(6). It is characterised by a single harmonic function U in R
6

U = 1 +

(
R

r

)4

, r2 = δpqy
pyq. (25)

All these brane configurations are half-BPS supersymmetric. The subset of sixteen supercharges
being preserved in each case is correlated with the choice of sign in the gauge potentials fixing
their charges. I shall reproduce this correlation in the effective brane action in Section 3.5.

Let me first sketch the argument behind the generation of massless modes in supergravity
theories, where all relevant symmetries are gauge, before discussing the specific details below.

Consider a background solution with field content ϕ
(0)
i , where i labels the field, including its tensor

character, having an isometry group G′. Assume the configuration has some fixed asymptotics
with isometry group G, so that G′ ⊂ G. The relevant large gauge transformations ξi(y

p) in our
discussion are those that act non-trivially at infinity, matching a broken global transformation
asymptotically εi, but differing otherwise in the bulk of the background geometry

lim
r→∞

ξi(y) = εi . (26)

In this way, one manages to associate a gauge transformation with a global one, only asymptotically.

The idea is then to perturb the configuration ϕ
(0)
i by such pure gauge, δξiϕi and finally introduce

some world volume dependence on the parameter εi, i.e., εi(x
µ). At that point, the transformation

δξiϕi is no longer pure gauge. Plugging the transformation in the initial action and expanding, one
can compute the first order correction to the equations of motion fixing some of the ambiguities in
the transformation by requiring the perturbed equation to correspond to a massless normalisable
mode.

In the following, I explain the origin of the different bosonic and fermionic massless modes in the
world volume supermultiplets discussed in Section 3.1 by analysing large gauge diffeomorphisms,
supersymmetry and abelian tensor gauge transformations.

Scalar modes: These are the most intuitive geometrically. They correspond to the breaking of
translations along the transverse directions to the brane. The relevant gauge symmetry is clearly
a diffeomorphism. Due to the required asymptotic behaviour, it is natural to consider εp = Us φ̄p,
where φ̄p is some constant parameter. Notice the dependence on the harmonic function guarantees
the appropriate behaviour at infinity, for any s. Dynamical fields transform under diffeomorphisms
through Lie derivatives. For instance, the metric would give rise to the pure gauge transformation

hmn = Lεg
(0)
mn . (27)
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If we allow φ̄p to arbitrarily depend on the world volume coordinates xµ, i.e., φ̄p → φp(xµ), the
perturbation hmn will no longer be pure gauge. If one computes the first-order correction to
Einstein’s equations in supergravity, including the perturbative analysis of the energy momentum
tensor, one discovers the lowest-order equation of motion satisfied by φp is

∂µ∂µφ
p = 0 , (28)

for s = −1. This corresponds to a massless mode and guarantees its normalisability when integrat-
ing the action in the directions transverse to the brane. Later, we will see that the lowest-order
contribution (in number of derivatives) to the gauge-fixed world-volume action of M2, M5 and
D3-branes in flat space is indeed described by the Klein–Gordon equation.

Fermionic modes: These must correspond to the breaking of supersymmetry. Consider the
supersymmetry transformation of the 11-dimensional gravitino Ψm

δΨm = D̃mζ , (29)

where D̃ is some non-trivial connection involving the standard spin connection and some contri-
bution from the gauge field strength. The search for massless fermionic modes leads us to consider
the transformation ζ = Us λ̄ for some constant spinor λ̄. First, one needs to ensure that such
transformation matches, asymptotically, with the supercharges preserved by the brane. Consider
the M5-brane, as an example. The preserved supersymmetries are those satisfying δΨm = 0. This
forces s = − 7

12 and fixes the six-dimensional chirality of λ̄ to be positive, i.e., λ̄+. Allowing the
latter to become an arbitrary function of the world volume coordinates λ+(x

µ), δΨm becomes
non-pure gauge. Plugging the latter into the original Rarita–Schwinger equation, the linearised
equation for the perturbation reduces to

Γµ∂µλ+ = 0 . (30)

The latter is indeed the massless Dirac equation for a chiral six-dimensional fermion. A similar
analysis holds for the M2 and D3-branes. The resulting perturbations are summarised in Table 4.

Vector modes: The spectrum of open strings with Dirichlet boundary conditions includes a
vector field. Since the origin of such massless degrees of freedom must be the breaking of some
abelian supergravity gauge symmetry, it must be the case that the degree form of the gauge
parameter must coincide with the one-form nature of the gauge field. Since this must hold for any
D-brane, the natural candidate is the abelian gauge symmetry associated with the NS-NS two-form

δB2 = dΛ1 . (31)

Proceeding as before, one considers a transformation with Λ1 = Uk V̄1 for some number k and
constant one-form V̄1. When V̄1 is allowed to depend on the world volume coordinates, the per-
turbation

δB2 = dUk ∧ V1(xµ) , (32)

becomes physical. Plugging this into the NS-NS two-form equation of motion, one derives dF = 0
where F = dV1 for both of the four-dimensional duality components, for either k = ±1. Clearly,
only k = −1 is allowed by the normalisability requirement.

Tensor modes: The presence of five transverse scalars to the M5-brane and the requirement of
world volume supersymmetry in six dimensions allowed us to identify the presence of a two-form
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potential with self-dual field strength. This must have its supergravity origin in the breaking of
the abelian gauge transformation

δA3 = dΛ2 , (33)

where indeed the gauge parameter is a two-form. Consider then Λ2 = Uk V̄2 for some number k
and constant two form V̄2. When V̄2 is allowed to depend on the world volume coordinates, the
perturbation

δA3 = dUk ∧ V2(xµ) , (34)

becomes physical. Plugging this into the A3 equation of motion, we learn that each world volume
duality component ?xF3 = ±F3 with F3 = dV2 satisfies the bulk equation of motion if dF3 = 0 for
a specific choice of k. More precisely, self-dual components require k = 1, whereas anti-self-dual
ones require k = −1. Normalisability would fix k = −1. Thus, this is the origin of the extra three
bosonic degrees of freedom forming the tensor supermultiplet in six dimensions.

The matching between supergravity Goldstone modes and the physical content of world volume
supersymmetry multiplets is illustrated in Figure 5. Below, a table presents the summary of
supergravity Goldstone modes

Table 4: Summary of supergravity Goldstone modes.

Symmetry M2 M5 D3

Reparametrisations: εm = U−1φ̄m U−1φ̄m U−1φ̄m

Local supersymmetry: ζ = U−2/3λ̄− U−7/12λ̄+ U−5/8λ̄+

Tensor gauge symmetry: Λ = U−1V̄(2) U−1V̄(1)
(?H̄ = H̄) (i?F̄ = F̄ )

where ± indices stand for the chirality of the fermionic zero modes. In particular, for the M2 brane
it describes negative eight dimensional chirality of the 11-dimensional spinor λ, while for the M5
and D3 branes, it describes positive six-dimensional and four-dimensional chirality.

Thus, using purely effective field theory techniques, one is able to derive the spectrum of
massless excitations of brane supergravity solutions. This method only provides the lowest order
contributions to their equations of motion. The approach followed in this review is to use other
perturbative and non-perturbative symmetry considerations in string theory to determine some
of the higher-order corrections to these effective actions. Our current conclusion, from a different
perspective, is that the physical content of these theories must be describable in terms of the
massless fields in this section.

3.2 Bosonic actions

After the identification of the relevant degrees of freedom and gauge symmetries governing brane
effective actions, I focus on the construction of their bosonic truncations, postponing their super-
symmetric extensions to Sections 3.4 and 3.5. The main goal below will be to couple brane degrees
of freedom to arbitrary curved backgrounds in a world volume diffeomorphic invariant way.

I shall proceed in order of increasing complexity, starting with the M2-brane effective action,
which is purely geometric, continuing with D-branes and their one form gauge potentials and
finishing with M5-branes including their self-dual three form field strength13.

13 For earlier reviews on D-brane effective actions and on M-brane interactions, see [320] and [101], respectively.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2012-3

http://www.livingreviews.org/lrr-2012-3


22 Joan Simón

Bosonic M2-brane: In the absence of world volume gauge field excitations, all brane effective
actions must satisfy two physical requirements

1. Geometrically, branes are p+ 1 hypersurfaces Σp+1 propagating in a fixed background with
metric gmn. Thus, their effective actions should account for their world volumes.

2. Physically, all branes are electrically charged under some appropriate spacetime p+ 1 gauge
form Cp+1. Thus, their effective actions should contain a minimal coupling accounting for
the brane charges.

Both requirements extend the existent effective action describing either a charged particle (p = 0)
or a string (p = 1). Thus, the universal description of the purely scalar field Xm brane degrees of
freedom must be of the form

Sp = −Tp
∫

Σp+1

dp+1σ
√
− detG +Qp

∫

Σp+1

Cp+1 , (35)

where Tp and Qp stand for the brane tension and charge density14. The first term computes the
brane world volume from the induced metric Gµν

Gµν = ∂µX
m∂νX

ngmn(X), (36)

whereas the second WZ term Cp+1 describes the pullback of the target space p + 1 gauge field
Cp+1(X) under which the brane is charged

C(p+1) =
1

(p+ 1)!
εµ1...µp+1∂µ1

Xm1 . . . ∂µp+1
Xmp+1 Cm1...mp+1

(X). (37)

At this stage, one assumes all branes propagate in a background with Lorentzian metric gmn(X)
coupled to other matter fields, such as Cp+1(X), whose dynamics are neglected in this approxi-
mation. In string theory, these background fields correspond to the bosonic truncation of the su-
pergravity multiplet and their dynamics at low energy is governed by supergravity theories. More
precisely, M2 and M5-branes propagate in d = 11 supergravity backgrounds, i.e., m,n = 0, 1, . . . 10,
and they are electrically charged under the gauge potential A3(X) and its six-form dual poten-
tial A6, respectively (see Appendix A for conventions). D-branes propagate in d = 10 type IIA/B
backgrounds and the set {Cp+1(X)} correspond to the set of RR gauge potentials in these theories,
see Eq. (523).

The relevance of the minimal charge coupling can be understood by considering the full effective
action involving both brane and gravitational degrees of freedom (17). Restricting ourselves to the
kinetic term for the target space gauge field, i.e., R = dCp+1, the combined action can be written
as ∫

MD

(
1

2
R ∧ ?R+Qpn̂ ∧ Cp+1

)
. (38)

Here MD stands for the D-dimensional spacetime, whereas n̂ is a (D − p − 1)-form whose com-
ponents are those of an epsilon tensor normal to the brane having a δ-function support on the
world volume15. Thus, the bulk equation of motion for the gauge potential Cp+1 acquires a source
term whenever a brane exists. Since the brane charge is computed as the integral of ?R over any
topological (D − p− 2)-sphere surrounding it, one obtains

∫

ΣD−p−2

?R =

∫

BD−p−1

d ? R =

∫

BD−p−1

Qpn̂ = Qp, (39)

14 Since I am not considering supersymmetric branes at this point, |Qp| = Tp is not a necessary condition.
15 This is the correct way to compute the energy momentum tensor due to the coupling of branes to gravity. The

energy carried by such a brane must be localised on its p+ 1 dimensional world volume.
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where the equation of motion was used in the last step. Thus, minimal WZ couplings do capture
the brane physical charge.

Since M2-branes do not involve any gauge field degree of freedom, the above discussion covers
all its bosonic degrees of freedom. Thus, one expects its bosonic effective action to be

SM2 = −TM2

∫
d3σ

√
− detG +QM2

∫
A3 , (40)

in analogy with the bosonic worldsheet string action. If Eq. (40) is viewed as the bosonic truncation
of a supersymmetric M2-brane, then |QM2| = TM2. Besides its manifest spacetime covariance and
its invariance under world-volume diffeomorphisms infinitesimally generated by

δξX
m = LξX

m = ξµ∂µX
m, (41)

this action is also quasi-invariant (invariant up to total derivatives) under the target space gauge
transformation δΛA3 = dΛ2 leaving N = 1 d = 11 supergravity invariant, as reviewed in Eq. (553)
of Appendix A.2. This is reassuring given that the full string theory effective action (17) describing
both gravity and brane degrees of freedom involves both actions.

Bosonic D-branes: Due to the perturbative description in terms of open strings [423], D-brane
effective actions can, in principle, be determined by explicit calculation of appropriate open string
disk amplitudes. Let me first discuss the dependence on gauge fields in these actions. Early
bosonic open string calculations in background gauge fields [1], allowed to determine the effective
action for the gauge field, with purely Dirichlet boundary conditions [214] or with mixed boundary
conditions [354], gave rise to a non-linear generalisation of Maxwell’s electromagnetism originally
proposed by Born and Infeld in [108]:

−
∫

Σp+1

dp+1σ
√
− det(ηµν + 2πα′Fµν). (42)

I will refer to this non-linear action as the Dirac–Born–Infeld (DBI) action. Notice, this is an
exceptional situation in string theory in which an infinite sum of different α′ contributions is
analytically computable. This effective action ignores any contribution from the derivatives of the
field strength F , i.e., ∂µFνρ terms or higher derivative operators. Importantly, it was shown in [1]
that the first such corrections, for the bosonic open string, are compatible with the DBI structure.

Having identified the non-linear gauge field dependence, one is in a position to include the
dependence on the embedding scalar fields Xm(σ) and the coupling with non-trivial background
closed string fields. Since in the absence of world-volume gauge-field excitations, D-brane actions
should reduce to Eq. (35), it is natural to infer the right answer should involve

√
− det(Gµν + 2πα′Fµν), (43)

using the general arguments of the preceding paragraphs. Notice, this action does not include any
contribution from acceleration and higher derivative operators involving scalar fields, i.e., ∂µνX

m

terms and/or higher derivative terms.16 This proposal has nice properties under T-duality [24,
77, 16, 75], which I will explore in detail in Section 3.3.2 as a non-trivial check on Eq. (43). In
particular, it will be checked that absence of acceleration terms is compatible with T-duality.

The DBI action is a natural extension of the NG action for branes, but it does not capture all the
relevant physics, even in the absence of acceleration terms, since it misses important background
couplings, responsible for the WZ terms appearing for strings and M2-branes. Let me stress the
two main issues separately:

16 The importance of these assumptions will be stressed when discussing the regime of validity of brane effective
actions in Section 3.7.
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1. The functional dependence on the gauge field V1 in a general closed string background. D-
branes are hypersurfaces where open strings can end. Thus, open strings do have endpoints.
This means that the WZ term describing such open strings is not invariant under the target
space gauge transformation δB2 = dΛ1

δ

∫

Σ2

b =

∫

Σ2

dΛ =

∫

∂Σ2

Λ, (44)

due to the presence of boundaries. These are the D-branes themselves, which see these
endpoints as charge point sources. The latter has a minimal coupling of the form

∫
∂Σ2

V1,

whose variation cancels Eq. (44) if the gauge field transforms as δV1 = dXm(σ)Λm under the
bulk gauge transformation. Since D-brane effective actions must be invariant under these
target space gauge symmetries, this physical argument determines that all the dependence
on the gauge field V1 should be through the gauge invariant combination F = 2πα′dV1 − B.

2. The coupling to the dilaton. The D-brane effective action is an open string tree level action,
i.e., the self-interactions of open strings and their couplings to closed string fields come from
conformal field theory disk amplitudes. Thus, the brane tension should include a g−1

s factor
coming from the expectation value of the closed string dilaton e−φ. Both these considerations
lead us to consider the DBI action

SDBI = −TDp

∫
dp+1σ e−φ

√
− det(G + F), (45)

where TDp
stands for the D-brane tension.

3. The WZ couplings. Dp-branes are charged under the RR potential Cp+1. Thus, their effective
actions should include a minimal coupling to the pullback of such form. Such coupling
would not be invariant under the target space gauge transformations (527). To achieve this
invariance in a way compatible with the bulk Bianchi identities (525), the D-brane WZ action
must be of the form ∫

Σp+1

C ∧ eF , (46)

where C stands for the corresponding pullbacks of the target space RR potentials Cr to the
world volume, according to the definition given in Eq. (523). Notice this involves more terms
than the mere minimal coupling to the bulk RR potential Cp+1. An important physical
consequence of this fact will be that turning on non-trivial gauge fluxes on the brane can
induce non-trivial lower-dimensional D-brane charges, extending the argument given above
for the minimal coupling [185]. This property will be discussed in more detail in the second
part of this review. For a discussion on how to extend these couplings to massive type IIA
supergravity, see [255].

Putting together all previous arguments, one concludes the final form of the bosonic D-brane
action is:17

SDp = −TDp

∫

Σp+1

dp+1σ e−φ
√
− det(G + F) +QDp

∫

Σp+1

C ∧ eF . (47)

If one views this action as the bosonic truncation of a supersymmetric D-brane, the D-brane charge
density equals its tension in absolute value, i.e., |QDp| = TDp. The latter can be determined from
first principles to be [423, 24]

TDp =
1

gs
√
α′

1

(2π
√
α′)p

. (48)

17 There actually exist further gravitational interaction terms necessary for the cancellation of anomalies [253],
but we will always omit them in our discussions concerning D-brane effective actions.
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Bosonic covariant M5-brane: The bosonic M5-brane degrees of freedom involve scalar fields
and a world volume 2-form with self-dual field strength. The former are expected to be described
by similar arguments to the ones presented above. The situation with the latter is more problem-
atic given the tension between Lorentz covariance and the self-duality constraint. This problem
has a fairly long history, starting with electromagnetic duality and the Dirac monopole problem
in Maxwell theory, see [105] and references therein, and more recently, in connection with the
formulation of supergravity theories such as type IIB, with the self-duality of the field strength
of the RR 4-form gauge potential. There are several solutions in the literature based on different
formalisms:

1. One natural option is to give-up Lorentz covariance and work with non-manifestly Lorentz
invariant actions. This was the approach followed in [420] for the M5-brane, building on
previous work [213, 295, 441].

2. One can introduce an infinite number of auxiliary (non-dynamical) fields to achieve a covari-
ant formulation. This is the approach followed in [384, 502, 375, 177, 66, 98, 99, 100].

3. One can follow the covariant approach due to Pasti, Sorokin and Tonin (PST-formalism) [416,
418], in which a single auxiliary field is introduced in the action with a non-trivial non-
polynomial dependence on it. The resulting action has extra gauge symmetries. These allow
one to recover the structure in [420] as a gauge fixed version of the PST formalism.

4. Another option is to work with a Lagrangian that does not imply the self-duality condition
but allows it, leaving the implementation of this condition to the path integral. This is the
approach followed by Witten [497], which was extended to include non-linear interactions
in [140]. The latter work includes kappa symmetry and a proof that their formalism is
equivalent to the PST one.

In this review, I follow the PST formalism. This assigns the following bosonic action to the
M5-brane [417]

SM5 = −TM5

∫
d6σ

(√
− det(Gµν + H̃µν)−

√
− detG 1

4∂µa∂µa
∂δa(σ)H∗µνδHµνρ∂

ρa(σ)

)

+TM5

∫ (
A6 +

1

2
H3 ∧ A3

)
. (49)

As in previous effective actions, all the dependence on the scalar fields Xm is through the bulk
fields and their pullbacks to the six-dimensional world volume. As in D-brane physics, all the
dependence on the world volume gauge potential V2 is not just simply through its field strength
dV2, but through the gauge invariant 3-form

H3 = dV2 −A3 . (50)

The physics behind this is analogous. F describes the ability of open strings to end on D-branes,
whereas H3 describes the possibility of M2-branes to end on M5-branes [469, 479]18. Its world
volume Hodge dual and the tensor H̃µν are then defined as

H∗µνρ =
1

6
√
− detG ε

µνρα1α2α3Hα1α2α3
, (51)

H̃µν =
1√

|(∂a)2|
H∗

µνρ∂
ρa(σ) . (52)

18 For a discussion on the interpretation of an M5-brane as a ‘D-brane’ for an open membrane, see [55].
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The latter involves an auxiliary field a(σ) responsible for keeping covariance and implementing
the self-duality constraint through the second term in the action (49). Its auxiliary nature was
proven in [418, 416], where it was shown that its equation of motion is not independent from
the generalised self-duality condition. The full action also includes a DBI-like term, involving the
induced world volume metric Gµν = ∂µX

m∂νX
ngmn(X), and a WZ term, involving the pullbacks

A3 and A6 of the 3-form gauge potential and its Hodge dual in N = 1 d = 11 supergravity [11].
Besides being manifestly invariant under six-dimensional world volume diffeomorphisms and

ordinary abelian gauge transformations δV2 = dΛ1, the action (49) is also invariant under the
transformation

δa(σ) = Λ(σ) , δVµν =
Λ(σ)√
|(∂a)2|

(
2
δLDBI

δH̃µν
− (dV2)µνρ

∂ρa√
|(∂a)2|

)
. (53)

Given the non-dynamical nature of a(σ), one can always fully remove it from the classical action
by gauge fixing the symmetry (53). It was shown in [417] that for an M5-brane propagating in
Minkowski, the non-manifest Lorentz invariant formulation in [420] emerges after gauge fixing (53).
This was achieved by working in the gauge ∂µa(σ) = δ5µ and Vµ5 = 0. Since ∂µa is a world volume
vector, six-dimensional Lorentz transformations do not preserve this gauge slice. One must use a
compensating gauge transformation (53), which also acts on Vµν . The overall gauge fixed action is
invariant under the full six-dimensional Lorentz group but in a non-linear non-manifestly Lorentz
covariant way as discussed in [420].

As a final remark, notice the charge density QM5 of the bosonic M5-brane has already been set
equal to its tension TM5 = 1/(2π)5`6p.

3.3 Consistency checks

The purpose of this section is to check the consistency of the kinematic structures governing classical
bosonic brane effective actions with string dualities [312, 495]. At the level of supergravity, these
dualities are responsible for the existence of a non-trivial web of relations among their classical
Lagrangians. Here, I describe the realisation of some of these dualities on classical bosonic brane
actions. This will allow us to check the consistency of all brane couplings. Alternatively, one can
also view the discussions below as independent ways of deriving the latter.

The specific dualities I will be appealing to are the strong coupling limit of type IIA string
theory, its relation to M-theory and the action of T-duality on type II string theories and D-
branes. Figure 3 summarises the set of relations between the brane tensions discussed in this
review under these symmetries.

M-theory as the strong coupling limit of type IIA: From the spectrum of 1/2-BPS states
in string theory and M-theory, an M2/M5-brane in R

1,9 × S1 has a weakly-coupled description in
type IIA

❼ either as a long string or a D4-brane, if the M2/M5-brane wraps the M-theory circle, respec-
tively

❼ or as a D2-brane/NS5 brane, if the M-theory circle is transverse to the M2/M5-brane world
volume.

The question to ask is: how do these statements manifest in the classical effective action? The
answer is by now well known. They involve a double or a direct dimensional reduction, respectively.
The idea is simple. The bosonic effective action describes the coupling of a given brane with a fixed
supergravity background. If the latter involves a circle and one is interested in a description of the
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M-theory IIA IIB
T-dualitygs <<

M2-brane

M5-brane

D0-brane

F-string

D2-brane

wrapped

NS5-brane

D4-brane

D6-brane

D5-brane

D3-brane

D1-brane

wrapped

wrapped

wrapped

wrapped

wrapped

Figure 3: Set of half-BPS branes discussed in this review, their tensions and some of their connections
under T-duality and the strongly-coupled limit of type IIA.

physics nonsensitive to this dimension, one is entitled to replace the d-dimensional supergravity
description by a d-1 one using a Kaluza–Klein (KK) reduction (see [197] for a review on KK
compactifications). In the case at hand, this involves using the relation between d = 11 bosonic
supergravity fields and the type IIA bosonic ones summarised below [409]

ds211 = e−
2
3
φ ds210 + e

4
3
φ (dy + C1)

2
,

A3 = C3 + dy ∧B2 , (54)

where the left-hand side 11-dimensional fields are rewritten in terms of type IIA fields. The above
reduction involves a low energy limit in which one only keeps the zero mode in a Fourier expansion
of all background fields on the bulk S 1. In terms of the parameters of the theory, the relation
between the M-theory circle R and the 11-dimensional Planck scale `p with the type IIA string
coupling gs and string length `s is

R = gs`s, `3p = gs`
3
s. (55)

The same principle should hold for the brane degrees of freedom {ΦA}. The distinction between
a double and a direct dimensional reduction comes from the physical choice on whether the brane
wraps the internal circle or not:
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❼ If it does, one partially fixes the world volume diffeomorphisms by identifying the bulk circle
direction y with one of the world volume directions σp, i.e., Y (σ) = σp, and keeps the zero
mode in a Fourier expansion of all the remaining brane fields, i.e., ΦA = ΦA(σ′) where
{σ} = {σ′, σp}. This procedure is denoted as a double dimensional reduction [192], since
both the bulk and the world volume get their dimensions reduced by one.

❼ If it does not, there is no need to break the world volume diffeomorphisms and one simply
truncates the fields to their bulk zero modes. This procedure is denoted as a direct reduction
since the brane dimension remains unchanged while the bulk one gets reduced.

T-duality on closed and open strings: From the quantisation of open strings satisfying
Dirichlet boundary conditions, all D-brane dynamics are described by a massless vector super-
multiplet, whose number of scalar fields depends on the number of transverse dimensions to the
D-brane. Since D-brane states are mapped among themselves under T-duality [160, 424], one
expects the existence of a transformation mapping their classical effective actions under this du-
ality. The question is how such transformation acts on the action. This involves two parts: the
transformation of the background and the one of the brane degrees of freedom.

Let me focus on the bulk transformation. T-duality is a perturbative string theory duality [241].
It says that type IIA string theory on a circle of radius R and string coupling gs is equivalent to
type IIB on a dual circle of radius R′ and string coupling g′s related as [121, 122, 240]

R′ =
α′

R
, g′s = gs

√
α′

R
, (56)

when momentum and winding modes are exchanged in both theories. This leaves the free theory
spectrum invariant [337], but it has been shown to be an exact perturbative symmetry when
including interactions [400, 241]. Despite its stringy nature, there exists a clean field theoretical
realisation of this symmetry. The main point is that any field theory on a circle of radius R has
a discrete momentum spectrum. Thus, in the limit R → 0, all non-vanishing momentum modes
decouple, and one only keeps the original vanishing momentum sector. Notice this is effectively
implementing a KK compactification on this circle. This is in contrast with the stringy realisation
where in the same limit, the spectrum of winding modes opens up a dual circle of radius R′.

Since Type IIA and Type IIB supergravities are field theories, the above field theoretical realisa-
tion applies. Thus, the R→ 0 compactification limit should give rise to two separate N = 2 d = 9
supergravity theories. But it is known [388] that there is just such a unique supergravity theory.
In other words, given the type IIA/B field content {ϕA/B} and their KK reduction to d = 9
dimensions, i.e., ϕA = ϕA(ϕ9) and ϕB = ϕB(ϕ9), the uniqueness of N = 2 d = 9 supergravity
guarantees the existence of a non-trivial map between type IIA and type IIB fields in the subset
of backgrounds allowing an S 1 compactification

ϕA = ϕA(ϕB) . (57)

This process is illustrated in the diagram of Figure 4. These are the T-duality rules. When
expressed in terms of explicit field components, they become [82, 388]

gzz =
1

g′z′z′

φ = φ′ − 1

2
log |g′z′z′ |

Bnz = − g′nz′

g′z′z′
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Figure 4: Schematic diagram describing the derivation of Buscher’s T-duality rules using type IIA/IIB
supergravities.

gnz = −B
′
nz′

g′z′z′

gmn = g′mn − g′mz′g′nz′ −B′
mz′B′

nz′

g′z′z′

Bmn = B′
mn − B′

mz′g′nz′ −B′
nz′g′mz′

g′z′z′

C(p+1)
m1...mpz = C ′(p)

m1...mp
− p

C
′(p)
[m1...mp−1z′g

′
mp]z′

g′z′z′

C(p)
m1...mp

= C
′(p+1)
m1...mpz′ − pC

′(p−1)
[m1...mp−1

B′
mp]z′

−p(p− 1)
C

′(p−1)
[m1...mp−2z′B

′
mp−1z′g′mp]z′

g′z′z′

. (58)

These correspond to the bosonic truncations of the superfields introduced in Appendix A.1. Prime
and unprimed fields correspond to both T-dual theories. The same notation applies to the tensor
components where {z, z′} describe both T-dual circles. Notice the dilaton and the gzz transfor-
mations do capture the worldsheet relations (56).

Let me move to the brane transformation. A D(p + 1)-brane wrapping the original circle is
mapped under T-duality to a Dp-brane where the dual circle is transverse to the brane [424].
It must be the case that one of the gauge field components in the original brane maps into a
transverse scalar field describing the dual circle. At the level of the effective action, implementing
the R→ 0 limit must involve, first, a partial gauge fixing of the world volume diffeomorphisms, to
explicitly make the physical choice that the brane wraps the original circle, and second, keeping
the zero modes of all the remaining dynamical degrees of freedom. This is precisely the procedure
described as a double dimensional reduction. The two differences in this D-brane discussion will
be the presence of a gauge field and the fact that the KK reduced supergravity fields {ϕ9} will be
rewritten in terms of the T-dual ten-dimensional fields using the T-duality rules (58).

In the following, it will be proven that the classical effective actions described in the previous
section are interconnected in a way consistent with our T-duality and strongly-coupled consider-
ations. Our logic is as follows. The M2-brane is linked to our starting worldsheet action through
double-dimensional reduction. The former is then used to derive the D2-brane effective by di-
rect dimensional reduction. T-duality covariance extends this result to any non-massive D-brane.
Finally, to check the consistency of the PST covariant action for the M5-brane, its double dimen-
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sional reduction will be shown to match the D4-brane effective action. This will complete the set
of classical checks on the bosonic brane actions discussed so far.

It is worth mentioning that the self-duality of the D3-brane effective action under S-duality
could also have been included as a further test. For discussions on this point, see [483, 252].

3.3.1 M2-branes and their classical reductions

In the following, I discuss the double and direct dimensional reductions of the bosonic M2-brane
effective action (40) to match the bosonic worldsheet string action (6) and the D2-brane effective
action, i.e., the p = 2 version of Eq. (47). This analysis will also allow us to match/derive the
tensions of the different branes.

Connection to the string worldsheet: Consider the propagation of an M2-brane in an 11-
dimensional background of the form (54). Decompose the set of scalar fields as {XM} = {Xm, Y },
identify one of the world volume directions (ρ) with the KK circle, i.e., partially gauge fix the world
volume diffeomorphisms by imposing Y = ρ, and keep the zero modes in the Fourier expansion
of all remaining scalar fields {Xm} along the world volume circle, i.e., ∂ρX

m = 0. Under these
conditions, which mathematically characterise a double dimensional reduction, the Wess–Zumino
coupling becomes

∫

Σ2×S1

A3 =

∫

Σ2×S1

d3σ
1

2
εµ̂ν̂ρ∂µ̂X

m∂ν̂X
nAmny =

(∫

S1

dρ

)∫

Σ2

B2, (59)

where I already used the KK reduction ansatz (54). Here, B2 stands for the pull-back of the NS-NS
two form into the surface Σ2 parameterised by {σµ̂}. The DBI action is reduced using the identity
satisfied by the induced world-volume metric

Gµν =

(
e−2φ/3(Gµ̂ν̂ + e2φCµ̂Cν̂) e4φ/3Cµ̂

e4φ/3Cν̂ e4φ/3

)
=⇒ detGµν = detGµ̂ν̂ . (60)

Since the integral over ρ equals the length of the M-theory circle,

∫

S1

dρ = 2πR = 2πgsls =⇒ Tf = TM2

∫

S1

dρ =
1

2πα′ , (61)

where I used Eq. (55), TM2 = 1/(2π)2l3p and absorbed the overall circle length, expressed in terms
of type IIA data, in a new energy density scale, matching the fundamental string tension Tf defined
in Section 2. The same argument applies to the charge density leading to Qf = QM2 2πR.

Altogether, the double reduced action reproduces the bosonic effective action (6) describing
the string propagation in a type IIA background. Thus, our classical bosonic M2-brane action is
consistent with the relation between half-BPS M2-brane and fundamental strings in the spectrum
of M-theory and type IIA.

Connection to the D2-brane: The direct dimensional reduction of the bosonic M2 brane
describes a three-dimensional diffeomorphism invariant theory propagating in 10 dimensions, with
eleven scalars as its field content. The latter disagrees with the bosonic field content of a D2-brane,
which includes a vector field. Fortunately, a scalar field is Hodge dual, in three dimensions, to a
one form. Thus, one expects that by direct dimensional reduction of the bosonic M2-brane action
and after world volume dualisation of the scalar field Y along the M-theory circle, one should
reproduce the classical D2-brane action [439, 477, 93, 480].
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To describe the direct dimensional reduction, consider the Lagrangian [480]

S =
TM2

2

∫
d3σ

(
v−1 detG(11)

µν − v +
1

3
εµνρAµνρ

)
. (62)

This is classically equivalent to Eq. (40) after integrating out the auxiliary scalar density v by
solving its algebraic equation of motion. Notice I already focused on the relevant case for later
supersymmetric considerations, i.e., QM2 = TM2. The induced world volume fields are

G(11)
µν = e−

2
3
φGµν + e

4
3
φZµZν (63)

Aµνρ = Cµνρ + 3B[µνZρ] − 3B[µνCρ] , (64)

where
Z ≡ dY + C1 . (65)

Using the properties of 3× 3 matrices,

detG(11)
µν = e−2φ det[Gµν + e2φZµZν ] = (detGµν)

[
e−2φ + |Z|2

]
, (66)

where |Z|2 = ZµZνGµν , the action (62) can be written as

S =
TM2

2

∫
d3σ

(
v−1e−2φ detGµν − v +

1

3
εµνρ[Cµνρ − 3BµνCρ]

+ v−1(detGµν)|Z|2 + εµνρBµνZρ

)
. (67)

The next step is to describe the world volume dualisation and the origin of the U(1) gauge
symmetry on the D2 brane effective action [480]. By definition, the identity

d(Z − C1) ≡ 0 (68)

holds. Adding the latter to the action through an exact two-form F = dV Lagrange multiplier

− 1

2π

∫
F ∧ (Z − C1), (69)

allows one to treat Z as an independent field. For a more thorough discussion on this point and
the nature of the U(1) gauge symmetry, see [480]. Adding Eq. (69) to Eq. (67), one obtains

S = TM2

2

∫
d3σ

(
v−1e−2φ detGµν − v + 1

3ε
µνρ
[
Cµνρ + 3FµνCρ

]

+ v−1(detGµν)|Z2| − εµνρFµνZρ

)
. (70)

Notice I already introduced the same gauge invariant quantity introduced in D-brane Lagrangians

Fµν = Fµν − Bµν . (71)

Since Y is now an independent field, it can be eliminated by solving its algebraic equation of
motion

Zµ =
v

2 detG ε
µνρFµν . (72)

Inserting this back into the action and integrating out the auxiliary field ṽ = − det(Gµν)/v by
solving its equation of motion, yields

S = −TD2

∫
d3σ e−φ

√
− det(Gµν + Fµν) + TD2

∫

w

(C3 + F ∧ C1). (73)

This matches the proposed D2-brane effective action, since TM2 = TD2 as a consequence of Eq.s (55)
and (48).
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3.3.2 T-duality covariance

In this section, I extend the D2-brane’s functional form to any Dp-brane using T-duality covariance.
My goal is to show that the bulk T-duality rules (58) guarantee the covariance of the D-brane
effective action functional form [453] and to review the origin in the interchange between scalar
fields and gauge fields on the brane19.

The second question can be addressed by an analysis of the D-brane action bosonic symmetries.
These act infinitesimally as

sXM = ξν∂νX
M +∆XM , (74)

s Vµ = ξν∂νVµ + Vν∂µξ
ν + ∂µc+∆Vµ. (75)

They involve world volume diffeomorphisms ξν , a U(1) gauge transformation c and global trans-
formations ∆φi. Since the background will undergo a T-duality transformation, by assump-
tion, this set of global transformations must include translations along the circle, i.e., ∆Z = ε,
∆Xm = ∆Vµ = 0, where the original XM scalar fields were split into {Xm, Z}.

