Branes for Higgs phases and exact conformal field theories*

Konstadinos Sfetsos

Theory Division, CERN
CH-1211 Geneva 23, Switzerland
E-mail: ísfēsosamaī $\overline{1}$

Abstract

We consider multicenter supergravity solutions corresponding to Higgs phases of supersymmetric Yang-Mills theories with Z_{N} symmetric vacua. In certain energy regimes, we find a description in terms of a generalized wormhole solution that corresponds to the $S L(2, \mathbb{R}) / U(1) \times S U(2) / U(1)$ exact conformal field theory. We show that U-dualities map these backgrounds to purely gravitational ones and comment on the relation to the black holes arising from intersecting D1- and D5-branes. We also discuss supersymmetric properties of the various solutions and the relation to 2-dim solitons, on flat space, of the reduced axion-dilaton gravity equations. Finally, we address the problem of understanding other supergravity solutions from the multicenter ones. As prototype examples we use rotating D3-branes and NS5and D5-branes associated to non-Abelian duals of 4-dim hyper-Kähler metrics with $S O(3)$ isometry.

Keywords: D-branes, Conformal Field Modēs in String Theory, Bran Dynacs in Gug Theories

[^0]
Contents

Introduction i
2. Branes on a circle 2
L2.1' D5's and NS5's on a circle 荅
2.1.1 Semi-wormhole and solitonic interpretation ,
2 12 Exact conformal field theory description ${ }^{1}$
? 要:
3. Final comments and some open problems 9
'A.'Rotating branes from static ones 10:
'B.'. Branes and non-Abelian duality [12'

1. Introduction

Recent developments allow an understanding of strong coupling aspects of supersymmetric Yang-Mills theories (SYM) using string theory on backgrounds containing
 backgrounds that involve $\mathrm{R}-\mathrm{R}$ fields (for recent progress, see [4] $\mathbf{4}$), since one can then interpolate between results at weak and strong coupling. For instance, this could provide practical tools to understand the $3 / 4$ mismatch between the perturbative SYM and supergravity computations of the entropy of a large number of D3-branes at non-zero temperature [3] , as well as for glueball-mass computations [6]. Even in the absence of $\mathrm{R}-\mathrm{R}$ fields, in this context, there has appeared so far only one exact description, namely the $S U(2) \times U(1)$ WZW model Conformal Field Theory (CFT) [6] , NS5 branes [i]. It has been conjectured to describe the ultraviolet regime of the 6 -dim SYM theory with (unbroken) gauge group $S U(N)$ [10] .

In this paper we show that, for the $S U(N k)$ SYM theory in a Higgs phase, where the gauge group is broken in such a way that the vacuum has a Z_{N} symmetry, there is also an exact description in terms of the $S U(2) / U(1) \times S L(2, \mathbb{R}) / U(1)$ coset CFT. The supergravity solution is an axionic instanton, with the geometrical interpretation of a semi-wormhole with a "fat" throat. From the point of view of the reduced equations for the 4-dim axion-dilaton gravity in the presence of two commuting isometries, it is
the most general axionic instanton solution (in target space) that can be interpreted as a 2 -dim soliton on flat space. Non-perturbative (in the $1 / N$-expansion) corrections relate the backgrounds for the $S U(2) / U(1) \times S L(2, \mathbb{R}) / U(1)$ and $S U(2) \times U(1)$ CFTs. We argue that they can be understood in terms of non-trivial configurations in the gauge theory side. We discuss the supersymmetric properties of the various solutions and show that simple U-dualities map them into purely gravitational ones. In addition, we indicate that they encode the information of the near-horizon geometry of the intersection of D1- and D5-branes and hence of the corresponding four and five dimensional black holes. Finally, we address the question whether or not various supergravity solutions correspond, in the extremal limit, to superpositions of multicenter static solutions. We give supporting evidence for this suggestion based on the examples of rotating D3-brane solutions and that of NS5 and D5 branes associated to certain non-Abelian duals of 4-dim hyper-Kähler metrics with $S O(3)$ isometries. We present the details in two appendices. We end the paper with comments and directions for future work.

2. Branes on a circle

Consider a d-dim supergravity solution corresponding to $N k$ parallel p-branes, which are separated into N groups, with k branes each, and have centers at $\vec{x}=\vec{x}_{i}, i=$ $1,2, \ldots, N$. It is characterized by a harmonic function with respect to the $(n+2)$-dim space E^{n+2}, which is transverse to the branes

$$
\begin{equation*}
H_{n}=1+\sum_{i=1}^{N} \frac{a k}{\left|\vec{x}-\vec{x}_{i}\right|^{n}}, \quad n=d-p-3 . \tag{2.1}
\end{equation*}
$$

For a generic choice of vectors \vec{x}_{i}, the $S O(n+2)$ symmetry of the transverse space is broken. ${ }^{1}$ Here we will make the simple choice that all the centers lie in a ring of radius r_{0} in the plane defined by x_{n+1} and x_{n+2} and that $\vec{x}_{i}=\left(0,0, \ldots, r_{0} \cos \phi_{i}, r_{0} \sin \phi_{i}\right)$, with $\phi_{i}=2 \pi i / N$. Hence the $S O(n+2)$ symmetry of the transverse space is broken to $S O(n) \times Z_{N}$. Since the \vec{x}_{i} 's correspond to non-zero vacuum expectation values (vev's) for the scalars, the corresponding super Yang-Mills theory is broken from $S U(k N)$ to $U(k)^{N}$, with the vacuum having a Z_{N} symmetry. Then (th. 1.1) can be written as

$$
\begin{align*}
& H_{n}=1+a k \sum_{i=0}^{N-1}\left(r^{2}+r_{0}^{2}-2 r_{0} \rho \cos (2 \pi i / N-\psi)\right)^{-n / 2}, \\
& r^{2}=\vec{x}^{2}, \quad x_{n+1}=\rho \cos \psi, \quad x_{n+2}=\rho \sin \psi . \tag{2.2}
\end{align*}
$$

