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Brane world effective action at low energies and AdSÕCFT correspondence
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A low energy iteration scheme to study nonlinear gravity in the brane world is developed. As a result, we

obtain the brane world effective action at low energies. The relation between the geometrical approach and the

approach using the AdS/CFT correspondence is also clarified. In particular, we find generalized dark radiation

as homogeneous solutions in our iteration scheme. Moreover, the precise correspondence between the bulk

geometry and the brane effective action is established, which gives a holographic view of the brane world.

DOI: 10.1103/PhysRevD.66.043526 PACS number~s!: 98.80.Cq, 04.50.1h, 98.80.Hw

I. INTRODUCTION

The brane world scenario has been the subject of inten-
sive investigation for the past few years. In particular, Ran-
dall and Sundrum proposed a simple model where the four-
dimensional brane with tension s is embedded in the five-
dimensional asymptotically anti–de Sitter ~AdS! bulk with a
curvature scale l. The model is described by the action

S5

1

2k2E d5xA2gS R1

12

l2 D2sE d4xA2h

1E d4xA2hLmatter , ~1!

where R and k2 are the scalar curvature and gravitational
constant in five dimensions, respectively. We impose Z2

symmetry on this spacetime, with the brane at the fixed point
(y50 in the coordinate system used later!. Throughout this
paper, hmn represents the induced metric on the brane. They
showed that, in spite of the noncompact extra dimension, the
gravity is localized on the brane at the linearized level @1–3#.
Consequently, the conventional linearized Einstein equation
approximately holds at scales large compared with the cur-
vature scale l. The cosmology in the context of this model
has also been investigated enthusiastically @4–19#. It turns
out that there is a nonconventional quadratic term of the
energy density at high energies and, even in the low energy
regime, there exists dark radiation caused by the black hole
in the bulk. This dark radiation component is also found in
the cosmological perturbations @20,21#.

It is desirable to extend this understanding of gravity in
the brane world to general nonlinear cases. In order to un-
derstand nonlinear gravity in the brane world scenario, Shi-
romizu et al. proposed an elegant geometrical approach @22#.
They obtained the ‘‘effective’’ four-dimensional equations

Gmn
(4)

58pGNTmn1k4pmn2Emn , ~2!

where Tmn is the energy-momentum tensor of matter, Emn is

the projection of the Weyl tensor Cymynuy50 , GN denotes

Newton’s constant, and

pmn52

1

4
Tm

l Tln1

1

12
TTmn

1

1

8
gmnS TabTab2

1

3
T2D . ~3!

Here the relations

k2s5

6

l
,

k2

l
58pGN ~4!

have been assumed. From their effective equation of motion,

one can see the ‘‘electric’’ part of the Weyl tensor E n
m which

characterizes the bulk geometry effects on the brane dynam-
ics. Conversely, the matter on the brane changes the bulk

geometry, as can be seen from the equation ¹mE n
m

5k4¹mp n
m derived through the Bianchi identity. However, it

should be noted that it is by no means a closed system of
equations. We need to solve the bulk geometry to determine
Emn completely.

Unfortunately, it is a formidable task to solve the five-
dimensional Einstein equation exactly. However, notice that
typically the length scale of the internal space is l

!0.1 mm. On the other hand, the usual astrophysical and
cosmological phenomena take place at a scale larger than
this scale. Then we need only a low energy effective theory
to analyze a variety of problems, for example, the formation
of the black hole, the propagation of the gravitational wave,
the evolution of the cosmological perturbation, and so on. It
should be stressed that low energy does not necessarily im-
ply weak gravity.

It has been suggested that gravity on the brane at low
energies can be understood through the AdS conformal field
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theory ~CFT! correspondence @23#. From the correspon-

dence, one can guess the effective equations of motion on the

brane as

Gmn
(4)

58pGN~Tmn1Tmn
CFT!1$R2 terms%, ~5!

where the R2 terms represent the higher order curvature

terms and TCFT denotes the energy-momentum tensor of the

cutoff version of conformal field theory. However, no one

knows what is the cutoff CFT. Moreover, it should be noted

that the AdS/CFT correspondence is a specific conjecture.