I argued that the realisation of T-duality on the brane action requires one to study its double-
dimensional reduction. The latter involves a partial gauge fixing Z = σp ≡ ρ, identifying one
world volume direction with the starting S1 bulk circle and a zero-mode Fourier truncation in the
remaining degrees of freedom, ∂ρX

m = ∂ρVµ = 0. Extending this functional truncation to the p-
dimensional diffeomorphisms ξµ̂, where I split the world volume indices according to {µ} = {µ̂, ρ}
and the space of global transformations, i.e., ∂z∆x

M = ∂z∆Vµ = 0, the consistency conditions
requiring the infinitesimal transformations to preserve the subspace of field configurations defined
by the truncation and the partial gauge fixing, i.e., ∂zsφ

i |g.f.+trunc= 0, determines

c(σµ̂, ρ) = c̃(σµ̂) + a+
ε′

2πα′ ρ (76)

where a, ε′ are constants, the latter having mass dimension minus one. The set of transformations
in the double dimensional reduction are

s̃Xm = ξν̂∂ν̂X
m + ∆̃Xm (77)

s̃Vµ̂ = ξν̂∂ν̂Vµ̂ + Vν̂∂µ̂ξ
ν̂ + ∂µ̂c̃+ ∆̃Vµ̂ (78)

s̃Vρ = ξν̂∂ν̂Vρ + ∆̃Vρ (79)

where ∆̃Vµ̂ = ∆Vµ̂ − Vρ∂µ̂∆Z, ∆̃Vρ = ∆Vρ + ε′/2πα′ and ∆̃xm satisfies ∂z∆̃x
m = 0.

Let me comment on Eq. (79). Vρ was a gauge field component in the original action. But in its
gauge-fixed functionally-truncated version, it transforms like a world volume scalar. Furthermore,
the constant piece ε′ in the original U(1) transformation (76), describes a global translation along
the scalar direction. The interpretation of both observations is that under double-dimensional
reduction

(2πα′)Vρ ≡ Z ′ (80)

Z ′ becomes the T-dual target space direction along the T-dual circle and ε′ describes the corre-
sponding translation isometry. This discussion reproduces the well-known massless open string
spectrum when exchanging a Dirichlet boundary condition with a Neumann boundary condition.

Having clarified the origin of symmetries in the T-dual picture, let me analyse the functional
dependence of the effective action. First, consider the couplings to the NS sector in the DBI action.
Rewrite the induced metric G and the gauge invariant F in terms of the T-dual background (g′, B′)
and degrees of freedom ({XM ′} = {Xm′

, Z ′}), which will be denoted by primed quantities. This

19 Relevant work on the subject includes [24, 77, 16, 75].
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can be achieved by adding and subtracting the relevant pullback quantities. The following identities
hold

Gµ̂ρ = ∂µ̂X
mgmz (81)

Gρρ = gzz (82)

Gµ̂ν̂ = G′
µ̂ν̂ + ∂µ̂X

m∂ν̂X
n(gmn − g′mn)− ∂µ̂X

m∂ν̂Z
′g′z′m

−∂µ̂Z ′∂ν̂X
M ′

g′z′M ′ (83)

Fµ̂ρ = ∂µ̂Z
′ − ∂µ̂X

mBmz (84)

Fµ̂ν̂ = F ′
µ̂ν̂ − ∂µ̂X

m∂ν̂X
n(Bmn −B′

mn) + ∂µ̂Z
′∂ν̂X

nB′
z′n

+∂µ̂X
m∂ν̂Z

′B′
mz′ . (85)

It is a consequence of our previous symmetry discussion that Xm′

= Xm and Vµ̂ = V ′
µ̂, i.e., there

is no change in the description of the dynamical degrees of freedom not involved in the circle
directions. The determinant appearing in the DBI action can now be computed to be

det(Gµν + Fµν) = gzz det

(
G′
µ̂ν̂ + F ′

µ̂ν̂

+∂µ̂X
m∂ν̂X

n [(gmn − g′mn)− (Bmn −B′
mn)− (gmz −Bmz)(gnz +Bnz)/gzz]

−∂µ̂Xm∂ν̂Z
′ [(g′mz′ −B′

mz′)− (gmz −Bmz)/gzz]

−∂µ̂Z ′∂ν̂X
n [(g′z′n +B′

nz′) + (gnz +Bnz)/gzz]

−∂µ̂Z ′∂ν̂Z
′
(
g′z′z′ − 1

gzz

))
. (86)

Notice that whenever the bulk T-duality rules (58) are satisfied, the functional form of the effective
action remains covariant, i.e., of the form

− T ′
D(p−1)

∫
dpσ e−φ′

√
− det(G′

µ̂ν̂ + F ′
µ̂ν̂) . (87)

This is because all terms in the determinant vanish except for those in the first line. Finally,
e−φ √gzz equals the T-dual dilaton coupling e−φ′

and the original Dp-brane tension TDp becomes
the D(p-1)-brane tension in the T-dual theory due to the worldsheet defining properties (56) after
the integration over the world volume circle

TDp

∫
dρ =

1

(2π)p gsl
p+1
s

2π R =
1

(2π)p−1 g′sl
p
s
= T ′

D(p−1) . (88)

Just as covariance of the DBI action is determined by the NS-NS sector, one expects the RR
sector to do the same for the WZ action. Here I follow similar techniques to the ones developed
in [255, 453]. First, decompose the WZ Lagrangian density as

LWZ = L+
WZ + L−

WZ ≡ dρ ∧ i∂ρ
LWZ + i∂ρ

(dρ ∧ LWZ) . (89)

Due to the functional truncation assumed in the double dimensional reduction, the second term
vanishes. The D-brane WZ action then becomes

Tp

∫

Σp+1

LWZ = Tp

∫

Σp+1

dρ ∧ eF
− ∧

(
i∂ρ
C + i∂ρ

F ∧ C−) (90)
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where F− ≡ i∂ρ
(dρ ∧ F) and the following conventions are used

i∂ρ
Ω(n) =

1

(n− 1)!
Ωρµ2...µn

dσµ2 ∧ . . . dσµn

i∂ρ
(Ω(m) ∧ Ω(n)) = i∂ρ

Ω(m) ∧ Ω(n) + (−1)mΩ(m) ∧ i∂ρ
Ω(n) . (91)

Using the T-duality transformation properties of the gauge invariant quantity F , derived from our
DBI analysis,

F− −→ F ′ −
(
i∂z′

B′ ∧ i∂z′
g′
)
/g′z′z′ (92)

i∂ρ
F −→ − i∂z′

g′/g′z′z′ (93)

it was shown in [453] that the functional form of the WZ term is preserved, i.e., T ′
D(p−1)

∫
∂Σ
eF

′∧C ′,
whenever the condition

(−1)pC ′
p = i∂ρ

Cp+1 −
i∂z′

B′ ∧ i∂z′
g′

g′z′z′

∧ i∂ρ
Cp−1 −

i∂z′
g′

g′z′z′

∧ C−
p−1 (94)

holds (the factor (−1)p is due to our conventions (91) and the choice of orientation εµ̃1...µ̃p ≡
εµ1...µpρ and ε01...p = 1).

Due to our gauge-fixing condition, Z = ρ, the ± components of the pullbacked world vol-
ume forms appearing in Eq. (94) can be lifted to ± components of the spacetime forms. The
condition (94) is then solved by

i∂z
Cp+1 = (−1)p

(
C ′

(p) −
i∂z′

g′

g′z′z′

∧ i∂z′
C ′

p

)
(95)

C−
p−1 = (−1)(p−1)

(
i∂z′

C ′
p − i∂z′

B′ ∧
(
C ′

p−2 −
i∂z′

g′

g′z′z′

∧ i∂z′
C ′

p−2

))
. (96)

These are entirely equivalent to the T-duality rules (58) but written in an intrinsic way.
The expert reader may have noticed that the RR T-duality rules do not coincide with the ones

appearing in [208]. The reason behind this is the freedom to redefine the fields in our theory. In
particular, there exist different choices for the RR potentials, depending on their transformation
properties under S-duality. For example, the 4-form C4 appearing in our WZ couplings is not S
self-dual, but transforms as

C4 → C4 − C2 ∧B2 . (97)

Using a superindex S to denote an S-dual self-dual 4-form, the latter must be

CS
4 = C4 −

1

2
C2 ∧B2 . (98)

Similarly, C6 does not transform as a doublet under S-duality, whereas

CS
6 = C6 −

1

4
C2 ∧B2 ∧B2 (99)

does. It is straightforward to check that Eqs. (95) and (96) are equivalent to the ones appearing
in [208] using the above redefinitions. Furthermore, one finds

CS
m1...m6

= C ′
m1...m6z′ − 6C ′

[m1...m5

g′m6]z′

g′z′z′
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−45

(
C ′

[m1
− C ′

z′

g′[m1z′

g′z′z′

)
B′

m2m3
B′

m4m5
B′

m6]z′

−45C ′
[m1m2z′B′

m3m4

(
B′

m5m6
− 4B′

m5z′

g′m6]z′

g′z′z′

)

−30C ′
[m1...m4z′B′

m5z′

g′m6]z′

g′z′z′

(100)

, which was not computed in [208].

In Section 7.1, I will explore the consequences that can be extracted from the requirement
of T-duality covariance for the covariant description of the effective dynamics of N overlapping
parallel D-branes in curved backgrounds, following [395].

3.3.3 M5-brane reduction

The double dimensional reduction of the M5-brane effective action, both in its covariant [417, 8]
and non-covariant formulations [420, 420, 78] was checked to agree with the D4-brane effective
action. It is important to stress that the outcome of this reduction may not be in the standard
D4-brane action form given in Eq. (47), but in the dual formulation. The two are related through
the world volume dualisation procedure described in [483, 7].

3.4 Supersymmetric brane effective actions in Minkowski

In the study of global supersymmetric field theories, one learns the superfield formalism is the most
manifest way of writing interacting manifestly-supersymmetric Lagrangians [491]. One extends
the manifold R

1,3 to a supermanifold through the addition of Grassmann fermionic coordinates
θ. Physical fields φ(x) become components of superfields Φ(x, θ), the natural objects in this
mathematical structure defined as finite polynomials in a Taylor-like θ expansion

Φ(x, θ) = φ(x) + θαφα(x) + . . . (101)

that includes auxiliary (non-dynamical) components allowing one to close the supersymmetry
algebra off-shell. Generic superfields do not transform irreducibly under the super-Poincaré group.
Imposing constraints on them, i.e., fi(Φ) = 0, gives rise to the different irreducible supersymmetric
representations. For a standard reference on these concepts, see [491].

These considerations also apply to the p+1 dimensional supermultiplets describing the physical
brane degrees of freedom propagating in R

1,9, since these correspond to supersymmetric field
theories in R

1,p. The main difference in the GS formulation of brane effective actions is that it
is spacetime itself that must be formulated in a manifestly supersymmetric way. By the same
argument used in global supersymmetric theories, one would be required to work in a 10- or 11-
dimensional superspace, with standard bosonic coordinates xm and the addition of fermionic ones
θ, whose representations will depend on the dimension of the bosonic submanifold. There are two
crucial points to appreciate for our purposes

1. the superspace coordinates {xm, θ} will become the brane dynamical degrees of freedom
{Xm(σ), θ(σ)}, besides any additional gauge fields living on the brane;

2. the couplings of the latter to the fixed background where the brane propagates must also be
described in a manifestly spacetime supersymmetric way. The formulation achieving precisely
that is the superspace formulation of supergravity theories [491].
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Both these points were already encountered in our review of the GS formulation for the su-
perstring. The same features will hold for all brane effective actions discussed below. After all,
both strings and branes are different objects in the same theory. Consequently, any manifestly
spacetime supersymmetric and covariant formulation should refer to the same superspace. It is
worth emphasising the world volume manifold Σp+1 with local coordinates σµ remains bosonic in
this formulation. This is not what occurs in standard superspace formulations of supersymmetric
field theories. There exists a classically equivalent formulation to the GS one, the superembedding
formulation that extends both the spacetime and the world volume to supermanifolds. Though I
will briefly mention this alternative and powerful formulation in Section 8, I refer readers to [460].

Sugra

ComponentsSuperspace
constraints

Brane

Brane geometry
p dim diffeos

gauge fixing

excitationsmassless

On-shell

manifest spacetime supersymmetry

coupling to spacetime superfields

p dim susy
field theory

kappa invariance 

spacetime
covariance

&
supersymmetry

p susy
multiplet

consistent spacetime background

Goldstone
modes

Figure 5: Kappa symmetry and world volume diffeomorphisms allow one to couple the brane degrees
of freedom to the superfield components of supergravity in a manifestly covariant and supersymmetric
way. Invariance under kappa symmetry forces the background to be on-shell. The gauge fixing of these
symmetries connects the GS formulation with world volume supersymmetry, whose on-shell degrees of
freedom match the Goldstone modes of the brane supergravity configurations.

As in global supersymmetric theories, supergravity superspace formulations involve an increase
in the number of degrees of freedom describing the spacetime dynamics (to preserve supersymmetry
covariance). Its equivalence with the more standard component formalism is achieved through the
satisfaction of a set of non-trivial constraints imposed on the supergravity superfields. These
guarantee the on-shell nature of the physical superfield components. I refer the reader to a brief
but self-contained Appendix A where this superspace formulation is reviewed for N = 2 type IIA/B
d = 10 and N = 1 d = 11 supergravities, including the set of constraints that render them on-shell.
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These will play a very important role in the self-consistency of the supersymmetric effective actions
I am about to construct.

Instead of discussing the supersymmetric coupling to an arbitrary curved background at once,
my plan is to review the explicit construction of supersymmetric D-brane and M2-brane actions
propagating in Minkowski spacetime, or its superspace extension, super-Poincaré.20 The logic will
be analogous to that presented for the superstring. First, I will construct these supersymmetric
and kappa invariant actions without using the superspace formulation, i.e., using a more explicit
component approach. Afterwards, I will rewrite these actions in superspace variables, pointing
in the right direction to achieve a covariant extension of these results to curved backgrounds in
Section 3.5.

3.4.1 D-branes in flat superspace

In this section, I am aiming to describe the propagation of D-branes in a fixed Minkowski target
space preserving all spacetime supersymmetry and being world volume kappa symmetry invariant.
Just as for bosonic open strings, the gauge field dependence was proven to be of the DBI form by
explicit open superstring calculations [482, 389, 87].21

Here I follow the strategy in [9]. First, I will construct a supersymmetric invariant DBI action,
building on the superspace results reported in Section 2. Second, I will determine the WZ couplings
by requiring both supersymmetry and kappa symmetry invariance. Finally, as in our brief review of
the GS superstring formulation, I will reinterpret the final action in terms of superspace quantities
and their pullback to p+1 world volume hypersurfaces. This step will identify the correct structure
to be generalised to arbitrary curved backgrounds.

Let me first set my conventions. The field content includes a set of p + 1 dimensional world
volume scalar fields {ZM (σ)} = {Xm(σ), θα(σ)} describing the embedding of the brane into the
bulk supermanifold. Fermions depend on the theory under consideration

❼ N = 2 d = 10 type IIA superspace involves two fermions of different chiralities θ±, i.e.,
Γ]θ± = ±θ±, where Γ] = Γ0Γ1 . . .Γ9. I describe them jointly by a unique fermion θ, satisfying
θ = θ+ + θ−.

❼ N = 2 d = 10 type IIB superspace contains two fermions of the same chirality (positive by
assumption), θi i = 1, 2. The index i is an internal SU(2) index keeping track of the doublet
structure on which Pauli matrices τa act.

In either case, one defines θ̄ = θt C, in terms of an antisymmetric charge conjugation matrix C
satisfying

Γt
m = −CΓmC

−1 , Ct = −C , (102)

with Γm satisfying the standard Clifford algebra {Γm, Γn} = 2ηmn with mostly plus eigenvalues.
I am not introducing a special notation above to refer to the tangent space, given the flat nature
of the bulk. This is not accurate but will ease the notation below. I will address this point when
reinterpreting our results in terms of a purely superspace formulation.

Let me start the discussion with the DBI piece of the action. This involves couplings to the
NS-NS bulk sector, a sector that is also probed by the superstring. Thus, both the supervielbein

20 For a discussion of the supersymmetric and kappa invariant M5-brane covariant action propagating in super-
Poincaré, see [144].

21 Following the same philosophy as for their bosonic truncations, this functional dependence can be derived from
the double dimensional reduction of the supersymmetric M2-brane action to be discussed in Section 3.4.2 [477,
439]. This also provides a derivation of the WZ couplings to be constructed in this subsection. Of course, this
consideration would only apply to the D2-brane, but T-duality would allow one to extend this conclusion for any
Dp-brane [292, 331]
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(Em, Eα) and the NS-NS 2-form B2 were already identified to be

Em = Πm = dXm + dθ̄Γmdθ , Eα = dθα (103)

B2 = −θ̄Γ]Γmdθ (dX
m +

1

2
θ̄Γmdθ) , (104)

in type IIA, whereas in type IIB one replaces Γ] by τ3. The DBI action

SDBI = −TDp

∫
dp+1σ

√
− det(G + F) (105)

will therefore be invariant under the spacetime supersymmetry transformations

δεθ = ε , δεX
m = ε̄Γmθ (106)

if both, the induced world volume metric G and the gauge invariant 2-form, F , are. These are
defined by

Gµν = Πm
µ Πn

νηmn, Πm
µ = ∂µX

m − θ̄Γm∂µθ (107)

Fµν = 2πα′Fµν − Bµν , (108)

where B stands for the pullback of the superspace 2-form B2 into the worldvolume, i.e., Bµν =
∂µZ

M∂νZ
N BMN . Since B2 is quasi-invariant under (106), one chooses

δεV = ε̄Γ]ΓmθdX
m +

1

6
(ε̄Γ]Γmθθ̄Γ

mdθ + ε̄Γmθθ̄Γ]Γ
mdθ), (109)

so that δεF = 0, guaranteeing the invariance of the action (105) since the set of 1-forms Πm are
supersymmetric invariant.

Let me consider the WZ piece of the action

SWZ =

∫
Ωp+1 . (110)

Since invariance under supersymmetry allows total derivatives, the Lagrangian can be characterised
in terms of a (p+ 2)-form

Ip+2 = dΩp+1, (111)

satisfying
δεIp+2 = 0 =⇒ δεΩp+1 = dΛp. (112)

Thus, mathematically, I(p+2) must be constructed out of supersymmetry invariants {Πm, dθ, F}.
The above defines a cohomological problem whose solution is not guaranteed to be kappa

invariant. Since our goal is to construct an action invariant under both symmetries, let me first
formulate the requirements due to the second invariance. The strategy followed in [9] has two
steps:

❼ First, parameterise the kappa transformation of the bosonic fields {Xm, V1} in terms of an
arbitrary δκθ. Experience from supersymmetry and kappa invariance for the superparticle
and superstring suggest

δκX
m = −δκθ̄Γmθ

δκV1 = −δκθ̄Γ]ΓmθΠ
m +

1

2
δκθ̄Γ]Γmθθ̄Γ

mdθ − 1

2
δκθ̄Γ

mθθ̄Γ]Γmdθ . (113)

Notice, δκV is chosen to remove the exact form coming from the kappa symmetry variation
of B2, i.e., δκB2 = −2δκθ̄Γ]ΓmdθΠ

m + dδκV1.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2012-3

http://www.livingreviews.org/lrr-2012-3


Brane Effective Actions, Kappa-Symmetry and Applications 39

❼ Second, kappa symmetry must be able to remove half of the fermionic degrees of freedom.
Thus, as in the superstring discussion, one expects δκθ to involve some non-trivial projec-
tor. This fact can be used to conveniently parameterise the kappa invariance of the total
Lagrangian. The idea in [9] was to parameterise the DBI kappa transformation as

δκLDBI = 2δκθ̄γ
(p)T ν

(p)∂νθ , with (γ(p))2 = ✶ , (114)

requiring the WZ kappa transformation to be

δκLWZ = 2δκθ̄T
ν
(p)∂νθ . (115)

In this way, the kappa symmetry variation of the full Lagrangian equals

δκ(LDBI + LWZ) = 2δκθ̄(✶+ γ(p))T ν
(p)∂νθ . (116)

This is guaranteed to vanish choosing δκθ̄ = κ̄(✶ − γ(p)), given the projector nature of
1
2 (✶± γ(p)).

The question is whether T ν
(p), γ

(p) and I(p+2) exist satisfying all the above requirements. The

explicit construction of these objects was given in [9]. Here, I simply summarise their results. The
WZ action was found to be

dLWZ = −TDpReF , (117)

where R is the pullback of the field strength of the RR gauge potential C, as defined in Eq. (523).
Using /Π = ΠmΓm, this can be written as [293]

R = ĒCA(/Π)E, CA(/Π) =
∑

l=0

(Γ])
l+1 /Π2l

(2l)!
(118)

in type IIA, whereas in type IIB [329]

R = −Ē SB(/Π) τ1 E, SB(/Π) =
∑

l=0

(τ3)
l /Π2l+1

(2l + 1)!
. (119)

Two observations are in order:

1. dLWZ is indeed manifestly supersymmetric, since it only depends on supersymmetric invari-
ant quantities, but LWZ is quasi-invariant. Thus, when computing the algebra closed by
the set of conserved charges, one can expect the appearance of non-trivial charges in the
right-hand side of the supersymmetry algebra. This is a universal feature of brane effective
actions that will be conveniently interpreted in Section 3.6.

2. This analysis has determined the explicit form of all the RR potentials Cp as superfields in
superspace. This was achieved by world volume symmetry considerations, but it is reassuring
to check that the expressions found above do satisfy the superspace constraints reported in
Appendix A.1. I will geometrically reinterpret the derived action as one describing a Dp-
brane propagating in a fixed super-Poincaré target space shortly.

Let me summarise the global and gauge symmetry structure of the full action. The set of gauge
symmetries involves world volume diffeomorphisms (ξµ), an abelian U(1) gauge symmetry (c) and
kappa symmetry (κ). Their infinitesimal transformations are

sXm = LξX
m + δκX

m = ξµ∂µX
m − δκθ̄Γ

mθ , (120)

sθα = Lξθ
α + δκθ

α = ξµ∂µθ
α + δκθ

α , (121)

sVµ = LξVµ + ∂µc+ δκVµ = ξν∂νVµ + Vν∂µξ
ν + ∂µc+ δκVµ , (122)
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where δκVµ is given in Eq. (113) and δκθ was determined in [9]

δκθ̄ = κ̄(✶− γ(p)), γ(p) =
ρ(p)√

− det(G + F)
. (123)

In type IIA, the matrix ρ(p) stands for the p+ 1 world volume form coefficient of SA(/Π)eF , where

ρ(p) = [SA(/Π)e
F ]p+1, SA(/Π) =

∑

l=0

(Γ])
l+1 /Π2l+1

(2l + 1)!
(124)

, while in type IIB, it is given by

ρ(p−1) = −[CB(/Π)eFτ1]p, CB(/Π) =
∑

l=0

(τ3)
l+1 /Π2l

(2l)!
. (125)

It was proven in [9] that ρ2 = − det(G + F)✶. This proves γ2(p) equals the identity, as required in
our construction.

The set of global symmetries includes supersymmetry (ε), bosonic translations (am) and Lorentz
transformations (ωmn). The field infinitesimal transformations are

∆Xm = δεX
m + δaX

m + δωX
m = ε̄Γmθ + am + ωm

nX
n, (126)

∆θα = δεθ
α + δωθ

α = εα +
1

4
ωmn (Γmnθ)

α
, (127)

∆Vµ = δεVµ, (128)

with δεVµ given in Eq. (109) and ωm
n ≡ ωmpηpn.

Geometrical reinterpretation of the effective action: the supersymmetric action was con-
structed out of the supersymmetric invariant forms {Πm, dθ, F}. These can be reinterpreted as
the pullback of 10-dimensional superspace tensors to the p+1 brane world volume. To see this, it
is convenient to introduce the explicit supervielbein components EA

M (Z), defined in Appendix A.1,
where the index M stands for curved superspace indices, i.e., M = {m, α}, and the index A for
tangent flat superspace indices, i.e., A = {a, α}. In this language, the super-Poincaré supervielbein
components equal

Ea
m = δam , E

α
α = δ

α
α , E

α
m = 0 , Ea

α =
(
θ̄Γa

)
α
δ
α
α . (129)

manifest that all Clifford matrices Γa act in the tangent space, as they should. The compo-
nents (129) allow us to rewrite all couplings in the effective action as pullbacks

Gµν(Z) = ∂µZ
MEa

M (Z)∂νZ
NEb

N (Z)ηab,

Bµν(Z) = ∂µZ
MEA

M (Z)∂νZ
NEC

N (Z)BAC(Z), (130)

Cµ1...µp+1
(Z) = ∂µ1

ZM1EA1

M1
(Z) . . . ∂µp+1

ZMp+1E
Ap+1

Mp+1
(Z)CA1...Ap+1

(Z),

of the background superfields EA
M , BAC and CA1...Ap+1

to the brane world volume. Furthermore,
the kappa symmetry transformations (113) and (123) also allow a natural superspace description
as

δκZ
M Ea

M = 0, δκZ
M E

α
M = (✶+ Γκ)κ (131)
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where the kappa symmetry matrix Γκ is nicely repackaged

(Γκ)(p+1) =
1√

− det(G + F)

k∑

l=0

γ(2l+1) Γ
l+1
] ∧ eF type IIA p = 2k (132)

(Γκ)(p+1) =
1√

− det(G + F)

k+1∑

l=0

γ(2l)τ
l
3 ∧ eF iτ2 type IIB p = 2k + 1 , (133)

in terms of the induced Clifford algebra matrices γµ and the gauge invariant tensor F

γ(1) ≡ dσµγµ = dσµ∂µZ
MEa

M (Z)Γa, (134)

F = 2πα′F − B2, (135)

whereas γ(l) stands for the wedge product of the 1-forms γ(1).

Summary: We have constructed an effective action describing the propagation of Dp-branes in
10-dimensional Minkowski spacetime being invariant under p + 1 dimensional diffeomorphisms,
10-dimensional supersymmetry and kappa symmetry. The final result resembles the bosonic ac-
tion (47) in that it is written in terms of pullbacks of the components of the different superfields
EA

M (Z), BAC(Z) and CA1...Ap+1
(Z) encoding the non-trivial information about the non-dynamical

background where the brane propagates in a manifestly supersymmetric way. These superfields
are on-shell supergravity configurations, since they satisfy the set of constraints listed in Ap-
pendix A.1. It is this set of features that will allow us to generalise these couplings to arbitrary
on-shell superspace backgrounds in Section 3.5, while preserving the same kinematic properties.

3.4.2 M2-brane in flat superspace

Let me consider an M2-brane as an example of an M-brane propagating in d = 11 super-Poincaré.
Given the lessons from the superstring and D-brane discussions, my presentation here will be much
more economical.

First, let me describe d = 11 super-Poincaré as a solution of eleven-dimensional supergravity
using the superspace formulation introduced in Appendix A.2. In the following, all fermions will
be 11-dimensional Majorana fermions θ as corresponds to N = 1 d = 11 superspace. Denoting the
full set of superspace coordinates as {ZM} = {Xm, θα} with m = 0, . . . , 10 and α = 1, . . . , 32, the
superspace description of N = 1 d = 11 super-Poincaré is [165, 144]

Ea = dXa + dθ̄Γaθ , Eα = dθα,

R4 =
1

2
Ea ∧ Eb ∧ dθα ∧ dθβ (Γab)αβ ,

R7 =
1

5!
Ea1 ∧ Ea2 ∧ Ea3 ∧ Ea4 ∧ Ea5 ∧ dθα ∧ dθβ (Γa1a2a3a4a5

)αβ . (136)

It includes the supervielbein EA = {Ea, Eα} and the gauge invariant field strengths R4 = dA3

and its Hodge dual R7 = dA6 +
1
2A3 ∧R4, defined as Eq. (552) in Appendix A.2.

The full effective action can be written as [91]

S = −TM2

∫
d3σ

√
− detGµν + TM2

∫
A3, (137)

Gµν = Ea
µ(X, θ)E

b
ν(X, θ)ηab, EA

µ ≡ ∂µZ
M EA

M (X, θ),

A3 =
1

3!
εµνρEB

µ E
C
ν E

D
ρ ABCD(X, θ).
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Notice it depends on the supervielbeins EA
M (X, θ) and the three form potential CABC(x, θ) super-

fields only through their pullbacks to the world volume.
Its symmetry structure is analogous to the one described for D-branes. Indeed, the action (137)

is gauge invariant under world volume diffeomorphisms (ξµ) and kappa symmetry (κ) with infinites-
imal transformations given by

sXm = LξX
m + δκX

m = ξµ∂µX
m + δκθ̄Γ

mθ , (138)

sθα = Lξθ
α + δκθ

α = ξµ∂µθ
α + (1 + Γκ)κ , (139)

Γκ =
1

3!
√
− detG ε

µνρEa
µE

b
νE

c
ρ Γabc . (140)

The kappa matrix (140) satisfies Γ2
κ = ✶. Thus, δκθ is a projector that will allow one to gauge

away half of the fermionic degrees of freedom.
The action (137) is also invariant under global super-Poincaré transformations

δθ = ε+
1

4
ωmnΓ

mnθ, (141)

δXm = ε̄Γmθ + am + ωm
nX

n. (142)

Supersymmetry quasi-invariance can be easily argued for since R4 is manifestly invariant. Thus,
its gauge potential pullback variation will be a total derivative

δεA3 = d[ε̄∆2] (143)

for some spinor-valued two form ∆2.
It is worth mentioning that just as the bosonic membrane action reproduces the string world-

sheet action under double dimensional reduction, the same statement is true for their supersym-
metric and kappa invariant formulations [192, 476].

3.5 Supersymmetric brane effective actions in curved backgrounds

In this section, I extend the supersymmetric and kappa invariant D-brane and M2-brane actions in
super-Poincaré to D-branes, M2-branes and M5-branes in arbitrary curved backgrounds. The main
goal, besides introducing the formalism itself, is to highlight that the existence of kappa symmetry
invariance forces the supergravity background to be on-shell.

In all effective actions under consideration, the set of degrees of freedom includes scalars ZM =
{Xm, θα} and it may include some gauge field Vp, whose dependence is always through the gauge
invariant combination dVp − Bp+1

22. The set of kappa symmetry transformations will universally
be given by

δκZ
M Ea

M (X, θ) = 0 ,

δκZ
M E

α
M (X, θ) = (✶+ Γκ)κ ,

δκVp = Z?iκBp+1. (144)

The last transformation is a generalisation of the one encountered in super-Poincaré. Indeed, the
kappa variation of the pullback of any Tn n-form satisfies

δκTn ≡ δκZ
?Tn = Z?LκTn = Z?{d, iκ}Tn, (145)

where Z? stands for the pullback of Tn to the world volume. The choice in Eq. (144) guarantees
the kappa transformation of dVp removes the total derivative in δκBp+1.

22 For p = 1, B2 is the NS-NS 2-form, whereas for p = 2, B3 = A3 is the d = 11 3-form gauge potential.
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The structure of the transformations (144) is universal, but the details of the kappa symmetry
matrix Γκ depend on the specific theory, as described below. A second universal feature, associated
with the projection nature of kappa symmetry transformations, i.e., Γ2

κ = ✶, is the correlation
between the brane charge density and the sign of Γκ in Eq. (144). More specifically, any brane
effective action will have the structure

Sbrane = −Tbrane
∫
dp+1σ (LDBI − ε1LWZ) . (146)

Notice this is equivalent to requiring Tbrane = |Qbrane|, a property that is just reflecting the half-
BPS nature of these branes. It can be shown that

δκSbrane ∝ (1 + ε1Γκ)δκθ =⇒ δκθ = (1− ε1Γκ)κ. (147)

The choice of ε1 is correlated to the distinction between a brane and an anti-brane. Both are
supersymmetric, but preserve complementary supercharges. This ambiguity explains why some of
the literature has apparently different conventions, besides the possibility of working with different
Clifford algebra realisations23.

3.5.1 M2-branes

The effective action describing a single M2-brane in an arbitrary 11-dimensional background is
formally the same as in Eq. (137)

SM2 = −TM2

∫
d3σ

√
− detGµν + TM2

∫
A3, (148)

with the same definitions for the induced metric G and the pull back 3-form A3. The information
regarding different 11-dimensional backgrounds is encoded in the different couplings described by
the supervielbein EA

M (X, θ) and 3-form AABD(X, θ) superfields.
The action (148) is manifestly 3d-diffeomorphism invariant. It was shown to be kappa invariant

under the transformations (144), without any gauge field, whenever the background superfields
satisfy the constraints reviewed in Appendix A.2, i.e., whenever they are on-shell, for a kappa
symmetry matrix given by [90]

Γκ =
1

3!
√
− detG ε

µνρEa
µ(X, θ)E

b
ν(X, θ)E

c
ρ(X, θ) Γabc, (149)

where Ea
µ(X, θ) = ∂muX

mEa
m(X, θ) is the pullback of the curved supervielbein to the world volume.

3.5.2 D-branes

Proceeding in an analogous way for Dp-branes, their effective action in an arbitrary type IIA/B
background is

SDp = −TDp

∫
dp+1σ e−φ

√
− det(G + F) + TDp

∫
C ∧ eF , (150)

Fµν = 2πα′Fµν − EA
µ E

C
ν BAC , Cr =

1

r!
εµ1...µrEA1

µ1
. . . EAr

µr
CA1...Ar

. (151)

It is understood that Gµν(X, θ) = Ea
µE

b
νηab and C is defined using the same notation as in Eq. (523),

i.e., as a formal sum of forms, so that the WZ term picks all contributions coming from the

23 The derivation of the property (147) is made more manifest in formalisms in which the tension is generated
dynamically by the addition of an auxiliary volume density [86, 356, 94].
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wedge product of this sum and the Taylor expansion of eF that saturate the p + 1 world volume
dimension. Notice all information on the background spacetime is encoded in the superfields
EA

M (X, θ), φ(X, θ), BAC(X, θ) and the set of RR potentials {CA1...Ar
(X, θ)}.

The action (150) is p + 1 dimensional diffeomorphic invariant and it was shown to be kappa
invariant under the transformations (144) for V1 in [141, 93] when the kappa symmetry matrix
equals

(Γκ)(p+1) =
1√

− det(G + F)

∑

l=0

γ(2l+1) Γ
l+1
11 ∧ eF type IIA p = 2k, (152)

(Γκ)(p+1) =
1√

− det(G + F)

∑

l=0

γ(2l)τ
l
3 ∧ eF iτ2 type IIB p = 2k + 1 , (153)

and the background is on-shell, i.e., satisfies the constraints reviewed in Appendix A.1. In the
expressions above γ(1) stands for the pullback of the bulk tangent space Clifford matrices

γ(1) = dσµγµ = dσµEa
µ(X, θ)Γa, (154)

and γ(r) stands for the wedge product of r of these 1-forms. In [94], readers can find an extension
of the results reviewed here when the background includes a mass parameter, i.e., it belongs to
massive IIA [434].

3.5.3 M5-branes

The six-dimensional diffeomorphic and kappa symmetry invariant M5-brane [45] is a formal exten-
sion of the bosonic one

SM5 = TM5

∫
d6ξ (L0 + LWZ) ,

L0 = −
√
− det(Gµν + H̃µν) +

√
− detG

4(∂a · ∂a), (∂µa)(H
∗)µνρHνρι(∂

ιa) (155)

LWZ = A6 +
1

2
H3 ∧ A3 , (156)

where all pullbacks refer to superspace. This is kappa invariant under the transformations (144)
for V2, including the extra transformation law

δκa = 0, (157)

for the auxiliary scalar field introduced in the PST formalism. These transformations are deter-
mined by the kappa symmetry matrix

Γκ =
vµγ

µ

√
− det(Gµν + H̃µν)

[
γνt

ν +

√
− detG
2

γνρH̃νρ −
1

5!
εµ1...µ5νvνγµ1...µ5

]
, (158)

where γµ = Eµ
aΓa and the vector fields tµ and vµ are defined by

tµ =
1

8
εµν1ν2ρ1ρ2ιH̃ν1ν2

H̃ρ1ρ2
vι with vµ ≡ ∂µa√

−∂a · ∂a
. (159)
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Further comments on kappa symmetry: κ-symmetry is a fermionic local symmetry for which
no gauge field is necessary. Besides its defining projective nature when acting on fermions, i.e.,
δκθ = (✶+ Γκ)κ with Γ2

κ = ✶, there are two other distinctive features it satisfies [449]:

1. the algebra of κ-transformations only closes on-shell,

2. κ-symmetry is an infinitely reducible symmetry.

The latter statement uses the terminology of Batalin and Vilkovisky [52] and it is a direct conse-
quence of its projective nature, since the existence of the infinite chain of transformations

κ→ (1− Γκ)κ1 , κ1 → (1 + Γκ)κ2 . . . (160)

gives rise to an infinite tower of ghosts when attempting to follow the Batalin–Vilkovisky quantisa-
tion procedure, which is also suitable to handle the first remark above. Thus, covariant quantisation
of kappa invariant actions is a subtle problem. For detailed discussions on problems arising from
the regularisation of infinite sums and dealing with Stueckelberg type residual gauge symmetries,
readers are referred to [326, 325, 254, 223, 84].

It was later realised, using the Hamiltonian formulation, that kappa symmetry does allow
covariant quantisation provided the ground state of the theory is massive [327]. The latter is
clearly consistent with the brane interpretation of these actions, by which these vacua capture the
half-BPS nature of the (massive) branes themselves24.

For further interesting kinematical and geometrical aspects of kappa symmetry, see [449, 167,
166] and references therein.