[^1]The finite sum in ($\left.(2.2)^{2}\right)$ can be computed for any n, if we know the result for $n=1$ and $n=2 .{ }^{2}$ In the limit where $N \rightarrow \infty$ we may actually replace the sum by an integral and give the result in terms of a hypergeometric function (hence neglecting winding-like contributions, see below):

$$
\begin{align*}
H_{n} & =1+a k N \int_{0}^{2 \pi} \frac{d \phi}{2 \pi}\left(r^{2}+r_{0}^{2}-2 r_{0} \rho \cos \phi\right)^{-n / 2} \\
& =1+a k N\left(r^{2}+r_{0}^{2}+2 r_{0} \rho\right)^{-n / 2} F\left(\frac{1}{2}, \frac{n}{2}, 1, \frac{4 r_{0} \rho}{r^{2}+r_{0}^{2}+2 r_{0} \rho}\right) . \tag{2.3}
\end{align*}
$$

We expect that far away from the ring the solution reduces to that for $k N$ branes in the origin. Indeed, we find

$$
\begin{equation*}
H_{n} \approx 1+\frac{a k N}{r^{n}}+\mathcal{O}\left(\frac{1}{r^{2 n}}\right), \quad \text { for } r \gg r_{0} \tag{2.4}
\end{equation*}
$$

Also we expect that the solution, very close to the ring, should be given by the single-center one smeared out completely along a transverse direction [i-2 2 . In other words our multicenter harmonic in E^{n+2} should reduce to a single-center harmonic in E^{n+1}. We let

$$
\begin{equation*}
x_{i}=\epsilon y_{i}, \quad i=1,2, \ldots, n, \quad x_{n+1}=r_{0}+\epsilon y_{n+1}, \quad x_{n+2}=\epsilon y_{n+2}, \tag{2.5}
\end{equation*}
$$

where ϵ is a dimensionless parameter, which can be related to the natural scales in the theory, as we shall see in specific examples below. Indeed, we then obtain

$$
\begin{align*}
H_{n} & \approx 1+\frac{a k N \Gamma\left(\frac{n-1}{2}\right)}{2 \sqrt{\pi} \Gamma\left(\frac{n}{2}\right)} \frac{1}{\epsilon^{n-1} r_{0}|\vec{y}|^{n-1}}, \quad \text { as } \epsilon \rightarrow 0, \\
\vec{y}^{2} & =y_{1}^{2}+y_{2}^{2}+\cdots+y_{n+1}^{2} . \tag{2.6}
\end{align*}
$$

Hence, our general solution interpolates between the two extreme cases (

2.1 D5's and NS5's on a circle

In the case of D5- and NS5-branes we have $n=2$. Then (2. 2.21$)$ may be computed explicitly ${ }^{3}$

$$
\begin{align*}
H_{2} & =1+\frac{k N l_{s}^{2} g_{s}^{\delta}}{2 r_{0} \rho \sinh x} \Lambda_{N}(x, \psi) \\
e^{x} & \equiv \frac{r^{2}+r_{0}^{2}}{2 r_{0} \rho}+\sqrt{\left(\frac{r^{2}+r_{0}^{2}}{2 r_{0} \rho}\right)^{2}-1} \tag{2.7}
\end{align*}
$$

[^2]where $\delta=1$ (0) for D5 (NS5) branes and
\[

$$
\begin{equation*}
\Lambda_{N}(x, \psi) \equiv \frac{\sinh (N x)}{\cosh (N x)-\cos (N \psi)} \tag{2.8}
\end{equation*}
$$

\]

Note the explicit Z_{N} invariance under shifts of $\psi \rightarrow \psi+\frac{2 \pi}{N}$.
Now we specialize to the case of $k N$ D5-branes on a circle of radius r_{0} in the decoupling limit

$$
\begin{array}{rlrl}
u_{i} & =\frac{x_{i}}{l_{s}^{2}}=\text { fixed }, & U^{2}=u_{1}^{2}+u_{2}^{2}+u_{3}^{2}+u_{4}^{2}, \quad u^{2}=u_{3}^{2}+u_{4}^{2}, \\
g_{\mathrm{YM}}^{2} & =g_{s} l_{s}^{2}=\text { fixed }, & U_{0} & =\frac{r_{0}}{l_{s}^{2}}=\text { fixed }, \quad l_{s} \rightarrow 0 . \tag{2.9}
\end{array}
$$

We may take $r_{0} \sim l_{s} / g_{s}^{1 / 2}$ or $U_{0} \sim 1 / g_{\mathrm{YM}}$ since the coupling constant g_{YM} is the only scale in the classical theory. In this limit the appropriate supergravity solution is (we omit the R -R 3-form magnetic field strength)

$$
\begin{align*}
& \frac{1}{l_{s}^{2}} d s^{2}=\frac{V}{\sqrt{g_{\mathrm{YM}}^{2} N k}} d s^{2}\left(E^{1,5}\right)+\frac{\sqrt{g_{\mathrm{YM}}^{2} N k}}{V} d u_{i} d u_{i} \\
& e^{2 \Phi}=\frac{g_{\mathrm{YM}}^{2} V^{2}}{N k} \tag{2.10}
\end{align*}
$$

where V is a function of U and u defined as

$$
\begin{align*}
V(U, u) & =\left(\left(U^{2}+U_{0}^{2}\right)^{2}-4 U_{0}^{2} u^{2}\right)^{1 / 4} \Lambda_{N}^{-1 / 2}(x, \psi) \\
e^{x} & \equiv \frac{U^{2}+U_{0}^{2}}{2 U_{0} u}+\sqrt{\left(\frac{U^{2}+U_{0}^{2}}{2 U_{0} u}\right)^{2}-1} \tag{2.11}
\end{align*}
$$

Note that e^{x} has the same form as in ($V(U, u)$ is what we would have obtained had we used ($\overline{2} \overline{3} \overline{3})$, i.e. when $N x \gg 1 .^{4}$ The analysis which description is valid, the supergravity or the "perturbative" 6 -dim SYM theory one, parallels the one performed in [iTin equivalently when we keep all the branes well below substringy distances (at $r \approx 0$). The scalar curvature for the metric in $\left(\underset{2}{2}=10_{1}^{\prime}\right)$ is

$$
\begin{equation*}
R=-\frac{12}{\sqrt{g_{\mathrm{YM}}^{2} N k}} \frac{U^{2}}{V^{3}}+\mathcal{O}\left(e^{-N x}\right) \tag{2.12}
\end{equation*}
$$

and therefore the supergravity approximation is valid when it is small. In the opposite limit the SYM picture should be trusted. String loop corrections are controlled by