Indeed, originally, Maldacena conjectured that the supergrav-

ity on AdS53S5 is dual to the four-dimensional N54 super

Yang-Mills theory @24#. We should be careful not to use such

a conjecture thoughtlessly. Nevertheless, the AdS/CFT corre-

spondence seems to be related to the brane world model as

has been demonstrated by several people @25–29#.
Since both the geometrical and AdS/CFT approaches

seem to have their own merit, it would be beneficial to un-

derstand the mutual relationship. Recently, Shiromizu and

Ida tried to understand the AdS/CFT correspondence from

the geometrical point of view @30#. They argued that p m
m

corresponds to the trace anomaly of the cutoff CFT on the
brane. However, this result is rather paradoxical because
there exists no trace anomaly in an odd dimensional brane

although p m
m exists even in that case. Thus, the more precise

relation between the geometrical and the AdS/CFT ap-
proaches remains to be understood.

In this paper, we derive the effective four-dimensional
theory without using any concept of the AdS/CFT correspon-
dence a priori. Thus, we avoid using the vague concept of
cutoff CFT. To solve the five-dimensional equations of mo-
tion, we use a low energy iteration scheme. In particular, we
impose the Dirichlet boundary condition at the brane posi-
tion, in contrast to the AdS/CFT approach where the Dirich-
let boundary condition is imposed at infinity. We also con-
sider the ‘‘constant’’ of the integration, i.e., homogeneous
solutions, carefully. As a consequence, we show that the dark
radiation can be understood from the holographic point of
view. Moreover, the relation between the geometrical and
AdS/CFT approaches is uncovered. The correspondence be-
tween the bulk geometry and the brane effective action is
also explicitly found.

This paper is organized as follows. In Sec. II, we develop
the iteration scheme to solve the Einstein equations at low
energies. In Sec. III, we derive the brane effective action
from the junction condition. We see the effective equation
does not reduce to the conventional Einstein equation even in
the low energy regime. This is due to the generalized dark
radiation found in this paper. It is also found that the nonlo-
cal part of the effective equation is represented by the
energy-momentum tensor with a trace part coinciding with
the trace anomaly of CFT. Section IV is devoted to the con-
clusion. In the Appendix, we analyze the
(d11)-dimensional case because the result is qualitatively
different from the five-dimensional case.

II. LOW ENERGY ITERATION SCHEME

In the Gaussian normal coordinate system, the geometry
of the brane world is described by

ds2
5dy2

1gmn~y ,xm!dxmdxn. ~6!

Note that the brane is located at y50 in this coordinate
system. Then, the five-dimensional Einstein equation in the
bulk becomes

K n ,y
m

2KK n
m

1 R

~4 !

n
m

52

4

l2 dn
m

1k2S 1

3
sdn

m
1T n

m
2

1

3
dn

mT D d~y !,

~7!

K ,y2KabKab52

4

l22

k2

3
~24s1T !d~y !, ~8!

¹nKm
n
2¹mK50, ~9!

where R n
m (4) is the curvature on the brane and ¹m denotes

the covariant derivative with respect to the metric gmn . One
can read off the junction condition from the above equations
as

@Kn
m

2dn
mK#uy505

k2

2
~2sdn

m
1Tn

m!. ~10!

Recall that we are considering the Z2 symmetric spacetime.
Decomposing the extrinsic curvature into the traceless part
and the trace part

Kmn5Smn1

1

4
hmnK , K52

]

]y
logA2g , ~11!

we obtain the basic equations which hold in the bulk:

S n ,y
m

2KS n
m

52F R

~4 !

n
m

2

1

4
d n

m R

~4 !G , ~12!

3

4
K2

2S b
a S a

b
5

F R

~4 !G
1

12

l2 , ~13!

K ,y2

1

4
K2

2SabSab52

4

l2 , ~14!

¹lS m
l

2

3

4
¹mK50. ~15!

The problem now is separated into two parts. First, we
will solve the bulk equations of motion with the Dirichlet
boundary condition at the brane, gmn(y50,xm)5hmn(xm).
After that, the junction condition will be imposed at the
brane. As it is the condition for the induced metric hmn , it is
naturally interpreted as the effective equations of motion for
gravity on the brane.

