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related to string consistency conditions and proximity to Standard Model vacua. These

are in turn utilized to update the agent’s policy and value neural networks to improve its
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improved, and for some tasks it finds a factor of O(200) more solutions than a random

walker. In one case, we demonstrate that the agent learns a human-derived strategy for

finding consistent string models. In another case, where no human-derived strategy exists,

the agent learns a genuinely new strategy that achieves the same goal twice as efficiently

per unit time. Our results demonstrate that the agent learns to solve various string theory

consistency conditions simultaneously, which are phrased in terms of non-linear, coupled

Diophantine equations.
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1 Introduction

String theory is a theory of quantum gravity that has shed light on numerous aspects of

theoretical physics in recent decades, bringing new light to old problems and influencing a

diverse array of fields, from condensed matter physics to pure mathematics. As a theory

of quantum gravity it is also a natural candidate for unifying known particle physics and

cosmology. The proposition is strengthened by the low energy degrees of freedom that arise

in string theory, which resemble the basic building blocks of Nature, but is made difficult

by the vast number of solutions of string theory, which arrange the degrees of freedom in

diverse ways and give rise to different laws of physics.

This vast number of solutions is the landscape of string vacua, which, if correct, im-

plies that fundamental physics is itself a complex system. Accordingly, studies of the string

landscape are faced with difficulties that arise in other complex systems. These include not

only the solutions themselves, which limit computation by virtue of their number, but also

tasks that are necessary to understand the physics of the solutions, which hamper compu-

tation by virtue of their complexity. As examples of large numbers of solutions, original

estimates of the existence of at least 10500 flux vacua [1] have ballooned in recent years to

10272,000 flux vacua [2] on a fixed geometry. Furthermore, the number of geometries has

also grown, with an exact lower bound [3] of 10755 on the number of F-theory geometries,

which Monte Carlo estimates demonstrate is likely closer to 103000 in the toric case [4].1

In fact, in 1986 it was already anticipated [6] that there are over 101500 consistent chiral

heterotic compactifications. As examples of complexity, finding small cosmological con-

stants in the Bousso-Polchinski model is NP-complete [7], constructing scalar potentials

in string theory and finding minima are both computationally hard [8], and the diversity

of Diophantine equations that arise in string theory (for instance, in index calculations)

raises the issue of undecidability in the landscape [9] by analogy to the negative solution

to Hilbert’s 10th problem. Finally, in addition to difficulties posed by size and complexity,

there are also critical formal issues related to the lack of a complete definition of string

theory and M-theory. Formal progress is therefore also necessary for fully understanding

the landscape.

For these reasons, in recent years it has been proposed to use techniques from data sci-

ence, machine learning, and artificial intelligence to understand string theory broadly, and

string vacua in particular, beginning with [10–13]. Numerous techniques from two of the

three canonical types of machine learning have been applied to a variety physical problems:

• Supervised learning: perhaps the best-known type of machine learning is learning

that is supervised. Labelled training data is used to create a model that accurately

predicts outputs given inputs, including tests on unseen data that is not used in

training the model.

Supervised learning makes up the bulk of the work thus far on machine learning

in string theory. In [12] it was shown that genetic algorithms can be utilized to

1The number of weak Fano toric fourfolds that give rise to smooth Calabi-Yau threefold hypersurfaces

was recently estimated [5] to be 1010,000, but it is not clear how many of the threefolds are distinct.

– 2 –



J
H
E
P
0
6
(
2
0
1
9
)
0
0
3

optimize neural network architectures for prediction in physical problems. In [13]

it was shown that simpler supervised learning techniques that do not utilize neural

networks can lead to rigorous theorems by conjecture generation, such as a theorem

regarding the prevalence of E6 gauge sectors in the ensemble [3] of 10755 F-theory

geometries. Supervised learning was also utilized [11] to predict a central charges in

4d N = 1 SCFTs via volume minimization in gravity duals with toric descriptions.

In mathematical directions that are also relevant for string vacua, supervised learning

yielded an estimated upper bound on the number of Calabi-Yau threefolds realized

as hypersurfaces in a large class of toric varieties [5], and has also led to accurate

predictions for line bundle cohomology [12, 14]. See [15–20] for additional works in

string theory that use supervised learning.