[^3]the string coupling e^{Φ}, in ($\left(\overline{2}=1 \overline{1}_{1}^{\prime}\right)$. When this becomes strong, we should pass to the S-dual description in terms of $k N$ NS5-branes with a supergravity description that uses the same harmonic function. The corresponding metric, antisymmetric tensor field strength and dilaton are
\[

$$
\begin{align*}
\frac{1}{l_{s}^{2}} d s^{2} & =d s^{2}\left(E^{1,5}\right)+N k V^{-2} d u_{i} d u_{i} \\
\frac{1}{l_{s}^{2}} H_{i j k} & =N k \epsilon_{i j k l} \partial_{l} V^{-2} \tag{2.13}\\
e^{2 \Phi} & =\frac{N k}{g_{\mathrm{YM}}^{2} V^{2}}
\end{align*}
$$
\]

$$
\begin{equation*}
R=\frac{6}{N k} \frac{U^{2}}{V^{2}}+\mathcal{O}\left(e^{-N x}\right) \tag{2.14}
\end{equation*}
$$

Note that for energy regimes $g_{\mathrm{YM}} U-1 \geq \frac{1}{N}$, the factor Λ_{N} in the expression for $V(U, u)$ can be ignored and be set to 1 . Using the above, and assuming that $N \gg 1$ and that $U_{0} \sim 1 / g_{\mathrm{YM}}$, we find that the SYM description is valid for energies close to $U=U_{0} \sim 1 / g_{\mathrm{YM}}$ in the range $\frac{1}{N} \ll g_{\mathrm{YM}} U-1 \ll \frac{1}{N^{1 / 3}}$. For $g_{\mathrm{YM}} U \ll 1$ and for $1 \ll g_{\mathrm{YM}} U \ll \sqrt{N}$, we should use the solution for D5-branes and for $g_{\mathrm{YM}} U \gg \sqrt{N}$ the one for NS5-branes. For the latter case, we show below that there exists an exact description that allow us to go beyond the supergravity approximation. For energy regimes $g_{\mathrm{YM}} U-1 \leq \frac{1}{N}$ the function Λ_{N} can no longer be ignored in the analysis. It can be shown that the SYM description is then valid, but for $0 \leq g_{\mathrm{YM}} U-1 \ll \frac{1}{N}$ the gauge group should be an unbroken $U(k)$ instead of the broken $S U(N k) \rightarrow U(k)^{N}$.

We may easily show that

$$
\begin{equation*}
\Lambda_{N}=\frac{1}{2}(\operatorname{coth}(N(x+i \psi))+\operatorname{coth}(N(x-i \psi)))=1+\sum_{m \neq 0} e^{-N(|m| x-i m \psi)} \tag{2.15}
\end{equation*}
$$

Hence, Λ_{N} is a harmonic function in the (x, ψ)-plane. Also, in the $\frac{1}{N}$-expansion, Λ_{N} has only a "tree-level" contribution, whereas the rest of the terms in the infinite sum are non-perturbative. In particular, the exponential factors $N(|m| x-m \psi)$ are likely to originate from configurations of the 6-dim spontaneously broken gauge theory that interpolate between the N different degenerate vacua. The same exponentials, but with different coefficients in the infinite sum ((see ('3.1) below) and also for D1-branes and the $\mathrm{D}(-1)$ instantons. Finding an interpretation in terms of configurations in the $\mathcal{N}=4$ spontaneously broken SYM theory is important. In that respect, we note the recent work on the identification of D3-branes in the bulk of $A d S_{5} \times S^{5}$ with 4 - $\operatorname{dim} \mathcal{N}=4 S U(N)$ SYM (for large N) in the Coulomb branch, where Higgs vev's are given to the scalar fields [i] (for related work see also $[1]$ moduli space for hypermultiplets near a conifold singularity was addressed in [票]. We hope to report work along these lines in the future.

2.1.1 Semi-wormhole and solitonic interpretation

For the case of NS5-branes on the circle the non-trivial 4-dim part of the background has the form of an axionic instanton

$$
\begin{align*}
d s^{2} & =H_{2} d x_{i} d x_{i}, \quad i=1,2,3,4, \\
H_{i j k} & =\epsilon_{i j k l} \partial_{l} H_{2}, \tag{2.16}\\
e^{2 \Phi} & =H_{2},
\end{align*}
$$

with the harmonic function given by ($(\overline{2} \cdot \overline{7})$. In the region where $N x \gg 1$, it becomes

$$
\begin{equation*}
H_{2} \approx 1+l_{s}^{2} k N\left(\left(r^{2}+r_{0}^{2}\right)^{2}-4 r_{0}^{2} \rho^{2}\right)^{-1 / 2}+\mathcal{O}\left(e^{-N x}\right) \tag{2.17}
\end{equation*}
$$

which corresponds to (2.3.3) for $n=2$. Then the solution reduces to the one discussed, in a different context, in The geometrical interpretation, in that limit, is that of a semi-wormhole with a fat throat and S^{3}-radius $\sqrt{N k} l_{s}$. However, as we get closer to any one of the centers, the solution tends to represent the throat of a wormhole
 semi-wormholes distributed around a circle. This is to be contrasted with the zero size throat of the usual $S U(2) \times U(1)$ semi-wormhole, to which ($\left(\overline{2} \cdot \overline{1} \overline{\sigma_{1}}\right)$ reduces for
 soliton (on flat space) of the reduced β-functions equations in the presence of two commuting isometries. It can be shown that ($\left.\overline{2}^{2} \overline{1} \overline{1} \bar{b}_{1}^{\prime}\right)$, with $\left(\overline{2} \overline{1} \overline{1} \bar{T}_{1}^{\prime}\right)$, is the most general axionic instanton solution (in target space) with two commuting isometries that has the interpretation of a soliton on flat space. This becomes apparent if one compares
 of parameters is: $M=\frac{1}{2} l_{s}^{2} k N$ and $C_{0}^{(1)}=-\frac{1}{2} r_{0}^{2}$.