Along the normal coordinate y, the metric varies with a
characteristic length scale l; gmn ,y;gmn /l . Denote the char-
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acteristic length scale of the curvature fluctuation on the
brane as L; then we have R;gmn /L2. For the reader’s refer-
ence, let us take l51 mm, for example. Then, the relations
~4! give the scale, k2

5(108 GeV)23 and s51 TeV4. In
this paper, we will consider the low energy regime in the
sense that the energy density of matter, r , on the brane is
smaller than the brane tension, i.e., r/s!1. In this regime, a
simple dimensional analysis

r

s
;

l~k2/l !r

k2s
;S l

L
D 2

!1 ~16!

implies that the curvature on the brane can be neglected
compared with the extrinsic curvature at low energies. Here,
we have used the relations ~4! and Einstein’s equation on the
brane, R;gmn /L2;GNr . Thus, the anti–Newtonian or gra-
dient expansion method used in the cosmological context is
applicable to our problem @31–34#. The iteration scheme
consists in writing the metric gmn as a sum of local tensors
built out of the induced metric on the brane, the number of
gradients increasing with the order. Hence, we will seek the
metric as a perturbative series

gmn~y ,xm!5a2~y !@hmn~xm!1gmn
(1)~y ,xm!

1gmn
(2)~y ,xm!1•••# , ~17!

gmn
(i) ~y50,xm!50, ~18!

where a2(y)5exp(22y/l) is extracted for reasons explained
later and we put the Dirichlet boundary condition gmn(y

50,x)5hmn(x) at the brane. Other quantities are also ex-
panded as

K n
m

5K n
(0)m

1K n
(1)m

1K n
(2)m

1••• . ~19!

Our scheme is different from the calculation usually per-
formed in the AdS/CFT correspondence in that the Dirichlet
boundary condition is imposed not at infinity but at the finite
point y50, the location of the brane. Furthermore, we care-
fully keep the constants of integration, i.e., homogeneous
solutions. These homogeneous solutions are ignored in the
calculation of AdS/CFT correspondence. However, they play
an important role in the brane world.

A. Zeroth order

At zeroth order, we can neglect the curvature term. Then
we have

S n ,y
(0)m

2K (0)S n
(0)m

50, ~20!

3

4
K (0)2

2S b
(0)a S a

(0)b
5

12

l2 , ~21!

K ,y
(0)

2

1

4
K (0)2

2S (0)abSab
(0)

52

4

l2 , ~22!

¹lS m
(0)l

2

3

4
¹mK (0)

50. ~23!

Equation ~20! can be readily integrated into

S n
(0)m

5

C n
m ~xm!

A2g
, C m

m
50, ~24!

where C n
m is the integration ‘‘constant.’’ Equation ~23! also

requires C num
m

50. It represents a radiationlike fluid on the

brane. Although this deserves further investigation, the cal-
culation is complicated. Furthermore, this term is not rel-
evant to our realistic universe because it represents a strongly
anisotropic universe. Indeed, as we see later, this term must
vanish in order to satisfy the junction condition. Therefore,

we simply put C n
m

50, hereafter. Now, it is easy to solve the

remaining equations. The result is

K (0)
5

4

l
. ~25!

Using the definition of the extrinsic curvature

Kmn
(0)

52

1

2

]

]y
gmn

(0) , ~26!

we get the zeroth order metric as

ds2
5dy2

1a2~y !hmn~xm!dxmdxn, a~y !5e22y /l,
~27!

where the tensor hmn is the induced metric on the brane.

B. First order

The next order solutions are obtained by taking into ac-
count the terms neglected at zeroth order. At first order, Eqs.
~12!–~15! become

S n ,y
(1)m

2

4

l
S n

(1)m
52F R

~4 !

n
m

2

1

4
dn

m R

~4 !G (1)

, ~28!

6

l
K (1)

5
F R

~4 !G ~1 !

, ~29!

K ,y
(1)

2

2

l
K (1)

50, ~30!

Sm
(1)

ul
l

2

3

4
K um

(1)
50, ~31!

where the superscript (1) represents the order of the deriva-
tive expansion and u denotes the covariant derivative with

respect to the metric hmn . Here, @Rn
m# (1) means that the cur-

vature is approximated by taking the Ricci tensor of a2hmn in

place of R n
(4)m . It is also convenient to write it in terms of

the Ricci tensor of hmn , denoted Rn
m(h).