3.6 Symmetries: spacetime vs world volume

The main purpose of this section is to discuss the global symmetries of brane effective actions, the
algebra they close and to emphasise the interpretation of some of the conserved charges appearing
in these algebras before and after gauge fixing of the world volume diffeomorphisms and kappa
symmetry.

❼ before gauge fixing, the p + 1 field theory will be invariant under the full superisometry
of the background where the brane propagates. This is a natural extension of the super-
Poincaré invariance when branes propagate in Minkowski. As such, the algebra closed by
the brane conserved charges will be a subalgebra of the maximal spacetime superalgebra one
can associate to the given background.

❼ after gauge fixing, only the subset of symmetries preserved by the brane embedding will
remain linearly realised. This subset determines the world volume (supersymmetry) algebra.
In the particular case of brane propagation in Minkowski, this algebra corresponds to a
subalgebra of the maximal super-Poincaré algebra in p+ 1 dimensions.

To prove that background symmetries give rise to brane global symmetries, one must first
properly define the notion of superisometry of a supergravity background. This involves a Killing
superfield ξ(Z) satisfying the properties

Lξ(E
a ⊗s E

b)ηab = 0 , (161)

LξR4 = LξR7 = 0 , M-theory (162)

LξH3 = Lξφ = LξRk = 0 . Type IIA/B (163)

24 I will prove this explicitly in Section 5.1.
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Lξ denotes the Lie derivative with respect to ξ, η is either the d = 11 or d = 10 Minkowski
metric on the tangent space, depending on which superspace we are working on and {Rk, H3} are
the different M-theory or type IIA/B field strengths satisfying the generalised Bianchi identities
defined in Appendix A. Notice these are the superfield versions of the standard bosonic Killing
isometry equations. Invariance of the field strengths allows the corresponding gauge potentials to
have non-trivial transformations

LξA3 = d∆2 , LξA6 = d∆5 −
1

2
∆2 ∧R4 , M-theory (164)

LξB2 = dλ1 , LξCp+1 = dωp − dωp−2 ∧H3 , Type IIA/B (165)

for some set of superfield forms {∆2, ∆5, ωi}.
The invariance of brane effective actions under the global transformations

δξZ
M = ξM (Z) , (166)

was proven in [94]. The proof can be established by analysing the DBI and WZ terms of the action
separately. If the brane has gauge field degrees of freedom, one can always choose its infinitesimal
transformation

δV2 = Z?(∆2) , M-theory (167)

δV1 = Z?(λ1) , Type IIA/B (168)

where Z? stands for pullback to the world volume, i.e., Z?(λ1) = dZM (λ1)M . This guarantees the
invariance of the gauge invariant forms, i.e., LξF = LξH3 = 0. Furthermore, the transformation
of the induced metric

LξGµν = ∂µZ
M∂νZ

N Lξ(E
a
ME

b
Nηab) , (169)

vanishes because of Eq. (161). This establishes the invariance of the DBI action. On the other
hand, the WZ action is quasi-invariant by construction due to Eqs. (164) and (165). Indeed,

δLWZ = Z? (d∆2) , M2-brane

δLWZ = Z?

(
d(∆5 +

1

2
H3 ∧∆2)

)
, M5-brane

δLWZ = LξC ∧ eF = Z? (dω) . D-branes (170)

Summary: Brane effective actions include the supergravity superisometries ξ(Z) as a subset of
their global symmetries. It is important to stress that kappa symmetry invariance is necessary
to define a supersymmetric field theory on the brane, but not sufficient. Indeed, any on-shell
supergravity background having no Killing spinors, i.e., some superisometry in which fermions are
shifted as δθ = ε, breaks supersymmetry, and consequently, will never support a supersymmetric
action on the brane.

The derivation discussed above does not exclude the existence of further infinitesimal transfor-
mations leaving the effective action invariant. The question of determining the full set of continuous
global symmetries of a given classical field theory is a well posed mathematical problem in terms
of cohomological methods [50, 51]. Applying these to the bosonic D-string [111] gave rise to the
discovery of the existence of an infinite number of global symmetries [113, 112]. These were also
proven to exist for the kappa invariant D-string action [110].

3.6.1 Supersymmetry algebras

Since spacetime superisometries generate world-volume global symmetries, Noether’s theorem [406,
407] guarantees a field theory realisation of the spacetime (super)symmetry algebra using Poisson
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brackets. It is by now well known that such (super)algebras contain more bosonic charges than the
ones geometrically realised as (super)isometries. There are several ways of reaching this conclusion:

1. Grouped theoretically, the anticommutator of two supercharges {Qα, Qβ} defines a sym-
metric matrix belonging to the adjoint representation of some symplectic algebra Sp(N,R),
whose order N depends on the spinor representation Qα. One can decompose this repre-
sentation into irreducible representations of the bosonic spacetime isometry group. This can
explicitly be done by using the completeness of the basis of antisymmetrised Clifford algebra
gamma matrices as follows

{Qα, Qβ} =
∑

p

(Γm1...mpC−1)αβZm1...mp
, (171)

where the allowed values of p depend on symmetry considerations. The right-hand side
defines a set of bosonic charges {Zm1...mp

} that typically goes beyond the spacetime bosonic
isometries.

2. Physically, BPS branes in a given spacetime background have masses equal to their charges
by virtue of the amount of supersymmetry they preserve. This would not be consistent with
the supersymmetry algebra if the latter would not include extra charges, the set {Zm1...mp

}
introduced above, besides the customary spacetime isometries among which the mass (time
translations) always belongs to. Thus, some of the extra charges must correspond to such
brane charges. The fact that these charges have non-trivial tensor structure means they
are typically not invariant under the spacetime isometry group. This is consistent with the
fact that the presence of branes breaks the spacetime isometry group, as I already explicitly
discussed in super-Poincaré.

3. All brane effective actions reviewed above are quasi-invariant under spacetime superisome-
tries, since the WZ term transformation equals a total derivative (170). Technically, it is a
well-known theorem that such total derivatives can induce extra charges in the commutation
of conserved charges through Poisson brackets. This is the actual field theory origin of the
group theoretically allowed set of charges {Zm1...mp

}.

Let me review how these structures emerge in both supergravity and brane effective actions.
Consider the most general superPoincaré algebra in 11 dimensions. This is spanned by a Majorana
spinor supercharge Qα (α = 1, . . . , 32) satisfying the anti-commutation relations25 [487, 478, 481]

{Qα, Qβ} = (ΓmC−1)αβPm +
1

2
(ΓmnC−1)αβZmn +

1

5!
(Γm1...m5C−1)αβYm1...m5

. (172)

That this superalgebra is maximal can be argued using the fact that its left-hand side defines
a symmetric tensor with 528 independent components. Equivalently, it can be interpreted as
belonging to the adjoint representation of the Lie algebra of Sp(32,R). The latter decomposes
under its subgroup SO(1, 10), the spacetime Lorentz isometry group, as

528 → 11⊕ 55⊕ 462 . (173)

The irreducible representations appearing in the direct sum do precisely correspond to the bosonic
tensor charges appearing in the right-hand side: the 11-momentum Pm, a 2-form charge Zmn,
which is 55-dimensional, and a 5-form charge Ym1...m5

, which is 462-dimensional.

25 All our charge conjugation matrices are antisymmetric and unitary, i.e., CT = −C and C†C = ✶. Furthermore,
all Clifford matrices satisfy the symmetry relation ΓT

m = −CΓmC−1.
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The above is merely based on group theory considerations that may or may not be realised in
a given physical theory. In 11-dimensional supergravity, the extra bosonic charges are realised in
terms of electric Ze and magnetic Zm charges, the Page charges [410], that one can construct out
of the 3-form potential A3 equation of motion, as reviewed in [467, 466]

Ze =
1

4Ω7

∫

∂M8

(?R4 +
1

2
A3 ∧R4) , (174)

Zm =
1

Ω4

∫

∂M5

R4 . (175)

The first integral is over the boundary at infinity of an arbitrary infinite 8-dimensional spacelike
manifold M8, with volume Ω7. Given the conserved nature of this charge, it does not depend
on the time slice chosen to compute it. But there are still many ways of embedding M8 in the
corresponding ten-dimensional spacelike hypersurface M10. Thus, Ze represents a set of charges
parameterised by the volume element 2-form describing how M8 is embedded in M10. This pre-
cisely matches the 2-form Zmn in Eq. (172). There is an analogous discussion for Zm, which
corresponds to the 5-form charge Ym1...m5

. As an example, consider the M2 and M5-brane config-
urations in Eqs. (20) and (22). If one labels the M2-brane tangential directions as 1 and 2, there
exists a non-trivial charge Z12 computed from Eq. (174) by plugging in Eq. (20) and evaluating
the integral over the transverse 7-sphere at infinity. The reader is encouraged to read the lecture
notes by Stelle [467] where these issues are discussed very explicitly in a rather general frame-
work including all standard half-BPS branes. For a more geometric construction of these maximal
superalgebras in AdS Ö S backgrounds, see [211] and references therein.

The above is a very brief reminder regarding spacetime superalgebras in supergravity. For a
more thorough presentation of these issues, the reader is encouraged to read the lectures notes
by Townsend [481], where similar considerations are discussed for both type II and heterotic su-
pergravity theories. Given the importance given to the action of dualities on effective actions, the
reader may wonder how these same dualities act on superalgebras. It was shown in [96] that these
actions correspond to picking different complex structures of an underlying OSp(1|32) superalgebra.

Consider the perspective offered by the M5-brane effective action propagating in d = 11 super-
Poincaré. The latter is invariant both under supersymmetry and bulk translations. Thus, through
Noether’s theorem, there exist field theory realisations of these charges. Quasi-invariance of the
WZ term will be responsible for the generation of extra terms in the calculation of the Poisson
bracket of these charges [165]. This was confirmed for the case at hand in [464], where the M5-brane
superalgebra was explicitly computed. The supercharges Qα are

Qα = i

∫
d5σ

[
(π + θ̄ΓmPm)α + i(Pi1i2 +

1

4
H∗0i1i2)(∆2

i1i2)α − iεi1...i5(∆5
i1...i5)α

]
, (176)

where π, Pm and Pij are the variables canonically conjugate to θ, Xm and Vij . As in any Hamilto-
nian formalism, world volume indices were split according to σµ = {t, σi} i = 1, . . . 5. Notice that
the pullbacks of the forms ∆2 and ∆5 appearing in δLWZ for the M5-brane in Eq. (170) do make
an explicit appearance in this calculation. The anti-commutator of the M5 brane world volume
supercharges equals Eq. (172) with

Pm =

∫
d5σ

δL
δ(∂tXm)

, (177)

Zmn = −
∫

M5

dXm ∧ dXn ∧ dV2 , (178)

Y m1...m5 =

∫

M5

dXm1 ∧ · · · ∧ dXm5 , (179)
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where all integrals are computed on the 5-dimensional spacelike hypersurface M5 spanned by the
M5-brane. Notice the algebra of supercharges depends on the brane dimensionality. Indeed, a
single M2-brane has a two dimensional spacelike surface that cannot support the pullback of a
spacetime 5-form as a single M5-brane can (see Eq. (179)). This conclusion could be modified if
the degrees of freedom living on the brane would be non-abelian.

Even though my discussion above only applies to the M5-brane in the super-Poincaré back-
ground, my conclusions are general given the quasi-invariance of their brane WZ action, a point
first emphasised in [165]. The reader is encouraged to read [165, 168] for similar analysis carried
for super p-branes, [281] for D-branes in super-Poincaré and general mathematical theorems based
on the structure of brane effective actions and [438, 437], for superalgebra calculations in some
particular curved backgrounds.

3.6.2 World volume supersymmetry algebras

Once the physical location of the brane is given, the spacetime superisometry group G is typically
broken into

G → G0 ×G1. (180)

The first factor G0 corresponds to the world volume symmetry group in (p + 1)-dimensions, i.e.,
the analogue of the Lorentz group in a supersymmetric field theory in (p+1)-dimensions, whereas
the second factor G1 is interpreted as an internal symmetry group acting on the dynamical fields
building (p + 1)-dimensional supermultiplets. The purpose of this subsection is to relate the
superalgebras before and after this symmetry breaking process [328].26

The link between both superalgebras is achieved through the gauge fixing of world volume
diffeomorphisms and kappa symmetry, the gauge symmetries responsible for the covariance of
the original brane action in the GS formalism. Focusing on the scalar content in these theories
{Xm, θ}, these transform as

sXm = km(X) + LξX
m + δκX

m + δεX
m , (181)

sθ = ε+ δkθ + Lξθ + (✶+ Γκ)κ+ δkθ . (182)

The general Killing superfield was decomposed into a supersymmetry translation denoted by ε
and a bosonic Killing vector fields kM (X). World volume diffeomorphisms were denoted as ξ. At
this stage, the reader should already notice the inhomogeneity of the supersymmetry transforma-
tion acting on fermions (the same is true for bosons if the background spacetime has a constant
translation as an isometry, as it happens in Minkowski).

Locally, one can always impose the static gauge: Xµ = σµ, where one decomposes the scalar
fields Xm into world volume directions Xµ and transverse directions XI ≡ ΦI . For infinite
branes, this choice is valid globally and does describe a vacuum configuration. To diagnose which
symmetries act, and how, on the physical degrees of freedom Φi, one must make sure to work in
the subset of symmetry transformations preserving the gauge slice Xµ = σµ. This forces one to
act with a compensating world volume diffeomorphism

sXµ|Xµ=σµ = 0 ⇒ ξµ = −kµ − δκX
µ − δεX

µ . (183)

The latter acts on the physical fields giving rise to the following set of transformations preserving
the gauge fixed action

sΦI |Xµ=σµ = kI − kµ∂µΦ
I + . . . , (184)

sθ|Xµ=σµ = −kµ∂µθ + Lkθ + . . . . (185)

There are two important comments to be made at this point

26 For earlier work, see [4], which extended the original Volkov–Akulov approach in [489].
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1. The physical fields ΦI transform as proper world volume scalars [3]. Indeed, ΦI(σ) =
(Φ′)I(σ′) induces the infinitesimal transformation kµ∂µΦ

I for any kµ(σ) preserving the p+1
dimensional world volume. Below, the same property will be checked for fermions.

2. If the spacetime background allows for any constant kI isometry, it would correspond to an
inhomogeneous symmetry transformation for the physical field ΦI . In field theory, the latter
would be interpreted as a spontaneous broken symmetry and the corresponding ΦI would be
its associated massless Goldstone field. This is precisely matching our previous discussions
regarding the identification of the appropriate brane degrees of freedom.

There is a similar discussion regarding the gauge fixing of kappa symmetry and the emergence
of a subset of linearly realised supersymmetries on the (p + 1)-dimensional world volume field
theory. Given the projector nature of the kappa symmetry transformations, it is natural to assume
Pθ = 0 as a gauge fixing condition, where P stands for some projector. Preservation of this gauge
slice, determines the kappa symmetry parameter κ as a function of the background Killing spinors
ε

sθ|Pθ=0 = 0 =⇒ κ = κ(ε) . (186)

When analysing the supersymmetry transformations for the remaining dynamical fermions, only
certain linear combinations of the original supersymmetries ε will be linearly realised. The difficulty
in identifying the appropriate subset depends on the choice of P.

Branes in super-Poincaré: The above discussion can be made explicit in this case. Consider
a p+ 1 dimensional brane propagating in d dimensional super-Poincaré. For completeness, let me
remind the reader of the full set of transformations leaving the brane actions invariant

sXm = am + amnX
n + LξX

m + ε̄Γmθ + δκX
m , (187)

sθ =
1

4
amnΓ

mnθ + Lξθ + ε+ δκθ , (188)

where I ignored possible world volume gauge fields. Decomposing the set of bosonic scalar fields
Xm m = 0, 1, . . . d − 1 into world volume directions Xµ µ = 0, 1, . . . p and transverse directions
XI ≡ ΦI I = p+ 1, . . . d− 1, one can now explicitly solve for the preservation of the static gauge
slice Xµ = σµ, which does globally describe the vacuum choice of a p-brane extending in the first
p spacelike directions and time. This requires some compensating world volume diffeomorphism

ξµ = −aµ − aµνσ
ν − aµIΦ

I − ε̄Γµθ − δκX
µ , (189)

inducing the following transformations for the remaining degrees of freedom

sΦI = −aµ∂µΦI − aµνσ
ν∂µΦ

I − aµJΦ
J∂µΦ

I + aJ + aIJΦ
J + aIµσ

µ + fermions , (190)

sθ = −aµνσ
ν∂µθ +

1

4
aµνΓ

µνθ +
1

4
aIJΓ

IJθ. (191)

The subset of linearly realised symmetries is ISO(1, p) × SO(D − (p + 1)). The world volume
“Poincaré” group is indeed ISO(1, p), under which ΦI are scalars, whereas θ are fermions, including
the standard spin connection transformation giving them their spinorial nature. SO(D− (p+ 1)),
the transverse rotational group to the brane is reinterpreted as an internal symmetry, under which
ΦI transforms as a vector. The parameters aµI describing the coset SO(1, D − 1)/(SO(1, p) ×
SO(D − p − 1)) are generically non-linearly realised, whereas the transverse translations aI act
inhomogeneously on the dynamical fields ΦI , identifying the latter as Goldstone massless fields,
as corresponds to the spontaneous symmetry breaking of these symmetries due to the presence of
the brane in the chosen directions.
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There is a similar discussion for the 32 spacetime supersymmetries (ε). Before gauge fixing
all fermions θ transform inhomogeneously under supersymmetry. After gauge fixing Pθ = 0,
the compensating kappa symmetry transformation κ(ε) required to preserve the gauge slice in
configuration space will induce an extra supersymmetry transformation for the dynamical fermions,
i.e., (1−P)θ. On general grounds, there must exist sixteen linear combinations of supersymmetries
being linearly realised, whereas the sixteen remaining will be spontaneously broken by the brane.
There are many choices for Pθ = 0. In [10], where they analysed this aspect for D-branes in super-
Poincaré, they set one of the members of the N = 2 fermion pair to zero, leading to fairly simple
expressions for the gauge fixed Lagrangian. Another natural choice corresponds to picking the
projector describing the preserved supersymmetries by the brane from the spacetime perspective.
For instance, the supergravity solution describing M2-branes has 16 Killing spinors satisfying

Γ012ε = ±ε , (192)

where the ± is correlated with the R4 flux carried by the solution. If one fixes kappa symmetry
according to

Pθ = (1 + Γ?)θ = 0 , with Γ? = Γ3 . . .Γ9Γ] , (193)

where Γ] stands for the 11-dimensional Clifford algebra matrix, then the physical fermionic de-
grees of freedom are not only 3-dimensional spinors, but they are chiral spinors from the internal
symmetry SO(8) perspective. They actually transform in the (2, 8s) [91]. Similar considerations
would apply for any other brane considered in this review.

Having established the relation between spacetime and world volume symmetries, it is natural
to close our discussion by revisiting the superalgebra closed by the linearly realised world volume
(super)symmetries, once both diffeomorphisms and kappa symmetry have been fixed. Since space-
time superalgebras included extra bosonic charges due to the quasi-invariance of the brane WZ
action, the same will be true for their gauge fixed actions. Thus, these (p+ 1)-dimensional world
volume superalgebras will include as many extra bosonic charges as allowed by group theory and
by the dimensionality of the brane world spaces [81]. Consider the M2-brane discussed above. Su-
percharges transform in the (2, 8s) representation of the SO(1, 2)×SO(8) bosonic isometry group.
Thus, the most general supersymmetry algebra compatible with these generators, N = 8 d = 3,
is [81]

{QI
α, Q

J
β} = δIJP(αβ) + Z

(IJ)
(αβ) + εαβZ

[IJ] with (δIJZ
(IJ) = 0) . (194)

P(αβ) stands for a 3-dimensional one-form, the momentum on the brane; Z
(IJ)
(αβ) transforms in the

35+ under the R-symmetry group SO(8), or equivalently, as a self-dual 4-form in the transverse
space to the brane; Z [IJ] is a world volume scalar, which transforms in the 28 of SO(8), i.e., as a 2-
form in the transverse space. The same superalgebra is realised on the non-abelian effective action
describing N coincident M2-branes [415] to be reviewed in Section 7.2. Similar structures exist for
other infinite branes. For example, the M5-brane gives rise to the d = 6 (2, 0) superalgebra [81]

{QI
α, Q

J
β} = ΩIJP[αβ] + Z

(IJ)
(αβ) + Y

[IJ]
[αβ] with (ΩIJY

[IJ] = 0) . (195)

Here α, β = 1, . . . , 4 is an index of SU∗(4) ' Spin(1, 5), the natural Lorentz group for spinors in
d = 6 dimensions, I, J = 1, . . . 4 is an index of Sp(2) ' Spin(5), which is the double cover of the
geometrical isometry group SO(5) acting on the transverse space to the M5-brane and ΩIJ is an
Sp(2) invariant antisymmetric tensor. Thus, using appropriate isomorphisms, these superalgebras
allow a geometrical reinterpretation in terms of brane world volumes and transverse isometry
groups becoming R-symmetry groups. The last decomposition is again maximal since P[αβ] stands

for 1-form in d = 6 (momentum), Z
(IJ)
(αβ) transforms as a self-dual 3-form in d = 6 and a 2-form
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in the transverse space and Y
[IJ]
[αβ] as a 1-form both in d = 6 and in the transverse space. For an

example of a non-trivial world volume superalgebra in a curved background, see [152].
I would like to close this discussion with a remark that is usually not stressed in the litera-

ture. By construction, any diffeomorphism and kappa symmetry gauge fixed brane effective action
describes an interacting supersymmetric field theory in p + 1 dimensions.27 As such, if there are
available superspace techniques in these dimensions involving the relevant brane supermultiplet,
the gauge fixed action can always be rewritten in that language. The matching between both
formulations generically involves non-trivial field redefinitions. To be more precise, consider the
example of N = 1 d = 4 supersymmetric abelian gauge theories coupled to matter fields. Their
kinetic terms are fully characterised by a Kähler potential. If one considers a D3-brane in a
background breaking the appropriate amount of supersymmetry, the expansion of the gauge fixed
D3-brane action must match the standard textbook description. The reader can find an example
of the kind of non-trivial bosonic field redefinitions that is required in [321]. The matching of
fermionic components is expected to be harder.

3.7 Regime of validity

After thoroughly discussing the kinematic structure of the effective action describing the propa-
gation of single branes in arbitrary on-shell backgrounds, I would like to reexamine the regime of
validity under which the dynamics of the full string (M-) theory reduces to Sbrane.

As already stressed at the beginning of Section 3, working at low energies allows us to consider
the action

S ≈ SSUGRA + Sbrane. (196)

In string theory, low energies means energies E satisfying E
√
α′ � 1. This guarantees that no

on-shell states will carry energies above that scale allowing one to write an effective action in terms
of the fields describing massless excitations and their derivatives. The argument is valid for both
the open and the closed string sectors. Furthermore, to ensure the validity of this perturbative
description, one must ensure the weak coupling regime is satisfied, i.e., gs � 1, to suppress higher
loop world sheet contributions.

Dynamically, all brane effective actions reviewed previously, describe the propagation of a brane
in a fixed on-shell spacetime background solving the classical supergravity equations of motion.
Thus, to justify neglecting the dynamics of the gravitational sector, focusing on the brane dynamics,
one must guarantee condition (18)

|T background
mn | � |T brane

mn |, (197)

but also to work in a regime where the effective Newton’s constant tends to zero. Given the low
energy and weak coupling approximations, the standard lore condition for the absence of quantum

gravity effects, i.e., E`
(10)
p � 1, is naturally satisfied since E`

(10)
p ∼

(
E
√
α′
)
g
1/4
s � 1. The

analogous condition for 11-dimensional supergravity is E`p � 1.
The purpose of this section is to spell out more precisely the conditions that make the above

requirements not sufficient. As in any effective field theory action, one must check the validity of
the assumptions made in their derivation. In our discussions, this includes

1. conditions on the derivatives of brane degrees of freedom, both geometrical Xm and world
volume gauge fields, such as the value of the electric field;

2. the reliability of the supergravity background;

27 I have assumed both the background and the brane preserve some supersymmetry.
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3. the absence of extra massless degrees of freedom emerging in string theory under certain
circumstances.

I will break the discussion below into background and brane considerations.

Validity of the background description: Whenever the supergravity approximation is not
reliable, the brane description will also break down. Assuming no extra massless degrees of free-
dom arise, any on-shell N = 2 type IIA/IIB supergravity configuration satisfying the conditions
described above, must also avoid

eφ ∼ 1, R (`(10)p )2 ' 1. (198)

Since the string coupling constant gs is defined as the expectation value of eφ, the first condition
determines the regions of spacetime where string interactions become strongly coupled. The second
condition, or any dimensionless scalar quantity constructed out of the Riemann tensor, determines
the regions of spacetime where curvature effects cannot be neglected. Whenever there are points
in our classical geometry where any of the two conditions are satisfied, the assumptions leading to
the classical equations of motion being solved by the background under consideration are violated.
Thus, our approximation is not self-consistent in these regions.

Similar considerations apply to 11-dimensional supergravity. In this case, the first natural
condition comes from the absence of strong curvature effects, which would typically occur whenever

R`2p ' 1, (199)

where once more the scalar curvature can be replaced by other curvature invariants constructed
out of the 11-dimensional Riemann tensor in appropriate units of the 11-dimensional Planck scale
`p.

Since the strong coupling limit of type IIA string theory is M-theory, which at low energies is
approximated by N = 1 d = 11 supergravity, it is clear that there should exist further conditions.
This connection involves a compactification on a circle, and it is natural to examine whether our
approximations hold as soon as its size R is comparable to `p. Using the relations (55), one learns

R ∼ `p ⇐⇒ gs ∼ 1. (200)

Thus, as soon as the M-theory circle explores subPlanckian eleven-dimensional scales, which would
not allow a reliable eleven-dimensional classical description, the type IIA string coupling becomes
weakly coupled, opening a possible window of reliable classical geometrical description in terms of
the KK reduced configuration (54).

The above discussion also applies to type IIA and IIB geometries. As soon as the scale of some
compact submanifold, such as a circle, explores substringy scales, the original metric description
stops being reliable. Instead, its T-dual description (58) does, using Eq. (56).

Finally, the strong coupling limit of type IIB may also allow a geometrical description given the
SL(2,R) invariance of its supergravity effective action, which includes the S-duality transformation

eφ → e−φ. (201)

The latter maps a strongly coupled region to a weakly coupled one, but it also rescales the string

metric. Thus, one must check whether the curvature requirements R (`
(10)
p )2 � 1 hold or not.

It is important to close this discussion by reminding the reader that any classical supergravity
description assumes the only relevant massless degrees of freedom are those included in the su-
pergravity multiplet. The latter is not always true in string theory. For example, string winding
modes become massless when the circle radius the string wraps goes to zero size. This is precisely
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the situation alluded to above, where the T-dual description, in which such modes become momen-
tum modes, provides a T-dual reliable description in terms of supergravity multiplet fluctuations.
The emergence of extra massless modes in certain classical singularities in string theory is far more
general, and it can be responsible for the resolution of the singularity. The existence of extra
massless modes is a quantum mechanical question that requires going beyond the supergravity ap-
proximation. What certainly remains universal is the geometrical breaking down associated with
the divergence of scalar curvature invariants due to a singularity, independently of whether the
latter is associated with extra massless modes or not.

Validity of the brane description: Besides the generic low energy and weak coupling require-
ments applying to D-brane effective actions (150), the microscopic derivation of the DBI action
assumed the world volume field strength Fµν was constant. Thus, kappa symmetric invariant
D-brane effective actions ignore corrections in derivatives of this field strength, i.e., terms like
∂ρFµν or higher in number of derivatives. Interestingly, these corrections map to acceleration and
higher-order derivative corrections in the scalar fields Xm under T-duality, see Eq. (80). Thus,
there exists the further requirement that all dynamical fields in brane effective actions are slowly
varying. In Minkowski, this would correspond to conditions like

√
α′∂2X � ∂X, (202)

or similar tensor objects constructed with the derivative operator in appropriate string units. In a
general curved background, these conditions must be properly covariantised, although locally, the
above always applies.

Notice these conditions are analogous to the ones we would encounter in the propagation of a
point particle in a fixed background. Any corrections to geodesic motion would be parameterised
by an expansion in derivatives of the scalar fields parameterising the particle position, this time in
units of the mass particle.

Brane effective actions carrying electric fields E can manifestly become ill defined for values
above a certain critical electric field Ecrit for which the DBI determinant vanishes. It was first
noticed for the bosonic string in [120, 403] that such critical electric field is the value for which
the rate of Schwinger charged-string pair production [442] diverges. This divergence captures a
divergent density of string states in the presence of such critical electric field. These calculations
were extended to the superstring in [25]. The conclusion is the same, though in this latter case
the divergence applies to any pair of charge-conjugate states. Thus, there exists a correlation
between the pathological behaviour of the DBI action and the existence of string instabilities.28

Heuristically, one interprets the regime with E > Ecrit as one where the string tension can no
longer hold the string together.29

28 There exists some similar phenomena on the M5-brane dynamics with the self-dual 3-form field strength. See [74]
for a discussion on the emergence of noncommutative gauge theories when the self-dual 3-form field strength is close
to its critical value.

29 There are several claims in the literature advocating that extra massless degrees of freedom emerge in brane
effective actions when the latter probe black holes very close to their horizons. See [322, 323, 313, 300] for interesting
work in this direction.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2012-3

http://www.livingreviews.org/lrr-2012-3


Brane Effective Actions, Kappa-Symmetry and Applications 55

4 World Volume Solitons: Generalities

Brane effective actions capture the relevant dynamics of M-theory or string theory in some ap-
propriate regimes of validity. Thus, they contain reliable information about its spectrum and its
dynamics in those regimes. In this section, I will develop the tools to study the world volume
realisation of supersymmetric states carrying the extra bosonic (topological) charges appearing in
the maximal supersymmetry algebras introduced in Sections 3.6.1 and 3.6.2.

One such realisation is in terms of classical bosonic on-shell configurations. As it often occurs
with supersymmetric configurations, instead of focusing on the integration of the equations of
motion, I will focus on the conditions ensuring preservation of supersymmetry and on their physical
interpretation. In particular,

❼ I will argue the existence of a necessary condition that any bosonic supersymmetric config-
uration must satisfy involving the kappa symmetry matrix Γκ and the background Killing
spinors ε.

❼ I will review the Hamiltonian formulation for brane effective actions to compute the energy
of these configurations. The latter will minimise the energy for a given set of charges carried
by the state. The existence of energy bounds can be inferred from merely algebraic consid-
erations and I will discuss their field theory realisations as BPS bounds30. Furthermore, the
relation between their saturation and the solution to the necessary kappa symmetry condition
will also be explained.

❼ I will discuss the relation between these physical considerations and the mathematical notion
of calibration, which is a purely geometric formulation of the problem of finding volume
minimising surfaces. Since the latter corresponds to a subset of bosonic brane supersymmetric
configurations, this connection will allow us to review the notion of generalised calibration,
which, in physical terms, includes world volume gauge field excitations.

The framework and set of relations covered in this section are summarised in Figure 6.

4.1 Supersymmetric bosonic configurations and kappa symmetry

To know whether any given on-shell bosonic brane configuration is supersymmetric, and if so,
how many supersymmetries are preserved, one must develop some tools analogous to the ones for
bosonic supergravity configurations. I will review these first.

Consider any supergravity theory having bosonic (B) and fermionic (F) degrees of freedom. It
is consistent with the equations of motion to set F = 0. The question of whether the configuration
B preserves supersymmetry reduces to the study of whether there exists any supersymmetry trans-
formation ε preserving the bosonic nature of the on-shell configuration, i.e., δF|F=0 = 0, without
transforming B, i.e., δB|F=0 = 0. Since the structure of the local supersymmetry transformations
in supergravity is

δB ∝ F , δF = P(B) ε , (203)

these conditions reduce to P(B) ε = 0. In general, the Clifford valued operator P(B) is not higher
than first order in derivatives, but it can also be purely algebraic. Solutions to this equation involve

1. Differential constraints on the subset of bosonic configurations B. Given the first-order nature
of the operator P(B), these are simpler than the second-order equations of motion and help
to reduce the complexity of the latter.

30 BPS stands for Bogomolny, Prasad and Sommerfield and their work on stable solitonic configurations [107, 429].
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background
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off-shell susy

on-shell susy
bosonic configuration

solution

Algebraic projections

BPS equations

Hamiltonian
formulation

Figure 6: Set of relations involving kappa symmetry, spacetime supersymmetry algebras, their bounds and
their realisation as field theory BPS bounds in terms of brane solitons using the Hamiltonian formulation
of brane effective actions.

2. Differential and algebraic constraints on ε. These reduce the infinite dimensional character
of the original arbitrary supersymmetry transformation parameter ε to a finite dimensional
subset, i.e., ε = fB(xm)ε∞, where the function fB(xm) is uniquely specified by the bosonic
background B and the constant spinor ε∞ typically satisfies a set of conditions Piε∞ = 0,
where Pi are projectors satisfying P2

i = Pi and trPi = 0. These ε are the Killing spinors of
the bosonic background B. They can depend on the spacetime point, but they are no longer
arbitrary. Thus, they are understood as global parameters.

This argument is general and any condition derived from it is necessary. Thus, one is instructed
to analyse the condition P(B) ε = 0 before solving the equations of motion. As a particular
example, and to make contact with the discussions in Section 3.1.1, consider N = 1 d = 11
supergravity. The only fermionic degrees of freedom are the gravitino components Ψa = EM

aΨM .
Their supersymmetry transformation is [466]

δΨa =

(
∂a +

1

4
ωa

bcΓbc

)
ε− 1

288

(
Γa

bcde − 8δa
bΓcde

)
Rbcdeε . (204)

Solving the supersymmetry preserving condition δΨa = 0 in the M2-brane and M5-brane back-
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grounds determines the Killing spinors of these solutions to be [466, 467]

M2− brane ε = U−1/6ε∞ with Γ012ε∞ = ±ε∞ , (205)

M5− brane ε = U−1/12ε∞ with Γ012345ε∞ = ±ε∞ . (206)

A similar answer is found for all D-branes in N = 2 d = 10 type IIA/B supergravities.
The same question for brane effective actions is treated in a conceptually analogous way. The

subspace of bosonic configurations B defined by θ = 0 is compatible with the brane equations of
motion. Preservation of supersymmetry requires sθ|B = 0. The total transformation sθ is given by

sθ = δκθ + ε+∆θ + ξµ∂µθ , (207)

where δκθ and ξµ∂µθ stand for the kappa symmetry and world volume diffeomorphism infinites-
imal transformations and ∆θ for any global symmetries different from supersymmetry, which is
generated by the Killing spinors ε. When restricted to the subspace B of bosonic configurations,

δκθ|B = (✶+ Γκ|B)κ, (208)

∆θ|B = 0 , (209)

one is left with
sθ|B = (1 + Γκ|B)κ+ ε . (210)

This is because ∆θ describes linearly realised symmetries. Thus, kappa symmetry and supersym-
metry transformations do generically not leave the subspace B invariant.

We are interested in deriving a general condition for any bosonic configuration to preserve
supersymmetry. Since not all fermionic fields θ are physical, working on the subspace θ = 0
is not precise enough for our purposes. We must work in the subspace of field configurations
being both physical and bosonic [85].This forces us to work at the intersection of θ = 0 and some
kappa symmetry gauge fixing condition. Because of this, I find it convenient to break the general
argument into two steps.

1. Invariance under kappa symmetry. Consider the kappa-symmetry gauge-fixing condition
Pθ = 0, where P stands for any field independent projector. This allows us to decompose
the original fermions according to

θ = Pθ + (✶− P)θ . (211)

To preserve the kappa gauge slice in the subspace B requires

sPθ|B = P(✶+ Γκ|B)κ+ Pε = 0 . (212)

This determines the necessary compensating kappa symmetry transformation κ(ε) as a func-
tion of the background Killing spinors.

2. Invariance under supersymmetry. Once the set of dynamical fermions (✶ − P)θ is properly
defined, we ask for the set of global supersymmetry transformations preserving them

s(✶− P)θ|B = 0 . (213)

This is equivalent to
(✶+ Γκ|B)κ(ε) + ε = 0 (214)

once Eq. (212) is taken into account. Projecting this equation into the (✶− Γκ|B) subspace
gives condition

Γκ|Bε = ε . (215)

No further information can be gained by projecting to the orthogonal subspace (✶+ Γκ|B).
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Table 5: Set of kappa symmetry matrices Γκ evaluated in the bosonic subspace of configurations B.

Brane Bosonic kappa symmetry matrix

M2-brane Γκ|B = 1
3!