• Unsupervised learning: another type of learning is unsupervised. In this case data is

not labelled, but the algorithm attempts to learn features that describe correlations

between data points.

Strikingly, in [21] QCD observables were utilized to learn bulk metrics that give

the first predictions of the qq potential in holographic QCD. The results match

lattice data well, including the existence of the Coulomb, linear confining, and De-

bye screening phases.2 In [22], topological data analysis (persistent homology) was

utilized to characterize distributions of string vacua represented by point clouds in

low-dimensional moduli spaces. In [23], autoencoders were utilized to study the

accumulation of minimal supersymmetric standard models on islands in the two-

dimensional latent space of the autoencoder, suggesting the existence of correlations

between semi-realistic models in the space of heterotic orbifolds.

Some techniques in data science do not fit cleanly into these categories, or the third category

we propose to utilize below. These include generative adversarial networks [24], which

were utilized to generate effective field theory models [25], and network science, which was

utilized to study vacuum selection in the landscape [26].

In this paper we propose utilizing deep reinforcement learning (RL) to intelligently

explore string vacua in a model-free manner. Reinforcement learning (RL) is at the heart

of many recent breakthroughs in machine learning. What differentiates RL from super-

vised and unsupervised learning is that, instead of studying a large fixed data set that

serves as training data, RL utilizes an artificial intelligence agent that explores an environ-

ment, receiving rewards as it explores states and changing its behavior accordingly. That

is, utilizing the basic idea of behavioral reinforcement from psychology, the agent learns

how to act properly over time based on received rewards. RL is a mature field that has

experienced great progress in recent years as deep neural networks have been utilized in

the RL framework, giving rise e.g. to AlphaGo [27] and AlphaZero [28].

We envision that there are many aspects of RL that could be useful in studies of string

vacua. There are at least three ideas that are central to our proposal:

2We describe this work as unsupervised learning because the learned bulk geometry was encoded in

neural network weights, not the neural network outputs that fix boundary conditions for bulk scalar fields

at the black hole horizon.
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• First, the use of neural networks as function approximators for policy and value

functions in RL allows for the study of systems with more states than could ever be

directly enumerated. The ability to do so seems essential for string landscape studies,

based on the numbers quoted above. Success in this direction already exists in the

RL literature: for instance, AlphaZero performs at a world-class level, despite the

fact that Go has O(10170) legal board positions.

• Second, the use of RL allows for the possibility of discovering search strategies that

have not been discovered by string theorists. In domains where string theorists have

already developed heuristic exploration algorithms, RL could lead to improvements;

in new domains, RL may lead to good results while avoiding using time to develop

heuristic algorithms.

• Third, many RL algorithms have the advantage of being model-free, i.e. the same

algorithm may lead to good results in a diverse array of environments. That is,

RL algorithms can be adapted to new situations simply by telling the agent how to

navigate the environment, allowing for fast implementation.

Finally, given that issues of computational complexity arise in the landscape, one might

worry about difficulties it poses for RL. It is hard to address this concern in general,

but we note that RL has been successfully utilized [29] to solve instances of NP-complete

problems. Similarly, we observe that our agent learns to solve non-linear, coupled systems

of Diophantine equations that encode the physical and mathematical consistency conditions

we impose on the vacua. Whether RL is able to perform such tasks in general or whether

it is due to an underlying structure in these equations which is recognized and learned by

the agent is an interesting question, but beyond the scope of this paper.

For demonstrating the efficacy of RL, we choose a particularly simple string-theoretic

setup: our environment is the space of T 6/(Z2 × Z2 × Z2,O) orientifold compactifications

of the type IIA superstring with intersecting D6-branes on a toroidal orbifold. An anti-

holomorphic involution Z2,O on the orbifold gives rise to a fixed O6-plane. Cancellation

of Ramond-Ramond charge of the O6-plane requires the introduction of D6-branes, which

are also subject to K-theory and supersymmetry conditions. If all of these conditions are

satisfied, the configuration is a consistent superstring compactification and the relative

placements of D6-branes determines a low energy gauge sector that may or may not re-

semble the Standard Model (SM) of particle physics. From the perspective of RL, different

states are defined by different placements of D6-branes, and we define multiple different

types of RL agents that differ from one another in how they change the placement of

D6-branes. Via appropriate choices of reward function, the agent is incentivized to find

consistent configurations that resemble the SM. Though we do not find a SM (which is

not guaranteed to exist on this particular space), the RL agent demonstrates clear learning

with respect to both consistency and particle physics goals. The RL agents outperform

random walkers, in some cases by a factor of O(200), which serve as our control experiment.