2.1.2 Exact conformal field theory description

In the case of NS5-branes, we may find an exact CFT description for the background ($\overline{2}=13$) in two limiting cases. For $N=1$, corresponding to k NS5-branes at a single point, it is known that the exact description is in terms of the $S U(2)_{k} \times U(1)_{Q}$ WZW model, where $Q=\sqrt{\frac{2}{k+2}}$ is the background charge associated with the $U(1)$ factor ['6.', 'in' , We will show that another CFT provides an exact description when $N \gg 1$. As we shall see, these two CFTs are not related by marginal deformations since they have different central charges.

A change of variables

$$
\begin{array}{ll}
u_{1}=r_{0} \sinh \rho \cos \theta \cos \tau, & u_{2}=r_{0} \sinh \rho \cos \theta \sin \tau, \\
u_{3}=r_{0} \cosh \rho \sin \theta \cos \psi, & u_{4}=r_{0} \cosh \rho \sin \theta \sin \psi, \tag{2.18}
\end{array}
$$

transforms (2, its non-trivial transverse part by $d s_{\perp}^{2}$)

$$
\begin{align*}
\frac{1}{N k} d s_{\perp}^{2} & =\Lambda_{N}(x, \psi)\left(d \rho^{2}+d \theta^{2}+\frac{1}{1+\tanh ^{2} \rho \tan ^{2} \theta}\left(\tan ^{2} \theta d \psi^{2}+\tanh ^{2} \rho d \tau^{2}\right)\right), \\
\frac{1}{N k} B_{\tau \psi} & =\frac{\Lambda_{N}(x, \psi)}{1+\tanh ^{2} \rho \tan ^{2} \theta}, \\
\frac{1}{N k} B_{\tau \theta} & =\frac{\cot \theta \sin (N \psi)}{\sinh (N x)} \Lambda_{N}(x, \psi), \tag{2.19}\\
e^{-2 \Phi} & =\frac{g_{\mathrm{YM}}^{2}}{N k} U_{0}^{2} \Lambda_{N}^{-1}(x, \psi)\left(\cos ^{2} \theta \cosh ^{2} \rho+\sin ^{2} \theta \sinh ^{2} \rho\right),
\end{align*}
$$

where $e^{x}=\frac{\cosh \rho}{\sin \theta}$. Note that we have not included the overall factor l_{s}^{2}, since it drops out of the σ-model as well as of the supergravity action. String perturbation theory is defined in terms of the effective dimensionless coupling $\frac{1}{N k}$. However, as we have discussed, the background already contains non-perturbative contributions with respect to that coupling, i.e. in the expression for Λ_{N}.

Let us perform a T-duality transformation with respect to the vector field $\partial / \partial \tau$. Since the solution contains only NS-NS fields, the usual Buscher rules apply. We obtain a solution of type IIA supergravity, with the same six flat directions as in ($1 . \overline{1} \overline{3}$), and a non-trivial transverse part given by

$$
\begin{align*}
\frac{1}{N k} d s_{\perp}^{2}= & \Lambda_{N}\left(d \rho^{2}+\operatorname{coth}^{2} \rho d \psi^{2}\right)+\Lambda_{N}^{-1}\left(\operatorname{coth}^{2} \rho+\tan ^{2} \theta\right) d \tau^{2}+ \\
& +\Lambda_{N}\left(1+\left(1+\operatorname{coth}^{2} \rho \cot ^{2} \theta\right) \frac{\sin ^{2}(N \psi)}{\sinh ^{2}(N x)}\right) d \theta^{2}+2 \operatorname{coth}^{2} \rho d \tau d \psi+ \\
& +2 \cot \theta \frac{\sin (N \psi)}{\sinh (N x)}\left(\Lambda_{N} \operatorname{coth}^{2} \rho d \psi+\left(\operatorname{coth}^{2} \rho+\tan ^{2} \theta\right) d \tau\right) d \theta, \tag{2.20}\\
e^{-2 \Phi}= & \frac{g_{\mathrm{YM}}^{2} U_{0}^{2}}{N k} \cos ^{2} \theta \sinh ^{2} \rho,
\end{align*}
$$

and zero antisymmetric tensor. In the limit $N \gg 1$, we obtain

$$
\begin{align*}
\frac{1}{N k} d s_{\perp}^{2} & =d \theta^{2}+\tan ^{2} \theta d \varphi^{2}+d \rho^{2}+\operatorname{coth}^{2} \rho d \omega^{2}, \\
e^{-2 \Phi} & =\frac{g_{\mathrm{YM}}^{2} U_{0}^{2}}{N k} \cos ^{2} \theta \sinh ^{2} \rho \tag{2.21}
\end{align*}
$$

where $\omega=\tau+\psi$ and $\varphi=\tau$. This is the background corresponding to the exact CFT $S U(2)_{k N} / U(1) \times S L(2, \mathbb{R})_{k N+4} / U(1)$. In the opposite extreme case of $N=1$, it can be shown that $\left(2,2 \overline{2} 0_{1}^{\prime}\right)$ reduces to

$$
\begin{align*}
\frac{1}{k} d s_{\perp}^{2} & =d \theta^{2}+\tan ^{2} \theta d \varphi^{2}+d \rho^{2}+d \omega^{2} \\
e^{-2 \Phi} & =\frac{g_{\mathrm{YM}}^{2} U_{0}^{2}}{4 k} \cos ^{2} \theta e^{2 \rho} \tag{2.22}
\end{align*}
$$

which is the background for the exact CFT $S U(2)_{k} / U(1) \times U(1)_{R} \times U(1)_{Q}$. Here $R=2 k$ denotes the compactification radius of the bosonic field ω and $Q=\sqrt{\frac{2}{k+2}}$ is the background charge of the bosonic field $\rho .{ }^{5}$ This is no surprise, since the backgrounds for $S U(2)_{k} / U(1) \times U(1)_{R}$ and $S U(2)_{k}$ are T-duality related