√
− detG ε

µνργµνρ

M5-brane Γκ|B =
vµγ

µ√
− det(G+H̃)

[√
− detG

2 γµ1µ2H̃µ1µ2
+ γνt

ν

− 1
5! ε

µ1...µ5νvν γµ1...µ5

]

IIA Dp-branes Γκ|B = 1√
− det(G+F)

∑
l=0 γ2l+1Γ

l+1
] ∧ eF

IIB Dp-branes Γκ|B = 1√
− det(G+F)

∑
l=0 γ2lτ

l
3 iτ2 ∧ eF

I will refer to Eq. (215) as the kappa symmetry preserving condition. It was first derived in [85].
This is the universal necessary condition that any bosonic on-shell brane configuration {φi} must
satisfy to preserve some supersymmetry.

In Table 5, I evaluate all kappa symmetry matrices Γκ in the subspace of bosonic configurations
B for future reference. This matrix encodes information

1. on the background, both explicitly through the induced world volume Clifford valued matrices
γµ = Eµ

aΓa = ∂µX
mEm

aΓa and the pullback of spacetime fields, such as G, F or H̃, but
also implicitly through the background Killing spinors ε solving the supergravity constraints
P(ε) = 0, which also depend on the remaining background gauge potentials,

2. on the brane configuration {φi}, including scalar fields Xm(σ) and gauge fields, either V1 or
V2, depending on the brane under consideration.

Just as in supergravity, any solution to Eq. (215) involves two sets of conditions, one on the
space of configurations {φi} and one on the amount of supersymmetries. More precisely,

1. a set of constraints among dynamical fields and their derivatives, fj(φ
i, ∂φi) = 0,

2. a set of supersymmetry projection conditions, P ′
iε∞ = 0, with P ′

i being projectors, reducing
the dimensionality of the vector space spanned by the original ε∞.

The first set will turn out to be BPS equations, whereas the second will determine the amount of
supersymmetry preserved by the combined background and probe system.

4.2 Hamiltonian formalism

In this subsection, I review the Hamiltonian formalism for brane effective actions. This will allow us
not only to compute the energy of a given supersymmetric on-shell configuration solving Eq. (215),
but also to interpret the constraints fj(φ

i) = 0 as BPS bounds [107, 429]. This will lead us
to interpret these configurations as brane-like excitations supported on the original brane world
volume.

The existence of energy bounds in supersymmetric theories can already be derived from purely
superalgebra considerations. For example, consider the M-algebra (172). Due to the positivity of
its left-hand side, one derives the energy bound

P0 ≥ f
(
Pi, Zij , Yi1...i5 ;Z0i, Y0i1...i4

)
, (216)

where the charge conjugation matrix was chosen to be C = Γ0 and the spacetime indices were
split as m = {0, i}. For simplicity, let us set the time components Y0i1...i4 and Z0i to zero. The
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superalgebra reduces to

{Q,Q} = P 0(1 + Γ̄) , with Γ̄ = (P 0)−1
[
Γ0iPi +

1

2
Γ0ijZij +

1

5!
Γ0i1...i5Yi1...i5

]
. (217)

The bound (216) is now equivalent to the statement that no eigenvalue of Γ̄2 can exceed unity.
Any bosonic charge (or distribution of them) for which the corresponding Γ̄ satisfies

Γ̄2 = ✶ , (218)

defines a projector 1
2 (✶+Γ̄). The eigenspace of Γ̄ with eigenvalue 1 coincides with the one spanned

by the Killing spinors ε∞ determining the supersymmetries preserved by supergravity configura-
tions corresponding to individual brane states. In other words, there is a one-to-one map between
half BPS branes, the charges they carry and the precise supersymmetries they preserve. This allows
one to interpret all the charges appearing in Γ̄ in terms of brane excitations: the 10-momentum Pi

describes d = 11 massless superparticles [93], the 2-form charges Zij M2-branes [90, 91], whereas
the 5-form charges Yi1...i5 , M5-branes [464]. This correspondence extends to the time components
{Y0i1...i4 , Z0i}. These describe branes appearing in Kaluza–Klein vacua [311, 481]. Specifically,
Y0i1...i4 is carried by type IIA D6-branes (the M-theory KK monopole), while Z0i can be related
to type IIA D8-branes.

That these algebraic energy bounds should allow a field theoretical realisation is a direct con-
sequence of the brane effective action global symmetries and Noether’s theorem [406, 407]. If the
system is invariant under time translations, energy will be preserved, and it can be computed us-
ing the Hamiltonian formalism, for example. Depending on the amount and nature of the charges
turned on by the configuration, the general functional dependence of the bound (216) changes.
This is because each charge appears in Γ̄ multiplied by different antisymmetric products of Clifford
matrices. Depending on whether these commute or anticommute, the bound satisfied by the en-
ergy P0 changes, see for example a discussion on this point in [394]. Thus, one expects to be able
to decompose the Hamiltonian density for these configurations as sums of the other charges and
positive definite extra terms such that when they vanish, the bound is saturated. More precisely,

1. For non-threshold bound states, or equivalently, when the associated Clifford matrices anti-
commute, one expects the energy density to satisfy

E2 = Z2
1 + Z2

2 +
∑

i

(
tifi(φ

j)
)2
. (219)

2. For bound states at threshold, or equivalently, when the associated Clifford matrices commute,
one expects

E2 = (Z1 + Z2)
2 +

∑

i

(
tifi(φ

j)
)2
. (220)

In both cases, the set {ti} involves non-trivial dependence on the dynamical fields and their deriva-
tives. Due to the positivity of the terms in the right-hand side, one can derive lower bounds on
the energy, or BPS bounds,

E ≥
√
Z2

1 + Z2
2 (221)

E ≥ |Z1|+ |Z2| (222)

being saturated precisely when fi(φ
j) = 0 are satisfied, justifying their interpretation as BPS

equations [107, 429]. Thus, saturation of the bound matches the energy E with some charges that
may usually have some topological origin [165].
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In the current presentation, I assumed the existence of two non-trivial charges, Z1 and Z2. The
argument can be extended to any number of them. This will change the explicit saturating function
in Eq. (216) (see [394]), but not the conceptual difference between the two cases outlined above.
It is important to stress that, just as in supergravity, solving the gravitino/dilatino equations, i.e.,
δF = 0, does not guarantee the resulting configuration to be on-shell, the same is true in brane
effective actions. In other words, not all configurations solving Eq. (215) and saturating a BPS
bound are guaranteed to be on-shell. For example, in the presence of non-trivial gauge fields, one
must still impose Gauss’ law independently.

After these general arguments, I review the relevant phase space reformulation of the effective
brane Lagrangian dynamics discussed in Section 3.

4.2.1 D-brane Hamiltonian

As in any Hamiltonian formulation31, the first step consists in breaking covariance to allow a
proper treatment of time evolution. Let me split the world volume coordinates as σµ = {t, σi} for
i = 1, . . . , p and rewrite the bosonic D-brane Lagrangian by singling out all time derivatives using
standard conjugate momenta variables

L = ẊmPm + V̇iE
i + ψ̇TDp −H . (223)

Here Pm and Ei are the conjugate momentum to Xm and Vi, respectively, while H is the Hamilto-
nian density. ψ is the Hodge dual of a p-form potential introduced in [94] to generate the tension
TDp dynamically [86, 356]. It is convenient to study the tensionless limit in these actions as a
generalisation of the massless particle action limit. It was shown in [94] that H can be written as
a sum of constraints

H = ψiTi + VtK + siHi + λH , (224)

where

Ti = −∂iTDp,

K = −∂iẼi + (−1)p+1TDpS with S = ∗(ReF )p,
Hi = P̃aE

a
i + ẼjFij with Ea

i = Ea
m∂iX

m,

H =
1

2

[
P̃ 2 + ẼiẼjGij + T 2

Dpe
−2φ det(Gij + Fij)

]
. (225)

The first constraint is responsible for the constant tension of the brane. It generates abelian
gauge transformations for the p-form potential generating the tension dynamically. The second
generates gauge field transformations and it implements the Gauss’ law constraint K = 0. Notice
its dependence on R, the pullback of the RR field strengths R = dC − C ∧ H3, coming from
the WZ couplings and acting as sources in Gauss’ law. Finally, Ha and H generate world-space
diffeomorphisms and time translations, respectively.

The modified conjugate momenta Pa and Ẽi determining all these constraints are defined in
terms of the original conjugate momenta as

P̃a = Ea
m
(
Pm + EiZ? (imB)i + TDpCm

)
, with Cm = ∗

(
Z?(imC) ∧ eF

)
p
,

Ẽi = Ei + TCi , with Ci = [∗(CeF )p−1]
i. (226)

31 For a complete and detailed discussion of the supersymmetric and kappa invariant D-brane Hamiltonian for-
malism, see [94], which extends the bosonic results in [356, 327] and the type IIB superMinkowski ones in [329].
Here I follow [94] even though the analysis is restricted to the bosonic sector.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2012-3

http://www.livingreviews.org/lrr-2012-3


Brane Effective Actions, Kappa-Symmetry and Applications 61

Z? (imB)i stands for the pullback to the world volume of the contraction of B2 along the vector
field ∂/∂Xm. Equivalently, Z? (imB)i = ∂iX

nBmn. Z?(imC) is defined analogously. Notice ?
stands for the Hodge dual in the p-dimensional D-brane world space.

In practice, given the equivalence between the Lagrangian formulation and the one above, one
solves the equations of motion on the subspace of configurations solving Eq. (215) in phase space
variables and finally computes the energy density of the configuration P0 = E by solving the
Hamiltonian constraint, i.e., H = 0, which is a quadratic expression in the conjugate momenta, as
expected for a relativistic dynamical system.

4.2.2 M2-brane Hamiltonian

The Hamiltonian formulation for the M2-brane can be viewed as a particular case of the analysis
provided above, but in the absence of gauge fields. It was originally studied in [88]. One can check
that the full bosonic M2-brane Lagrangian is equivalent to

L = ẊmPm − siP̃aE
a
i − 1

2
λ
[
P̃ 2 + T 2

M2 detGij

]
, (227)

where the modified conjugate momentum P̃a is related to the standard conjugate momentum Pm

by

P̃a = Em
a (Pm + TM2 Cm) with Cm = ∗ (Z?(imC3)) , (228)

where ∗ describes the Hodge dual computed in the 2-dimensional world space spanned by i, j = 1, 2.
Notice no dynamically-generated tension was considered in the formulation above.

As before, one usually solves the equations of motion δL/δsa = δL/δv = 0 in the subspace of
phase space configurations solving Eq. (215), and computes its energy by solving the Hamiltonian
constraint, i.e., δL/δλ = 0.

4.2.3 M5-brane Hamiltonian

It turns out the Hamiltonian formulation for the M5-brane dynamics is more natural than its
Lagrangian one since it is easier to deal with the self-duality condition in phase space [92]. One
follows the same strategy and notation as above, splitting the world volume coordinates as σµ =
{t, σi} with i = 1, . . . 5. Since the Hamiltonian formulation is expected to break SO(1, 5) into
SO(5), one works in the gauge a = σ0 = t. It is convenient to work with the world space metric
Gij and its inverse Gij

5
32. Then, the following identities hold

H̃ij =
1

6
√
detG5

εijk1k2k3Hk1k2k3
,

det(Gµν + H̃µν) = (G00 − G0iGij
5 G0j) det

5(G + H̃) , (229)

where detG5 is the determinant of the world space components Gij , det
5(G + H̃) = det(Gij + H̃ij)

and H̃ij = GikGjlH̃
kl.

It was shown in [92] that the full bosonic M5-brane Lagrangian in phase space equals

L = ẊmPm +
1

2
Πij V̇ij − λH− siHi + σijKij , (230)

32 This notation is introduced to emphasise that Gij
5

does not correspond to the world space components of Gµν ,
but to the inverse matrix of the restriction of Gµν to the world space subspace.
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where Pm and Πij are the conjugate momenta to Xm and the 2-form Vij

Pm = Em
aP̃a + TM5Ĉm ,

Ĉm = ∗
[
Z? (imC6)−

1

2
Z? (imC3) ∧ (C3 + 2H3)

]
,

Πij =
1

4
TM5ε

ijk1k2k3∂k1
Vk2k3

. (231)

Notice the last equation is equivalent to Π = 1
2TM5 ? (dV ), from which we conclude d?Π = 0, using

the Bianchi identify for dV2. The last three functionals appearing in Eq. (230)

H =
1

2

[
P2 + T 2

M5 det
5(G + H̃)

]
,

Hi = ∂iX
mPm + TM5(Vi − Ĉi),

Kij = Πij − 1

4
TM5ε

ijk1k2k3∂k1
Vk2k3

, (232)

correspond to constraints generating time translations, world space diffeomorphisms and the self-
duality condition. The following definitions were used in the expressions above

Vi =
1

24
εi1i2i3i4i5Hi3i4i5Hi1i2i ,

Pa = Ea
mPm + TM5(V

i∂iX
mEm

bηba − Ĉa) ,
Ĉa = Em

a Ĉm . (233)

As for D-branes and M2-branes, in practice one solves the equations of motion in the subspace of
phase space configurations solving Eq. (215) and eventually computes the energy of the system by
solving the quadratic constraint coming from the Hamiltonian constraint H = 0.

4.3 Calibrations

In the absence of WZ couplings and brane gauge field excitations, the energy of a brane configura-
tion equals its volume. The problem of identifying minimal energy configurations is equivalent to
that of minimising the volumes of p-dimensional submanifolds embedded in an n-dimensional am-
bient space. The latter is a purely geometrical question that can, in principle, be mathematically
formulated independently of supersymmetry, kappa symmetry or brane theory. This is what the
notion of calibration achieves. In this subsection, I review the close relation between this mathe-
matical topic and a subset of supersymmetric brane configurations [235, 228, 2]. I start with static
brane solitons in R

n, for which the connection is more manifest, leaving their generalisations to
the appropriate literature quoted below.

Consider the space of oriented p dimensional subspaces of Rn, i.e., the Grassmannian G(p,Rn).
For any ξ ∈ G(p,Rn), one can always find an orthonormal basis {e1, . . . , en} in R

n such that
{e1, . . . , ep} is a basis in ξ so that its co-volume is

~ξ = e1 ∧ . . . ∧ ep . (234)

A p-form ϕ on an open subset U of Rn is a calibration of degree p if

(i) dϕ = 0

(ii) for every point x ∈ U , the form ϕx satisfies ϕx(~ξ) ≤ 1 for all ξ ∈ G(p,Rn) and such that the
contact set

G(ϕ) = {ξ ∈ G(p,Rn) : ϕ(~ξ) = 1} (235)

is not empty.
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One of the applications of calibrations is to provide a bound for the volume of p-dimensional
submanifolds of Rn. Indeed, the fundamental theorem of calibrations [289] states

Theorem: Let ϕ be a calibration of degree p on R
n. The p-dimensional submanifold N , for

which
ϕ( ~N) = 1 , (236)

is volume minimising. One refers to such minimal submanifolds as calibrated submanifolds, or as
calibrations for short, of degree p.

The proof of this statement is fairly elementary. Choose an open subset U of N with boundary
∂U and assume the existence of a second open subset V in another subspace W of Rn with the
same boundary, i.e., ∂U = ∂V . By Stokes’ theorem,

vol(U) =

∫

U

ϕ =

∫

V

ϕ =

∫
ϕ(~V )µV ≤

∫

V

µV = vol(V ) , (237)

where µV = α1 ∧ . . . αp is the volume form constructed out of the dual basis {α1, . . . , αp} to
{e1, . . . , en}.

Two remarks can motivate why these considerations should have a relation to brane solitons
and supersymmetry:

1. For static brane configurations with no gauge field excitations and in the absence of WZ cou-
plings, the energy of the brane soliton equals the volume of the brane submanifold embedded
in R

n. Thus, bounds on the volume correspond to brane energy bounds, which are related to
supersymmetry saturation, as previously reviewed. Indeed, the dynamical field Xi(σ) does
mathematically describe the map from the world volume R

p into R
n. The above bound can

then be re-expressed as ∫
dpσ

√
detGµν ≥

∫
X∗ϕ , (238)

where X∗ϕ stands for the pullback of the p-form ϕ.

2. There exists an explicit spinor construction of calibrations emphasising the connection be-
tween calibrated submanifolds, supersymmetry and kappa symmetry.

Let me review this spinor construction [159, 287]. For p = 1, 2 mod 4, the p-form calibration
takes the form

ϕ = dXi1 ∧ . . . ∧ dXipεTΓ0i1...ipε, (239)

where the set Xi (i = 1, . . . , n) stands for the transverse scalars to the brane parameterising R
n,

ε is a constant real spinor normalised so that εT ε = 1 and Γi1...ik are antisymmetrised products of
Clifford matrices in R

n. Notice that, given a tangent p-plane ξ, one can write ϕ|ξ as

ϕ|ξ =
√
detG εTΓξε, (240)

where the matrix

Γξ =
1

p!
√
detG εµ1...µp∂µ1

Xi1 · · · ∂µp
XipΓ0i1...ip (241)

is evaluated at the point to which ξ is tangent. Given the restriction on the values of p,

Γ2
ξ = ✶ . (242)

It follows that ϕ|ξ ≤ volξ for all ξ. Since ϕ is also closed, one concludes it is a calibration. Its
contact set is the set of p-planes for which this inequality is saturated. Using Eq. (240), the latter
is equally characterised by the set of p-planes ξ for which

Γξε = ε . (243)
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Because of Eq. (242) and the fact that tr Γξ = 0, the solution space to this equation is always half
the dimension of the spinor space spanned by ε for any given tangent p-plane ξ. However, this
solution space generally varies as ξ varies over the contact set, so that the solution space of the set
is generally smaller.

So far the discussion involved no explicit supersymmetry. Notice, however, that the matrix Γξ

in Eq. (241) matches the kappa symmetry matrix Γκ for branes in the static gauge with no gauge
field excitations propagating in Minkowski. This observation allows us to identify the saturation of
the calibration bound with the supersymmetry preserving condition (215) derived from the gauge
fixing analysis of kappa symmetry.

Let me close the logic followed in Section 4 by pointing out a very close relation between the
supersymmetry algebra and kappa symmetry that all my previous considerations suggest. Consider
a single infinite flat M5-brane propagating in d = 11 Minkowski and fix the extra gauge symmetry
of the PST formalism by a(σµ) = t (temporal gauge). The kappa symmetry matrix (158) reduces
to

Γκ =
1√

det(δij + H̃ij)
[Γ0Γit

i +
1

2
Γ0ΓijH̃ij −

1

5!
Γ0Γi1,...,i5ε

i1...i5 ] , (244)

where all {i, j} indices stand for world space M5 indices. Notice that the structure of this matrix
is equivalent to the one appearing in Eq. (217) for Γ̄ by identifying

Y i1...i5 = −εi1...i5 , H̃ij = Zij ,

P i =
1

8
εi j1j2j3j4 Zj1j2Zj3j4 , P

0 =
√
det(δij + Zij) . (245)

Even though, this was only argued for the M5-brane and in a very particular background, it does
provide some preliminary evidence for the existence of such connection. In fact, a stronger argument
can be provided by developing a phase space formulation of the kappa symmetry transformations
that allows one to write the supersymmetry anticommutator as [278]

{Q,Q} = Γ0

∫
dpσ [Γap̃a + γ] , with γ =

1

p!
εa1...ap∂a1

Xi1 · · · ∂ap
XipΓi1...ip . (246)

This result has not been established in full generality but it agrees with the flat space case [165]
and those non-flat cases that have been analysed [438, 437]. I refer the reader to [278] where
they connect the functional form in the right-hand side of Eq. (246) with the kappa symmetry
transformations for fermions in its Hamiltonian form.

The connection between calibrations, supersymmetry and kappa symmetry goes beyond the
arguments given above. The original mathematical notion of calibration was extended in [277,
278] relaxing its first condition dϕ 6= 0. Physically, this allowed one to include the presence of
non-trivial potential energies due to background fluxes coming from the WZ couplings. Some of
the applications derived from this notion include [231, 229, 230, 373, 139]. Later, the notion of
generalised calibration was introduced in [344], where it was shown to agree with the notion of
calibration defined in generalised Calabi–Yau manifolds [267] following the seminal work in [298].
This general notion allows one to include the effect of non-trivial magnetic field excitations on the
calibrated submanifold, but still assumes the background and the calibration to be static. Some
applications of these notions in the physics literature can be found in [344, 377, 413]. More recently,
this formalism was generalised to include electric field excitations [376], establishing a precise
correspondence between generic supersymmetric brane configurations and generalised geometry.

Summary: A necessary condition for a bosonic brane configuration to preserve supersymmetry
is to solve the kappa symmetry preserving condition (215). In general, this is not sufficient for being
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an on-shell configuration, though it can be, if there are no gauge field excitations. Solutions to
Eq. (215) typically impose a set of constraints on the field configuration, which can be interpreted
as BPS equations by computing the Hamiltonian of the configuration, and a set of projection
conditions on the constant parts ε∞ of the background Killing spinors ε. The energy bounds
saturated when the BPS equations hold are a field theory realisation of the algebraic bounds
derived from the supersymmetry algebra. An attempt to summarise the essence of these relations
is illustrated in Figure 6.
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5 World Volume Solitons: Applications

There are two natural sets of applications involving brane effective actions: kinematical and dynam-
ical. In this section, I will discuss the application of the general formalism developed in Section 4
to study the existence of certain string theory BPS states realised as world volume supersymmetric
bosonic solitons, leaving more AdS/CFT dynamically-oriented applications to Section 6.

The main goals in this section include:

1. In a Minkowski background, the identification of the vacuum of all the p + 1 dimensional
supersymmetric field theories discussed before as half-BPS flat infinite branes, and the dis-
cussions of some of their excitations carrying topological charges, which are interpretable as
brane intersections or branes within branes.

2. Supertubes, as examples of supersymmetric bound states realised as expanded branes without
carrying charge under the gauge potential, which the world volume brane minimally couples
to.

3. As examples of solitons in curved backgrounds, I will discuss the baryon vertex and giant
gravitons in AdS5 Ö S 5.

4. I will stress the relevance of supertubes and giant gravitons as constituents of small supersym-
metric black holes, their connection to fuzzball ideas and the general use of probe techniques
to identify black hole constituents in more general situations.

5.1 Vacuum infinite branes

There exist half-BPS branes in 10- and 11-dimensional Minkowski spacetime. Since their effective
actions were discussed in Section 3, we can check their existence and the amount of supersym-
metry they preserve, by solving the brane classical equations of motion and the kappa symmetry
preserving condition (215).

First, one works with the bosonic truncation θ = 0. The background, in Cartesian coordinates,
involves the metric

ds2 = ηmndx
mdxn , m, n = 0, 1, . . . D − 1 (247)

and all remaining bosonic fields vanish, except for the dilaton, in type IIA/B, which is constant.
This supergravity configuration is maximally supersymmetric, i.e., it has Killing spinors spanning a
vector space, which is 32-dimensional. In Cartesian coordinates, these are constant spinors ε = ε∞.

Half-BPS branes should correspond to vacuum configurations in these field theories describing
infinite branes breaking the isometry group ISO(1, D − 1) to ISO(1, p) × SO(D − p − 1) and
preserving half of the supersymmetries. Geometrically, these configurations are specified by the
brane location. This is equivalent to first splitting the scalar fields Xm(σ) into longitudinal Xµ

and transverse XI directions, setting the latter to constant values XI = cI (the transverse brane
location). Second, one identifies the world volume directions with the longitudinal directions,
Xµ = σµ. The latter can also be viewed as fixing the world volume diffeomorphisms to the static
gauge. This information can be encoded as an array

p-brane: 1 2 . . p (248)

It is easy to check that the above is an on-shell configuration given the structure of the Euler–
Lagrange equations and the absence of non-trivial couplings except for the induced world volume
metric Gµν , which equals ηµν in this case.
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To analyse the supersymmetry preserved, one must solve Eq. (215). Notice that in the static
gauge and in the absence of any further excitations, the induced gamma matrices equal

γµ = ∂µx
mEa

mΓa = Γµ =⇒ γµ0...µp
= Γµ0...µp

, (249)

where I already used Ea
m = δam. Thus, Γκ reduces to a constant Clifford valued matrix standing for

the volume of the brane, Γvol, up to the chirality of the background spinors, which is parameterised
by the matrix τ

Γκ = Γvolτ . (250)

The specific matrices for the branes discussed in this review are summarised in Table 6. Since
Γ2
κ = ✶ and Tr Γκ = 0, only half of the vector space spanned by ε∞ preserves these bosonic

configurations, i.e., all infinite branes preserve half of the supersymmetries. These projectors
match the ones derived from bosonic supergravity backgrounds carrying the same charges as these
infinite branes.

Table 6: Half-BPS branes and the supersymmetries they preserve.

BPS state Projector

M2-brane Γ012ε = ε

M5-brane Γ012345ε = ε

IIA D2n-brane Γ0...2nΓ
n+1
] ε = ε

IIB D2n-1-brane Γ0...2n−1τ
n
3 iτ2ε = ε

All these configurations have an energy density equaling the brane tension T since the Hamil-
tonian constraint is always solved by

E2 = T2 detG = T2 . (251)

From the spacetime superalgebra perspective, these configurations saturate a bound between the
energy and the p-form bosonic charge carried by the volume form defined by the brane

E = Zµ1...µp
= Tεµ1...µp

. (252)

The saturation corresponds to the fact that any excitation above the infinite brane configuration
would increase the energy. From the world-volume perspective, the solution is a vacuum, and
consequently, it is annihilated by all sixteen world-volume supercharges. These are precisely the
ones solving the kappa symmetry preserving condition (215).

5.2 Intersecting M2-branes

As a first example of an excited configuration, consider the intersection of two M2-branes in a
point corresponding to the array

M2 : 1 2
M2 : 3 4 .

(253)

In the probe approximation, the M2-brane effective action describes the first M2-brane by fixing
the static gauge and the second M2-brane as an excitation above this vacuum by turning on two
scalar fields (X3, X4) according to the ansatz

Xµ = σµ , Xi = ci,

X3(σa) ≡ y(σa) , X4(σa) ≡ z(σa), (254)
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where a runs over the spatial world volume directions and i over the transverse directions not being
excited.

Supersymmetry analysis: Given the ansatz (254), the induced metric components equal G00 =
−1, G0a = 0, Gab = δab + ∂aX

r∂bX
sδrs (with r, s = 3, 4), whereas its determinant and the induced

gamma matrices reduce to

− detG = 1 + |~∇y|2 + |~∇z|2 + (~∇y × ~∇z)2, (255)

γ0 = Γ0 , γa = Γa + ∂aX
rΓr . (256)

Altogether, the kappa symmetry preserving condition (215) is
√
− detG ε =

(
Γ012 + εab∂ay∂bzΓ034 − εab∂ax

rΓ0br

)
ε . (257)

If the excitation given in Eq. (254) must describe the array in Eq. (253), the subspace of Killing
spinors ε spanned by the solutions to Eq. (257) must be characterised by two projection conditions

Γ012ε = Γ034ε = ε, (258)

one for each M2-brane in the array (253). Plugging these projections into Eq. (257)
(√

− detG − (1 + εab∂ay∂bz)
)
ε = εab∂aX

rΓ0brε, (259)

one obtains an identity involving two different Clifford-valued contributions: the left-hand side is
proportional to the identity matrix acting on the Killing spinor, while the right-hand side involves
some subset of antisymmetric products of gamma matrices. Since these Clifford valued matrices
are independent, each term must vanish independently. This is equivalent to two partial differential
equations

∂2y = −∂1z , ∂1y = ∂2z . (260)

Notice this is equivalent to the holomorphicity of the complex function U(σ+) = y + iz in terms
of the complex world space coordinates σ± = σ1 ± iσ2, since Eqs. (260) are equivalent to the
Cauchy–Riemann equations for U(σ+).

When conditions (260) are used in the remaining left-hand side of Eq. (259), one recovers an
identity. Thus, the solution to Eq. (215) in this particular case involves the two supersymmetry
projections (258) and the BPS equations (260) satisfied by holomorphic functions U(σ+).

Hamiltonian analysis: Since this is the first non-trivial example of a supersymmetric soliton
discussed in this review, it is pedagogically constructive to rederive Eqs. (260) from a purely
Hamiltonian point of view [225]. This will also convince the reader that holomorphicity is the only
requirement to be on-shell. To ease notation below, rewrite Eq. (260) as

~∇y = ?~∇z , (261)

where standard vector calculus notation for R2 is used, i.e., ~∇ = (∂1, ∂2) and ?~∇ = (∂2,−∂1).
Consider the phase space description for the M2-brane Lagrangian given in Eq. (227) in a

Minkowski background. The Lagrange multiplier fields sa impose the world space diffeomorphism
constraints. In the static gauge, these reduce to

Pa = PI · ∂aXI , (262)

where PI are the conjugate momenta to the eight world volume scalars XI describing transverse
fluctuations. For static configurations carrying no momentum, i.e., PI = 0, the world space
momenta will also vanish, i.e., Pa = 0.
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Solving the Hamiltonian constraint imposed by the Lagrange multiplier λ for the energy density
E = P0, one obtains [225]

(E/TM2)
2 = 1 + |~∇y|2 + |~∇z|2 + (~∇y × ~∇z)2 = (1− ~∇y × ~∇z)2 + |~∇y − ?~∇z|2 . (263)

This already involves the computation of the induced world space metric determinant and its
rewriting in a suggestive way to derive the bound

E/TM2 ≥ 1 + |~∇y × ~∇z| . (264)

The latter is saturated if and only if Eq. (261) is satisfied. This proves the BPS character of the
constraint derived from solving Eq. (215) in this particular case and justifies that any solution to
Eq. (261) is on-shell, since it extremises the energy and there are no further gauge field excitations.

Integrating over the world space of the M2 brane allows us to derive a bound on the charges
carried by this subset of configurations

E ≥ E0 + |Z| . (265)

E0 stands for the energy of the infinite M2-brane vacuum, whereas Z is the topological charge

Z = TM2

∫

M2

dy ∧ dz = TM2
i

2

∫

M2

dU ∧ dŪ , (266)

accounting for the second M2-brane in the system.
The bound (265) matches the spacetime supersymmetry algebra bound: the mass (E) of the

system is larger than the sum of the masses of the two M2-branes. Field theoretically, the first
M2-brane charge corresponds to the vacuum energy (E0), while the second corresponds to the
topological charge (Z) describing the excitation. When the system is supersymmetric, the energy
saturates the bound E = E0 + |Z| and preserves 1/4 of the original supersymmetry. From the
world volume superalgebra perspective, the energy is always measured with respect to the vacuum.
Thus, the bound corresponds to the excitation energy E −E0 equalling |Z|. This preserves 1/2 of
the world volume supersymmetry preserved by the vacuum, matching the spacetime 1/4 fraction.

For more examples of M2-brane solitons see [95] and for a related classification of D2-brane
supersymmetric soltions see [33].

5.3 Intersecting M2 and M5-branes

As a second example of BPS excitation, consider the 1/4 BPS configuration M5 ⊥ M2(1) corre-
sponding to the brane array

M5: 1 2 3 4 5
M2: 5 6 .

(267)

The idea is to describe an infinite M5-brane by the static gauge and to turn on a transverse scalar
field X6 to account for the M2-brane excitation. However, X6 is not enough to support an M2-
brane interpretation, since the latter is electrically charged under the 11-dimensional supergravity
three form A3. Thus, the sought M5-brane soliton must source the A056 components. From the
Wess–Zumino coupling ∫

dV2 ∧ A3 , (268)

one learns that the magnetic (dV )âb̂ĉ components, where hatted indices stand for world space
directions different from σ5, i.e., â 6= 5, must also be excited.
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The full ansatz will assume delocalisation along the σ5 direction, so that the string-like excita-
tion in the X6 direction can be viewed as a membrane:

Xµ = σµ , Xi = ci,

X6(σâ) = y(σâ),

H5âb̂ = 0 . (269)

Supersymmetry analysis: The M5-brane kappa symmetry matrix (158) in the temporal gauge
a = τ reduces to

Γκ =
1√

− det(G + H̃)

[
1

5!
εa1...a5Γ0γa1...a5

− 1

2

√
− detG Γ0γabH̃

ab − Γ0γat
a

]
. (270)

For the subset of configurations described by the ansatz (269), it follows

ta = 0 , H̃ âb̂ = 0

H̃5â = Πâ
√
− detG , Πâ = 1

3!ε
ââ1â2â3Hâ1â2â3

. (271)

This reduces Eq. (270) to

Γκ =
1√

− det(G + H̃)

[
Γ012345 + ∂âyΓ05yΓ05Γ

âΓ012345 − Γ05ΓâΠ
â − ∂âyΠ

âΓ05y

]
. (272)

To solve the kappa symmetry preserving condition (215), I impose two projection conditions

Γ012345ε = ε,

Γ05yε = ε (273)

on the constant Killing spinors ε. The eight supercharges satisfying them match the ones preserved
by M5 ⊥ M2(1). Using Eq. (273) in Eq. (272), Γκ keeps a non-trivial dependence on Γ05Γâ.
Requiring its coefficient to vanish gives rise to the BPS condition

Πâ = −∂ây. (274)

Overall, the kappa symmetry preserving condition (215) reduces to the purely algebraic condition

√
− det(G + H̃)ε =

(
1 + δâb̂∂ây∂b̂y

)
ε. (275)

To check this holds, notice the only non-vanishing components of H̃µν are H̃5â

H̃5â = G55Gâb̂

Πb̂

√
− detG . (276)

This allows us to compute the determinant

− det(G + H̃) = det(Gâb̂ + H̃5âH̃5b̂) = det(Gâb̂)
(
1 + Gâb̂H̃5âH̃5b̂

)
, (277)

which becomes a perfect square once the BPS equation (274) is used

− det(G + H̃) =
(
1 + δâb̂∂ây∂b̂y

)2
. (278)
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This shows that Eq. (275) holds automatically. Thus, the solution to the kappa symmetry preserv-
ing condition (215) for the ansatz (269) on an M5-brane action is solved by the supersymmetry
projection conditions (273) and the BPS equation (274). Since the soliton involves a non-trivial
world volume gauge field, the Bianchi identity dH3 = 0 must still be imposed. This determines
the harmonic character for the excited transverse scalar in the four dimensional world space ω4

∂â∂ây = 0. (279)

Hamiltonian analysis: The Hamiltonian analysis for this system was studied in [225] following
the M5-brane phase space formulation given in Eq. (230). For static configurations, the Hamilto-
nian constraint can be solved by the energy density E as

E2

T 2
M5

= 1 + (∂y)2 +
1

2
|H̃|2 + |H̃ · ∂y|2 + |V |2 (280)

where

|H̃|2 = H̃abH̃cdδacδbd , H̃ab =
1

6
εabcdeHcde,

|H̃ · ∂y|2 = H̃abH̃cd∂by∂dyδac,

|V |2 = VaVbδ
ab , (281)

and world space indices were denoted by latin indices σa a = 1, . . . , 5. It was noted in [225] that
by introducing a unit length world space 5-vector ζ, i.e., ζaζbδab = 1, the energy density could be
written in the suggestive form

E2

T 2
M5

=
∣∣ζa ± H̃ab∂by

∣∣2 + 2

∣∣∣∣∂[ayζb] ±
1

2
δacδbdH̃cd

∣∣∣∣
2

+(ζa∂ay)
2 + |V |2 . (282)

The unit vector provides a covariant way of introducing a preferred direction in the 5-dimensional
world space. Choosing ζ5 = 1 and ζ â = 0, to match the delocalisation direction in our bosonic
ansatz, one derives the inequality

E
TM5

≥ 1± 1

6
Πâ∂ây. (283)

The latter is saturated if and only if

∂5y = 0 H5âb̂ = 0 (284)

and
H3 = ± ? dy (285)

where H3 is only defined on the 4-dimensional subspace ω4, orthogonal to ζ, and ? is its Hodge
dual. This confirms the BPS nature of Eq. (274). Since H3 is closed, y is harmonic in ω4.

To regulate the divergent energy, one imposes periodic boundary conditions in the 5-direction
making the orbits of the vector field ζ have finite length L. Then, the total energy satisfies

E ≥ E0 + L · |Z|, (286)

where Z is the topological charge

Z =

∫

w4

H3 ∧ dy . (287)
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The tension of the soliton, i.e., energy per unit of length, equals T = E −E0/L. It is bounded by
Z. It only equals the latter for configurations satisfying Eq. (285). Singularities in the harmonic
function match the strings found in [301]. To check this interpretation, consider a solution with a
single isolated point singularity at the origin. Its energy can be rewritten as the small radius limit
of a surface integral over a 3-sphere surrounding the origin. Since y is constant on this integration
surface, one derives the string tension [225]

T = µ lim
δ→0

y(δ) where µ =

∫

S3

H3 (288)

is the string charge. Even though this tension diverges, it does so consistently, being the boundary
of a semi-infinite membrane.