In one case, we demonstrate that the agent learns a human-derived strategy that

utilizes so-called filler branes. In another case that cannot utilize filler branes, we find
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that the strategy utilized by the agent is about a factor of 2 more efficient at finding

consistent string models than the filler brane strategy. This demonstrates the plausibility

of utilizing RL to find strategies in string theoretic environments that are superior to

human-derived heuristics.

This paper is organized as follows. In section 2 we provide an introduction to rein-

forcement learning for the reader, culminating with the asynchronous advantage actor-critic

(A3C), which is used in our study. In section 3 we describe the IIA environment in detail,

including the orbifold itself, important truncations thereof, and three different implementa-

tions of RL agents. Readers familiar with the physics that are not interested in the details

of the RL algorithm might consider skipping to section 4, where we present the results

of our RL experiments in the IIA environment. We discuss and summarize the results in

section 5.

2 Basics of reinforcement learning

Since it is central to our work, we would like to review the basics of RL in this section.

We will first review the basic components of an RL system and define a Markov Decision

Process (MDP). The MDP describes the interactions of the agent with the environment,

and when the MDP is solved the agent has optimal behavior. We will briefly introduce

classic techniques in RL that have been utilized for decades. One downside, however, is that

these techniques cannot be readily applied in environments with extremely large numbers

of states unless only a small subset of the states are sampled. Such situations are helped by

the introduction of approximation methods, in particular function approximators. In deep

RL, these function approximators are deep neural networks. We will review two types

of approximation methods that utilize deep neural networks, value function approxima-

tion and policy gradients, and conclude with a discussion of the asynchronous advantage

actor-critic (A3C) algorithm that is utilized in our work. For an in-depth introduction to

RL, see the canonical text [30] or David Silver’s lectures [31], which also include recent

breakthroughs in deep RL.

We present the general ideas before becoming concerned with precise definitions. Re-

inforcement learning takes place in an environment, where an agent perceives a subset of

the environment data known as a state s. Based on a policy π, the agent takes an action

that moves the system to a different state s′, and the agent receives a reward based on

the fitness of s′. Rewards may be accumulated as subsequent actions are taken, perhaps

weighted by a discount factor, and the accumulated discounted reward is called the return

G(s). The return depends on the state, and there are many possible returns for a given

state based on the subsequent trajectory through state space; the expected return is called

the state value function v(s), and a related function that is more useful for some purposes

is the action value function q(s, a). There are different classes of RL techniques, but each

involves updates to one or more of these functions as the agent explores the environment.

These updates improve the agent’s behavior, i.e. by changing its behavior based on received

rewards (or punishments), the agent learns how to act properly in order to carry out its

given tasks.

– 5 –
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In some cases, an RL agent ends in some final state from which there are no actions.

These are terminal states and the associated tasks are called episodic tasks. In other

cases, reinforcement learning tasks are continuous or non-episodic tasks. For example,

an RL agent that learns to play chess may arrive in a terminal state that is a stalemate

or a checkmate. Each episode is one game, and the RL agent may learn by studying

states, actions, and rewards across many games. There are a number of benchmark RL

environments, such as cart-pole or multi-armed bandits, that are used for testing new RL

algorithms. Illustrative codes and videos of these environments and others can be found

in the OpenAI gym [32] or numerous GitHub repositories.