Substituting the zeroth order metric into R (4), we obtain

K (1)
5

l

6a2 R~h !. ~32!
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Hereafter, we omit the argument of the curvature for simplic-
ity. Simple integration of Eq. ~28! also gives the traceless
part of the extrinsic curvature as

Sn
(1)m

5

l

2a2S R n
m

2

1

4
dn

mR D1

x n
m ~x !

a4
, ~33!

where the homogeneous solution satisfies the constraints

x m
m

50 and x num
m

50. As we see later, this term corresponds

to dark radiation at this order. The metric can be obtained as

gmn
(1)

52

l2

2
S 1

a2 21 D S Rmn2

1

6
hmnR D2

l

2
S 1

a4 21 Dxmn ,

~34!

where we have imposed the boundary condition gmn
(1)(y

50,xm)50. This x field is essential to understanding the
origin of the dark radiation from the holographic point of
view.

C. Second order

In this subsection, we do not include the x field because it
complicates the equations. This is a consistent truncation
procedure. Of course, we have calculated the second order
solutions with the contribution of the x field. They include

terms such as x n
m x m

n , etc.

At second order, the basic equations become

S n ,y
(2)m

2

4

l
S n

(2)m
52F R

~4 !

n
m

2

1

4
dn

m R

~4 !G (2)

1K (1)S n
(1)m ,

~35!

K (2)
5

l

6
F2

3

4
K (1)2

1S b
(1)a S a

(1)b

1
F R

(4)G (2)G , ~36!

K ,y
(2)

2

2

l
K (2)

5

1

4
K (1)2

1S (1)abSab
(1) , ~37!

Sm
(2)

ul
l

2

3

4
K um

(2)
1Gla

(1)aSm
(1)l

2Gam
(1)lS l

a
50. ~38!

Substituting the solution up to first order into the Ricci
tensor and picking up the second order quantities, we obtain

F R

~4 !

n
m

2

1

4
dn

m R

(4)G (2)

5

l2

2
S 1

a4 2

1

a2D FR a
m R n

a
2

1

6
RR n

m

2

1

4
dn

mS R b
a R a

b
2

1

6
R2D

2

1

2
~R una

am
1R n

a um
ua!1

1

3
R un

um

1

1

2
hR n

m
2

1

12
dn

m
hRG , ~39!

F R

(4)G (2)

5

l2

2
S 1

a4 2

1

a2D FR b
a R a

b
2

1

6
R2G , ~40!

where we have used the formula dRmn51/2@dg muna
a

1dg muna
a

2dg umn2dgmnua
ua# . Using the above formula, the

trace part is deduced algebraically as

K (2)
5

l3

8a4 S R b
a R a

b
2

2

9
R2D2

l3

12a2S R b
a R a

b
2

1

6
R2D .

~41!

By integrating the equation for the traceless part, we have

S n
(2)m

52

l2

2
S y

a41

l

2a2DS n
m

2

l3

24a2 S RR n
m

2

1

4
dn

mR2D
1

l3

a4 t n
m , ~42!

where we have defined the quantity

S n
m

5R a
m R n

a
2

1

3
RR n

m
2

1

4
dn

mS R b
a R a

b
2

1

3
R2D

2

1

2
S R una

am
1R n

a um
ua2

2

3
R un

um
2hR n

m
1

1

6
dn

m
hR D ,

~43!

which is transverse and traceless,

S num
m

50, S m
m

50. ~44!

It is also useful to notice that this tensor can be derived from

dE d4xA2h
1

2
FRabRab2

1

3
R2G5E d4xA2hSmndgmn.

~45!

The homogeneous solution t n
m must be determined so that

Eq. ~38! holds. To be more precise, we must solve the con-
straint equation

t num
m

2

1

16
R b

a R aun
b

1

1

48
RR un2

1

24
R ulR n

l
50. ~46!

As one can see immediately, there are ambiguities in inte-
grating this equation. Indeed, there are two types of covariant
local tensor whose divergences vanish:

H n
m

5R a
m R n

a
2

1

4
dn

m R b
a R a

b

2

1

2
S R una

am
1Ra

n
um

ua2hR n
m

2

1

2
dn

m
hR D ,

~47!