5.4 BIons

Perhaps one of the most pedagogical examples of brane solitons are BIons. These were first
described in [128, 234] and correspond to on-shell supersymmetric D-brane configurations repre-
senting a fundamental string ending on the D-brane, i.e., the defining property of the D-brane
itself. They correspond to the array of branes

Dp : 1 . . . p
F : p+ 1 .

(289)

Working in the static gauge describes the vacuum infinite Dp-brane. The static soliton excites a
transverse scalar field (y = y(σa)) and the electric field (V0 = V0(σ

a)), while setting the magnetic
components of the gauge field (Va) to zero

Xµ = σµ , Xi = ci,

Xp+1(σa) = y(σa) , V0 = V0(σ
a). (290)

The gauge invariant character of the scalar ensures its physical observability as a deformation of
the flat world volume geometry described by the global static gauge, whereas the electric field can
be understood as associated to the end of the open string, which is seen as a charged particle from
the world volume perspective. A second way of arguing the necessity for such electric charge is
to remember that fundamental strings are electrically charged under the NS-NS two form. The
latter appears in the effective action through the gauge invariant form F . Thus, turning on V0 is
equivalent to turning such charge33.

Supersymmetry analysis: Let me analyse the amount of supersymmetry preserved by config-
urations (290) in type IIA and type IIB, separately. In both cases, the matrix Gµν + Fµν equals

Gµν + Fµν =

(
−1 F0b

−F0a δab + ∂ay∂by

)
=⇒ − det(Gµν + Fµν) = det(δab + ∂ay∂by − F0aF0b)

(291)
while the induced gamma matrices are decomposed as

γ0 = Γ0, γa = Γa + ∂ayΓy, (292)

33 There are many papers studying the dynamics of BIons, including [353, 31, 335] and [475], where the solution to
the Born–Infeld action reviewed here is proven to solve the equations of motion derived from higher-order corrections
to the effective action.
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where a stands for world space indices. Due to the electric ansatz for the gauge field, the kappa
symmetry matrix Γκ has only two contributions. In particular, for type IIA (p = 2k)

Γκ =
1√

− det(Gµν + Fµν)

1

(p+ 1)!
εµ0...µp

(
γµ0...µp

Γk+1
] +

(
p+ 1
2

)
Fµ0µ1

γµ3...µp
Γk
]

)
. (293)

Summing over world volume time, one obtains

Γκ =
1√

− det(Gµν + Fµν)

1

p!
εa1...ap

(
Γ0γa1...ap

Γk+1
] +

p

2
F0a1

γa2...ap
Γk
]

)
. (294)

Using the duality relation

εi1...ikjk+1...jp+1γjk+1...jp+1
= (−1)k(k−1)/2(p+ 1− k)!γi1...ik

√
− detG Γ0...p, (295)

one can write the first term on the right-hand side of Eq. (294) as

Γ0...pΓ
k+1
] − Γb∂byΓyΓ0...pΓ

k+1
] . (296)

Using the same duality relation and proceeding in an analogous way, the second term equals

F0aΓ
aΓ1...pΓ

k
] + F0a∂byΓyΓ

abΓ1...pΓ
k
] . (297)

Inserting Eqs. (296) and (297), the kappa symmetry preserving condition can be expressed as

√
− det(G + F)ε =

[
1 + ΓaΓ0Γ](F0a − ∂ayΓ0yΓ])− ΓabF0a∂byΓ0yΓ]

]
Γ0...pΓ

k+1
] ε . (298)

Given the physical interpretation of the sought soliton, one imposes the following two supersym-
metry projection conditions

Γ0...pΓ
k+1
] ε = ε (299)

Γ0yΓ]ε = ε (300)

corresponding to having a type IIA Dp-brane along directions 1, . . . , p and a fundamental string
along the transverse direction y. Since both Clifford valued matrices commute, the dimensionality
of the subspace of solutions is eight, as corresponds to preserving ν = 1/4 of the bulk supersymme-
try. Plugging these projections into Eq. (298), the kappa symmetry preserving condition reduces
to √

− det(G + F)ε =
(
1 + ΓaΓ0Γ](F0a − ∂ay)− ΓabF0a∂by

)
ε . (301)

It is clear that the BPS condition
F0a = ∂ay , (302)

derived from requiring the coefficient of ΓaΓ0Γ] to vanish, solves Eq. (301). Indeed, the last term
in Eq. (301) vanishes due to antisymmetry, whereas the square root of the determinant equals one,
whenever Eq. (302) holds.

The analysis for type IIB Dp-branes (p = 2k + 1) works analogously by appropriately deal-
ing with the different bulk fermion chiralities, i.e., one should replace Γk

] by τk3 iτ2. Thus, the
supersymmetry projection conditions (299) and (300) are replaced by

Γ0...pτ
k+1
3 iτ2ε, = ε (303)

Γ0yτ3ε = ε, (304)

corresponding to having a type IIB Dp-brane along the directions 1, . . . , p and a fundamental string
along the transverse direction y.
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Satisfying the BPS equation (302) does not guarantee the on-shell nature of the configuration.
Given the non-triviality of the gauge field, Gauss’ law ∂aE

a = 0 must be imposed, where Ea is the
conjugate momentum to the electric field, which reduces to

Ea =
∂L
∂V̇a

= δabF0b, (305)

when Eq. (302) is satisfied. Thus, the transverse scalar y must be a harmonic function on the
p-dimensional D-brane world space

∂a∂
ay = 0 . (306)

Hamiltonian analysis: Using the phase space formulation of the D-brane Lagrangian in Eqs. (223)
and (224), I will reproduce the BPS bound (302) and interpret the charges carried by BIons.
Working in static gauge, the world space diffeomorphism constraints are trivially solved for static
configurations, i.e., Pi = 0, and in the absence of magnetic gauge field excitations, i.e., Fab = 0.
The Hamiltonian constraint can be solved for the energy density [225]

E2

T 2
Dp

= EaEbGab + detGab . (307)

Since detGab = 1 + (∂y)2, Eq. (307) is equivalent to [225]

E2

T 2
Dp

= (1± Ea∂ay)
2 + (E ∓ ∂y)2. (308)

There exists an energy bound
E
TDp

≥ 1 +
∣∣Ea∂ay

∣∣, (309)

being saturated if and only if
Ea = ±∂ay. (310)

This is precisely the relation (302) derived from the solution to the kappa symmetry preserving
condition (215) (the sign is related to the sign of the fundamental string charge). Thus, the total
energy integrated over the D-brane world space ω satisfies

E ≥ E0 + |Zel|, (311)

where Zel is the charge

Zel =

∫

ω

Ea∂ay. (312)

To interpret this charge as the charge carried by a string, consider the most symmetric solution
to Eq. (306), for Dp-branes with p ≥ 3, depending on the radial coordinate in world space r, i.e.,
r2 = σaσbδab,

y(σa) =
q

Ωp−1rp−2
, (313)

where Ωp stands for the volume of the unit p-sphere. This describes a charge q at the origin. Gauss’s
law allows us to express the energy as an integral over a (hyper)sphere of radius δ surrounding the
charge. Since y = y(δ) is constant over this (hyper)sphere, one has

E = lim
δ→0

∣∣y(δ)
∫

r=δ

~dS · ~E
∣∣

= q lim
δ→0

y(δ). (314)

Thus, the energy is infinite since y → ∞ as δ → 0, but this divergence has its physical origin on
the infinite length of a string of finite and constant tension q [128, 234]. See [164] for a discussion
of the D-string case, corresponding to string junctions.
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5.5 Dyons

Dyons are on-shell supersymmetric D3-brane configurations describing a (p, q) string bound state
ending on the brane. They are described by the array

D3 : 1 2 3
F : 4
D1 : 4 .

(315)

Since the discussion is analogous to the one for BIons, I shall be brief. The ansatz is as in Eq. (290)
but including some magnetic components for the gauge field. This is both because a (p, q) string
is seen as a dyonic particle on the brane and a D-string is electrically charged under the RR two
form. The latter can be induced from the Wess–Zumino coupling

∫
C2 ∧ F . (316)

This shows that magnetic components in F couple to electric components in C2. Altogether, the
dyonic ansatz is

Xµ = σµ , Xi = ci,

X4(σa) = y(σa) , V0 = V0(σ
a) , Va = Va(σ

b) . (317)

Supersymmetry analysis: In this case, the matrix elements Gµν + Fµν are

Gµν + Fµν =

(
−1 F0b

−F0a δab + ∂ay∂by + Fab

)
,

− det(Gµν + Fµν) = det(δab + ∂ay∂by − F0aF0b + Fab), (318)

while the induced gamma matrices are exactly those of Eq. (292). Due to the electric and magnetic
components of the gauge field, the bosonic kappa matrix has a quadratic term in Fµν

Γκ =
1

4!
√
− det(G + F)

εµ0...µ3 (γµ0...µ3
iτ2 + 6Fµ0µ1

γµ3µ4
τ1 + 3Fµ0µ1

Fµ2µ3
iτ2) . (319)

To correctly capture the supersymmetries preserved by such a physical system, we impose the
projection conditions

Γ0123 iτ2ε = ε, (320)

Γ0y(cosα τ3 + sinα τ1)ε = ε, (321)

on the constant Killing spinor ε, describing a D3-brane and a (p, q)-string bound state, respectively.
Defining Ba = 1

2ε
abcFbc as the magnetic field and inserting Eqs. (320) and (321) into the resulting

kappa symmetry preserving condition, one obtains

√
− det(G + F)ε = [1 + ΓaΓ0∂ay(cosατ3 + sinατ1)− ΓaΓ0τ3F0a

+ΓabF0a∂by(cosατ3 + sinατ1)− ΓaΓ0Baτ1

+Ba∂ay(cosατ3 + sinατ1) +BaF0aiτ2] . (322)

This equation is trivially satisfied when the following BPS conditions hold

F0a = cosα∂ay, Ba = sinα δab∂by. (323)
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Hamiltonian analysis: Following [225], the Hamiltonian constraint can be solved and rewritten
as a sum of positive definite terms34

E2 = 1 + |~∇y|2 + | ~E|2 + | ~B|2 + ( ~E · ~∇y)2 + ( ~B · ~∇y)2 + | ~E × ~B|2

= (1 + sinα ~E · ~∇y + cosα ~B · ~∇y)2 + | ~E − sinα ~∇y|2 + | ~B − cosα ~∇y|2

+ | cosα ~E · ~∇y − sinα ~B · ~∇y|2 + | ~E × ~B|2 (324)

where the last equality holds for any angle α. This allows one to derive the bound

E2 ≥ (1 + sinα ~E · ~∇y + cosα ~B · ~∇y)2. (325)

Thus, the total energy satisfies

E ≥ E0 + sinαZel + cosαZmag , (326)

with

Zel =

∫

D3

~E · ~∇y, Zmag =

∫

D3

~B · ~∇y. (327)

The bound (325) is extremised when

tanα = Zel/Zmag, (328)

for which the final energy bound reduces to

E ≥ E0 +
√
Z2
el + Z2

mag. (329)

Here E0 corresponds to the energy of the vacuum configuration (infinite D3-brane). The bound (329)
is saturated when

~E = sinα ~∇y, ~B = cosα~∇y. (330)

These are precisely the conditions (323) derived from supersymmetry considerations, confirming

their BPS nature. Using the divergence free nature of both ~E and ~B, y must be harmonic, i.e.,

∇2y = 0. (331)

The interpretation of the isolated point singularities in this harmonic function as the endpoints of
(p, q) string carrying electric and magnetic charge is analogous to the BIon discussion.

In fact, all previous results can be understood in terms of the SL(2,Z) symmetry of type IIB
string theory. In particular, a (1, 0) string, or fundamental string, is mapped into a (p, q) string
by an SO(2) transformation rotating the electric and magnetic fields. The latter is a non-local
transformation in terms of the gauge field V , but leaves the energy density (324) invariant

(
E′a

B′a

)
=

(
cosα − sinα
sinα cosα

)(
Ea

Ba

)
. (332)

Applying this transformation to the BIon solution, one reproduces Eq. (330).

34 For simplicity I am setting the D3-brane tension to one.
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5.6 Branes within branes

The existence of Wess–Zumino couplings of the form
∫

Dp+4

Cp+1 ∧ F ∧ F ,

∫

Dp+2

Cp+1 ∧ F , (333)

suggests that on-shell non-trivial magnetic flux configurations can source the electric components
of the corresponding RR potentials. Thus, one may speculate with the existence of D(p + 4)-Dp
and D(p + 2)-Dp bound states realised as on-shell solutions in the higher dimensional D-brane
effective action. In this section, I will review the conditions the magnetic fluxes must satisfy to
describe such supersymmetric bound states.

The analysis below should be viewed as a further application of the techniques described previ-
ously, and not as a proper derivation for the existence of such bound states in string theory. The
latter can be a rather subtle quantum mechanical question, which typically involves non-abelian
phenomena [496, 185]. For general discussions on D-brane bound states, see [447, 424, 425], on
marginal D0-D0 bound states [445], on D0-D4 bound states [446, 486] while for D0-D6, see [470].
D0-D6 bound states in the presence of B-fields, which can be supersymmetric [391], were consid-
ered in [501]. There exist more general analysis for the existence of supersymmetric D-branes with
non-trivial gauge fields in backgrounds with non-trivial NS-NS 2-forms in [372].

5.6.1 Dp-D(p +4) systems

These are bound states at threshold corresponding to the brane array

D(p+ 4) : 1 . p . . . p+ 4
Dp : 1 . p .

(334)

Motivated by the Wess–Zumino coupling C∧F ∧F , one considers the ansatz on the D(p+4)-brane
effective action

Xµ = σµ, µ = 0, . . . , p+ 4, Xi = ci, i = p+ 5, . . . , 9,

Va = Va(σ
b), a, b = p+ 1, . . . , p+ 4. (335)

Let me first discuss when such configurations preserve supersymmetry. Consider type IIA
(p = 2k), even though there is an analogous analysis for type IIB. Γκ reduces to

Γκ =
1√

− det(ηµν + Fµν)

1

(2k + 5)!
εµ1...µ2k+5

(
Γµ1...µ2k+5

Γk+1
]

+

(
2k + 5

2

)
Fµ1µ2

Γµ3...µ2k+5
Γk
]

+
1

2

(
2k + 5

4

)(
4
2

)
Fµ1µ2

Fµ3µ4
Γµ5...µ2k+5

Γk+1
]

)
, (336)

where I already used the static gauge and the absence of excited transverse scalars, so that γµ = Γµ.
For the same reason, det(ηµν + Fµν) = det(δab + Fab), involving a 4× 4 determinant.

Given our experience with previous systems, it is convenient to impose the supersymmetry
projection conditions on the constant Killing spinors that are appropriate for the system at hand.
These are

Γ0...p+4Γ
k+1
] ε = ε, (337)

Γ0...pΓ
k+1
] ε = ε. (338)
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Notice that commutativity of both projectors is guaranteed due to the dimensionality of both
constituents, which is what selects the Dp-D(p + 4) nature of the bound state in the first place.
Inserting these into the kappa symmetry preserving condition, the latter reduces to

√
det(δab + Fab)ε =

(
1 +

1

4
F̃ abFab −

1

2
ΓabΓ]Fab

)
ε, (339)

where F̃ ab = 1
2ε

abcdFcd. Requiring the last term in Eq. (339) to vanish is equivalent to the self-
duality condition

F̃ ab = F ab . (340)

When the latter holds, Eq. (339) is trivially satisfied. Eq. (340) is the famous instanton equation
in four dimensions35. The Hamiltonian analysis done in [225] again confirms its BPS nature.

5.6.2 Dp-D(p +2) systems

These are non-threshold bound states corresponding to the brane array

D(p+ 2) : 1 . p p+ 1 p+ 2
Dp : 1 . p

(341)

Motivated by the Wess–Zumino coupling C ∧ F , one considers the ansatz on the D(p + 4)-brane
effective action

Xµ = σµ, µ = 0, . . . , p+ 2, Xi = ci, i = p+ 3, . . . , 9,

Va = Va(σ
b). (342)

Since there is a single non-trivial magnetic component, I will denote it by Fab ≡ F to ease the
notation. The DBI determinant reduces to

− det(Gµν + Fµν) = 1 + F 2 , (343)

whereas the kappa symmetry preserving condition in type IIA is

√
1 + F 2ε =

(
Γ0...p+2Γ

k
] + Γ0...pΓ

k+1
] F

)
ε (344)

for p = 2k. This is solved by the supersymmetry projection
(
cosαΓ0...p+2Γ

k
] + sinαΓ0...pΓ

k+1
]

)
ε = ε, (345)

for any α, for the magnetic flux satisfying

F = tanα. (346)

To interpret the solution physically, assume the world space of the D(p+2)-brane is of the form
R

p × T 2. This will quantise the magnetic flux threading the 2-torus according to

∫

T 2

F = 2πk =⇒ F =
(2π)2kα′

L1L2
. (347)

To derive this expression, I used the fact that the 2-torus has area L1L2 and I rescaled the magnetic
field according to F → 2πα′ F , since it is in the latter units that it appears in brane effective actions.

35 This equation has a huge history in mathematical physics. For a self-contained presentation on all the mathe-
matical developments regarding this equation, see [178]. For generalisations to higher dimensions, see [180, 179].
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Since the energy density satisfies E2 = T 2
D(p+2)(1 + F 2), flux quantisation allows us to write the

latter as

E2 = T 2
D(p+2) + T 2

Dp

(
k

L1L2

)2

, (348)

matching the non-threshold nature of the bound state

E =
√
E2

D(p+2) + E2
kDp , (349)

where the last term stands for the energy of k Dp-branes.

5.6.3 F-Dp systems

These are non-threshold bound states corresponding to the brane array

Dp : 1 . . . p
F : p .

(350)

Following previous considerations, one looks for bosonic configurations with the ansatz

Xµ = σµ , Xi = ci,

F0ρ = F0ρ(σ
a). (351)

Given the absence of transverse scalar excitations, γµ = Γµ and
√
− det(G + F) =

√
1− F 2, where

F0ρ ≡ F . The kappa symmetry preserving condition reduces to

√
1− F 2ε =

(
Γ0...pΓ

k
] − FΓ0ρΓ]Γ0...pΓ

k
]

)
ε+ (1− FΓ0ρΓ]) Γ0...pΓ

k
] ε . (352)

This is solved by the supersymmetry projection condition

(
cosαΓ0...pΓ

k
] + sinαΓ0ρΓ]

)
ε = ε , (353)

whenever
F = − sinα . (354)

To physically interpret the solution, compute its energy density

E2 = E2
0 + F 2 , (355)

where I already used that F0ρ = F = Eρ. These configurations are T-dual to a system of D0-
branes moving on a compact space. In this T-dual picture, it is clear that the momentum along
the compact direction is quantised in units of 1/L. Thus, the electric flux along the T-dual circle
must also be quantised, leading to the condition

F =
1

2πα′
n

L
, (356)

where the world volume of the Dp-brane is assumed to be R
p × S1. In this way, one can rewrite

the energy for the F -Dp system as

E =

√
E2

Dp + T 2
f

(n
L

)2
, (357)

which corresponds to the energy of a non-threshold bound state made of a Dp-brane and n funda-
mental strings (Tf ).
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5.7 Supertubes

All reviewed solitonic configurations carry charge under the p+1-dimensional gauge potential they
minimally couple to. In this section, I want to consider an example where this is not the case.
This phenomena may occur when a collection of lower-dimensional branes finds it energetically
favourable to expand into higher-dimensional ones. The stability of these is due to either an
external force, typically provided by non-trivial fluxes in the background, or presence of angular
momentum preventing the brane from collapse. A IIA superstring blown-up to a tubular D2-
brane [200], a collection of D0-branes turning into a fuzzy 2-sphere [395] or wrapping D-branes
with quantised non-trivial world volume gauge fields in AdSm Ö Sn [419] are examples of the first
kind, whereas giant gravitons [386], to be reviewed in Section 5.9, are examples of the second.

Supertubes are tubular D2-branes of arbitrary cross-section in a Minkowski vacuum spacetime
supported against collapse by the angular momentum generated by a non-trivial Poynting vector
on the D2-brane world volume due to non-trivial electric and magnetic Born–Infeld (BI) fields.
They were discovered in [381] and its arbitrary cross-section reported in [380], generalising some
particular non-circular cross-sections discussed in [30, 32]. Their stability is definitely not due
to an external force, since these states exist in Minkowski spacetime. Furthermore, supertubes
can be supersymmetric, preserving 1/4 of the vacuum supersymmetry. At first, the presence of
non-trivial angular momentum may appear to be in conflict with supersymmetry, since the latter
requires a time-independent energy density. This point, and its connection with the expansion
of lower-dimensional branes, will become clearer once I have reviewed the construction of these
configurations.

Let me briefly review the arbitrary cross-section supertube from [380]. Consider a D2-brane
with world volume coordinates σµ = {t, z, σ} in the type IIA Minkowski vacuum

ds210 = −dT 2 + dZ2 + d~Y · d~Y , (358)

where ~Y = {Y i} are Cartesian coordinates on R
8. We are interested in describing a tubular D2-

brane of arbitrary cross-section extending along the Z direction. To do so, consider the set of
bosonic configurations

T = t, Z = z, ~Y = ~y(σ),

F = E dt ∧ dz +B(σ) dz ∧ dσ. (359)

The static gauge guarantees the tubular nature of the configuration, whereas the arbitrary embed-
ding functions ~Y = ~y(σ) describe its cross-section. Notice the Poynting vector will not vanish, due
to the choice of electric and magnetic components, i.e., the world volume electromagnetic field will
indeed carry angular momentum.

To study the preservation of supersymmetry, one solves Eq. (215). Given the ansatz (359) and
the flat background (358), this condition reduces to [380]

y′i Γi Γ] (ΓTZΓ] + E) ε+
(
B ΓTΓ] −

√
(1− E2)|~y ′|2 +B2

)
ε = 0, (360)

where the prime denotes differentiation with respect to σ. For generic curves, that is, without
imposing extra constraints on the embedding functions ~Y = ~y(σ), supersymmetry requires both
to set |E| = 1 and to impose the projection conditions

ΓTZΓ\ ε = −sgn(E) ε , ΓTΓ\ ε = sgn(B) ε (361)

on the constant background Killing spinors ε. These conditions have solutions, preserving 1/4
of the vacuum supersymmetry, if B(σ) is a constant-sign, but otherwise completely arbitrary,
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function of σ. Notice the two projections 361 correspond to string charge along the Z-direction
and to D0-brane charge, respectively.

In order to improve our understanding on the arbitrariness of the cross-section, it is instructive
to compute the charges carried by supertubes and its energy momentum tensor, to confirm the
absence of any pull (tension) along the different spacelike directions where the tube is embedded
in 10 dimensions. First, the conjugate momentum Pi and the conjugate variable to the electric
field, Π, are

Pi =
∂LD2

∂Ẏ i
=

BEy′i√
(1− E2)|~y ′|2 +B2

= sgn(ΠB) y′i , (362)

Π(σ) =
∂LD2

∂E
=

E|~y ′|2√
(1− E2)|~y ′|2 +B2

= sgn(E)
|~y ′|2
|B| , (363)

where in the last step the supersymmetry condition |E| = 1 was imposed. Notice supertubes
satisfy the identity

|~P |2 = |ΠB| . (364)

Second, the fundamental string qF1 and D0-brane qD0 charges are

qF1 =

∫
dσΠ , qD0 =

∫
dσ B . (365)

Finally, the supertube energy-momentum tensor [380]

Tmn(x) =
2√− det g

δSD2

δgmn(x)

∣∣∣∣
gmn=ηmn

= −
√
− det(G + F )

[
(G + F )−1

](µν)
∂µX

m∂νX
n, (366)

with Xm = {T, Z, Y i}, has only non-zero components

T TT = |Π|+ |B| , T ZZ = −|Π| , T Ti = sgn(ΠB) y′i. (367)

Some comments are in order:

1. As expected, the linear momentum density (362) carried by the tube is responsible for the
off-diagonal components T Ti.

2. The absence of non-trivial components T ij confirms the absence of tension along the cross-
section, providing a more technical explanation of why an arbitrary shape is stable.

3. The tube tension −T ZZ = |Π| in the Z-direction is only due to the string density, since
D0-branes behave like dust.

4. The expanded D2-brane does not contribute to the tension in any direction.

Integrating the energy momentum tensor along the cross-section, one obtains the net energy of the
supertube per unit length in the Z-direction

E =

∫
dσ T TT = |qF1|+ |qD0| , (368)

matching the expected energy bound from supersymmetry considerations.
Let me make sure the notion of supersymmetry is properly tied with the expansion mechanism.

Supertubes involve a uniform electric field along the tube and some magnetic flux. Using the lan-
guage and intuition of previous Sections 5.6.2 – 5.6.3, the former can be interpreted as “dissolved”
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IIA superstrings and the latter as “dissolved” D0-branes, that have expanded into a tubular D2-
brane. Their charges are the ones appearing in the supersymmetry algebra allowing the energy
to be minimised. Notice the expanded D2-brane couples locally to the RR gauge potential C3

under which the string and D0-brane constituents are neutral. This is precisely the point made
at the beginning of the section: supertubes do not carry D2-brane charge.36 When the number of
constituents is large, one may expect an effective description in terms of the higher-dimensional
D2-brane in which the original physical charges become fluxes of various types.

The energy bound (368) suggests supertubes are marginal bound states of D0s and fundamental
strings (Fs). This was further confirmed by studying the spectrum of BPS excitations around the
circular shape supertube by quantising the linearised perturbations of the DBI action [123, 29].
The quantisation of the space of configurations with fixed angular momentum J [123, 29] allowed
one to compute the entropy associated with states carrying these charges

S = 2π
√
2(qD0qF1 − J) . (369)

This entropy reproduces the microscopic conjecture made in [364] where the Bekenstein–Hawking
entropy was computed using a stretched horizon. These considerations do support the idea that
supertubes are typical D0-F bound states.

Supergravity description and fuzzball considerations: The fact that world volume quanti-
sation reproduces the entropy of a macroscopic configuration and the presence of arbitrary profiles,
at the classical level, suggests that supersymmetric supertubes may provide a window to under-
stand the origin of gravitational entropy in a regime of parameters where gravity is reliable. This
is precisely one of the goals of the fuzzball programme [363, 361].37

A first step towards this connection was provided by the supergravity realisation of supertubes
given in [205]. These are smooth configurations described in terms of harmonic functions whose
sources allow arbitrary profiles, thus matching the arbitrary cross-section feature in the world
volume description [380].

The notion of supertube is more general than the one described above. Different encarnations
of the same stabilising mechanism provide U-dual descriptions of the famous string theory D1-D5
system. To make this connection more apparent, consider supertubes with arbitrary cross-sections
in R

4 and with an S1 tubular direction, allowing the remaining 4-spacelike directions to be a 4-
torus. These supertubes are U-dual to D1-D5 bound states with angular momentum J [361], or
to winding undulating strings [362] obtained from the original work [129, 158]. It was pointed out
in [361] that in the D1-D5 frame, the actual supertubes correspond to KK monopoles wrapping the
4-torus, the circle also shared by D1 and D5-branes and the arbitrary profile in R

438. Smoothness
of these solutions is then due to the KK monopole smoothness.

Since the U-dual D1-D5 description involves an AdS3 Ö S 3 near horizon, supertubes were
interpreted in the dual CFT: the maximal angular momentum configuration corresponding to the
circular profile is global AdS3, whereas non-circular profile configurations are chiral excitations
above this vacuum [361].

Interestingly, geometric quantisation of the classical moduli space of these D1-D5 smooth con-
figurations was carried in [435], using the covariant methods originally developed in [156, 503]. The
Hilbert space so obtained produced a degeneracy of states that was compatible with the entropy
of the extremal black hole in the limit of large charges, i.e., S = 2π

√
2(qD0qF1). Further work on

36 Strictly speaking, if the supertube cross-section is open, they can carry D2-brane charge. The arguments given
above only apply to closed cross-sections. The reader is encouraged to read the precise original discussion in [380]
concerning this point and the bounds on angular momentum derived from it.

37 For a list of reviews on this subject, see [382, 383, 65, 459, 36, 454].
38 By arbitrary, it is meant a general curve that is not self-intersecting and whose tangent vector never vanishes.
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the quantisation of supergravity configurations in AdS3 Ö S 3 and its relation to chiral bosons can
be found in [183]. The conceptual framework described above corresponds to a particular case of
the one illustrated in Figure 7.

5.8 Baryon vertex

As a first example of a supersymmetric soliton in a non-trivial background, I will review the baryon
vertex [500, 265]. Technically, this will provide an example of how to deal with non-constant Killing
spinors. Conceptually, it is a nice use of the tools explained in this review having an interesting
AdS/CFT interpretation.

Let me first try to conceptually motivate the entire set-up. Consider a closed D5-brane sur-
rounding N D3-branes, i.e., such that the D3-branes thread the D5-brane. The Hanany–Witten
(HW) effect [282] allows us to argue that each of these N D3-branes will be connected to the
D5-brane by a fundamental type IIB string. Consequently, the lowest energy configuration should
not allow the D5-brane to contract to a single point, but should describe these N D3-branes with
N strings attached to them allowing one to connect the D3 and D5-branes. In the large N limit,
one can replace the D3-branes by their supergravity backreaction description. The latter has an
AdS5 Ö S 5 near horizon. One can think of the D5-brane as wrapping the 5-sphere and the N
strings emanating from it can be pictured as having their endpoints on the AdS5 boundary. This
is the original configuration interpreted in [500, 265] as a baryon-vertex of the N = 4 d = 4
super-Yang–Mills (SYM) theory.

At a technical level and based on our previous discussions regarding BIons, one can describe
the baryon vertex as a single D5-brane carrying N units of world volume electric charge [315, 125]
to account for the N type IIB strings. If one assumes all the electric charge is concentrated at
one point, then one expects the minimum energy configuration to preserve the SO(5) rotational
invariance around it. Such configuration will be characterised by the radial position of the D5-brane
in AdS5 as a function r(θ) of the co-latitude angle θ on S 5. This is the configuration studied in [315,
125, 152]. Since it is, a priori, not obvious whether the requirement of minimal energy forces the
configuration to be SO(5) invariant, one can relax this condition and look for configurations where
the charge is distributed through different points. One can study whether these configurations
preserve supersymmetry and saturate some energy bound. This is the approach followed in [248],
where the term baryonic branes was coined for all these kinds of configurations, and the one I will
follow below.

Set-up: One is interested in solving the equations of motion of a single D5-brane in the back-
ground of N D3-branes carrying some units of electric charge to describe type IIB strings. The
background is described by a constant dilaton, a non-trivial metric and self-dual 5-form field
strength R5 [195]

ds210 = U−1/2 ds2(E(1,3)) + U1/2
[
dr2 + r2dΩ2

5

]
(370)

R5 = 4R4 [ω5 + ?ω5] (371)

where dΩ2
5 is the SO(6)-invariant metric on the unit 5-sphere, ω5 is its volume 5-form and ?ω5 its

Hodge dual. The function U is

U = a+

(
L4

r

)4 (
L4
4 = 4πgsN(α′)2

)
. (372)

Notice a = 1 corresponds to the full D3-brane background solution, whereas a = 0 to its near-
horizon limit.
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Consider a probe D5-brane of unit tension wrapping the 5-sphere. Let ξµ = (t, θi) be the world
volume coordinates, so that θi (i = 1, . . . , 5) are coordinates for the worldspace 5-sphere. This will
be achieved by the static gauge

X0 = t , Θi = θi . (373)

Since one is only interested in radial deformations of the world space carrying electric charge, one
considers the ansatz

X1 = X2 = X3 = 0 , r = r(θi) , F =
1

2
F0i(θ

i) dt ∧ dθi . (374)

Even though the geometry will be curved, it can give some intuition to think of this system in
terms of the array

D3 : 1 2 3 background
D5 : 4 5 6 7 8 probe
F1 : 9 soliton

(375)

viewing the 9-direction as the radial one.

Supersymmetry analysis: Given the electric nature of the world volume gauge field, the kappa
symmetry matrix reduces to

Γκ =
1

6!

1√
− det(G + F )

εµ1...µ6 [γµ1...µ6
τ1 + 15 Fµ1µ2

γµ3...µ6
(iτ2)] . (376)

Given the ansatz (374) and the background (370), the induced world volume metric equals

Gµν =

(
−U−1/2 0

0 gij

)
(377)

where

gij = U1/2
(
r2ḡij + ∂ir∂jr

)
, (378)

and ḡij stands for the SO(6)-invariant metric on the unit 5-sphere. Taking into account the non-
trivial vielbeins, the induced gamma matrices equal

γ0 = U− 1/4Γ0 , γi = U1/4 rγ̂i + U1/4 ∂irΓr , (379)

where the matrices γ̂i are defined as

γ̂i = ei
aΓa , (380)

in terms of the fünfbein ei
a in the 5-sphere. Thus, {γ̂i, γ̂j} = 2ḡij .

To solve the kappa symmetry preserving condition (215), one requires the background Killing
spinors. These are of the form

ε = U− 1
8χ, (381)

where χ is a covariantly constant spinor on E
(1,3) × E

6 subject to the projection condition

Γ0123 i τ2χ = χ , (382)

describing the D3-branes in the background. Importantly, χ is not constant when using polar
coordinates in E

6. Indeed, covariantly constant spinors on Sn were constructed explicitly in [359]
for a sphere parameterisation obtained by iteration of ds2n = dθ2n + sin2 θnds

2
n−1. The result can
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be written in terms of the n angles θi = (θ, θı̂) and the antisymmetrised products of pairs of the
constant d = 10 Clifford matrices Γa = (Γθ,Γı̂). For n = 5, defining Γ5̂ ≡ Γθ, these equal

χ = e
θ
2
Γrθ

4∏

̂=1

e−
θ̂

2
Γ̂̂+1 ε0, (383)

where ε0 satisfies Eq. (382). Even though there are additional Killing spinors in the near-horizon
limit, the associated extra supersymmetries will be broken by the baryonic D5-brane probe con-
figuration I am about to construct, so these can be ignored.

Plugging the ansatz into the kappa matrix (376), the supersymmetry preserving condition (215)
reduces, after some algebra, to

U
√
det [r2ḡij + ∂ir∂jr − F0iF0j ] ε =[

Ur5
√
det ḡ Γ0γ∗τ1 − Ur3

√
det ḡ F0j∂irγ̂

ijγ∗Γr(iτ2)

+Ur4
√
det ḡ γ̂iγ∗ (F0i(iσ2) + ∂irΓ0rτ1)

]
ε (384)

where γ̂i = ḡij γ̂j and γ∗ = Γ45678.
Given the physical interpretation of the sought solitons, one imposes two supersymmetry pro-

jections on the constant Killing spinors ε0:

Γ0γ∗τ1ε0 = ε0 , (385)

Γ0r τ3ε0 = ε0 . (386)

These are expected from the local preservation of 1/2 supersymmetry by the D5-brane and the IIB
string in the radial direction, respectively. These projections imply

Γ0r τ3 ε = [ cos θ − sin θ Γrθ ] ε,

Γ0 γ∗ τ1 ε = [ cos θ − sin θ Γrθ ] ε,

Γi γ∗ iτ2 ε = −Γri ε,

Γi γ∗ Γ0r τ1 ε = Γri e
−θΓrθ ε,

γ∗ Γr iτ2 ε = −ε . (387)

Using these relations, one can rewrite the right-hand side of Eq. (384) as

∆5

[
(r sin θ)

′
+ Γrθ ((r cos θ)

′ − F0θ) + Γrγ̂
ı̂ (∂ı̂r cos θ − F0ı̂)

+γ̂ ı̂̂ 1
r (∂ı̂rF0̂ − ∂̂rF0ı̂) + γ̂ ı̂Γθ

1
r (∂ı̂rF0θ − r′F0ı̂ + r∂ı̂r sin θ)

]
, (388)

where ∆5 = U r4
√
det ḡ. The coefficients of Γrθ and Γrγ̂

ı̂ in Eq. (388) vanish when

F0i = ∂i (r cos θ) . (389)

Furthermore, the ones of γ̂ ı̂̂ and γ̂ ı̂Γθ also do. I will eventually interpret Eq. (389) as the BPS
equation for a world volume BIon. One concludes that Eq. (384) is satisfied as a consequence of
Eq. (389) provided that

U
√
det [r2ḡij + ∂ir∂jr − F0iF0j ] = ∆5(r sin θ)

′. (390)

It can be checked that this is indeed the case whenever Eq. (389) holds.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2012-3

http://www.livingreviews.org/lrr-2012-3


86 Joan Simón

Hamiltonian analysis: Solving the Hamiltonian constraint H = 0 in Eq. (225) allows to write
the Hamiltonian density for static configurations as [248]

H2 = U− 1
2

[
ẼiẼjgij + det g

]
, (391)

where Ẽi is a covariantised electric field density related to F0i by

(det g)F0i =
√
− det(G + F ) Ẽjgij . (392)

For the ansatz (374), this reduces to

Ẽi = U1/4

√
det g√

1 − U1/2 gmn F0m F0n

gij F0j . (393)

It was shown in [248] that one can rewrite the energy density (391) as

H2 = Z2
5 +

[
∆5 (r cos θ)

′ − Ẽi∂i (r sin θ)
]2

+ |∆5ḡ
ı̂̂∂̂r − r Ẽ ı̂|2, (394)

where ||2 indicates contraction with gı̂̂, and

Z5 = ∆5 (r sin θ)
′
+ Ẽi∂i (r cos θ) . (395)

To achieve this, the 5-sphere metric was written as

ds2 = dθ2 + sin2 θ dΩ2
4, (396)

where dΩ2
4 is the SO(5) invariant metric on the 4-sphere, which one takes to have coordinates θı̂.