We would like to comment briefly on the supersymmetric properties of the various solutions we have presented. As any axionic instanton, the solution (equivalently $\left.\left(\overline{2} \cdot \overline{1} \overline{1} \overline{9}_{1}\right)\right)$ preserves half the supersymmetries of flat space. For the limiting cases $N \gg 1$ and $N=1$, the Killing spinors for space-time supersymmetry were computed in [i]. Moreover, from the world-sheet point of view there is, in general, $\mathcal{N}=4$ supersymmetry with three complex structures given explicitly in [īī]. The background $\left(L_{2}^{2} \cdot \overline{2} \overline{0}_{1}^{1}\right)$, obtained after the T-duality was performed, still has the same amount of supersymmetry, albeit part of it is realized non-locally (for details, we re-
 to which the T-duality transformation was performed, is of the rotational type. In particular, for the case of world-sheet supersymmetry, the $\mathcal{N}=2$ part is still locally realized. This corresponds to the ordinary $\mathcal{N}=1$ supersymmetry enhanced to an $\mathcal{N}=2$ using the complex structure which is a singlet of the duality group $U(1)$. However, the rest of $\mathcal{N}=4$, corresponding to the two complex structures that form a $U(1)$ doublet, is realized by using parafermionic variables $2 \overline{2} \overline{0}$. The explicit expres-
 similar expressions can be found for the more general background (

2.1.3 Relation to pure gravity and black holes

Let us consider a solution of type IIB supergravity, obtained by tensoring ($\left.\overline{2}=\overline{2} \mathbf{O}^{\prime}\right)$ with the 6 -dim Minkowski space-time, where we compactify two of the five space-like dimensions, i.e. x_{4} and x_{5}, on a 2 -torus. By performing an S-duality and then two T-dualities along x_{4} and x_{5}, we obtain again a solution of type IIB supergravity;this however, is purely gravitational, with metric

$$
\begin{align*}
d s^{2} & =f^{-1 / 2}\left(-d t^{2}+d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}\right)+f^{1 / 2}\left(f^{-1} d s_{\perp}^{2}+d x_{4}^{2}+d x_{5}^{2}\right) \\
f & =\frac{1}{\cos ^{2} \theta \sinh ^{2} \rho} \tag{2.23}
\end{align*}
$$

where $d s_{\perp}^{2}$ is given by the metric in (2.200^{\prime}). The dilaton takes the constant value $e^{-2 \Phi}=\frac{N k}{g_{\mathrm{YM}}^{2} U_{0}^{2}}$. The solution $\left(2 . \overline{2}, 23_{1}^{2}\right)$ has no apparent supersymmetry, although this is expected in a string theoretical context. It is, however, not known how to trace its supersymmetric properties from those of the original background ($\overline{2}=\overline{2})$, since it was necessary to perform an S-duality transformation in order to obtain it. Resolving this issue is still an open problem.

[^4]In a certain sense, ($2.2 \overline{2} \overline{3})$ is the master background from which interesting blackhole solutions can be derived. Consider the analytic continuation $t \rightarrow i x_{0}$ and $\omega \rightarrow i t$, where we assume that $d s_{\perp}^{2}$ in ($(\overline{2} \cdot \overline{2} \overline{3})$ is given by the corresponding expression in $(\overline{2}, \overline{2} \overline{1} \overline{1})$. Then, using the same T- and S-dualities we described before, we obtain the Minkowski background for $E^{6} \times S U(2) / U(1) \times S L(2, \mathbb{R}) / S O(1,1)$. As we have mentioned, the backgrounds for the $S U(2) / U(1) \times U(1)$ coset model and the $S U(2)$ WZW model are related by an appropriate T-duality 19 the $S L(2, \mathbb{R}) / S O(1,1) \times U(1)$ coset model and the $S L(2, \mathbb{R})$ WZW model. Using these relations, we obtain the background for $E^{6} \times S U(2) \times S L(2, \mathbb{R})$. This correspond to the near-horizon geometry of the intersection of NS1- and NS5-branes (or of their S-dual D1- and D5-branes). After an identification of new periodic variables in $S L(2, \mathbb{R})$ we obtain the BTZ black-hole solution with non-zero angular momentum $[2 \overline{2} 2]$. This is related by a set of T- and S-dualities to the background of type II supergravity representing a non-extremal intersection of NS1- and NS5-branes (or of their S-dual D1 and D5) with a wave along a common direction [2 The toroidal compactification of this solution to five dimensions is a non-extremal
 solution are preserved in the process of dualizing either by appearing explicitly in the backgrounds or by entering in the compactifications radii [2] four dimensions can also be discussed in a similar fashion.

3. Final comments and some open problems

It is quite natural to expect that various BPS supergravity solutions could correspond to superpositions of static brane solutions, i.e. a sum of δ-functions distribution, in some special limit. Finding the discrete distribution and not just its continuous limit ${ }^{6}$ is important since that would correspond, in the SYM theory side, to finding the distribution of eigenvalues of the vev's of the scalar fields in the Coulomb branch, i.e. of the moduli space. Some preliminary work shows that this is the case in two classes of examples. The first one is a generalization of the static D3-brane solution of type-IIB supergravity which has, in addition to the charge and mass, angular momentum [$[\overline{2} \overline{6} \overline{6}]$ (based on work in [2] $\overline{2} \overline{1} 1)$. The second example corresponds to NS5branes of type II and heterotic string theory whose non-trivial 4-dim part is described by the non-Abelian dual of 4 -dim hyper-Kähler metrics with $S O(3)$ isometry. We refer to the two appendices for the details. A related question is whether or not there exists a non-BPS version of general backgrounds, with harmonic functions given by ($\mathbf{2}_{2}^{-}, \overline{7}$) or even (configuration on the circle unstable. According to the results of appendix A, it might

[^5]be possible to stabilize them by introducing angular momentum. If this turns out to be the case, it would be interesting to identify, in the limiting case $N \gg 1$, where the exact CFT is known, the marginal deformation that breaks supersymmetry.

In [20-1 large- N limit was computed using the AdS/CFT correspondence. The authors of [209] generalized this computation to the case when $S U(N)$ breaks to $S U(N / 2) \times S U(N / 2)$ by separating the branes into two groups. This corresponds in our notation to taking $N=2$ and k general and large. They found that there are some geodesics with "confining" behaviour, i.e. giving rise to a linear potential, even though the theory is conformal and hence not expected to be confining. However, the authors demonstrated that these geodesics were unstable, even classically. Further increasing the number
 footnotes ${ }^{2}$ 2, function is

$$
\begin{align*}
& H_{4}=1+\frac{4 \pi N k g_{s} l_{s}^{4}\left(r^{2}+r_{0}^{2}\right)}{\left(\left(r^{2}+r_{0}^{2}\right)^{2}-4 r_{0}^{2} \rho^{2}\right)^{3 / 2}} \Sigma_{N} \\
& \Sigma_{N} \equiv 1+\sum_{m \neq 0}\left(1+\frac{\left(\left(r^{2}+r_{0}^{2}\right)^{2}-4 r_{0}^{2} \rho^{2}\right)^{1 / 2}}{r^{2}+r_{0}^{2}} N|m|\right) e^{-N(|m| x-i m \psi)} \tag{3.1}
\end{align*}
$$

all definitions being given in the text. Properties of this harmonic function can be used to investigate how stable the "confining" behaviour is in the general case. In particular it will be interesting to study the large- N limit, where Z_{N} becomes a $U(1)$.