K n
m

5RR n
m

2

1

4
dn

mR2
2R un

um
1dn

m
hR . ~48!

These terms come from the variation of the action
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dE d4xA2h
1

2
RabRab5E d4xA2hH mndgmn, ~49!

dE d4xA2h
1

2
R2

5E d4xA2hK mndgmn, ~50!

respectively. Notice that S n
m

5H n
m

2K n
m /3. Thanks to the

Gauss-Bonnet topological invariant, we do not need to con-
sider the Riemann squared term. In addition to these local

tensors, we have to take into account the nonlocal tensor t n
m

with the property t num
m

50. Thus, we get

t n
m

5

1

32
dn

mS R b
a R a

b
2

1

3
R2D

1

1

24
S RR n

m
2

1

4
dn

mR2D1t n
m

1aS n
m

1

b

3
K n

m , ~51!

where the constants a and b represents the freedom of the

gravitational wave in the bulk. The condition t m
m

50 leads to

t m
m

52

1

8
S R b

a R a
b

2

1

3
R2D2bhR . ~52!

The quantity t n
m cannot be written in the local covariant

form. Hence, this part is interpreted as the CFT in the context
of the AdS/CFT correspondence.

D. nth order

In principle, we can continue our analysis up to a desired
order using the following recursive formulas:

S n
(n)m

52

1

a4E dya4H F R

~4 !

n
m

2

1

4
d n

m R

(4)G (n)

2 (
p51

n21

K (p)S ~n2p !
n
mJ , ~53!

K (n)
5

l

6 (
p51

n21 F2

3

4
K (p)K (n2p)

1S b
(p)a S (n2p)

a
b

1
F R

(4)G (n)G , ~54!

K ,y
(n)

2

2

l
K (n)

5 (
p51

n21 H 1

4
K (p)K (n2p)

1S (p)abSab
(n2p)J ,

~55!

Sm
(n) l

ul2

3

4
K um

(n)
1 (

p51

n21

$Gla
(p)aS (n2p)

m
l

2Gam
(p)lS (n2p)

l
a%50. ~56!

As one can see from Eq. ~53!, homogeneous solutions will
appear at each order. However, we note that the subtlety
discussed in the second order calculations never occurs in the
higher order calculations. The existence of the infinite series

is a manifestation of the nonlocality of the brane model.
Therefore, we have two kinds of nonlocality on the brane.
One is the nonlocality associated with homogeneous solu-
tions and the other is the infinite series which is the reflection
of the extent in the y direction.

III. EFFECTIVE EQUATIONS AND EFFECTIVE ACTION

Now consider the consequences of the junction condition
~10!. The findings in this section are the following. We find

the generalized dark radiation x n
m . The quadratic correction

p n
m is identified with P n

m which is the local tensor defined

later. The relation between the geometrical approach and the
AdS/CFT approach is revealed. The brane effective action is
obtained and the corresponding bulk geometry is given ex-
plicitly.

A. Zeroth order

From the zeroth order solution, we obtain

@K n
(0)m

2dn
mK (0)#uy5052

3

l
dn

m
52

k2

2
sdn

m . ~57!

Then we get the well known relation k2s56/l . Here, we
will assume that this relation holds exactly. It is apparent that

C n
m is not allowed to exist.

B. First order

Let us focus on the role of x n
m in this part. At this order,

the junction condition can be written as

@K n
(1)m

2dn
mK (1)#uy505

l

2
S R n

m
2

1

2
dn

mR D1x n
m

5

k2

2
T n

m .

~58!

Using the solutions obtained in the previous section and the
formula

E n
m

5K n ,y
m

2dn
mK ,y2K l

m K n
l

1dn
mK b

a K a
b

2

3

l2 dn
m , ~59!

we calculate the projective Weyl tensor as E n
(1)m

52/lx n
m .

Then we obtain the effective Einstein equation

R n
m

2

1

2
dn

mR5

k2

l
T n

m
2E n

(1)m . ~60!