In this way, all primes above refer to derivatives with respect to θ and ḡı̂̂ are the ı̂̂ components
of the inverse S 5 metric ḡij .

Using the Gauss’ law constraint

∂iẼ
i = −4R4

√
det ḡ , (397)

which has a non-trivial source term due to the RR 5-form flux background, one can show that
Z5 = ∂iZi

5 where ~Z5 has components

Zθ
5 = Ẽθ r cos θ +

√
det ḡ sin θ

(
a
r5

5
+ r R4

)
,

Z ı̂
5 = Ẽ ı̂ r cos θ . (398)

From Eq. (394), and the divergent nature of Z5, one deduces the bound

H ≥ |Z5|. (399)

The latter is saturated when

Ẽ ı̂ = ∆5
ḡı̂̂∂̂r

r
, (400)

Ẽθ =
∆5

(r sin θ)
′

(
(r cos θ)

′ − ḡı̂̂∂ı̂r∂̂ (r sin θ)

r

)
. (401)

Combining Eqs. (400) and (401) with the Gauss law (397) yields the equation

∂ı̂

(
∆5ḡ

îĵ ∂̂r

r

)
+ ∂θ

[
∆5

(r sin θ)′

(
(r cos θ)′ − ḡîĵ∂ı̂r∂̂r

sin θ

r

)]
= −4R4

√
det ḡ. (402)
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Any solution to this equation gives rise to a 1/4 supersymmetric baryonic brane.
For a discussion of the first-order equations (400) and (401) for a = 1, see [126, 133]. Here, I will

focus on the near horizon geometry corresponding to a=0. The Hamiltonian density bound (399)
allows us to establish an analogous one for the total energy E

E ≥
∫
d5σ|Z5

∣∣ ≥
∣∣∣∣
∫
d5σZ5

∣∣∣∣. (403)

While the first inequality is saturated under the same conditions as above, the second requires Z5 to
not change sign within the integration region. For this configuration to describe a baryonic brane,
one must identify this region with a 5-sphere having some number of singular points removed.
Assuming the second inequality is saturated when the first one is, the total energy equals

E = lim
δ→0

∑

k

∫

Bk

d~S · ~Z, (404)

where Bk is a 4-ball of radius δ having the k’th singular point as its center. This expression
suggests that one interpret the k’th term in the sum as the energy of the IIB string(s) attached
to the k’th singular point. No explicit solutions to Eq. (402) with these boundary conditions are
known though.

Consider SO(5) invariant configurations (for a discussion of less symmetric configurations,
see [248]). In this case Ẽ ı̂ = 0,

Ẽθ =
√
det g(4) Ẽ(θ) , (405)

and r = r(θ). The BPS condition (401) reduces to [315, 125, 152]

r′

r
=

∆sin θ + Ẽ cos θ

∆cos θ − Ẽ sin θ
, (406)

where ∆ = R4 sin4 θ, while the Gauss’ law (397) equals

Ẽ′ = −4R4 sin4 θ. (407)

Its solution was first found in [125]

Ẽ =
1

2
R4
[
3 (νπ − θ) + 3 sin θ cos θ + 2 sin3 θ cos θ

]
, (408)

where ν is an integration constant restricted to lie in the interval [0, 1].
Given this explicit solution, let me analyse whether the second inequality in Eq. (403) is satu-

rated when the first one is, as I assumed before. Notice

Z5 =
√

det g(4) Z(θ) with Z(θ) = r

(
∆cos θ − Ẽ sin θ

)2
+
(
∆sin θ + Ẽ cos θ

)2
(
∆cos θ − Ẽ sin θ

) , (409)

where I used Eq. (406). The sign of Z is determined by the sign of the denominator. Thus, it will
not change if it has no singularities within the region θ ∈ [0, π] (except, possibly, at the endpoints
θ = 0, π). Since

∆ cos θ − Ẽ sin θ =
3

2
R4 sin θ η(θ) with η(θ) ≡ θ − νπ − sin θ cos θ, (410)
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one concludes that the denominator for Z vanishes at the endpoints θ = 0, π but is otherwise
positive provided η(θ) is. This condition is only satisfied for ν = 0, in which case Eq. (408)
becomes

Ẽ =
1

2
R4
[
3 (sin θ cos θ − θ) + 2 sin3 θ cos θ

]
. (411)

Integrating the differential equation (406) for r(θ) after substituting Eq. (411), one finds [125]

r = r0

(
6

5

) 1
3

(cosec θ)(θ − sin θ cos θ)
1
3 , (412)

where r0 is the value of r at θ = 0. It was shown in [125] that this configuration corresponds to N
fundamental strings attached to the D5-brane at the point θ = π, where r(θ) diverges.

Solutions to Eq. (406) for ν 6= 0 were also obtained in [125]. The range of the angular variable
θ for which these solutions make physical sense is smaller than [0, π] because the D5-brane does
not completely wrap the 5-sphere. Consequently, the D5 probe captures only part of the five form
flux. This suggests that one interpret these spike configurations as corresponding to a number of
strings less than N . In fact, it was argued in [109, 314] that baryonic multiquark states with k < N
quarks in N = 4 d = 4 SYM correspond to k strings connecting the D5-brane to r = ∞ while the
remaining N − k strings connect it to r = 0. Since the ν 6= 0 D5-brane solutions do reach r = 0,
it is tempting to speculate on whether they correspond to these baryonic multi-quark states.

Related work: There exists similar work in the literature. Besides the study of non-SO(5)
invariant baryonic branes in AdS5 Ö S 5, [248] also carried the analysis for baryonic branes in
M-theory. Similar BPS bounds were found for D4-branes in D4-brane backgrounds or more gener-
ically, for D-branes in a D-brane background [126, 133] and D3-branes in (p, q)5-branes [452, 357].
Baryon vertex configurations have also been studied in AdS5 Ö T1,1 [19], AdS5 Ö Yp,q [134] and
were extended to include the presence of magnetic flux [319]. For a more general analysis of
supersymmetric D-brane probes either in AdS or its pp-wave limit, see [458].

5.9 Giant gravitons and superstars

It was mentioned in Section 5.7 that angular momentum can stabilise an expanded brane carrying
the same quantum numbers as a lower dimensional brane. I will now review an example of such
phenomena, involving supersymmetric expanding branes in AdS, the so called giant gravitons [386].
In this case, a rotating pointlike graviton in AdS expands into a rotating brane due to the RR flux
supporting the AdS supergravity solution [395]. Its angular momentum prevents the collapse of
the expanding brane and it can actually make it supersymmetric [264, 290].

Consider type IIB string theory in AdS5 Ö S 5. It is well known that this theory has BPS
graviton excitations rotating on the sphere at the speed of light. In the dual N = 4 d = 4 SYM
theory, these states correspond to single trace operators belonging to the chiral ring [18, 150, 68].
When their momentum becomes of order N , it is energetically favourable for these gravitons to
expand into rotating spherical D3-branes, i.e., giant gravitons. The N scaling is easy to argue for:
the conformal dimension must be proportional to the D3-brane tension times the volume of the
wrapped cycle, which is controlled by the AdS radius of curvature L4, thus giving

∆ ∝ TD3L
4
4 = N . (413)

Similar considerations apply in different AdSp+1 realisations of this phenomena [264, 368]. The
field theory interpretation of these states was given in [35] in terms of subdeterminant operators.
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Let us construct these configurations in AdS5 Ö S 5. The bosonic background has a constant
dilaton and non-trivial metric and RR 4-form potential given by

ds210 = −
(
1 +

r2

L2
4

)
dt2 +

dr2

1 + r2

L2
4

+ r2 dΩ̃2
3 + L2

4

(
dθ2 + cos2 θ dφ2 + sin2 θ dΩ2

3

)
,

C4 = L4
4 sin4 θ dφ ∧ ω3, (414)

where ω3 stands for the volume form of the 3-sphere in S 5 and it is understood dC4 is made self-
dual to satisfy the type IIB equations of motion39. Giant gravitons consist of D3-branes wrapping
such 3-spheres and rotating in the φ direction to carry R-charge from the dual CFT perspective.
Thus, one considers the bosonic ansatz

σ0 = t, σi = ωi,

θ = θ0, φ = φ(τ), r = 0. (415)

The D3-brane Lagrangian density evaluated on this ansatz and integrating over the 3-sphere world
volume is [264]

L =
N

L4

[
− sin3 θ

√
1− L2

4 cos
2 θ φ̇2 + L4 sin

4 θ φ̇

]
. (416)

Since k = ∂φ is a Killing vector, the conjugate momentum Pφ is conserved

Pφ = N


 L4 sin

3 θ cos2 θ φ̇√
1− L2

4 cos
2 θ φ̇2

+ sin4 θ


 ≡ N p , (417)

where the constant p was defined. Computing the Hamiltonian density,

E = Pφφ̇− L =
N

L4

√
p2 + tan2 θ (p− sin2 θ)2 , (418)

allows us to identify the stable configurations by extremising Eq. (418). Focusing on finite size
configurations, one finds

sin θ0 =
√
p =⇒ φ̇ =

1

L4
=⇒ E =

Pφ

L4
. (419)

Notice the latter equality saturates the BPS bound, ∆ ≡ EL4 = Pφ, as expected from supersym-
metry considerations.

To check whether the above configuration indeed preserves some supersymmetry, one must
check whether there exists a subset of target space Killing spinors solving the kappa symmetry
preserving condition (215). The 32 Killing spinors for the maximally-supersymmetric AdS5 Ö S 5

background were computed in [359, 264]. They are of the form ε =M ε∞ where M is a non-trivial
Clifford valued matrix depending on the bulk point and ε∞ is an arbitrary constant spinor. It was
shown in [264] that Eq. (215) reduces to

(Γtφ − 1)ε∞ = 0. (420)

Thus, giant gravitons preserve half of the spacetime supersymmetry. Furthermore, they preserve
the same supercharges as a pointlike graviton rotating in the φ direction.

39 I do not write this term explicitly here because it will not couple to our D3-brane probes.
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General supersymmetric giant graviton construction: There exist more general giant
gravitons charged under the full U(1)3 Cartan subalgebra of the full R-symmetry group SO(6). The
general construction of such supersymmetric probes was done in [392]. The main idea is to embed
the bulk 5-sphere into an auxiliary embedding C

3 space with complex coordinates zi i = 1, 2, 3
and AdS5 into C

1,2. In the probe calculation, the Zi become dynamical scalar fields subject to the
defining quadric constraint

∑
i |Zi|2 = 1. To prove these configurations are supersymmetric one

can use the well known isomorphism between geometric Killing spinors on both the 5-sphere and
AdS5 and parallel spinors in C

3 and C
1,2, respectively. This is briefly reviewed in Appendix B.

The conclusion of such analysis is that any holomorphic function F (Z1, Z2, Z3) gives rise to a
supersymmetric giant graviton configuration [392] defined

|Z1|2 + |Z2|2 + |Z3|2 = 1,

F (e−it/L4Z1, e
−it/L4Z2, e

−it/L4Z3) = 0, (421)

as the intersection of the 5-sphere with a holomorphic hypersurface properly evolved in world
volume time. The latter involves rotations in each of the C planes in C

3 at the speed of light
(in 1/L4 units), which is a consequence of supersymmetry and a generalisation of the condition
explicitly found in Eq. (419).

Geometric quantisation and BPS counting: The above construction is classical and applies
to backgrounds of the form AdS5×M5. In [54], the classical moduli space of holomorphic functions
mentioned above was originally quantised and some of its BPS spectrum matched against the
spectrum of chiral operators in N = 4 d = 4 SYM. Later, in [104, 369], the full partition function
was derived and seen to agree with that of N noninteracting bosons in a 3d harmonic potential.
Similar work and results were obtained for the moduli space of dual giant gravitons40 when M5

is an Einstein–Sasaki manifold [374]. The BPS partition functions derived from these geometric
quantisation schemes agree with purely gauge theory considerations [69, 341] and with the more
algebraic approach to counting chiral operators followed in the plethystics program [67, 210].

Related work: There exists an extensive amount of work constructing world volume config-
urations describing giant gravitons in different backgrounds to the ones mentioned above. This
includes non-supersymmetric giant gravitons with NS-NS fields [131], M-theory giants with 3-form
potential field [132], giants in deformed backgrounds [422] or electric/magnetic field deformed gi-
ants in Melvin geometries [310]. For discussions on supersymmetric D3, fractional D5 and D7-brane
probes in AdS5 Ö Labc, see [135]. There is also interesting work on bound states of giant gravi-
tons [430] and on the effective field theory description of many such giants (a non-abelian world
volume description) with the inclusion of higher moment couplings responsible for their physical
properties [317, 318].

5.9.1 Giant gravitons as black-hole constituents

Individual giant gravitons carry conformal dimension of order N and according to the discussion
above, they exhaust the spectrum of chiral operators in the dual CFT, whereas R-charged AdS
black holes carry mass of order N2. The idea that supersymmetric R-charged AdS black holes
could be interpreted as distributions of giant gravitons was first discussed in [397], where these
bulk configurations were coined as superstars. The main idea behind this identification comes from
two observations:

40 Dual giant gravitons are spherical rotating D3-branes in which the 3-sphere wrapped by the brane is in AdS5.
See [264] for a proper construction of these configurations and some of its properties.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2012-3

http://www.livingreviews.org/lrr-2012-3


Brane Effective Actions, Kappa-Symmetry and Applications 91

1. The existence of naked singularities in these black holes located where giant gravitons sit in
AdS suggests the singularity is due to the presence of an external source.

2. Giant gravitons do not carry D3-brane charge, but they do locally couple to the RR 5-form
field strength giving rise to some D3-brane dipole charge. This means [397] that a small (five-
dimensional) surface enclosing a portion of the giant graviton sphere will carry a net five-form
flux proportional to the number of D3-branes enclosed. If this is correct, one should be able
to determine the local density of giant gravitons at the singularity by analysing the net RR
5-form flux obtained by considering a surface that is the boundary of a six-dimensional ball,
which only intersects the three-sphere of the giant graviton once, at a point very close to the
singularity.

To check this interpretation, let us review these supersymmetric R-charged AdS5 black holes.
These are solutions to N = 2 d = 5 gauged supergravity with U(1)3 gauge symmetry [56, 57]
properly embedded into type IIB [157]. Their metric is

ds210 =
√
∆
[
−(H1H2H3)

−1fdt2 + (f−1dr2 + r2dΩ2
3)
]

+
1√
∆

3∑

i=1

Hi

(
L2dµ2

i + µ2
i [L4dφi + (H−1

i − 1)dt]2
)
, (422)

with the different scalar functions defined as

f = 1 +
r2

L2
4

H1H2H3 with Hi = 1 +
qi
r2
,

∆ = H1H2H3

3∑

i=1

µ2
i

Hi
, with

3∑

i=1

µ2
i = 1 . (423)

All these metrics have a naked singularity at the center of AdS that extends into the 5-sphere.
Depending on the number of charges turned on, the rate at which curvature invariants diverge
changes with the 5-sphere direction. Besides a constant dilaton, these BPS configurations also
have a non-trivial RR self-dual 5-form field strength R5 = dC4 + ∗dC4 with

C4 = − r4

L4
∆ dt ∧ ω3 − L4

3∑

i=1

qiµ
2
i (L4 dφi − dt) ∧ ω3 , (424)

with ω3 being volume 3-form of the unit 3-sphere.
To test the microscopic interpretation for the superstar solutions, consider the single R-charged

configuration with q2 = q3 = 0. This should correspond to a collection of giant gravitons rotating
along φ1 with a certain distribution of sizes (specified by µ1 = cos θ1). To measure the density
of giant gravitons sitting near a certain θ1, one must integrate R5 over the appropriate surface.
Describing the 3-sphere in AdS5 by

dΩ2
3 = dα2

1 + sin2 α1(dα
2
2 + sin2 α2dα

2
3) , (425)

one can enclose a point on the brane at θ1 with a small five-sphere in the {r, θ1, φ1 αi} directions.
The relevant five-form component is

(R5)θ1φ1α1α2α3
= 2q1L

2
4 sin θ1 cos θ1 sin

2 α1 sinα2 , (426)

and by integrating the latter over the smeared direction φ1 and the 3-sphere, one infers the density
of giants at a point θ1 [397]

dn1
dθ1

=
N

4π3L4
4

∫
(R5)θ1φ1α1α2α3

dφ1d
3α = N

q1
L2
4

sin 2θ1 . (427)
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If this is correct, the total number of giant gravitons carried by the superstar is

n1 =

∫ π/2

0

dθ1
dn1

dθ1
= N

q1
L2
4

. (428)

The matching is achieved by comparing the microscopic momentum carried by a single giant at
the location θ1, Pmicro = N sin2 θ1, with the total mass of the superstar

M =
N2

2

q1
L3
4

. (429)

Indeed, by supersymmetry, the latter should equal the total momentum of the distribution

M =
Pφ1

L4
=

∫ π/2

0

dθ1
dn1

dθ1

Pmicro

L4
=
N2

2

q1
L3
4

, (430)

which establishes the physical correspondence. There exist extensions of these considerations when
more than a single R-charge is turned on, i.e., when q2, q3 6= 0. See [397] for the specific details,
though the conclusion remains the same.

1/2 BPS superstar and smooth configurations: Just as supertubes have smooth super-
gravity descriptions [205] with U-dual interpretations in terms of chiral states in dual CFTs [361]
when some of the dimensions are compact, one may wonder whether a similar picture is available
for chiral operators in N = 4 d = 4 SYM corresponding to collections of giant gravitons. For 1/2
BPS states, the supergravity analysis was done in [355]. The classical moduli space of smooth
configurations was determined: it is characterised in terms of a single scalar function satisfying a
Laplace equation. When the latter satisfies certain boundary conditions on its boundary, the entire
supergravity solution is smooth. Interestingly, such boundary could be interpreted as the phase
space of a single fermion in a 1d harmonic oscillator potential, whereas the boundary conditions
correspond to exciting coherent states on it. This matches the gauge theory description in terms
of the eigenvalues of the adjoint matrices describing the gauge invariant operators in this 1/2 BPS
sector of the full theory [150, 68]. Moreover, geometric quantisation applied on the subspace of
these 1/2 BPS supergravity configurations also agreed with the picture of N free fermions in a
1d harmonic oscillator potential [251, 371]. The singular superstar was interpreted as a coarse-
grained description of the typical quantum state in that sector [37], providing a bridge between
quantum mechanics and classical geometry through the coarse-graining of quantum mechanical
information. In some philosophically vague sense, these supergravity considerations provide some
heuristic realisation of Wheeler’s ideas [492, 493, 39]. Some partial progress was also achieved for
similar M-theory configurations [355]. In this case, the quantum moduli space of BPS gauge theory
configurations was identified in [450] and some steps to identify the dictionary between these and
the supergravity geometries were described in [184]. Notice this set-up is also in agreement with
the general framework illustrated in Figure 7.

Less supersymmetric superstars: Given the robustness of the results concerning the partition
functions of 1/4 and 1/8 chiral BPS operators in N = 4 SYM and their description in terms of
BPS giant graviton excitations, it is natural to study whether there exist smooth supergravity
configurations preserving this amount of supersymmetry and the appropriate bosonic isometries to
be interpreted as these chiral states. The classical moduli space of these configurations was given
in [142], extending previous work [182, 181]. The equations describing these moduli spaces are far
more complicated than its 1/2 BPS sector cousin,
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❼ 1/4 BPS configurations depend on a 4d Kähler manifold with Kähler potential satisfying a
non-linear Monge–Ampère equation [142],

❼ 1/8 BPS configuration depend on a 6d manifold, whose scalar curvature satisfies a non-linear
equation in the scalar curvature itself and the square of the Ricci tensor [338].

Some set of necessary conditions for the smoothness of these configurations was discussed in [142].
A more thorough analysis for the 1/4 BPS configurations was performed in [360], where it was
argued that a set of extra consistency conditions were required, the latter constraining the location
of the sources responsible for the solutions. Interestingly, these constraints were found to be in
perfect agreement with the result of a probe analysis. This reemphasises the usefulness of probe
techniques when analysing supergravity matters in certain BPS contexts.

5.10 Deconstructing black holes

Both supertubes and giant gravitons are examples of supersymmetric states realised as classical
solitons in brane effective actions and interpreted as the microscopic constituents of small black
holes. The bulk entropy is matched after geometric quantisation of their respective classical moduli
spaces. This framework, which is summarised in Figure 7, suggests the idea of deconstructing the
black hole into zero-entropy, minimally-charged bits, reinterpreting the initial black-hole entropy as
the ground-state degeneracy of the quantum mechanics on the moduli space of such deconstructions
(bits).

In this subsection, I briefly mention some work in this direction concerning large supersymmetric
AdS5 Ö S 5 black holes, deconstructions of supersymmetric asymptotically-flat black holes in terms
of constituent excitations living at the horizon of these black holes and constituent models for
extremal static non-BPS black holes.

Large supersymmetric AdS5 black holes: Large supersymmetric AdS5 Ö S 5 black holes
require the addition of angular momentum in AdS5, besides the presence of R-charges, to achieve
a regular macroscopic horizon while preserving a generic 1/16 of the vacuum supersymmetries.
The first examples were reported in [280]. Subsequent work involving more general (non-)BPS
black holes can be found in [279, 143, 350].

Given the success in identifying the degrees of freedom for R-charged black holes, it is natural
to analyse whether the inclusion of angular momentum in AdS5 can be accomplished by more
general (dual) giant graviton configurations carrying the same charges as the black hole. This task
was initiated in [339]. Even though their work was concerned with configurations preserving 1/8 of
the supersymmetry, the importance of a non-trivial Poynting vector on the D3-brane world volume
to generate angular momentum was already pointed out, extending the mechanism used already
for supertubes. In [340], the first extension of these results to 1/16 world volume configurations
was considered. The equations satisfied for the most general 1/16 dual giant D3-brane probe
in AdS5 Ö S 5 were described in [22], whereas explicit supersymmetric electromagnetic waves on
(dual) giants were constructed in [23]. Similar interesting work describing giant gravitons in the
pp-wave background with non-trivial electric fields was reported in [15].

All these configurations have interest on their own, given their supersymmetry and the con-
served charges they carry, but further evidence is required to interpret them as bulk black hole
constituents. This task was undertaken in [456]. Instead of working in the vacuum, these au-
thors studied the spectrum of classical supersymmetric (dual) giant gravitons in the near horizon
geometries of these black holes in [457], following similar reasonings for asymptotically-flat black
holes [174]. The partial quantisation of this classical moduli space [456] is potentially consistent
with the identification of dual giants as the constituents of these black holes, but this remains an
open question. In the same spirit, [22] quantised the moduli space of the wobbling dual giants, 1/8
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Figure 7: Relation between the quantisation of the classical moduli space of certain supersymmetric probe
configurations, their supergravity realisations and their possible interpretation as black hole constituents.
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BPS configurations with two angular momentum in AdS5 and one in S 5 and agreement was found
with the gauge theory index calculations carried out in [341].

There have also been more purely field theoretical approaches to this problem. In [250], co-
homological methods were used to count operators preserving 1/16 of the supersymmetries in
N = 4 d = 4 SYM, whereas in [97] explicit operators were written down, based on Fermi surface
filling fermions models and working in the limit of large angular momentum in AdS5. These at-
tempted to identify the pure states responsible for the entropy of the black hole and their counting
agreed, up to order one coefficients, with the Hawking–Bekenstein classical entropy.

Large asymptotically-flat BPS black holes: There exists a large literature on the construc-
tion of supersymmetric configurations with the same asymptotics and charges as a given large BPS
black hole, but having the latter carried by different constituent charges located at different “cen-
ters”41. The center locations are non-trivially determined by solving a set of constraint equations,
called the bubble equations. The latter is believed to ensure the global smoothness and lack of
horizon of the configuration. These constraints do reflect the intrinsic bound state nature of these
configurations. The identification of a subset of 1/2 BPS centers as the fundamental constituents
for large black holes was further developed in [38].

One of the new features in these deconstructions is that the charges carried by the different
constituents do not have to match the charges carried by the black hole, i.e., a constituent can
carry D6-brane charge even if the black hole does not, provided there exists a second centre with
anti-D6-brane charge, cancelling the latter.

This idea of deconstructing a given black hole in terms of maximally entropic configurations
of constituent objects42 was tested for the standard D0-D4 black hole in [174]. The black hole
was deconstructed in terms of D6 and D6 branes with world volume fluxes turned on, inducing
further D4-D2-D0 charges, and a large set of D0-branes. Working in a regime of charges where the
distance between centres scales to zero, i.e., the scaling solution, all D0-branes become equidistant
to the D6-branes, forming some sort of accretion disk and the geometry deep inside this ring of
D0-branes becomes that of global AdS3 Ö S 2, when lifting the configuration to M-theory. Using
the microscopic picture developed in [219], where it was argued that the entropy of this black
hole came from the degeneracy of states due to non-abelian D0-branes that expand into D2-branes
due to the Myers’ effect [395], the authors in [174] manage to extend the near horizon wrapping
M2-branes found in [455] to M2-branes wrapping supersymmetric cycles of the full geometry. It
was then argued that the same counting done [219], based on the degeneracy of the lowest Landau
level quantum mechanics problem emerging from the effective magnetic field on the transverse
Calabi–Yau due to the coupling of the D2-D0 bound states to the background RR 4-form field
strength, would apply in this case.

The same kind of construction and logic was applied to black rings [206, 199] in [239]. Further
work on stable brane configurations in the near horizon on brane backgrounds can be found in [130].

Extremal non-BPS deconstructions: These ideas are also applicable to non-supersymmetric
systems, though one expects to have less control there. For the subset of static extremal non-BPS
black holes in the STU model [155, 194, 58], these methods turned out to be successful. The most
general static black-hole solution, including non-trivial moduli at infinity, was found in [237, 358].
It was pointed out in [237] that the mass of these black holes equals the sum of four mutually
local 1/2 BPS constituents for any value of the background moduli fields and in any U-duality

41 These configurations appeared in [64, 71], extending earlier seminal work [173, 53].
42 What is meant here by maximally entropic is that, given a large black hole, there may be more than one possible

deconstruction of the total charge in terms of constituents with different charge composition. By maximally entropic
I mean the choice of charge deconstruction whose moduli space of configurations carries the largest contribution to
the entropy of the system.
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frame. Using probe calculations, it was shown that such constituents do not feel any force in the
presence of these black holes [238]. This suggested that extra quanta could be added to the system
and located anywhere. This is consistent with the multi-center extremal non-BPS solutions found
in [218]: their centres are completely arbitrary but the charge vectors carried by each centre are
constrained to be the ones of the constituents identified in [238] (or their linear combinations).
This model identifies the same constituents as the ones used to account for the entropy of neutral
black holes in [204] and extends it to the presence of fluxes. No further dynamical understanding
of the open string degrees of freedom is available in terms of non-supersymmetric quiver gauge
theories.

As soon as angular momentum is added to the system, while keeping extremality, the location
of the deconstructed constituents gets constrained according to non-linear bubble equations that
ensure the global smoothness of the full supergravity solution [61, 62]. These are fairly recent
developments and one expects further progress to be achieved in this direction in the future.
For example, very recently, an analysis of stable, metastable and non-stable supertubes in smooth
geometries being candidates for the microstates of black holes and black rings was presented in [63].
This includes configurations that would also be valid for non-extremal black holes.
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6 Some AdS/CFT Related Applications

This section is devoted to more dynamical applications of brane effective actions. More specifically,
I will describe some well-established reinterpretations of certain brane probe calculations in the
context of the AdS/CFT correspondence [366, 269, 498, 13]. I will mainly focus on two aspects:

❼ The use of classical solitons solving the brane (string) equations of motion in particular
backgrounds and with specific boundary conditions, to holographically compute either the
expectation value of certain gauge invariant operators or the spectrum in sectors of certain
strongly coupled gauge theories.

❼ The use of D-brane effective actions to describe the dynamics of a small number of degrees
of freedom responsible either for deforming the original dual CFT to theories with less or
no supersymmetry, or for capturing the interaction of massless modes among themselves and
with other sectors of the system conveniently replaced by a supergravity background.

Covariance of brane effective actions allows one to couple them to any on-shell supergravity
background. In particular, one can probe either AdS5 Ö S 5, or black holes with these asymptotics,
with branes, and according to the AdS/CFT correspondence, one will be studying properties of
the strongly coupled holographic theory in the vacuum or at finite temperature and chemical
potentials, respectively. This set-up is illustrated in Figure 8. The same interpretation will hold
for non-relativistic versions of these backgrounds. Alternatively, and depending on the boundary
conditions imposed on these probes, they can deform the theory towards less symmetric and more
realistic physical systems.

Supergravity Gauge TheoryAdS/CFT

probes

large N

AdSx M

BHs in AdSx M

On-shell actions
Spectrum of fluctuations
Semiclassical quantisation

IR IR

Lifshitz BHs Non-relativistic
regime

Figure 8: General framework in which probe calculations in appropriate backgrounds with suitable
boundary conditions can be reinterpreted as strongly coupled observables and spectrum in non-abelian
gauge theories using the AdS/CFT correspondence.
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In the following, I will review the calculation of Wilson loop expectation values, the use of
worldsheet string solitons to study the spectrum of states with large charges in N = 4 SYM and
the use of D-brane probes to either add flavour to the AdS/CFT correspondence or describe the
dynamics of massless excitations in non-relativistic (thermal) set-ups, which could be of relevance
for strongly-coupled condensed-matter physics.

6.1 Wilson loops

As a first example of the use of classical solutions to brane effective actions to compute the ex-
pectation values of gauge invariant operators at strong coupling, I will review the prescription put
forward in [367, 433] for Wilson loop operators in N = 4 SYM.

Wilson loop operators [494] in SU(N) Yang–Mills theories are non-local gauge invariant oper-
ators

W (C) = 1

N
TrPe

i
∮
C
A
, (431)

depending on a closed loop in spacetime C and where the trace is over the fundamental representa-
tion of the gauge group. This operator allows one to extract the energy E(L) of a quark-antiquark
pair separated a distance L. Indeed, consider a rectangular closed loop in which the pair evolves
in Euclidean time T . In the limit T → ∞, the expectation value of this rectangular Wilson loop
equals

〈W (C)〉 = A(L)e−TE(L) . (432)

To understand the prescription in [367, 433], one must first introduce massive quarks in the
theory. This is achieved by breaking the original gauge symmetry of the original N = 4 SYM
according to

U(N + 1) → U(N)×U(1). (433)

The massive W-bosons generated by this process have a mass proportional to the norm of the
Higgs field expectation value responsible for the symmetry breaking (|~Φ|) and transform in the
fundamental representation of the U(N) gauge symmetry, as required. Furthermore at energy

scales much lower than |~Φ|, the U(N) theory decouples from the U(1) theory.
In this set-up, the massive W-boson interacts with the U(N) gauge fields, including the scalar

adjoint fields XI [367], leading to the insertion of the operator

W (C) = 1

N
TrPe

i
∮
C
ds[Aµ(σ)σ̇

µ+θI(s)XI(σ)
√
σ̇2]

. (434)

The contour C is parameterised by σµ(s) whereas the vector ~θ(s) maps each point on the loop to
a point on the five-sphere.

The proposal made in [367, 433] to compute the expectation value of Eq. (434) was

〈W (C)〉 ∼ e−Sstring . (435)

This holds in the large gsN limit and Sstring stands for the proper area of a fundamental string
describing the loop C at the boundary of AdS5 and lying along θI(s) on S 5. Notice that a quantum
mechanical calculation at strong coupling reduces to determining a minimal worldsheet surface
in AdS5, i.e., solving the worldsheet equations of motion with appropriate boundary conditions,
and then solving for the worldsheet energy as a function of the separation L between the quark-
antiquark. After subtracting the regularised mass of the W-boson one obtains the quark-antiquark
potential energy

E(L) = −4π2(2g2YMN)1/2

Γ( 14 )
4L

, (436)
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which differs from the linear perturbative dependence on g2YMN .
If one considers multiply-wrapped Wilson loops, the many coincident strings will suffer from

self-interactions. This may suggest that a more appropriate description of the system is in terms
of a D3-brane with non-trivial world volume electric flux accounting for the fundamental strings.
This is the approach followed in [189], where it was shown that for linear and circular loops the
D3-brane action agreed with the string worldsheet result at weak coupling, but captures all the
higher-genus corrections at leading order in α′.

6.2 Quark energy loss in a thermal medium

Having learnt how to describe a massive quark in N = 4 SYM in terms of a string, this opens up
the possibility of describing its energy loss as it propagates through a thermal medium. One can
think of this process

1. either from the bulk perspective, where the thermal medium gets replaced by a black hole
and energy flows down the string towards its horizon,

2. or from the gauge-theory perspective, where energy and momentum emanate from the quark
and eventually thermalise.

In this section, I will take the bulk point of view originally discussed in [297, 268], with a related
fluctuation analysis in [138]. The goal is to highlight the power of the techniques developed in
Sections 4 and 5 rather than being self-contained. For a more thorough discussion, the reader
should check the review on this particular topic [272].

The thermal medium is holographically described in terms of the AdS5-Schwarzschild black
hole,

ds2 = gmndx
mdxn =

L2

z2

(
−h(z)dt2 + d~x2 +

dz2

h(z)

)
, (437)

where h(z) = 1 − z4

z4
H

determines the horizon size zH and the black-hole temperature T = 1
πzH

.

The latter coincides with the gauge-theory temperature [498]. Notice z = 0 is the location of the
conformal boundary and L is the radius of AdS5.

If one is interested in describing the dragging effect suffered by the quark due to the interactions
with the thermal medium, one considers a non-static quark, whose trajectory in the boundary
satisfies X1(t) = vt, assuming motion takes place only in the x1 direction. One can parameterise
the bulk trajectory as

X1(t, z) = vt+ ξ(z), (438)

where ξ(z) satisfies ξ → 0 as z → 0. To determine ξ(z), one must solve the classical equations of
motion of the bosonic worldsheet action (16) in the background (437). These reduce to a set of
conserved equations of the form

∇µπ
µ
m = 0 , where πµ

m ≡ − 1

2πα′G
µνgmn∂νX

n (439)

is the worldsheet momentum current conjugate to the position Xm. Plugging the ansatz (438) into
Eq. (439), one finds

dξ

dz
=
πξ
h

√
h− v2

L4

z4 h− π2
ξ

, (440)

where πξ is an integration constant. A priori, there are several allowed possibilities compatible
with the reality of the trailing function ξ(z). These were analysed in [272] where it was concluded
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that the relevant physical solution is given by

πξ = −L
2

z2∗

√
h(z∗) = − v√

1− v2
L2

z2H
=⇒ ξ = −zHv

4i

(
log

1− iy

1 + iy
+ i log

1 + y

1− y

)
, (441)

where y is a rescaled depth variable y = z/zH .
To compute the rate at which quark momentum is being transferred to the bath, one can simply

integrate the conserved current pµm over a line-segment and given the stready-state nature of the
trailing string configuration, one infers [272]

dpm
dt

= −√−g pzm. (442)

This allows us to define the drag force as

Fdrag =
dp1
dt

= − L2

2πz2Hα
′

v√
1− v2

= −π
√
λ

2
T 2 v√

1− v2
with λ = g2YMN =

L4

α′2 . (443)

For a much more detailed discussion on the physics of this system see [272, 137]. The latter also
includes a discussion of the same physical effect for a finite, but large, quark mass, and the possible
implications of these results and techniques for quantum chromodynamics (QCD).

More recently, it was argued in [212] that one can compute the energy loss by radiation of an
infinitely-massive half-BPS charged particle to all orders in 1/N using a similar construction to the
one mentioned at the end of Section 6.1. This involved the use of classical D5-brane and D3-brane
world volume reaching the AdS5 boundary to describe particles transforming in the antisymmetric
and symmetric representations of the gauge group, respectively.