Acknowledgments

I would like to thank the organizers of the conferences in Buckow (Germany) and in Kolymbari and Corfu (Greece) for the invitation to present this and related work, as well as for financial support. Also, I would like to thank I. Bakas, E. Kiritsis, J. Russo and N. Warner for discussions.

A. Rotating branes from static ones

 The dilaton is constant and the metric reads (we omit the self-dual 5 -form):

$$
\begin{align*}
d s^{2}= & H^{-1 / 2}\left(-f d t^{2}+d y_{1}^{2}+d y_{2}^{2}+d y_{3}^{2}\right)+ \tag{A.1}\\
& +H^{1 / 2}\left(\frac{d r^{2}}{f_{1}}+r^{2}\left(\Delta d \theta^{2}+\Delta_{1} \sin ^{2} \theta d \phi^{2}+\cos ^{2} \theta d \Omega_{3}^{2}\right)-\frac{4 m l \cosh \alpha}{r^{4} \Delta H} \sin ^{2} \theta d t d \phi\right),
\end{align*}
$$

where

$$
\begin{align*}
H & =1+\frac{2 m \sinh ^{2} \alpha}{r^{4} \Delta}, \quad \Delta=1+\frac{l^{2} \cos ^{2} \theta}{r^{2}}, \quad \Delta_{1}=1+\frac{l^{2}}{r^{2}}+\frac{2 m l^{2} \sin ^{2} \theta}{r^{6} \Delta H} \\
f & =1-\frac{2 m}{r^{4} \Delta}, \quad f_{1}=\frac{1}{\Delta}\left(1+\frac{l^{2}}{r^{2}}-\frac{2 m}{r^{4}}\right) \tag{A.2}
\end{align*}
$$

where l is the angular-momentum parameter and $\sinh ^{2} \alpha=\sqrt{\left(2 \pi g_{s} N l_{s}^{4} / m\right)^{2}+1 / 4}-$ $\frac{1}{2}$. The extreme limit is obtained by letting $m \rightarrow 0$. After some appropriate change of variables one finds [26]

$$
\begin{align*}
d s^{2} & =H_{0}^{-1 / 2}\left(-d t^{2}+d y_{1}^{2}+d y_{2}^{2}+d y_{3}^{2}\right)+H_{0}^{1 / 2}\left(d x_{1}^{2}+\cdots+d x_{6}^{2}\right) \\
H_{0} & =1+\frac{8 \pi g_{s} l_{s}^{4} N}{\sqrt{\left(r^{2}+l^{2}\right)^{2}-4 l^{2} \rho^{2}}\left(r^{2}-l^{2}+\sqrt{\left(r^{2}+l^{2}\right)^{2}-4 l^{2} \rho^{2}}\right)} \tag{A.3}\\
r^{2} & =x_{1}^{2}+\cdots+x_{6}^{2}, \quad \rho^{2}=x_{5}^{2}+x_{6}^{2}
\end{align*}
$$

The harmonic function H_{0} becomes singular in the $x_{5}-x_{6}$ plane inside a disc of radius $r=\rho=l$.

We would like to interpret (other than that of N coinciding rotating D3-branes in the extremal limit. Consider N branes distributed, uniformly in the angular direction, inside a disc of radius l in the $x_{5}-x_{6}$ plane. Their centers are given by

$$
\begin{align*}
& \vec{x}_{i j}=\left(0,0,0,0, r_{0 j} \cos \phi_{i}, r_{0 j} \sin \phi_{i}\right), \\
& \phi_{i}=\frac{2 \pi i}{N}, \quad r_{0 j}=l(j / \sqrt{N})^{1 / 2}, \quad i, j=0,1, \ldots, \sqrt{N}-1 . \tag{A.4}
\end{align*}
$$

Since we are mainly interested in the large- N limit we may take $\sqrt{N}=$ integer without loss of generality. Then, the corresponding harmonic function becomes

$$
\begin{align*}
H_{0} & =1+4 \pi g_{s} l_{s}^{\sqrt{N}-1} \sum_{i, j=0} \frac{1}{\left(r^{2}+r_{0 j}^{2}-2 \rho r_{0 j} \cos \left(\phi_{i}-\psi\right)\right)^{2}} \\
& \approx 1+4 \pi N g_{s} l_{s}^{4} \int_{0}^{l} \frac{2 r_{0} d r_{0}}{l^{2}} \int_{0}^{2 \pi} \frac{d \phi}{2 \pi} \frac{1}{\left(r^{2}+r_{0}^{2}-2 \rho r_{0} \cos \phi\right)^{2}} \\
& =1+4 \pi N g_{s} l_{s}^{4} \int_{0}^{l} \frac{2 r_{0} d r_{0}}{l^{2}} \frac{r^{2}+r_{0}^{2}}{\left(\left(r^{2}+r_{0}^{2}\right)^{2}-4 r_{0}^{2} \rho^{2}\right)^{3 / 2}} \tag{A.5}\\
& =1+2 \pi N g_{s} l_{s}^{4} \frac{1}{l^{2}\left(r^{2}-\rho^{2}\right)}\left(1+\frac{l^{2}-r^{2}}{\sqrt{\left(r^{2}+l^{2}\right)^{2}-4 \rho^{2} l^{2}}}\right)
\end{align*}
$$

where the second line is an approximation, valid for large N. It is easily seen that the last line in $(\bar{A} \cdot \overline{5})$) equals the harmonic in ($\bar{A} \cdot \overline{\bar{A}} \cdot \overline{-} \cdot \overline{1})$. A priori it is not obvious that
there exists a non-extremal version of (since non-BPS branes exert forces against one another. In the continuum limit, such an non-extremal solution exists and is given by ($\mathcal{A}_{2} \overline{2} \cdot \overline{2}$). It that case the gravitational attraction, which is no longer balanced by just the $\mathrm{R}-\mathrm{R}$ repulsion, is now balanced by forces due to the angular momentum. It would be interesting to find an analogue of this in the general case.