Finally, one concept central to the success of an RL agent is exploration vs. exploita-

tion. If an agent usually chooses to exploit its current knowledge about the rewards of

the local state space rather than exploring into new regions of state space, it may become

trapped at a local reward maximum. Examples abound in the RL literature, but perhaps

relevant for physicists is Feynman’s restaurant problem, which comes in a few versions. In

one, Feynman and his friend hear about an excellent restaurant with N entrees. They have

never been to the restaurant, but they are working under the assumption that with perfect

knowledge of all entrees there would be an ordered list of entrees according to the reward

(flavor) they provide. The first time at the restaurant, they have to explore and try a dish

they’ve never tried. The second time they can try that dish again, exploiting their knowl-

edge of its reward, or they can continue to explore. The problem is, at the M th timestep,

should they exploit their gained knowledge of the ordered list by ordering their favorite

entree thus far, or should they explore? What is the strategy that maximizes the reward?

The solution requires a balance of exploration and exploitation that is characteristic of

RL problems.

We now turn to precise definitions and equations that describe RL systems. Using the

notation of Sutton and Barto [30], the central elements of RL are:

• States. A state represents what the agent measures from the environment. A state

is usually written as s, s′, or St, with the convention that s′ occurs after s, or if there

are multiple steps, t denotes the timestep. The set of states is S.

• Actions. The agent acts with an action to move from one state to another. A is

the abstract set of actions, and A(s) is the set of actions possible in the state s. A

concrete action is denoted by a, a′ or At.

• Policy. A policy is a map from states to actions, π : S → A. A deterministic policy

π(s) picks a unique action a for each state s, and a stochastic policy π(a|s) is the

probability of the agent selecting action a given that it is in state s.

• Reward. The reward Rt ∈ R at a given time t depends on the state St, or alternatively

the previous state St−1 and action At−1 that led to the current state and its reward.

The goal of an agent is to maximize the total future accumulated reward. The set of

rewards is called R.
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• Return. The return measures accumulated rewards from time t,

Gt =
∞
∑

k=0

γkRt+k+1, (2.1)

where γ ∈ [0, 1] is the discount factor and the sum truncates for an episodic task. The

discount factor is used to encode the fact that in some systems receiving a reward

now is worth more than receiving the same reward at a later time. For stochastic

policies, there may be many trajectories through state space from st, each with its

own associated reward Gt.

• Value Functions. The state value function is the expected return given s,

v(s) = E[Gt|St = s]. (2.2)

It is important to distinguish value from reward, as v(s) captures the long-term value

of being in s, not the short-term reward. Similarly, the action value function is

q(s, a) = E[Gt|St = s,At = a]. (2.3)

Both may be indexed by a subscript π if the trajectories through state space are

determined by a policy π, i.e., vπ(s) and qπ(s, a). When we refer to the value function,

we implicitly mean the state value function v(s).

• State Transition Probabilities. p(s′|s, a) is the probability of transition to a state s′

given s and an action a. While in some cases s′ is fixed given s and a, in other cases

it is drawn from a distribution that encodes environmental randomness.

There are two basic types of problems that one encounters in RL, the

prediction problem and the control problem. In the prediction problem, the goal is to pre-

dict qπ(s, a) or vπ(s) for a given policy π. In the control problem, the goal is to find

the optimal policy π∗, i.e. the one that optimizes the value functions. We therefore need

definitions for these optimizations:

• An optimal state-value function v∗(s) is the maximum value function over all policies,

v∗(s) := max
π

vπ(s). (2.4)

• An optimal action-value function q∗(s, a) is the maximum action-value function over

all policies,

q∗(s, a) := max
π

qπ(s, a). (2.5)

• An optimal policy π∗(s) is a policy for which

π∗ ≥ π′ ∀π′, (2.6)

where this partial ordering is defined so that

vπ(s) ≥ vπ′(s) ∀s ⇒ π ≥ π′. (2.7)

– 7 –
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It is natural to expect that there is a close relationship between optimal policies and optimal

value functions. It arises in the context of Markov Decision Processes.

A Markov Decision Process (MDP) is a framework by which RL problems may be

solved. An MDP is defined by a tuple (S,A,R, p, γ). A policy π defines the action of an

agent in an MDP. Important facts about any MDP include:

• There exists an optimal policy π∗.

• All optimal policies achieve the optimal value function vπ∗
(s) = v∗(s).

• All optimal policies achieve the optimal action-value function qπ∗
(s, a) = q∗(s, a).