6.3 Semiclassical correspondence

It is an extended idea in theoretical physics that states in quantum mechanics carrying large charges
can be well approximated by a classical or semiclassical description. This idea gets realised in the
AdS/CFT correspondence too. Consider the worldsheet sigma model description of a fundamen-
tal string in AdS5 Ö S 5. One expects its perturbative oscillations to be properly described by
supergravity, whereas solitons with large conformal dimension,

∆ ∼ 1√
λ
, λ = g2YMN = gsN (444)

and the spectrum of their semiclassical excitations may approximate the spectrum of highly excited
string states in N = 4 SYM. This is the approach followed in [270], where it was originally applied
to rotating folded strings carrying large bare spin charge.

To get an heuristic idea of the analytic power behind this technique, let me reproduce the
spectrum of large R-charge operators obtained in [70] using a worldsheet quantisation in the pp-
wave background by considering the bosonic part of the worldsheet action describing the AdS5 Ö S 5

sigma model [270]

S =
1

2α

∫
d2σ

√
g((∇αn)

2 + (∇αK)2) + ..., (445)

where n is a unit vector describing S 5, K is a hyperbolic unit vector describing AdS5, the sigma
model coupling α is α = 1√

λ
43 and I have ignored all fermionic and RR couplings.

43 This overall coupling constant is derived from the string tension 1/2πα′ and the overall L2 ∼ gsN α′ scale from
the AdS5 Ö S5 background geometry.
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Consider a solution to the classical equations of motion describing a collapsed rotating closed
string at the equator

θ = 0 , ψ = ωτ , (446)

where θ and ψ are the polar and azimuthal angles on S 2 in S 5. Its classical worldsheet energy is

E =
1

2α
ω2 =

α

2
J2 where J =

ω

α
. (447)

Next, consider the harmonic fluctuations around this classical soliton. Focusing on the quadratic
θ oscillations,

αL =
1

2

[
(∇θ)2 + ω2 cos2 θ

]
' 1

2

[
(∇θ)2 − ω2θ2 + ω2

]
, (448)

one recognises the standard harmonic oscillator. Using its spectrum, one derives the corrections
to the classical energy

δ =
α

2
J2 +

∑

n

Nn

√
n2 + α2J2 , (449)

where Nn is the excitation number of the n-th such oscillator. There is a similar contribution from
the AdS part of the action, obtained by the change α to −α. Both contributions must satisfy the
on-shell condition

δ(S5) + δ(AdS5) ≈ 0. (450)

This is how one reproduces the spectrum derived in [70]

∆ = J +
∞∑

n=−∞
Nn

√
1 +

λn2

J2
. (451)

The method outlined above is far more general and it can be applied to study other operators.
For example, one can study the relation between conformal dimension and AdS5 spin, as done
in [270], by analysing the behaviour of solitonic closed strings rotating in AdS. Using global AdS5,

ds5 = L2
[
− cosh2 ρ dt2 + dρ2 + sinh2 ρ

(
dθ2 + sin2 θdφ2 + cos2 θdψ2

)]
, (452)

as the background where the bosonic string propagates and working in the gauge τ = t allows one
to identify the worldsheet energy with the conformal dimension in the dual CFT. Consider a closed
string at the equator of the 3-sphere while rotating in the azimuthal angle

φ = ωt . (453)

For configurations ρ = ρ(σ), the Nambu–Goto bosonic action reduces to

Sstring = −4
L2

2πα′

∫
dt

∫ ρ0

0

dρ

√
cosh2 ρ− (φ̇)2 sinh2 ρ , (454)

where ρ0 stands for the maximum radial coordinate and the factor of 4 arises because of the four
string segments stretching from 0 to ρ0 determined by the condition

coth2 ρ0 = ω2 . (455)

The energy E and spin S of the string are conserved charges given by

E = 4
L2

2πα′

∫ ρ0

0

dρ
cosh2 ρ√

cosh2 ρ− ω2 sinh2 ρ
, (456)

S = 4
L2

2πα′

∫ ρ0

0

dρ
ω sinh2 ρ√

cosh2 ρ− ω2 sinh2 ρ
. (457)

Notice the dependence of E/
√
λ on S/

√
λ is in parametric form since L4 = λα′2. One can obtain

approximate expressions in the limits where the string is much shorter or longer than the radius
of curvature L of AdS5.
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Short strings: For large ω, the maximal string stretching is ρ0 ≈ 1/ω. Thus, strings are shorter
than the radius of curvature L. Calculations reduce to strings in flat space for which the parametric
dependence is [270]

E =
L2

α′ω
, S =

L2

2α′ω2
, =⇒ E2 = L2 2S

α′ . (458)

Using the AdS/CFT correspondence, the conformal dimension equals the energy, i.e., ∆ = E.
Furthermore, S �

√
λ for large ω. Thus,

∆2 ≈ m2L2 , where m2 =
2(S − 2)

α′ (459)

for the leading closed string Regge trajectory, which reproduces the AdS/CFT result.

Long strings: The opposite regime takes place when ω is close to one (from above)

ω = 1 + 2η , η � 1 =⇒ ρ0 → 1

2
log

1

η
, S �

√
λ , (460)

so that the string is sensitive to the AdS boundary metric. The string energy and spin become

E =
L2

2πα′

(
1

η
+ log

1

η
+ . . .

)
, (461)

S =
L2

2πα′

(
1

η
− log

1

η
+ . . .

)
, (462)

so that its difference approaches

E − S =

√
λ

π
log

S√
λ
+ . . . (463)

This logarithmic asymptotics is qualitatively similar to the one appearing in perturbative gauge
theories. For a more thorough discussion on this point, see [270].

Applying semiclassical quantisation methods to these classical solitons [216], it was realised
that one can interpolate the results for E − S to the weakly-coupled regime. It should be stressed
that these techniques allow one to explore the AdS/CFT correspondence in non-supersymmetric
sectors [217], appealing to the correspondence principle associated to large charges. It is also
worth mentioning that due to the seminal work on the integrability of planar N = 4 SYM at
one loop [393, 60], much work has been devoted to using these semiclassical techniques in relation
to integrability properties [21]. Interested readers are encouraged to check the review [59] on
integrability and references therein.

6.4 Probes as deformations and gapless excitations in complex systems

The dynamical regime in which brane effective actions hold is particularly suitable to describe
physical systems made of several interacting subsystems in which one of them has a much smaller
number of degrees of freedom. Assume the larger subsystems allow an approximate description
in terms of a supergravity background. Then, focusing on the dynamics of this smaller subsector,
while keeping the dynamics of the larger subsystems frozen, corresponds to probing the supergravity
background with the effective action describing the smaller subsystem. This conceptual framework
is illustrated in Figure 9.
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System 
A

System 
B

interactions

Sugra dual
(background)

probe
AdS/CFT

Analytical control over
strongly coupled regime

self
interactions

Figure 9: Conceptual framework in which the probe approximation captures the dynamics of small
subsystems interacting with larger ones that have reliable gravity duals.

This set-up occurs when the brane degrees of freedom are responsible for either breaking the
symmetries of the larger system or describing an interesting isolated set of massless degrees of free-
dom whose interactions among themselves and with the background one is interested in studying.
In the following, I very briefly describe how the first approach was used to introduce flavour in the
AdS/CFT correspondence, and how the second one can be used to study physics reminiscent of
certain phenomena in condensed-matter systems.

Probing deformations of the AdS/CFT: Deforming the original AdS/CFT allows one to
come up with set-ups with less or no supersymmetry. Whenever there is a small number of degrees
of freedom responsible for the dynamics (typically D-branes), one may approximate the latter
by the effective actions described in this review. This provides a reliable and analytical tool for
describing the strongly-coupled behaviour of the deformed gauge theory.

As an example, consider the addition of flavour in the standard AdS/CFT. It was argued
in [333] that this could be achieved by adding k D7-branes to a background of N D3-branes. The
D7-branes give rise to k fundamental hypermultiplets arising from the lightest modes of the 3-7
and 7-3 strings, in the brane array

D3: 1 2 3
D7: 1 2 3 4 5 6 7 .

(464)

The mass of these dynamical quarks is given by mq = L/2πα′, where L is the distance between
the D3- and the D7-branes in the 89-plane. If gsN � 1 the D3-branes may be replaced (in the
appropriate decoupling limit) by an AdS5 Ö S 5 geometry, as in the standard AdS/CFT argument,
whereas if, in addition, N � k then the back-reaction of the D7-branes on this geometry may be
neglected. Thus, one is left, in the gravity description, with k D7-brane probes in AdS5 Ö S 5.
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In the particular case of k = 1, one can use the effective action described before. This specific
set-up was used in [348] to study the linearised fluctuation equations for the different excitations
on the D7-probe describing different scalar and vector excitations to get analytical expressions for
the spectrum of mesons in N = 2 SYM, at strong coupling.

This logic can be extended to non-supersymmetric scenarios44. For example, using the string
theory realisation of four-dimensional QCD with Nc colours and Nf � Nc flavours discussed
in [499]. The latter involves Nf D6-brane probes in the supergravity background dual to Nc

D4-branes compactified on a circle with supersymmetry-breaking boundary conditions and in the
limit in which all the resulting Kaluza–Klein modes decouple. For Nf = 1 and for massless quarks,
spontaneous chiral symmetry breaking by a quark condensate was exhibited in [349] by working
on the D6-brane effective action in the near horizon geometry of the Nc D4-branes.

Similar considerations apply at finite temperature by using appropriate black-hole backgrounds
[499] in the relevant probe action calculations. This allows one to study phase transitions associated
with the thermodynamic properties of the probe degrees of freedom as a function of the probe
location. This can be done in different theories, with flavour [379], and for different ensembles [343,
378].

The amount of literature in this topic is enormous. I refer the reader to the reviews on the use
of gauge-gravity duality to understand hot QCD and heavy ion collisions [137] and meson spec-
troscopy [207], and references therein. These explain the tools developed to apply the AdS/CFT
correspondence in these set-ups.

Condensed matter and strange metallic behaviour: There has been a lot of work in using
the AdS/CFT framework in condensed matter applications. The reader is encouraged to read some
of the excellent reviews on the subject [283, 296, 385, 284, 285], and references therein. My goal in
these paragraphs is to emphasise the use of IR probe branes to extract dynamical information about
certain observables in quantum field theories in a state of finite charge density at low temperatures.

Before describing the string theory set-ups, it is worth attempting to explain why any AdS/CFT
application may be able to capture any relevant physics for condensed matter systems. Consider
the standard Fermi liquid theory, describing, among others, the conduction of electrons in regular
metals. This theory is an example of an IR free fixed point, independent of the UV electron
interactions, describing the lowest energy fermionic excitations taking place at the Fermi surface
k = kf . Despite its success, there is experimental evidence for the existence of different “states
of matter”, which are not described by this effective field theory. This could be explained by
additional gapless bosonic excitations, perhaps arising as collective modes of the UV electrons.
For them to be massless, the system must either be tuned to a quantum critical point or there
must exist a kinematical constraint leading to a critical phase.

One interesting possibility involving this mechanism consists on the emergence of gauge fields
(“photons”) at the onset of such critical phases. For example, 2+ 1 Maxwell theory in the presence
of a Fermi surface (chemical potential µ)

L = −1

4
F 2 + ψ̄Γ ·

(
(i∂ +A) + Γ0 µ

)
ψ , (465)

is supposed to describe at energies below µ, the interactions between gapless bosons (photons) with
the fermionic excitations of the Fermi surfaces. The one-loop correction to the classical photon
propagator at low energy ω and momenta k is

D(ω, k)−1 = γ
ω

|k| + |k|2 . (466)

44 For an analysis of supersymmetric D5-branes in a supergravity background dual to N = 1 SYM, see [408].
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Due to the presence of the chemical potential, this result manifestly breaks Lorentz invariance, but
there exists a non-trivial IR scaling symmetry (Lifshitz scale invariance)

t→ λ3 t , |x| → λ|x| , (467)

with dynamical exponent z = 3, replacing the UV scaling {t, |x|} → λ{t, |x|}. Since these systems
are believed to be strongly interacting, it is an extremely challenging theoretical task to provide a
proper explanation for them. It is this strongly-coupled character and the knowledge of the relevant
symmetris that suggest one search for similar behaviour in “holographic dual” descriptions.

The general set-up, based on the discussions appearing, among others, in [334, 398, 286], is as
follows. One considers a small set of charged degrees of freedom, provided by the probe “flavour”
brane, interacting among themselves and with a larger set of neutral quantum critical degrees of
freedom having Lifshitz scale invariance with dynamical critical exponent z. As in previous appli-
cations, the latter is replaced by a gravitational holographic dual with Lifshitz asymptotics [324]

ds2IR = L2

(
−dt

2

v2z
+
dv2

v2
+
dx2 + dy2

v2

)
, (468)

where v will play the role of the holographic radial direction. Turning on non-trivial temperature
corresponds to considering black holes having the above asymptotics [162, 370, 102, 34]

ds2IR = L2

(
−f(v)dt

2

v2z
+

dv2

f(v)v2
+
dx2 + dy2

v2

)
, (469)

where the function f(v) depends on the specific solution and characterises the thermal nature of
the system.

In practice, one embeds the probe “flavour” brane in the spacetime holographic dual, which may
include some non-trivial cycle wrapping in internal dimensions when embedded in string theory,
and turns on some non-trivial electric (Φ(v)) and magnetic fluxes (B) on the brane

V = Φ(v)dt+Bxdy . (470)

At low energies and in a quantum critical system, the only available scales are external, i.e.,
given by temperature T , electric and magnetic fields {E, B} and the density of charge carriers J t.
Solving the classical equations of motion for the world volume gauge field, allows one to integrate
Φ(v), whose constant behaviour at infinity, i.e., at v → 0 in the above coordinate system, defines
the chemical potential µ of the system. Working in an ensemble of fixed charge carrier density J t,

which is determined by computing the variation of the action with respect to δV
(0)
t = δµ, the free

energy density f is given by

f ≡ F

vol2
=
TSDp

vol2
+ µJ t , (471)

where vol2 stands for the volume of the non-compact 2-space spanned by {x, y} and SDp is the
on-shell Dp-brane action. As in any thermodynamic system, observables such as specific heat or
magnetic susceptibility can be computed from Eq. (471) by taking appropriate partial derivatives.
Additionally, transport observables, such as DC, AC or DC Hall conductivities can also be com-
puted and studied as a function of the background, probe embedding and the different constants
controlling the world volume gauge field (470).

More than the specific physics, which is nicely described in [334, 398, 286], what is important
to stress, once more, is that using the appropriate backgrounds, exciting the relevant degrees of
freedom and considering the adequate boundary conditions make the methods described in this
review an extremely powerful tool to learn about physics in regimes of parameters that would
otherwise be very difficult to handle, both analytically and conceptually.
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7 Multiple Branes

The physics of multiple overlapping branes provides a connection between brane physics and non-
abelian supersymmetric field theories. Thus, it has played a crucial role in the geometrisation of
the latter and the interplay between string and field theory dualities.

An heuristic argument suggesting that the abelian description may break down comes from
the analysis of BIons. All half-BPS probe branes described in this review feel no force when
probing the background describing N − 1 parallel branes of the same nature [484]. This means
they can sit at any distance `. Consider a Dp-brane in the background of N − 1 parallel Dp-
branes. As soon as the probe approaches the location of the Dp-branes sourcing the geometry,
the properly regularised mass of the open string (BIon) stretching between the probe D-brane and
the background D-branes will tend to zero [227]. This suggests the potential emergence of extra
massless modes in the spectrum of these open strings. If so, this would signal a breakdown in the
effective action, since these extra modes were not included in the former. U-duality guarantees that
similar considerations apply to other brane set-ups not having a microscopic theory with which to
test this phenomena.

In this section, I will briefly discuss the supersymmetric effective actions describingN coincident
Dp-branes and M2-branes in a Minkowski background. These correspond to non-abelian super-
Yang–Mills (SYM) theories in different dimensions and certain d = 3 superconformal field theories
with non-dynamical gauge fields having Chern–Simons actions, respectively.

7.1 D-branes

The perturbative description of D-branes in terms of opens strings [423] allows one to answer the
question regarding the enhancement of massless modes raised above in a firmer basis, at least at
weak coupling. Consider the spectrum of open strings in the presence of two parallel Dp-branes
separated by a physical distance `. As the latter approaches zero, i.e., it becomes smaller than
the string scale, there is indeed an enhancement in the number of massless modes. Its origin is
in the sector of open strings stretching between D-branes, which is precisely the one captured by
the BIon argument. This enhancement is consistent with an enhancement in the gauge symmetry
from U(1) × U(1), corresponding to the two separated D-branes, to U(2), corresponding to the
overlapping D-branes. The spectrum of massless excitations is then described by a non-abelian
vector supermultiplet in the adjoint representation. To understand how this comes about, consider
the set of massless scalar excitations. These are described by (Xi)rs, where i labels the transverse
directions to the brane, as in the abelian discussion, and the subindices r, s label the D-branes
where the open strings are attached. This is illustrated in Figure 10. Since the latter are oriented,
there exist N2 − N such excitations, which arrange themselves into a matrix Xi = Xi

aT
a, with

T a being generators of U(2) in the adjoint representation. The conclusion is valid for any number
N of D-branes of world volume dimension p+ 1 [496].

Figure 10: Open strings stretched between multiple branes and their matrix representation.
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Super-Yang–Mills action: The previous discussion identifies the appropriate degrees of free-
dom to describe the low energy dynamics of multiple D-branes in Minkowski at weak coupling
as non-abelian vector supermultiplets. Thus, multiple brane effective actions must correspond to
supersymmetric non-abelian gauge field theories in p+1 dimensions. At lowest order in a derivative
expansion, these are precisely super-Yang–Mills (SYM) theories. For simplicity of notation, let me
focus on d = 10 U(N) SYM with classical action

S =

∫
d10σ

(
−1

4
Tr FµνF

µν +
i

2
Tr ψ̄ΓµDµψ

)
(472)

where the field strength

Fµν = ∂µAν − ∂νAµ − igYM [Aµ, Aν ] (473)

is the curvature of a U(N) hermitian gauge field Aµ and ψ is a 16-component Majorana–Weyl
spinor of SO(1, 9). Both fields, Aµ and ψ, are in the adjoint representation of U(N). The covariant
derivative Dµ of ψ is given by

Dµψ = ∂µψ − igYM[Aµ, ψ], (474)

where gYM is the Yang–Mills coupling constant. This action is also usually written in terms of
rescaled fields, by absorbing a factor of gYM in both Aµ and ψ, to pull an overall coupling constant
dependence in front of the full action

S =
1

4g2YM

∫
d10σ

(
−Tr FµνF

µν + 2iTr ψ̄ΓµDµψ
)
, (475)

where Dµψ = ∂µψ − i[Aµ , ψ].

The action (472) is invariant under the supersymmetry transformation

δAµ =
i

2
ε̄Γµψ, (476)

δψ = −1

4
FµνΓ

µνε,

where ε is a constant Majorana–Weyl spinor in SO(1, 9), giving rise to 16 independent supercharges.
Classically, this is a well-defined theory; quantum mechanically, it is anomalous. From the string
theory perspective, as explained in Section 3.7, this is just an effective field theory, valid at low
energies E

√
α′ � 1 and weak coupling gs � 1.

Dimensional reduction: The low energy effective action for multiple parallel Dp-branes in
Minkowski is SYM in p+ 1 dimensions. This theory can be obtained by dimensional reduction of
the ten-dimensional super Yang–Mills theory introduced above. Thus, one proceeds as described
in Section 3.3: assume all fields are independent of coordinates σp+1, . . . , σ9. After dimensional
reduction, the 10-dimensional gauge field Aµ decomposes into a (p + 1)-dimensional gauge field
Aα and 9 − p adjoint scalar fields XI = 2πα′ΦI45, describing the transverse fluctuations of the
D-branes. The reduced action takes the form

S =
1

4g2YM

∫
dp+1σ Tr (−FαβF

αβ − 2(DαΦ
I)2 + [ΦI ,ΦJ ]2 + fermions). (477)

45 ΦI is the natural adjoint scalar field after dimensional reduction. The rescaling by 2πα′ is to match the natural
scalar fields appearing in the abelian description provided by the DBI action. A similar rescaling occurs for the
fermions omitted below, Ψ = 2πα′ψ.
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The p + 1 dimensional YM coupling g2YM can be fixed by matching the expansion of the square
root in the gauge fixed abelian D-brane action in a Minkowski background (105) and comparing
it with Maxwell’s theory in the field normalisation used in Eq. (475)

g2YM =
1

4π2α′2TDp
=

gs√
α′ (2π

√
α′)p−2. (478)

Notice also the appearance of a purely non-abelian interaction term in Eq. (477), the commutator
[ΦI ,ΦJ ]2 that acts as a potential term. Indeed, its contribution is negative definite since [ΦI ,ΦJ ]† =
[ΦJ ,ΦI ] = −[ΦI ,ΦJ ].

The classical vacuum corresponds to static configurations minimising the potential. This occurs
when both the curvature Fαβ and the fermions vanish, and for a set of commuting ΦI matrices,
at each point of the p + 1 world volume. In this situation, the fields ΦI can be simultaneously
diagonalised, so that one has

ΦI =




xI1 0 0
. . .

0 xI2
. . . 0

0
. . .

. . . 0
. . . 0 0 xIN



. (479)

The N diagonal elements of the matrix ΦI are interpreted as the positions of N distinct D-branes in
the I-th transverse direction [496]. Consider a vacuum describing N−1 overlapping Dp-branes and
a single parallel D-brane separated in a transverse direction Φ. This is equivalent to breaking the
symmetry group to U(N −1)×U(1) by choosing a diagonal matrix for Φ with x0 eigenvalue in the
first N − 1 diagonal entries and xN 6= x0 in the last diagonal entry. The off-diagonal components
δΦ will acquire a mass, through the Higgs mechanism. This can be computed by expanding the
classical action around the given vacuum. One obtains that this mass is proportional to the distance
|x0 − xN | between the two sets of branes

M2 =
(x0 − xN )2

2πα′ , (480)

according to the geometrical interpretation given to the eigenvalues characterising the vacuum.
In light of the open string interpretation, these off-diagonal components do precisely correspond
to the open strings stretching between the different D-branes. The latter allow an alternative
description in terms of the BIon configurations described earlier, by replacing the N −1 Dp-branes
by its supergravity approximation, though the latter is only suitable at large distances compared
to the string scale.

It can then be argued that the moduli space of classical vacua for (p+ 1)-dimensional SYM is

(R9−p)N

SN
. (481)

Each factor of R stands for the position of the N D-branes in the (9 − p)-dimensional transverse
space, whereas the symmetry group SN is the residual Weyl symmetry of the gauge group. The
latter exchanges D-branes, indicating they should be treated as indistinguishable objects.

A remarkable feature of this D-brane description is that a classical geometrical interpretation of
D-brane configurations is only available when the matrices ΦI are simultaneously diagonalisable.
This provides a rather natural venue for non-commutative geometry to appear in D-brane physics
at short distances, as first pointed out in [496].

The exploration of further kinematical and dynamical properties of these actions is beyond the
scope of this review. There are excellent reviews on the subject, such as [424, 472, 320], where
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the connection to Matrix Theory [48] is also covered. If the reader is interested in understanding
how T-duality acts on non-abelian D-brane effective actions, see [471, 221]. It is also particularly
illuminating, especially for readers not used to the AdS/CFT philosophy, to appreciate that by
integrating out N − 1 overlapping D-branes at one loop, one is left with an abelian theory de-
scribing the remaining (single) D-brane. The effective dynamics so derived can be reinterpreted as
describing a single D-brane in the background generated by the integrated N − 1 D-branes, which
is AdS5 Ö S 5 [365]46. This is illustrated in Figure 11.

Figure 11: Integrating out the degrees of freedom at one loop corresponding to N − 1 of the D-branes
gives rise to an effective action interpretable as an abelian gauge theory in an AdS throat.

Given the kinematical perspective offered in this review and the relevance of the higher order
α′ corrections included in the abelian DBI action, I want to discuss two natural stringy extensions
of the SYM description

1. Keeping the background fixed, i.e., Minkowski, it is natural to consider the inclusion of higher-
order corrections in the effective action, matching the perturbative scattering amplitudes
computed in the CFT description of open strings theory, and

2. Allowing to vary the background or equivalently, coupling the non-abelian degrees of freedom
to curved background geometries. This is towards the direction of achieving a hypothetical
covariant formulation of these actions, a natural question to ask given its relevance for the
existence of the kappa invariant formulation of abelian D-branes.

In the following, I shall comment on the progress and the important technical and conceptual
difficulties regarding the extensions of these non-abelian effective actions.

Higher-order corrections: In the abelian theory, it is well known that the DBI action captures
all the higher-order corrections in α′ to the open string effective action in the absence of field
strength derivative terms47 [214]. It was further pointed that such derivative corrections were
compatible with a DBI expansion by requiring conformal invariance for the bosonic string in [1]
and for the superstring in [87].

In the non-abelian theory, such distinction is ambiguous due to the identity

[Dµ, Dν ]Fρσ = [Fµν , Fρσ], (482)

46 There is a lot of work in this direction. For a review on the emergence of geometry and gravity in matrix
models, in particular in the context of the IKKT matrix conjecture [316], see [465]. For more recent discussions,
see [106].

47 Using T-duality arguments this would also include acceleration and higher-derivative corrections in the scalar
sector Xm describing the excitations of the D-brane along the transverse dimensions.
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relating commutators with covariant derivatives. It was proposed by Tseytlin [482] that the non-
abelian extension of SYM including higher-order α′ corrections be given in terms of the symmetrised
prescription. The latter consists of treating all Fµν matrices as commuting. Equivalently, the action
is completely symmetric in all monomial factors of F of the form tr(F . . . F ). This reproduces the
F 2 and α′2F 4 terms of the full non-abelian action, but extends it to higher orders

LDBI ∝ Str
√
ηµν + 2πα′Fµν . (483)

The notation Str defines this notion of symmetrised trace for each of the monomials appearing in
the expansion of its arguments. For an excellent review describing the history of these calculations,
motivating this prescription and summarising the most relevant properties of this action, see [485].

It is important to stress that, a priori, worldsheet calculations involving an arbitrary number of
boundary disk insertions could determine this non-abelian effective action. Since this is technically
hard, one can perform other consistency checks. For example, one can compare the D-brane BPS
spectrum on tori in the presence of non-trivial magnetic fluxes. This is T-dual to intersecting
D-branes, whose spectrum can be independently computed and compared with the fluctuation
analysis of the proposed symmetrised non-abelian prescription. It was found in [291, 175, 448]
that the proposed prescription was breaking down at order (α′)4F 6. Further checks at order
α′3 and α′4 were carried over in [103, 346, 345, 347]. The proposal in [346] was confirmed by a
first principle five-gluon scattering amplitude at tree level in [387]. The conclusion is that the
symmetrised prescription only works up to F 4

L = Str
[1
4
F 2
µν − 1

8
(2πα′)2

(
F 4 − 1

4
(F 2

µν)
2
)
+O(α′4)

]
(484)

= tr
[1
4
F 2
µν − 1

12
(2πα′)2

(
FµνFρνFµλFρλ +

1

2
FµνFρνFρλFµλ

− 1

4
FµνFµνFρλFρλ − 1

8
FµνFρλFµνFρλ

)
+O(α′4)

]
. (485)

These couplings were first found in its Str form in [266] and in its tr form in [482]. For further
checks on Tseytlin’s proposal using the existence of bound states and BPS equations, see the
analysis in [115, 114].

Coupling to arbitrary curved backgrounds: The above corrections attempted to include
higher-order corrections describing the physics of multiple D-branes in Minkowski. More generally,
one is interested in coupling D-branes to arbitrary closed string backgrounds. In such situations,
one would like to achieve a covariant formulation. This is non-trivial because as soon as the degrees
of freedom become non-abelian, they lose their geometrical interpretation. In the abelian case, XI

described the brane location. In the non-abelian case, at most, only their eigenvalues xIi may keep
their interpretation as the location of the ith brane in the Ith direction. Given the importance and
complexity of the problem, it is important to list a set of properties that one would like such a
formulation to satisfy. These are the D-geometry axioms [186]. For the case of D0-branes, these
follow.

1. It must contain a unique trace since this is an effective action derived from string theory
disk diagrams involving many graviton insertions in their interior and scalar/vector vertex
operators on their boundaries. Since the disk boundary is unique, the trace must be unique.

2. It must reduce to N-copies of the particle action when the matrices XI are diagonal.

3. It must yield masses proportional to the geodesic distance for off-diagonal fluctuations.
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Having in mind that we required spacetime gauge symmetries to be symmetries of the abelian
brane effective actions, it would be natural to include in the above list invariance under target
space diffeomorphisms. This was analysed for the effective action kinetic terms in [172]. Instead
of discussing this here, I will discuss two non-trivial checks that any such formulation must satisfy.

a) to match the Matrix theory linear couplings to closed string backgrounds, and

b) to be T-duality covariant, extending the notion I discussed in Section 3.3.2 for single D-
branes.

The first was studied in [473, 474] and the second in [395]. Since the results derived from the
latter turned out to be consistent with the former, I will focus on the implementation of T-duality
covariance for non-abelian D-branes below.

As discussed in Section 3.3, T-duality is implemented by a dimensional reduction. This was
already applied for SYM in Eq. (477). Using the same notation introduced there and denoting the
world volume direction along which one reduces by ρ, one learns that Fµρ → DµΦ

p, where Φp is
the T-dual adjoint matrix scalar. Furthermore, covariant derivatives of transverse scalar fields ΦI

become

DρΦ
I = ∂ρΦ

I + i[Aρ,Φ
I ] = i[Aρ,Φ

I ]. (486)

Notice this contribution is purely non-abelian and it can typically contribute non-trivially to the
potential terms in the effective action. To properly include these non-trivial effects, Myers [395]
studied the consequences of requiring T-duality covariance taking as a starting point a properly
covariantised version of the multiple D9-brane effective action, having assumed the symmetrised
trace prescription described above. Studying T-duality along 9-p directions and imposing T-duality
covariance of the resulting action, will generate all necessary T-duality compatible commutators,
which would have been missed otherwise. This determines the DBI part of the effective action to
be [395]

SDBI = −TDp

∫
dp+1σ STr

(
e−φ

√
− det (P [Eµν + EµI(Q−1 − δ)IJEJν ] + λFµν) det(QI

J)

)
,

(487)
with

Eµν = gµν +Bµν , QI
J ≡ δIJ + iλ [ΦI ,ΦK ]EKJ , and λ = 2πα′. (488)

Here µ, ν indices stand for world volume directions, and I, J indices for transverse directions. To
deal with similar commutators arising from the WZ term, one considers [395]

SWZ = TDp

∫
STr

(
P
[
eiλ iΦiΦ(

∑
C(n) eB)

]
eλF

)
, (489)

where the interior product iΦ is responsible for their appearance, for example, as in,

iΦiΦC2 = ΦJΦI C2
IJ =

1

2
C2

IJ [ΦJ ,ΦI ] . (490)

Notice one regards ΦI as a vector field in the transverse space. In both actions (487) and (489),
P stands for pullback and it only applies to transverse brane directions since all longitudinal ones
are non-physical. Its presence is confirmed by scattering amplitudes calculations [342, 271, 222].
Some remarks are in order.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2012-3

http://www.livingreviews.org/lrr-2012-3


112 Joan Simón

1. There exists some non-trivial dependence on the scalars ΦI through the arbitrary bosonic
closed backgrounds appearing in the action. The latter is defined according to

gµν = exp
[
λΦi ∂xi

]
g0µν(σ

a, xi)|xi=0 (491)

=
∞∑

n=0

λn

n!
Φi1 · · ·Φin (∂xi1 · · · ∂xin )g

0
µν(σ

a, xi)|xi=0 .

Analogous definitions apply to other background fields.

2. There exists a unique trace, because this is an open string effective action that can be derived
from worldsheet disk amplitudes. The latter has a unique boundary. Thus, there must be a
unique gauge trace [186, 188]. Above, the symmetrised prescription was assumed, not only
because one is following Tseytlin and this was his prescription, but also because there are
steps in the derivation of T-duality covariance that assumed this property and the scalar field
ΦI dependence on the background fields (491) is symmetric, by definition.

3. The WZ term (489) allows multiple Dp-branes to couple to RR potentials with a form degree
greater than the dimension of the world-volume. This is a purely non-abelian effect whose
consequences will be discussed below.

4. There are different sources for the scalar potential: detQI
J , its inverse in the first determi-

nant of the DBI and contributions coming from commutators coupling to background field
components in the expansion (491).

It was shown in detail in [395], that the bosonic couplings described above were consistent with
all the linear couplings of closed string background fields with Matrix Theory degrees of freedom,
i.e., multiple D0-branes. These couplings were originally computed in [473] and then extended to
Dp-branes in [474] using T-duality once more. We will not review this check here in detail, but as
an illustration of the above formalism, present the WZ term for multiple D0-branes that is required
to do such matching

SWZ = µ0

∫
Tr (P [C1 + iλ iΦiΦ (C3 + C1 ∧B) (492)

−λ
2

2
(iΦiΦ)

2

(
C5 + C3 ∧B +

1

2
C1 ∧B ∧B

)

−iλ
3

6
(iΦiΦ)

3

(
C7 + C5 ∧B +

1

2
C3 ∧B ∧B +

1

6
C1 ∧B ∧B ∧B

)

+
λ4

24
(iΦiΦ)

4

(
C9 +

(
C7 +

1

2
C5 ∧B +

1

6
C3 ∧B ∧B +

1

24
C1 ∧B ∧B ∧B

)
∧B

)])

= µ0

∫
dtTr

(
C1

t + λC1
IDtΦ

I + i
λ

2
(C3

tJK [ΦK ,ΦJ ] + λC3
IJK DtΦ

I [ΦK ,ΦJ ]) + . . .

)
.

Two points are worth emphasising about this matching:

1. There is no ambiguity of trace in the linear Matrix theory calculations. Myers’ suggestion
is to extend this prescription to non-linear couplings.

2. Some transverse M5-brane charge couplings are unknown in Matrix theory, but these are
absent in the Lagrangian above. This is a prediction of this formulation.

One of the most interesting physical applications of the couplings derived above is the realisation
of the dielectric effect in electromagnetism in string theory. As already mentioned above, the non-
abelian nature of the degrees of freedom turns on new commutator couplings with closed string
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fields that can modify the scalar potential. If so, instead of the standard SYM vacua, one may
find new potential minima with Tr ΦI = 0 but Tr (ΦI)2 6= 0. As a toy illustrative example of this
phenomenon, consider N D0-branes propagating in Minkowski but in a constant background RR
four-form field strength

R4
tIJK =

{
−2fεIJK for I, J,K ∈ {1, 2, 3}

0 otherwise
. (493)

Due to gauge invariance, one expects a coupling of the form

i

3
λ2µ0

∫
dtTr

(
ΦIΦJΦK

)
R4

tIJK(t) . (494)

Up to total derivatives, this can indeed be derived from the cubic terms in the WZ action above.
This coupling modifies the scalar potential to

V (Φ) = −λ
2T0
4

Tr ([ΦI ,ΦJ ]2)− i

3
λ2µ0Tr

(
ΦIΦJΦK

)
R4

tIJK(t) , (495)

whose extremisation condition becomes

0 = [[ΦI ,ΦJ ],ΦK ] + i fεIJK [ΦJ ,ΦK ] . (496)

The latter allows SU(2) solutions

ΦI =
f

2
αI with [αI , αJ ] = 2i εIJK αK , (497)

having lower energy than standard commuting matrices

VN = −π
2`3sf

4

6gs
N(N2 − 1) . (498)

It is reassuring to compare the description above with the one available using the abelian
formalism describing a single brane explained in Section 3. I shall refer to the latter as dual brane
description. For the particular example discussed above, since the D0-branes blow up into spheres
due to the electric RR coupling, one can look for on-shell configurations on the abelian D2-brane
effective action in the same background corresponding to the expanded spherical D0-branes in
the non-abelian description. These configurations exist, reproduce the energy VN up to 1/N2

corrections and carry no D2-brane charge [395]. Having reached this point, I am at a position to
justify the expansion of pointlike gravitons into spherical D3-branes, giant gravitons, in the presence
of the RR flux supporting AdS5 Ö S 5 described in Section 5.9. The non-abelian description would
involve non-trivial commutators in the WZ term giving rise to a fuzzy sphere extremal solution
to the scalar potential. The abelian description reviewed in Section 5.9 corresponds to the dual
D3-brane description in which, by keeping the same background, one searches for on-shell spherical
rotating D3-branes carrying the same charges as a pointlike graviton but no D3-brane charge. For a
more thorough discussion of the comparison between non-abelian solitons and their “dual” abelian
descriptions, see [147, 149, 148, 396].

Kappa symmetry and superembeddings: The covariant results discussed above did not
include fermions. Whenever these were included in the abelian case, a further gauge symmetry
was required, kappa symmetry, to keep covariance, manifest supersymmetry and describe the
appropriate on-shell degrees of freedom. One suspects something similar may occur in the non-
abelian case to reduce the number of fermionic degrees of freedom in a manifestly supersymmetric
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non-abelian formulation. It is important to stress that at this point world volume diffeomorphisms
and kappa symmetry will no longer appear together. In all the discussions in this section, world
volume diffeomorphisms are assumed to be fixed, in the sense that the only scalar adjoint matrices
already correspond to the transverse directions to the brane.