B. Branes and non-Abelian duality

Consider 4-dim hyper-Kähler metrics with $S O(3)$ isometry [$[\overline{\mathrm{B}} \mathbf{0}]$. We will construct NS5-branes of type II and heterotic string theory whose non-trivial 4-dim transverse part will be the non-Abelian duals, of a particular class of these metrics, with respect to the $S O(3)$ group. In the case of type IIB, we may also consider the corresponding solution for D5-branes obtained by S-duality.

The non-Abelian dual background to 4-dim hyper-Kähler metrics with $S O(3)$ isometry is

$$
\begin{align*}
& d s^{2}=f^{2} d t^{2}+e^{2 \Phi}\left((\chi \cdot d \chi)^{2}+4 f^{2} \sum_{k=1}^{3} \frac{1}{a_{k}^{2}} d \chi_{k}^{2}\right), \\
& B_{i j}=e^{2 \Phi} \sum_{k=1}^{3} \epsilon_{i j k} \chi_{k} a_{k}^{2}, \tag{B.1}\\
& e^{-2 \Phi}=4\left(4 f^{2}+\sum_{k=1}^{3} a_{k}^{2} \chi_{k}^{2}\right),
\end{align*}
$$

where $f=\frac{1}{2} a_{1} a_{2} a_{3}$. The functions $a_{i}(t)$ satisfy the first-order differential equations

$$
\begin{equation*}
\frac{a_{i}^{\prime}}{a_{i}}=\frac{1}{2} \vec{a}^{2}-a_{i}^{2}-2 f \frac{\lambda_{i}}{a_{i}}, \quad i=1,2,3 . \tag{B.2}
\end{equation*}
$$

There are two distinct categories of solutions to ($\left.\bar{B}^{-} \cdot \overline{2}_{2}\right)$, depending on the values of the parameters $\lambda_{1}, \lambda_{2}, \lambda_{3}$. The first corresponds to $\lambda_{1}=\lambda_{2}=\lambda_{3}=1$ and contains the non-Abelian duals of the Taub-NUT and Atiyah-Hitchin metrics. In that case supersymmetry is realized non-locally [32]. The other case of interest to us, which corresponds to $\lambda_{1}=\lambda_{2}=\lambda_{2}=0$, contains the non-Abelian duals of the EguchiHanson metric and is supersymmetric in the usual sense. It was also noted in [30 the metric in ($\left.\bar{B}_{-1}^{-1} \bar{i}_{1}\right)$ is then conformally flat. The explicit coordinate transformation, which makes the conformal flatness of the metric manifest, is

$$
\begin{equation*}
x_{i}=2 f \frac{\chi_{i}}{a_{i}}, \quad x_{4}=\frac{1}{2} \vec{\chi}^{2}-4 \int^{t} f^{2}\left(t^{\prime}\right) d t^{\prime} . \tag{B.3}
\end{equation*}
$$

Then (harmonic function H given by

$$
\begin{equation*}
H^{-1}=4\left(4 f^{2}(t)+\frac{1}{4 f^{2}(t)} \sum_{k=1}^{3} a_{k}^{4}(t) x_{k}^{2}\right) \tag{B.4}
\end{equation*}
$$

where t is determined in terms of $\left(x_{i}, x_{4}\right)$ by solving the equation

$$
\begin{equation*}
x_{4}+4 \int^{t} f^{2}\left(t^{\prime}\right) d t^{\prime}-\frac{1}{8 f^{2}(t)} \sum_{k=1}^{3} a_{k}^{2}(t) x_{k}^{2}=0 \tag{B.5}
\end{equation*}
$$

We have mentioned that this particular axionic instanton can be used for the construction of supergravity solutions for NS5-branes. These are distributed along the surface, in general 3-dimensional, where H in (may also consider the corresponding solution for D5-branes obtained by S-duality. It is not obvious that ($(\bar{B} \cdot \overline{4})$ in $)$ corresponds to a continuous limit of a multicenter harmonic in general. However, this is the case when $a_{i}(t)=(-t)^{-1 / 2}$. Then ($\left(\overline{2}=1 \overline{6}_{1}\right)$ with (corresponds to the non-Abelian dual of flat 4-dim space with respect to the left (or right) action of the $S O(3)$ subgroup of isometries. Then (B) \mathbf{B}_{1}^{1}) can be solved and gives $t=-\left(r_{4}-x_{4}\right)^{-1 / 2}$. Substituting this in (B. \mathbf{B}_{1}), we obtain $H^{-1}=8 r_{4} \sqrt{r_{4}-x_{4}}$. This harmonic has a Dirac-string type singularity along the positive x_{4}-axis. It can be shown that it corresponds to the continuum limit of the sum

$$
\begin{equation*}
\sum_{i=0}^{N} \frac{1 / \sqrt{N}}{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+\left(x_{4}-i^{2} / N\right)^{2}} \approx \frac{\pi}{2 \sqrt{2}} \frac{1}{r_{4} \sqrt{r_{4}-x_{4}}} \tag{B.6}
\end{equation*}
$$

It is not clear that a non-extremal version of the solution we have just discussed exists. One should try to balance the attractive force between the branes by some rotation around an axis perpendicular to x_{4}, say the x_{1}-axis.

References

[1] J. Maldacena, Ādo Theor Math Phys
[2] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, PThys. Lett. hap-th/9002099;

[3] S.S. Gubser, I.R. Klebanov and A.W. Peet, 'P̄hys. Reve D-

I.R. Klebanov, Nucl. Phys.
S.S. Gubser, I.R. Klebanov and A.A. Tseytlin, hep-th/9703040';
S.S. Gubser and I.R. Klebanov, 'Phys. Lett.
 PPhys. Lett.
I. Pesando, Rome: supersolvable and supercosets, hep-th/9808146;
R. Kallosh and J. Rahmfeld, 'P̄hys. Lett. B
R. Kallosh and A.A. Tseytlin,
[5] C. Csaki, H. Ooguri, Y. Oz and J. Terning, TJigh Energ Phys. 0 hep-th/ $980602 \overline{1} 1$;
R. de Mello Koch, A. Jevicki, M. Mihailescu and J.P. Nunes, 'Phys. Rev.
-----100509: [hep-th/9806125];
C. Csaki, Y. Oz, J. Russo and J. Terning, Large N QCD from rotating branes, hep-th/ 9810186
J.A. Minahan,
[6] I. Antoniadis, C. Bachas, J. Ellis and D.V. Nanopoulos, PThys. Lett. 'en ----- 393.