There are three types of solutions for the prediction and control problems of MDPs that

we will discuss: dynamic programming, Monte Carlo, and temporal difference learning.

To gain some intuition, consider one example of an MDP that is a two-dimensional

maze represented by an N × N grid with M black squares (N2 −M white squares) that

the agent cannot (can) travel to. There are therefore N2 −M states, according to which

white square the agent occupies.The actions are A = {U,D,L,R}, representing moving

up, down, left, and right. For some state s, the actions A(s) that may be taken may be

restricted due to the presence of an adjacent black square. Therefore, a policy labels each

square by the probability of executing U,D,L or R, and the natural goal for the agent is

to solve the maze as quickly as possible. How should the rewards be assigned? One option

is to assign 1 for reaching the terminal state at the end of the maze, and 0 for all other

states. In this case the agent would be incentivized to finish the maze, though not at any

particular rate; this is not ideal. On the other hand, if one assigns −1 for every square,3

then the agent is penalized for each step and it wants to solve the maze quickly. If by

“solving the maze” we mean doing it quickly, then this is a much better reward structure.

2.1 Classic solutions to markov decision processes

In this section we briefly discuss three classic methods for solving MDPs: dynamic pro-

gramming, Monte Carlo, and temporal difference learning.

Dynamic Programming (DP) is one solution to an MDP that was pioneered by Bellman.

We first treat the prediction problem in DP. From the definition of the value function we

can derive a recursive expression known as the Bellman equation for vπ,

vπ(s) =
∑

a

π(a|s)
∑

s′

p(s′|s, a) [r(s, a, s′) + γvπ(s′)], (2.8)

which allows us to compute the value function recursively. It expresses a relationship

between the value of a state and the states that may come after it in an MDP. Note that

this is a system of linear equations, and therefore vπ can be solved for by matrix inversion.

However, via Gauss-Jordan elimination, matrix inversion is an O(N3) process for an N×N

matrix, where N is the number of states. Though polynomial time, an O(N3) solution is

3It is fine to assign −1 to the maze exit because it is a terminal state, so there are no actions that take

the agent out of it. The episode ends upon reaching the maze exit.
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too costly for many environments encountered in high energy theory. In the spirit of RL,

it is better to use fast iterative solutions. This can be done via iterative policy evaluation,

where all states s are looped over and the r.h.s. of (2.8) is assigned to the state value until

there are no more changes; then the Bellman equation is solved and vπ has been found. In

practice, convergence to the solution if often fast if vπ is updated in real time inside the

loop, rather than waiting for the full loop over all states to finish before updating vπ. A

similar Bellman equation exists for qπ(s, a), which allows for an iterative policy evaluation

that computes the action-value function.

For solving the control problem, we iterate over two main steps: policy evaluation and

policy improvement. We do this iteration until the policy converges, i.e. doesn’t change

anymore. After evaluating the policy as just discussed, we improve the policy by defining

a new policy π′(s)

π′(s) = argmaxa q(s, a), (2.9)

which is the greedy policy. Given a state s, the greedy policy greedily chooses the action

that maximizes the action-value function. An ǫ-greedy policy chooses a random action with

probability ǫ and follows the greedy policy with probability 1 − ǫ; this has the advantage

of encouraging exploration. Though policy improvement is fast, policy evaluation is an

iterative algorithm inside the overall iteration for the control problem. This is inefficient.

Another solution to the control problem is value iteration, which is more efficient. In this

algorithm we continue improving the policy via only one loop, over a variable k

vk+1(s) = max
a

∑

s′

p(s′|s, a) [r(s, a, s′) + γvk(s′)]. (2.10)

Note that the policy improvement step is now absent, so we are implicitly doing policy

evaluation and improvement at the same time.

Dynamic programming lays the groundwork for the rest of the methods that we will

discuss, but it has a number of drawbacks. First, note that for both the prediction problem

and control problem we looped over all of the states on every iteration, which is not possible

if the state space is very large or infinite. Second, it requires us to know the state transition

probabilities p(s′, r|s, a), which is difficult to estimate or compute for large systems. Note

that in DP there is no agent that is learning from experience while playing one or many

episodes of a game; instead the policies are evaluated and improved directly. This is

different in spirit from the game-playing central to other techniques.