At this order, we do not have the conventional Einstein equa-
tions. Recall that the dark radiation exists even in the low
energy regime. Indeed, the low energy effective Friedmann
equation becomes

H2
5

8pGN

3
r1

C

a0~ t !4 , ~61!

where a0(t), H, and C denote the scale factor on the brane,
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the Hubble constant, and a constant, respectively. This equa-
tion can be obtained from Eq. ~60! by imposing the maximal
symmetry on the spatial part of the brane world. Hence, we

observe that x n
m is the generalization of the dark radiation

found in the cosmological context.
The conventional Einstein gravity can be recovered on the

brane at this order when we adopt the boundary condition for

which x n
m vanish.

C. Second order

In this subsection, we assume x n
m

50. Up to second or-

der, the junction condition gives

R n
m

2

1

2
dn

mR12l2Ft n
m

1S a2

1

4
DS n

m
1

b

3
K n

m G5

k2

l
T n

m .

~62!

Let us try to arrange the terms so as to reveal the geometrical
meaning of the above equation. We can calculate the projec-
tive Weyl tensor as

E n
(2)m

5l2F P n
m

12t n
m

12S a2

1

4
DS n

m
1

2

3
bK n

m G .

~63!

Substituting this expression into Eq. ~62! yields our main
result:

Gmn
(4)

5

k2

l
Tmn1l2Pmn2Emn

(2) , ~64!

where

P n
m

52

1

4
R l

m R n
l

1

1

6
RR n

m
1

1

8
dn

mR b
a R a

b
2

1

16
d n

m R2.

~65!

Notice that E n
m contains the nonlocal part and the free pa-

rameters a and b . On the other hand, P n
m is determined

locally. If we define Tmn
CFT

522l3/k2tmn , we can write

Gmn
(4)

58pGN~Tmn1Tmn
CFT!22l2S a2

1

4
DSmn2

2l2

3
bKmn .

~66!

It is possible to use the result of CFT at this point. For
example, we can choose the N54 super Yang-Mills theory
as the conformal matter. In that case, we simply put b50.
This is the way the AdS/CFT correspondence comes into the
brane world scenario. Thus we get an explicit relation be-
tween the geometrical approach and the AdS/CFT approach.
One can see the relationship in a different way. Within the

accuracy we are considering, we can get P n
m

5p n
m using the

lowest order equation R n
m

5k2/l(T n
m

21/2dn
mT). Hence, we

can rewrite Eq. ~64! as

Gmn
(4)

58pGNTmn1k4pmn2Emn
(2) . ~67!

Now, the similarity between Eq. ~2! and Eq. ~67! is apparent.
However, we note that our Eq. ~67! is a closed system of
equations provided that the specific conformal field theory is
chosen.

Now we can read off the effective action as

Seff5
1

16pGN
E d4xA2hR1Smatter1SCFT

1

S a2

1

4
D l2

16pGN
E d4xA2hFRmnRmn2

1

3
R2G

1

bl2

48pGN
E d4xA2hR2, ~68!

where we have used the relations ~45!, ~49!, and ~50! and we

denoted the nonlocal effective action constructed from t n
m as

SCFT . This effective action corresponds to the bulk geometry
given by the metric

gmn~y ,xm!5a2Fhmn2

l2

2
S 1

a2 21 D S Rmn2

1

6
hmnR2D1

l3

4
S y

a4 2

l

4a41

l

a2 2

3l

4
DSmn2

l4

2
S 1

a4 21 D
3S tmn1aSmn1

b

3
KmnD1

l4

8
S 1

a4 21 D S RmlR n
l

2

1

2
RRmn2

1

4
hmnR b

a R a
b

1

5

36
hmnR2D2

l4

4
S 1

a2 21 D
3S RmlR n

l
2

1

2
RRmn2

1

12
hmnR b

a R a
b

1

1

12
hmnR2D G . ~69!

This gives the holographic view of the bulk geometry. The

bulk geometry can be reconstructed provided the additional

knowledge of the nonlocal component t n
m and the constants

a and b is available. Both represent the effects of the bulk

geometry, which is apparent because they appear in the pro-

jective Weyl tensor E n
m .
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IV. CONCLUSION

We developed a low energy iteration scheme for solving

the equations of the brane world model. Using this formal-

ism, we explicitly identified the low energy equations of mo-

tion describing gravity on the brane. The result should be

useful in the investigation of various phenomena occurring

in the brane world because it can treat nonlinear gravity as

far as l2R(h)!1.