Given the projective nature of kappa symmetry transformations, it may be natural to assume
that there should be as many kappa symmetries as fermions. In [79], a perturbative approach to
determining such transformation

δκθ̄
A = κ̄B(σ)

(
✶δBA + ΓBA(σ)

)
, A,B = 1, 2, . . . N2 (499)

was analysed for multiple D-branes in super-Poincaré. The idea was to expand the WZ term
in covariant derivatives of the fermions and the gauge field strength F , involving some a priori
arbitrary tensors. One then computes its kappa symmetry variation and attempts to identify the
DBI term in the action at the same order by satisfying the requirement that the total action
variation equals

δκL = −δκθ̄ (1− Γ) T , (500)

order by order. In a sense, one is following the same strategy as in [9], determining the different
unknown tensors order by order. Unfortunately, it was later concluded in [76] that such an approach
could not work.

There exists some body of work constructing classical supersymmetric and kappa invariant ac-
tions involving non-abelian gauge fields representing the degrees of freedom of multiple D-branes.
This started with actions describing branes of lower co-dimension propagating in lower dimen-
sional spacetimes [461, 462, 190]. It was later extended to multiple D0-branes in an arbitrary
number of dimensions, including type IIA, in [411]. Here, both world volume diffeomorphisms
and kappa symmetry were assumed to be abelian. It was checked that when the background is
super-Poincaré, the proposed action agreed with Matrix Theory [48]. Using the superembedding
formalism [460], actions were proposed reproducing the same features in [40, 44, 42, 41, 43], some
of them involving a superparticle propagating in arbitrary 11-dimensional backgrounds. Finally,
there exists a slightly different approach in which, besides using the superembedding formalism, the
world sheet Chan–Paton factors describing multiple D-branes are replaced by boundary fermions.
The actions constructed in this way in [303], based on earlier work [304], have similar structure to
the ones described in the abelian case, their proof of kappa symmetry invariance is analogous and
they reproduce Matrix Theory when the background is super-Poincaré and most of the features
highlighted above for the bosonic couplings described by Myers.

Relation to non-commutative geometry: There are at least two reasons why one may expect
non-commutative geometry to be related to the description of multiple D-brane actions:

1. D-brane transverse coordinates being replaced by matrices,

2. the existent non-commutative geometry description of D-branes in the presence of a B-field
in space-time (or a magnetic field strength on the brane) [187, 146, 444].

The general idea behind non-commutative geometry is to replace the space of functions by a
non-commutative algebra. In the D-brane context, a natural candidate to consider would be the
algebra

A = C∞(M)⊗MN (C) . (501)

As customary in non-commutative geometry, the latter does not yet carry any metric information.
Following Connes [145], the construction of a Riemannian structure requires a spectral triple
(A,H, D), which, in addition to A, also contains a Hilbert space H and a self-adjoint operator
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D obeying certain properties. It would be interesting to find triples (A,H, D) that describe, in a
natural way, metrics relevant for multiple D-branes, incorporating the notion of covariance.

Regarding D-branes in the presence of a B-field, the main observation is that the structure of
an abelian non-commutative gauge theory is similar to that of a non-abelian commutative gauge
theory. In both cases, fields no longer commute, and the field strengths are non-linear. Moreover,
non-commutative gauge theories can be constructed starting from a non-abelian commutative
theory by expanding around suitable backgrounds and taking N → ∞ [443]. This connection
suggests it may be possible to relate the gravity coupling of non-commutative gauge theories to
the coupling of non-abelian D-brane actions to curved backgrounds (gravity). This was indeed the
approach taken in [163] where the stress-tensor of non-commutative gauge theories was derived in
this way. In [151], constraints on the kinematical properties of non-abelian D-brane actions due to
this connection were studied.

7.2 M2-branes

In this section, I would like to briefly mention the main results involving the amount of progress
recently achieved in the description of N parallel M2-branes, referring to the relevant literature
when appropriate. This will be done taking the different available perspectives on the subject: a
purely kinematic approach, based on supersymmetry and leading to 3-algebras, a purely field theory
approach leading to three dimensional CFTs involving Chern–Simons terms, a brane construction
approach, in which one infers the low energy effective description in terms of an intersection of
branes and the connection between all these different approaches.

The main conclusion is that the effective theory describingN M2-branes is a d = 3, U(N)×U(N)
gauge theory with four complex scalar fields CI (I = 1, 2, 3, 4) in the (N, N̄) representation, their
complex conjugate fields in the (N̄,N) representation and their fermionic partners [12]. The theory
includes non dynamical gauge fields with a Chern–Simons action with levels k and −k for the two
gauge groups. This gauge theory is weakly coupled in the large k limit (k � N) and strongly
coupled in the opposite regime (k � N), for which a weakly coupled gravitational description will
be available if N � 1.

Supersymmetry approach: Inspection of the d = 3 SYM supersymmetry transformations and
the geometrical intuition coming from M2-branes suggest that one look for a supersymmetric field
theory with field content involving eight scalar fields XI = XI

aT
a48 and their fermionic partners

Ψ = ΨaT
a, and being invariant under a set of supersymmetry transformations whose most general

form is

δXI
d = iε̄ΓIΨd,

δΨd = ∂µX
I
dΓ

µΓIε− 1

6
XI

aX
J
b X

K
c f

abc
dΓ

IJKε+
1

2
XJ

aX
J
b X

I
c g

abc
dΓ

Iε .

This was the original approach followed in [26], based on a real vector space with basis T a, a =
1, . . . N , endowed with a triple product

[T a, T b, T c] = fabcd T
d, (502)

where the set of fabcd are real, fully antisymmetric in a, b, c and satisfy the fundamental identity

f [abcef
d]ef

g = 0 . (503)

Closure of the supersymmetry algebra requires Eq. (503), but also shows the appearance of an
extra gauge symmetry [26]. To deal properly with the latter, one must introduce an additional

48 Eight is the number of transverse dimensions to the world volume of the M2-branes.
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(non-dynamical) gauge field Ãµ
c
d requiring one to consider a more general set of supersymmetry

transformations [27, 274]

δXI
d = iε̄ΓIΨd

, δΨd = DµX
I
dΓ

µΓIε− 1

6
XI

aX
J
b X

K
c f

abc
dΓ

IJKε+
1

2
XJ

aX
J
b X

I
c g

abc
dΓ

Iε

, δÃµ
c
d = iε̄ΓµΓIX

I
aΨbh

abc
d . (504)

Here Dµ is a covariant derivative, whereas gabcd and habcd define triple products on the algebra.
Closure of the supersymmetry algebra determines a set of equations of motion that can be

derived, which form a Lagrangian. It was soon realised that under the assumptions of a real vector
space, essentially the only 3-algebra is the one defined by fabcd = fabceh

ed, with hab = Tr
(
T a, T b

)

defining an inner product, and satisfying fabcd ∝ εabcd [399, 412, 226]. Interestingly, it was
pointed out in [488] that such supersymmetric field theory could be rewritten as a Chern–Simons
theory. The latter provided a link between a purely kinematic approach, based on supersymmetry
considerations, and purely field theoric results that had independently been developed.

Field theory considerations: Conformal field theories have many applications. In the particu-
lar context of Chern–Simons matter theories in d = 3, they can describe interesting IR fixed points
in condensed matter systems. Here I am interested in their supersymmetric versions to explore the
AdS4/CFT3 conjecture.

Let me start this overview with N = 2 theories. N = 2 Chern–Simons theories coupled to
matter49 include a vector multiplet A, the dimensional reduction of the four dimensional N = 1
vector multiplet, in the adjoint representation of the gauge group G, and chiral multiplets Φi in
representations Ri of the latter. Integrating out the D-term equation and the gaugino, one is left
with the action

SN=2 =

∫
k

4π
Tr (A ∧ dA+

2

3
A3) +Dµφ̄iD

µφi + iψ̄iγ
µDµψi

−16π2

k2
(φ̄iT

a
Ri
φi)(φ̄jT

b
Rj
φj)(φ̄kT

a
Rk
T b
Rk
φk)−

4π

k
(φ̄iT

a
Ri
φi)(ψ̄jT

a
Rj
ψj) (505)

−8π

k
(ψ̄iT

a
Ri
φi)(φ̄jT

a
Rj
ψj),

where φi and ψi are the bosonic and fermionic components of the chiral superfield Φi and the
gauge field A is non-dynamical.

There are N = 3 generalisations, but since their construction is more easily argued for starting
with the field content of an N = 4 theory, let me review the latter first. The field content of the
N = 4 theories adds an auxiliary (non-dynamical) chiral multiplet ϕ in the adjoint representation
of G and pairs chiral multiplets Φi, Φ̃i into a set of hypermultiplets by requiring them to transform
in conjugate representations, as the notation suggests. The theory does not contain Chern–Simons
terms, but a superpotential W = Φ̃iϕΦi for each pair. N = 3 theories are constructed by the
addition of Chern–Simons terms, as in Eq. (505), and the extra superpotential W = − k

8πTr (ϕ
2).

Integrating out ϕ leads to a superpotential

W =
4π

k
(Φ̃iT

a
Ri
Φi)(Φ̃jT

a
Rj

Φj) . (506)

The resulting N = 3 theory has the same action as Eq. (505) with the addition of the above
superpotential.

49 For a complete list of references, see [12].
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In [12], an N = 6 theory based on the gauge group U(N) × U(N) was constructed. Its field
content includes two hypermultiplets in the bifundamental and the Chern–Simons levels of the two
gauge groups were chosen to be equal but opposite in sign. Denoting the bifundamental chiral
superfields by A1, A2 and their anti-bifundamental by B1, B2, the superpotential then equals

W =
k

8π
Tr (ϕ2

(2) − ϕ2
(1)) + Tr (Biϕ(1)Ai) + Tr (Aiϕ(2)Bi) . (507)

After integrating out the auxiliary fields ϕ(i),

W =
2π

k
Tr (AiBiAjBj −BiAiBjAj) =

4π

k
Tr (A1B1A2B2 −A1B2A2B1). (508)

As discussed in [12], the four bosonic fields CI ≡ (A1, A2, B
∗
1 , B

∗
2) transform in the 4 of SU(4),

matching the generic SO(N ) R-symmetry in d = 3 super-CFTs. For a more thorough discussion
of global symmetries and gauge invariant observables, see [12].

It was argued in [12] that the N = 6 theory constructed above was dual to N M2-branes on
C

4/Zk for k ≥ 3. Below, I briefly review the brane construction in which their argument is based.
This will provide a nice example of the notion of geometrisation (or engineering) of supersymmetric
field theories provided by brane configurations.

Brane construction: Following the seminal work of [282], one can associate low energy effective
field theories with the dynamics of brane configurations stretching between branes. Consider a set
of N D3-branes wrapping the x6 direction and ending on different NS5-branes according to the
array

NS5 : 1 2 3 4 5
NS5 : 1 2 3 4
D3 : 1 2 6 .

(509)

This gives rise to an N = 4 U(N)×U(N) gauge theory in d = 1+2 dimensions, along the {x1, x2}
directions, whose field content includes a vector multiplet in the adjoint representation and 2
complex bifundamental hypermultiplets, describing the transverse excitations to both D3-branes
and NS5-branes [282].

Adding k D5-branes, as illustrated in the array below,

NS5 : 1 2 3 4 5
NS5 : 1 2 3 4 5
D5 : 1 2 3 4 9
D3 : 1 2 6 ,

(510)

breaks supersymmetry to N = 2 and adds k massless chiral multiplets in the N and N̄ representa-
tion of each of the U(N) gauge group factors. Field theoretically, this N = 2 construction allows
a set of mass deformations that can be mapped to different geometrical notions [282, 72, 12]:

1. Moving the D5-branes along the 78-directions generates a complex mass parameter.

2. Moving the D5-branes along the 5-directions generates a real mass, of positive sign for
the fields in the fundamental representation and of negative sign for the ones in the anti-
fundamental.

3. Breaking the k D5-branes and NS5-branes along the 01234 directions and merging them
into an intermediate (1, k) 5-brane bound state generates a real mass of the same sign for
both N and N̄ representations. This mechanism is a web deformation [72]. The merging is
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characterised by the angle θ relative to the original NS5-brane subtended by the bound state
in the 59-plane. The final brane configuration is made of a single NS5-brane in the 012345
directions and a (1, k) 5-brane in the 01234[5, 9]θ, where [5, 9]θ stands for the x

5 cos θ+x4 sin θ
direction. θ is fixed by supersymmetry [14].

After the web deformation and at low energies, one is left with an N = 2 U(N)k × U(N)−k

Yang–Mills–Chern–Simons theory with four massless bi-fundamental matter multiplets (and their
complex conjugates), and two massless adjoint matter multiplets corresponding to the motion of
the D3-branes in the directions 34 common to the two 5-branes.

The enhancement to an N = 3 theory described in the purely field theoretical context is realised
in the brane construction by rotating the (1, k) 5-brane in the 37 and 48-planes by the same amount
as in the original deformation. Thus, one ends with a single NS5-brane in the 012345 and a (1, k)
5-brane along 012[3, 7]θ[4, 8]θ[5, 9]θ.This particular mass deformation ensures all massive adjoint
fields acquire the same mass, enhancing the symmetry to N = 3. Equivalently, there must exist
an SO(3)R R-symmetry corresponding to the possibility of having the same SO(3) rotations in the
345 and 789 subspaces. Thus, the d = 3 supersymmetric field theory must be N = 3.

The connection to N = 6 is obtained by flowing the N = 3 theory to the IR [12]. Indeed,
by integrating out all the massive fields, we recover the field content and interactions described in
the field theoretical N = 6 construction. The enhancement to N = 8 for k = 1, 2 was properly
discussed in [276].

It was realised in [12] that under T-duality in the x6 direction and uplifting the configuration
to M-theory, the brane construction gets mapped to N M2-branes probing some configuration of
KK-monopoles. These have a supergravity description in terms of hyper-Kähler geometries [224].
Flowing to the IR in the dual gravitational picture is equivalent to probing the near horizon of
these geometries, which includes the expected AdS4 factor times a quotient of the 7-sphere.

The Chern–Simons theory has a 1/k coupling constant. Thus, large k has a weakly coupled
description. At large N , it is natural to consider the ’t Hooft limit: λ = N/k fixed. The gauge
theory is weakly coupled for k � N and strongly coupled for k � N . In the latter situation, the
supergravity description becomes reliable and weakly coupled for N � 1 [12].

Matching field theory, branes and 3-algebra constructions: The brane derivation of the
supersymmetric field theory relevant to describe multiple M2-branes raised the natural question
for what the connection was, if any, with the 3-algebra formulation that stimulated all these
investigations. The answer was found in [28]. The main idea was to consider a 3-algebra based on
a complex vector space endowed with a triple product

[T a, T b;T
c̄
] = fabc̄d T

d, (511)

and an inner product

hāb = Tr
(
T

a
T b
)
. (512)

The change in the notation points out antisymmetry only occurs in the first two indices. Further-
more, the constants fabc̄d satisfy the following fundamental identity,

fefḡbf
cbā

d + ffeābf
cbḡ

d + f∗ḡāf b̄f
ceb̄

d + f∗āḡeb̄f
cfb̄

d = 0 . (513)

It was proven in [28] that this set-up manages to close the algebra on the different fields giving rise
to some set of equations of motion. In particular, the N = 6 conformal field theories described
in [12] could be rederived for the particular choices

fabcd = −f bacd , and fabcd = f∗cdab. (514)
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Thus, the 3-algebra approach based on complex vector spaces is also suitable to describe these
string theory models. Furthermore, it provides us with a mathematical formalism capable of
describing more general set-ups.
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8 Related Topics

There are several topics not included in previous sections that are also relevant to the subjects
covered in this review. The purpose of this last section is to mention some of them, mentioning
their main ideas and/or approaches, and more importantly, referring the reader to some of the
relevant references where they are properly developed and explained.

Superembedding approach: The GS formulation consists in treating the bulk spacetime as a
supermanifold while keeping the bosonic nature of the world volume. The superembedding formal-
ism is a more symmetric formulation, in which both bulk and world volume are described as super-
manifolds. As soon as the world volume formulation is extended into superspace, it incorporates
extra degrees of freedom, which are non-physical. There exists a geometrically natural interpre-
tation for the set of constraints, first discussed in [463], imposed to remove them. Given a target
space supervielbein EM (Z) = (Ea, Eα) and world volume superconnection eA(σ, η) = (ea, eα),
where η stands for the new world volume fermionic coordinates, then the pullback of the bosonic
component can be expanded as

Ea(Z(σ, η)) = ebEa
b + eαEa

α. (515)

The constraint consists in demanding

Ea
α(Z(σ, η)) = 0. (516)

This means that at any world volume point, the tangent space in the Grassmann directions forms
a subspace of the Grassmann tangent space in the bulk.

There are many results in this subject, nicely reviewed in [460]. It is worth mentioning that
some equations of motion for supersymmetric objects in different numbers of dimensions were
actually first derived in this formalism rather than in the GS one, including [220] for the d = 10
superparticle, [47] for the superstring and supermembrane, [306] for superbranes and [305] for
the M5-brane50. It is particularly relevant to stress the work done in formulating the M5-brane
equations of motion covariantly [307, 308] and their use to identify supersymmetric world volume
solitons [301, 302], and in pointing out the relation between superembeddings and non-linear
realisations of supersymmetry [5].

MKK-monopoles and other exotic brane actions: This review was focused on the dynamics
of D-branes and M-branes. It is well known that string and M theory have other extended objects,
such as KK-monopoles or NS5-branes. There is a nice discussion regarding the identification of
the degrees of freedom living on these branes in [311]. Subsequently, effective actions were written
down to describe the dynamics of its bosonic sectors in [83, 80, 208, 209]. In particular, it was
realised that gauged sigma models are able to encapsulate the right properties for KK monopoles.
The results obtained in these references are consistent with the action of T-duality and S-duality.
Of course, it would be very interesting to include fermions in these actions and achieve kappa
symmetry invariance.

Blackfolds: The blackfold approach is suitable to describe the effective world volume dynamics
of branes, still in the probe approximation, having a thermal population of excitations. In some
sense, it describes the dynamics of these objects on length scales larger than the brane thickness.
This formalism was originally developed in [201, 202] and extended and embedded in string theory
in [203]. It was applied to the study of hot BIons in [261, 262], emphasising the physical features
not captured by the standard Dirac–Born–Infeld action, and to blackfolds in AdS [20].

50 The equivalence of the equations of motion obtained in the PST-formalism and the ones developed in the
superembedding formalism was proven in [46].
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Non-relativistic kappa invariant actions: All the branes described in this review are relativis-
tic. It is natural to study their non-relativistic limits, both for its own sake, but also as an attempt
to identify new sectors of string theory that may be solvable. The latter is the direction originally
pursued in [246, 161] by considering closed strings in Minkowski. This was extended to closed
strings in AdS5 Ö S 5 in [244]. At the level of brane effective actions in Minkoswki, non-relativistic
diffeomorphism and kappa symmetry invariant versions of them were obtained in [245] for D0-
branes, fundamental strings and M2-branes, and later extended to general Dp-branes in [247].
The consistency of these non-relativistic actions under the action of duality transformations was
checked in [330]. This work was extended to non-relativistic effective D-brane actions in AdS5 Ö S 5

in [119, 436].

Multiple M5-branes: It is a very interesting problem to find the non-abelian formulation of
the (2,0) tensor multiplet describing the dynamics of N M5-branes. Following similar ideas to the
ones used in the construction of the multiple M2-brane action using 3-algebras, some non-abelian
representation of the (2,0) tensor supermultiplet was found in [351]. Their formulation includes a
non-abelian analogue of the auxiliary scalar field appearing in the PST formulation of the abelian
M5-brane. Closure of the superalgebra provides a set of equations of motion and constraints.
Expanding the theory around a particular vacuum gives rise to d = 5 SYM along with an abelian
(2,0) d = 6 supermultiplet. This connection to d = 5 SYM was further studied in [352]. Some
further work along this direction can be found in [299]. Some of the BPS equations derived from
this analysis were argued to be naturally reinterpreted in loop space [414]. There has been a
different approach to the problem involving non-commutative versions of 3-algebras [275], but it
seems fair to claim that this remains a very important open problem for the field.
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A Target superspace formulation and constraints

In this appendix, I very briefly mention the superspace formulation for N = 2 type IIA [136]
and IIB [309] and N = 1 d = 11 [153, 117] supergravity theories. The first goal is to set the
relevant notation for the superfield components describing the physical massless fields coupling to
the brane effective action degrees of freedom described in the main text. These are the physical
fields appearing in the standard component formulation of these theories, i.e., 11-dimensional
supergravity [154], its dimensional reduction [233] and type IIB [440, 309]. The second goal is to
present the set of constraints satisfied by these superfields ensuring both formulations are on-shell
equivalent. The latter are crucial to prove the kappa symmetry invariance of brane effective actions
in curved backgrounds discussed in Section 3.5.

A.1 N = 2 type IIA/B superspace

In components, N = 2 type IIA/B supergravities describe the dynamics of the gravity supermul-
tiplet. The latter contains

❼ Type IIA: its bosonic sector contains metric gmn, dilaton φ, NS-NS 2-form B2, RR potentials
Cr r = 1, 3, 5, whereas its fermionic counterparts includes the dilatino λ and the gravitino
Ψm.

❼ Type IIB: its bosonic sector contains metric gmn, dilaton φ, NS-NS 2-form B2, RR potentials
Cr r = 0, 2, 4, whereas its fermionic counterparts includes the dilatino λ and the gravitino
Ψm.

Both theories differ in the chiralities of their fermionic sectors and the dimensionality of their
RR gauge potentials. Furthermore, the field strength of the RR 4-form potential in type IIB is
self-dual.

To make the local supersymmetry of this component formalism manifest, one proceeds as in
global supersymmetry by introducing the notion of superspace and superfields. The theory is
defined on a supermanifold with local coordinates ZM involving both bosonic xm and fermionic
θ ones. The latter have chirality properties depending on the theory they are attached to. The
physical content of the theory is described by superfields, tensors in superspace, defined as a
polynomial expansion in the fermionic coordinates

Φ(x, θ) = φ(x) + θαφα(x) + . . . (517)

whose components include the physical fields listed above. For an extensive and pedagogical
introduction to the superfield and superspace formulation in supergravity, see [491].

A general feature of this formalism is that it achieves manifest invariance under supersymmetry
at the expense of introducing an enormous amount of extra unphysical degrees of freedom, i.e.,
many of the different components of the superfields under consideration. If one wishes to establish
an equivalence between these superspace formulations and the standard component ones, one must
impose a set of constraints on the former, in order to consistently, without breaking the manifest
supersymmetry, reproduce the on-shell equations of motion from the latter. This relation appears
schematically in Figure 5.

The superspace formulation of the N = 2 type IIA/B supergravity multiplets is as follows:

1. Given the presence of fermions, it is natural to work in local tangent frames. Thus, instead
of using the metric variables gmn(x), one works in terms of bosonic vielbeins Ea

m(x). These
are then extended to a supervielbein EA

M (x, θ), whereM = {m, α} stands for the superspace
curved indices, whereas A = {a, α} describes both flat bosonic and fermionic tangent space
indices. EA

M (x, θ) already includes the gravitino Ψm as a higher-dimension component in its
fermionic θ expansion.
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2. One extends all remaining bosonic fields to superfields with the same tensor structure, i.e.,
B2 = 1

2Bmn(x)dx
m ∧ dxn is extended to B2 = 1

2BAC(x, θ)E
A ∧EB , where EA = dZMEM

A,
and similarly for all other fields, including the dilaton.

The following discussion follows closely Section 3 in [141]. As in Riemannian geometry, we can
describe the geometry of a curved background in terms of a torsion and curvature two forms, but
now in superspace:

TA = DEA ≡ dEA + EB ∧ ωB
A, (518)

RA
B = dωA

B + ωA
C ∧ ωC

B . (519)

The covariant derivative D is defined in terms of a Lorentzian connection one-form ωA
B , but in

type IIB, it includes an additional U(1) connection defined on the coset space SU(1, 1)/U(1) where
the set of type IIB scalars live [309]. These superspace torsion and curvature forms satisfy the
Bianchi identities

DTA = EB ∧RB
A, (520)

DRA
B = 0. (521)

The first of the constraints I was alluding to before is the Lorentzian assumption. It amounts
to the conditions

ωa
β = 0 = ωα

b ⇒ Ra
β = 0 = Rα

b . (522)

This guarantees the absence of non-trivial crossed terms between the bosonic and fermionic compo-
nents of the connection and curvature in superspace. Conceptually, this is similar to the condition
described in Eq. (516) in the superembedding formalism [460].

Some of the additional constraints involve the components of the super-field strengths of the
different super-gauge potentials making up the superspace formulation for type IIA/B introduced
above. Denote by H3, the NS-NS super-three-form, by Rn, the RR super-n-forms, and define them
as

H3 = dB2, R = eB2∧ d(e−B2∧ C) ≡
10⊕

n=1

Rn, (523)

where I introduced the formal sum over all RR gauge potentials by C ≡⊕9
n=0 Cn and proceeded

analogously for their field strengths51. These obey the Bianchi identities

dH3 = 0, (524)

dR−R ∧H = 0, (525)

and are invariant under a set of gauge transformations leaving the supergravity Lagrangian invari-
ant

δB2 = dλ1, (526)

δC = eB2 ∧ dµ. (527)

Since the Bianchi identity (525) allows one to set either the even or odd RR forms to zero, this
reproduces the well-known statement that on-shell type IIA [136] and IIB [309] supergravities

51 The reader should keep in mind that the RR field strengths Rn with n ≥ 5 are non-physical, in the sense that
they are Hodge duality related to the physical propagating degrees of freedom contained in the RR field strengths
R10−n [185, 196].
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contain even and odd RR field strengths, respectively. To match the full on-shell supergravity
formulation in standard components one must impose the following further set of constraints:

Tαβ
c = 2iΓc

αβ , Taβ
c = 0 , (528)

IIA: Tαβ
γ =

3

2
δ(α

ΓΛβ) + 2(Γ])(α
γ
(Γ]Λ)β) −

1

2
(Γa)αβ(Γ

aΛ)γ (529)

+(ΓaΓ])αβ(Γ
aΓ]Λ)

γ +
1

4
(Γab)(α

γ
(ΓabΛ)β) , (530)

IIB: Tαβ
γ = −(J)(α

γ
(JΛ)β) + (K)(α

γ
(KΛ)β) (531)

+
1

2
(ΓaJ)αβ(Γ

aJΛ)γ − 1

2
(ΓaK)αβ(Γ

aKΛ)γ , (532)

Hαβγ = 0 , (533)

IIA: Haβγ = −2ie
φ
2 (Γ]Γa)βγ , (534)

Habγ = e
φ
2 (ΓabΓ]Λ)γ , (535)

IIB: Haβγ = −2ie
φ
2 (KΓa)βγ , (536)

Habγ = e
φ
2 (ΓabKΛ)γ , (537)

R(n)αβγA1...An−3
= 0 , (538)

IIA: R(n)a1...an−2αβ = 2i e
n−5

4
φ(Γa1...an−2

(Γ])
n
2 )αβ , (539)

R(n)a1...an−1α = −n− 5

2
e

n−5

4
φ(Γa1...an−1

(−Γ])
n
2 Λ)α , (540)

IIB: R(n)a1...an−2αβ = 2i e
n−5

4
φ(Γa1...an−2

K
n−1

2 I)αβ , (541)

R(n)a1...an−1α = −n− 5

2
e

n−5

4
φ(Γa1...an−1

K
n−1

2 IΛ)α . (542)

Λα =
1

2
∂αφ . (543)

Here, Γ] = Γ0Γ1 . . .Γ9 stands for the 10-dimensional analogue of the γ5 matrix in d = 4, i.e., the
chirality matrix, whereas K and J are SO(2) matrices appearing in the real formulation of type IIB
supergravity [141]. In the last line, φ stands for the superfield containing the bulk dilaton, whereas
Λα has the appropriate dilatino as its leading component.

Even though the dual potential B6 to the NS-NS 2-form B2 does not explicitly appear in the
kappa invariant D-brane effective actions reviewed in Section 3, its field strength H7 is relevant to
understand the solution to the Bianchi identities in type IIB, as explained in detail in [141]. For
completeness, I include its definition below

IIA: H7 = dB6 −
1

2
C1 ∧R6 +

1

2
C3 ∧R4 −

1

2
C5 ∧R2, (544)

IIB: H7 = dB6 +
1

2
C0 ∧R7 −

1

2
C2 ∧R5 +

1

2
C4 ∧R3 −

1

2
C6 ∧R1. (545)

By construction, these obey the constraints

IIA: Ha1...a5αβ = 2ie−
φ
2 (Γa1...a5

)αβ , (546)
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Ha1...a6α = −e−φ
2 (Γa1...a6

Λ)α, (547)

IIB: Ha1...a5αβ = 2ie−
φ
2 (Γa1...a5

K)αβ , (548)

Ha1...a6α = −e−φ
2 (Γa1...a6

KΛ)α, (549)

and the Bianchi identities

IIA: dH7 +R2 ∧R6 −
1

2
R4 ∧R4 = 0, (550)

IIB: dH7 +R1 ∧R7 −R3 ∧R5 = 0. (551)

A.2 N = 1 d = 11 supergravity conventions

There is a similar discussion for N = 1 d = 11 supergravity [154] whose gravity supermultiplet
involves metric gmn(x), a three gauge field potential A3(x), or its Hodge dual A6(x), and a gravitino
Ψm(x). When embedding this structure in N = 1 d = 11 superspace [153, 117], one uses local
coordinates ZM = (xm, θ) where now θ stands for an 11-dimensional Majorana spinor having
32 real components. As before, the superfield encoding information about both the metric and
gravitino is the supervielbein EA = dZMEM

A, the superfield extension of the bosonic vielbein
Em

a. The notation is as before, with the understanding that the current bosonic indices, both
curved (m) and tangent space (a), run from 0 to 10. Furthermore, A3(x) is extended into a
superfield 3-form A3(x, θ) with superspace components ABCD(x, θ).

As in type IIA and B, it is natural to introduce the field strengths of these superfield potentials

R4 = dA3 ,

R7 = dA6 +
1

2
A3 ∧R4 , (552)

are gauge invariant under the abelian gauge potential transformations

δA3 = dΛ2,

δA6 = dΛ5 −
1

2
Λ2 ∧R4. (553)

These superfields satisfy the set of constraints

T a = −iEα ∧ EβΓ
a
αβ + Eb ∧ Eβ T

a
bβ +

1

2
Eb ∧ EcT

a
bc , (554)

R4 =
1

2
Eb ∧ Ea ∧ Eα ∧ Eβ(Γab)αβ +

1

4!
Ea ∧ Eb ∧ Ec ∧ EdRdcba, (555)

R7 =
1

5!
Ea1 ∧ ... ∧ Ea5 ∧ Eα ∧ Eβ(Γa1...a5

)αβ +
1

7!
Ea

1 . . . Ea
7Ra

7
...a

1
. (556)

These allow one to establish an equivalence between this superspace formulation and the on-shell
supergravity component one. They are also crucial to proving the kappa symmetry invariance of
both M2 and M5-brane actions.
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B Cone Construction and Supersymmetry

It is well known that Sd and AdSd can be described as surfaces embedded in R
d+1 and R

2,d−1. What
is less known, especially in the physics literature, is that geometric Killing spinors on the latter are
induced from parallel spinors on the former. This was proven by Bär [49] in the Riemannian case
and by Kath [336] in the pseudo-Riemannian case. In this appendix, I briefly review this result.

Consider a Riemannian spin manifold (M, g) having geometric Killing spinors ψ satisfying the
differential equation

∇mψ = − ε

2R
Γmψ. (557)

R is related to the curvature of the manifold and ε is a sign, to be spelled out below. From a physics
point of view, the right-hand side of this equation is the remnant of the gravitino supersymmetry
transformation in the presence of non-trivial fluxes proportional to the volume form of the manifold
(M, g). Mathematically, it is a rather natural extension of the notion of covariantly constant Killing
spinors. The statement that the manifold (M, g) allows an embedding in a higher-dimensional

Riemannian space M̃ corresponds, metrically, to considering the metric of a cone g̃ in M̃ with base
space M . Thus,

M̃ = R
+ ×M and g̃ = dr2 +

( r
R

)2
g , (558)

where R > 0 is the radius of curvature of (M, g). There exists a similar construction in the
pseudo-Riemannian case in which the cone is now along a timelike direction. In the following, I
will distinguish two different cases, though part of the analysis will be done simultaneously:

❼ (Md, g) Riemannian with Riemannian cone (M̃d+1, g̃), and

❼ (M1,d−1, g) Lorentzian with pseudo-Riemannian cone (M̃2,d−1, g̃).

To establish an explicit map between Killing spinors in both manifolds, one needs to relate
their spin connections. To do so, consider a local coframe θi for (M, g) and θ̃a for (M̃, g̃), defined
as

θ̃r = dr and θ̃i =
r

R
θi. (559)

The connection coefficients ωi
j and ω̃a

b satisfy the corresponding structure equations

dθi + ωi
j ∧ θj = 0 and dθ̃a + ω̃a

b ∧ θ̃b = 0 . (560)

Given the relation between coframes, the connections are related as

ω̃i
j = ωi

j and ω̃i
r =

1

r
θ̃i =

1

R
θi . (561)

Let ∇̃ denote the spin connection on (M̃, g̃):

∇̃ = d+
1

4
ω̃abΓ̃ab , (562)

where γ̃a are the gamma-matrices for the relevant Clifford algebra. Plugging in the expression for
the connection coefficients for the cone, one finds

∇̃ = d+
1

4
ωijΓ̃ij +

1

2R
θiΓ̃ir. (563)

To continue we have to discuss the embedding of Clifford algebras in order to recognise the above
connection intrinsically on (M, g). This requires distinguishing two cases, according to the signature
of (M, g).

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2012-3

http://www.livingreviews.org/lrr-2012-3


128 Joan Simón

B.1 (M, g) Riemannian

When (M, g) is Riemannian, there exists a natural embedding of the Clifford algebra C`(d, 0) into
C`(d+ 1, 0)even:

C`(d, 0) ↪→ C`(d+ 1, 0)even where Γi 7→ εΓ̃iΓ̃r. (564)

This embedding depends on a sign ε (for “embedding”) and has the property that Γij 7→ Γ̃ij .
Thus, it embeds spin(d, 0) into spin(d+1, 0). When d is odd, the dimension of the minimal spinor

representation in M̃ is double the one in M . In this case, the Clifford-valued volume form ν in
both manifolds is mapped as follows

νd,0 7→ ενd+1,0. (565)

Thus, spinors in M will be mapped to spinors of a definite chirality in M̃ .
Plugging this embedding into the expression for ∇̃, one sees that a ∇̃-parallel spinor ψ̃ in the

cone, restricts to (M, g) to a geometric Killing spinor ψ = ψ̃|r=R obeying

∇Xψ = − ε

2R
X · ψ. (566)

This is the defining equation for a geometric Killing spinor. Furthermore,

❼ if d is even: there exists a one-to-one correspondence between parallel spinors ψ̃ in M̃d+1

and geometric Killing spinors ψ in Md; and

❼ if d is odd: there exists a one-to-one correspondence between parallel spinors ψ̃ in Md+1 of
definite chirality52 eigenvalues and geometric Killing spinors ψ in Md.

B.2 (M, g) of signature (1, d − 1)

When (M, g) is Lorentzian, there also exists a natural embedding of the Clifford algebra C`(1, d−1)
into C`(2, d− 1)even depending on a sign ε:

C`(1, d− 1) ↪→ C`(2, d− 1)even where Γi 7→ εΓ̃iΓ̃r . (567)

This embedding induces an embedding spin(d, 0) ↪→ spin(d + 1, 0), Γij 7→ Γ̃ij . Moreover if d is
odd, one has

ν1,d−1 7→ εν2,d−1. (568)

Plugging this into the expression for ∇̃, we see that a ∇̃-parallel spinor ψ̃ in the cone, restricts to
(M, g) to a geometric Killing spinor ψ = ψ̃|r=R obeying

∇Xψ = − ε

2R
X · ψ . (569)

Furthermore,

❼ if d is even: there exists a one-to-one correspondence between parallel spinors ψ̃ in M̃2,d−1

and geometric Killing spinors ψ in M1,d−1; and

❼ if d is odd: there exists a one-to-one correspondence between parallel spinors ψ̃ in M̃2,d−1

with definite chirality53 and geometric Killing spinors ψ in M1,d−1.

52 The chirality can be ±1 or ±i, depending on the reality of the volume form eigenspace.
53 Same comments as above.
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