C.G. Callan, J.A. Harvey and A. Strominger, Nucl. Phys.
[8] I. Antoniadis, S. Ferrara and C. Kounnas, ${ }^{N}$边ep-th 94020731.
[9] A. Strominger, Nūlo Phys. B43 (19900
[10] N. Itzhaki, J. Maldacena, J. Sonnenschein and S. Yankielowicz, 'P̄hys.

[11] J. Maldacena, Black holes in string theory, hep-th/96072 ${ }^{2} \mathbf{H}^{\prime}$
[12] J.P. Gauntlett, J.A. Harvey and J.T. Liu, hep-th/9210-56";
H. Lu, C.N. Pope and K.W. Xu, Nowlo Phys.
[13] M.R. Douglas, W. Taylor (IV), Branes in the bulk of Anti-de Sitter space, hep-th/98072 $2 \overline{2} 5^{\prime} ;$
A. Bilal and C.-S. Chu, D3-branes in $A d S_{5} \times S^{5}$ and $N=4,2,1 \quad S Y M$, hep-th/9810195;
Y.-Y. Wu, A note on $A d S / S Y M$ correspondence on the Coulomb branch, hep-th/9809055.
[14] A.A. Tseytlin and S. Yankielowicz, Free energy of $N=4$ super Yang-Mills in Higgs phase and non-extremal D3-brane interactions, hep-th/9809032;
P. Kraus, F. Larsen and S.P. Trivedi, The Coulomb Branch of Gauge Theory from Rotating Branes, hep-th/981120.

[16] K. Sfetsos, "Nacl. Phys.
[17] I. Bakas,
[18] A. Sevrin, W. Troost and A. van Proeyen, :

E. Kiritsis, C. Kounnas and D. Lüst, hep-th/930812
[20] I. Bakas and K. Sfetsos, 'Phys. Lett.

E. Alvarez, L. Alvarez-Gaumé and I. Bakas, Now hep-th/9507112il.
[22] M. Banados, C. Teitelboim and J. Zanell, Hep-th/92040991.
[23] K. Sfetsos and K. Skenderis, Nacle Phys.
[24] S. Hyun, U-duality between three-dimensional and higher dimensional black holes, hep-th $9070400{ }^{2}$
H.J. Boonstra, B. Peeters and K. Skenderis, 'Phys. Lett. B-inion 19 tiep-th/ 97061921 .
[25] M. Cvetic and D. Youm, BPS saturated and non-extreme states in abelian KaluzaKlein theory and effective $N=4$ supersymmetric string vacua,
[26] J.G. Russo, New compactifications of supergravities and large N QCD, hep-thor9808117.

M. Cvetic and D. Youm, Nople
[28] S.-J. Rey and J. Yee, Macroscopic strings as heavy quarks in large N gauge theory and Anti-de Sitter supergravity, hep th/903001;

[29] J.A. Minahan and N.P. Warner, $\overline{\text { Jonghen }}$ Hep-th/9805104in.

[31] E. Alvarez, L. Alvarez-Gaumé and Y. Lozano,际ep-th/940315
[32] K. Sfetsos, 'Phys. Rev.

[^0]: *Parts of this paper were presented in talks given at the 32nd Ahrenshoop Symposium (Buckow, Germany, 1-5 September 1998), the XXIst Triangle meeting (Kolympari, Greece, 9-12 September 1998) and the 6th Hellenic School and Workshops on Elementary Particle Physics (Corfu, Greece, 6-26 September 1998).

[^1]: ${ }^{1}$ The constant a may depend only on the Planck length l_{P}, the string length l_{s} and the dimensionless string coupling constant g_{s}. For instance, for an M-theory configuration, $d=11$ and $a \sim l_{\mathrm{P}}^{6}, l_{\mathrm{P}}^{3}$ for the M2-brane and for the M5-brane respectively. In string theory, $d=10$ and $a \sim l_{s}^{6} g_{s}^{2}, l_{s}^{2}, l_{s}^{n} g_{s}$ for fundamental strings NS1, for solitonic NS5 and Dp-branes respectively. The precise numerical factors can be found, for instance, in [1].

[^2]: ${ }^{2}$ Let $h_{n}(\lambda) \equiv \sum_{i=0}^{N-1}\left(r^{2}+r_{0}^{2}+\lambda-2 r_{0} \rho \cos (2 \pi i / N-\psi)\right)^{-n / 2}$. Then using the recursion relation $h_{n+2}(\lambda)=-\frac{2}{n} \frac{d h_{n}(\lambda)}{d \lambda}$ and $H_{n}=1+a k h_{n}(0)$ we see that $h_{1}(\lambda)$ and $h_{2}(\lambda)$ are generating functions for all H_{n} 's.
 ${ }^{3}$ It is a rather standard result of complex analysis that the infinite sum $\sum_{i=-\infty}^{+\infty} F(i)$ equals the sum of residues of the complex function $-\cot (\pi z) F(z)$ at the poles of $F(z)$ (under some assumptions on the behaviour of $F(z)$ in the complex plane). In our case the sum is finite, but with some appropriate limiting procedure the result just stated can be used.

[^3]: ${ }^{4}$ The generating function $h_{2}(\lambda)$ as defined in footnote $\overline{1} 1 \mathbf{1}$ can be read off eq. (2. $\left.\overline{2} \cdot \overline{1}\right)$, but in the expression for e^{x} one should replace r^{2} by $r^{2}+\lambda$.

[^4]: ${ }^{5}$ The various shifts at the levels of the current algebras in the coset CFTs and in the background charge Q are necessary for supersymmetry to hold at the quantum level [1]

[^5]: ${ }^{6}$ If such a solution behaves as $1 / r^{n}$ at infinity, then it surely corresponds to a continuous distribution of branes, since the basic static brane solution coincides with the Green function in E^{n+2}.