Our work was motivated by two important approaches,

the geometric approach and the AdS/CFT approach. In fact,

one of the purposes of this work was to clarify the relation

between these approaches. In previous work, the trace

anomaly of the CFT is identified with p m
m . This interpreta-

tion is rather paradoxical because, in the odd dimensional

brane, no trace anomaly exists although p m
m exists ~see the

Appendix!. We clarified this point by calculating the Weyl

tensor. It turned out that, irrespective of dimensions, p n
m

corresponds to P n
m at low energies. In the case of the four-

dimensional brane, the trace part of P n
m accidentally coin-

cides with the trace anomaly of the CFT.

We found two kinds of nonlocality observed on the brane.

One of them is encoded in the homogeneous solutions, and
the other is found as an infinite series of the gradient expan-
sion of our scheme. Thus even when we truncate the series at
the second order, the knowledge of the homogeneous solu-
tions is needed to solve the problem. Indeed, there are two
homogeneous solutions because the system is described by a
second order differential equation. One is used to satisfy the
Dirichlet boundary condition at the brane. The other appears
as the ‘‘dark’’ effects on the brane at each order of expansion

in our scheme. At zeroth order, C n
m appears. However, this

term must vanish, from consistency. It is at first order that the

generalized dark radiation term x n
m appeared. This term re-

duces to the dark radiation in the effective Friedmann equa-
tion under the assumption of homogeneity. Note that it is

possible to put x n
m

50 if one prefers. This can be achieved

by putting the black hole mass to zero in the cosmological
case. As for the general cases, further consideration is
needed. At second order, we deduced the nonlocal compo-

nent t n
m from the homogeneous solution. At this time, it is

far from possible to put t n
m

50 without losing consistency.

We must treat it as an integro-differential equation @35# or
coupled equations.

Needless to say, the ambiguity of the effective action
comes from the variety of the bulk geometry. We have given
the explicit correspondence between the effective action and
the bulk metric, which could give a holographic view of the
brane world. Of course, this ambiguity should be fixed by
proper consideration of the boundary condition in the bulk
@36#. Once the boundary condition is determined, we can
attack various astrophysical and cosmological problems.

As an application of our results, it would be interesting to
consider the nature of the gravitational wave in the brane
world. It is also important to investigate the quantum brane
world from this point of view. In particular, we will apply
our formalism to the inflation model driven by a bulk scalar
field @37,38#. The analysis of the present paper can be ex-

tended to the two brane system. In particular, the low energy
dynamics of the radion could be treated by means of our
method @39#. We will also study more general models like
the Horava-Witten model in the future.
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APPENDIX: „d¿1…-DIMENSIONAL RESULTS „dÅ4…

The qualitative consequences of the low energy expansion
scheme depend on the dimensions. Hence, for completeness,
we investigated the (d11)-dimensional problem.

We obtain basic equations which hold in the bulk as fol-
lows:

S n ,y
m

2KS n
m

52F R

~d !

n
m

2

1

d
dn

m R

(d)G , ~A1!

d21

d
K2

2S b
a S a

b
5R (d)

1

d~d21 !

l2 , ~A2!

K ,y2

1

d
K2

2SabSab52

d

l2 , ~A3!

¹lSm
l
2

d21

d
¹mK50. ~A4!

Since the calculations are similar to those in the d54
case, we simply write down the results in the following sub-
sections.

1. Zeroth order

At the zeroth order, we have

K (0)
5

d

l
. ~A5!

The zeroth order metric is given by

ds2
5dy2

1a2~y !hmn~xm!dxmdxn, a~y !5e22y /l.
~A6!

2. First order

At first order, the solutions are

K (1)
5

l

2~d21 !a2 R~h !, ~A7!
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S n
(1)m

5

l

~d22 !a2S R n
m

2

1

d
dn

mR D1

xn
m

ad ,

~A8!

where xn
m is a homogeneous solution which satisfies x m

m

50 and x num
m

50. This corresponds to the dark radiation at

this order. The metric can be deduced as

gmn
(1)

52

l2

d22
S 1

a2 21 D S Rmn2

1

2~d21 !
hmnR D

2

2l

d
S 1

ad 21 Dxmn , ~A9!

where we have imposed the boundary condition gmn
(1)(y

50,xm)50.

3. Second order

If we ignore the x field then we get the following results:

K (2)
5

l3

2~d22 !2a4S R b
a R a

b
2

3d24

4~d21 !2 R2D2

l3

2~d21 !~d22 !a2S R b
a R a

b
2

1

2~d21 !
R2D . ~A10!

S ~2 !
n
m

5

l3

~d22 !~d24 !a4FR a
m R n

a
2

1

d21
RR n

m
2

1

2
~R una

am
1Rn

a
ua
um !1

1

2
hR n

m
1

d

4~d21 !
R u n

u m
2

1

4~d21 !
dn

m
hR

2

1

d
dn

mR b
a Ra

b
1

1

d~d21 !
dn

mR2G1

l3

ad tn
m

2

l3

~d22 !2a2FR a
m R n

a
2

1

2~d21 !
RR n

m
2

1

2
~R una

am
1Rn ua

a um!

1

1

2
hR n

m
1

d

4~d21 !
R un

um
2

1

4~d21 !
dn

m
hR2

1

d
dn

mR b
a R a

b
1

1

2d~d21 !
dn

mR2G , ~A11!

where the homogeneous solution t n
m satisfies the transverse and traceless conditions

t num
m

50, t m
m

50. ~A12!

This is the point where the dependence on the dimensions appears. We do not have a trace anomaly, in contrast to the case of

d54.

4. Effective equations and effective action

The consequences of the junction condition ~10!, order by order, are the following. At zeroth order, we have

@Kn
(0)m

2dn
mK (0)#uy5052

d21

l
52

k2

2
sdn

m . ~A13!

Thus, we get the relation, k2s52(d21)/l and assume that this relation holds exactly.
At first order, we obtain

@K n
(1)m

2dn
mK (1)#uy505

l

d22
S Rn

m
2

1

2
dn

mR D1xn
m

5

k2

2
Tn

m . ~A14!

The homogeneous solution xmn is the generalized dark radiation. Supposing the relation 8pGN5(d22)k2/2l holds, then the
conventional Einstein equation can be recovered on the brane at this order when we put xmn50. This can be performed
without losing consistency.

Finally, up to second order, the junction condition gives
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l

d22
S R n

m
2

1

2
dn

mR D1

l3

~d22 !2~d24 !
F2R a

m R n
a

2

d

2~d21 !
RR n

m
2~R una

am
1R n

a
ua
um !1hR n

m
1

d

2~d21 !
R un

um

2

1

2~d21 !
dn

m
hR2

1

2
dn

mR b
a R a

b
1

d

8~d21 !
dn

mR2G5

k2

2
T n

m . ~A15!

We calculate the projective Weyl tensor to find the geometrical meaning of the above equation as

E n
(2)m

5

dl2

~d22 !2~d24 !
FR a

m R n
a

2

1

d21
RR n

m
2

d22

d
~R una

am
1Rnua

aum!1

d22

d
hR n

m
1

d22

2~d21 !
R un

um

2

d22

2d~d21 !
dn

m
hR2

1

d
dn

mR b
a R a

b
1

1

d~d21 !
dn

mR2G . ~A16!

Substituting this expression into Eq. ~A15! yields our main result

Gmn
(4)

5

~d22 !k2

2l
Tmn1l2Pmn2Emn

(2) , ~A17!

where

P n
m

52

1

~d22 !2FR l
m R n

l
2

d

2~d21 !
RR n

m
2

1

2
dn

mR b
a R a

b
1

d12

8~d21 !
d n

m R2G . ~A18!

Within the accuracy we are considering, using the lowest order equation R n
m

5k2/l@(d22)/2T n
m

21/2dn
mT# , we get formally

the same result as that of Shiromizu et al.:

Gmn
(4)

58pGNTmn1k4pmn2Emn
(2) , ~A19!

with

pmn52

1

4
Tm

l Tln1

1

4~d21 !
TTmn1

1

8
gmnS TabTab2

1

d21
T2D . ~A20!

Thus, we have established the correspondence between the geometrical and AdS/CFT approaches in any dimensions.
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