For instance, learning from experience is central in Monte Carlo (MC) approaches

to estimating the value function. In MC, the agent plays a large number N of episodes

and gathers returns from the states of the episode. Then the value function may be

approximated by

v(s) = E[G(t)|S(t) = s] ≃
1

N

N
∑

i=1

Gi(s), (2.11)

where this value function has been learned from the experience of the agent. MC only

gives values for states that were encountered by the agent, so the utility of these methods
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is limited by the amount of exploration of the agent. The prediction problem is therefore

straightforward: given a policy π, use (2.11) to compute vπ(s). The control problem again

uses policy iteration: as the agent plays episodes policy evaluation is used to calculate

q(s, a), from which the policy may be improved via choosing the greedy (or ǫ-greedy)

policy (2.9). Note that since only one episode is played per iteration, the sampled returns

are for different policies; nevertheless, MC still converges.

Monte Carlo techniques have important caveats. For instance, many episodes are

required to calculate the returns, but if the task is not episodic or the policy does not lead

to a terminal state, then the return is not well defined. To avoid this, a cutoff time on

episodes can be imposed. MC also leaves many states unexplored. This can be improved by

an exploring starts method, where different episodes begin from a random initial state, or by

improving the policy via ǫ-greedy rather than greedy, which would encourage exploration.

Another common method is Temporal Difference Learning (TD), which estimates re-

turns based on the current value function estimate. TD utilizes a combination of ideas

from MC and DP. Like MC, agents in TD learn directly from raw experience without a

model of the environment’s dynamics, as required for DP. On the other hand, TD methods

update estimates based on learned estimates, as in DP, rather than waiting for the final

outcome at the end of an episode, as in MC. This is a major advantage, as TD methods

may be applied with each action of the agent, but without requiring a full model of the en-

vironment such as the state transition probabilities. The general version of TD is referred

to as TD(λ), where λ ∈ [0, 1] interpolates between TD(0) and TD(1), where the latter is

equivalent to MC. Two famous TD algorithms for the control problem are SARSA and

Q-learning. We refer the reader to [30] for details but would like to draw an important

distinction. An algorithm is said to be on-policy if the policy followed by the agent is the

policy that is also being optimized; otherwise, it is off-policy. SARSA is on-policy, while

Q-learning is off-policy.

2.2 Deep reinforcement learning

For an infinite or sufficiently large state space it is not practical to solve for optimal policies

or value functions across the entire state space. Instead, approximations to policies and

value functions are used, which allows for the application of RL to much more complex

problems. For example, the game of Go is computationally complex and has O(10172)

possible states (legal board positions), but RL yields an agent that is currently the strongest

player in the world, AlphaZero [28].

We will focus on differentiable function approximators, such as those arising from

linear combinations of features or from deep neural networks. The use of the latter in

RL is commonly referred to as deep reinforcement learning (deep RL). All function ap-

proximators that we utilize in this paper will be deep neural networks, but the following

discussion is more general. We first discuss value function approximation, then policy ap-

proximation, and then actor-critic methods, which combine both. Finally, we will review

the asynchronous advantage actor-critic (A3C) method [33], which is the algorithm that

we utilize.
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2.2.1 Value function approximation

Consider value function approximation. Here, the approximations associated to the value

function and action-value function are

v̂(s, w) ≃ vπ(s) , q̂(s, a, w) ≃ qπ(s, a) , w ∈ Rn , (2.12)

where w is a parameter vector typically referred to as weights for the value function approxi-

mation. The advantage is that the weights determine the approximate value function across

the entire state space (or action-value function across the entire space of states and ac-

tions), which requires much less memory if n ≪ |S|, since one stores the weight vector that

determines v̂ rather than an exact value for every state. Another advantage is that it allows

for generalization from seen states to unseen states by querying the function approximator.

Suppose first that the value function vπ(s) is known exactly. Then one would like to

know the mean squared error relative to the approximation v̂(s, w)

J(w) = Eπ[(vπ(s) − v̂(s, w))2]. (2.13)

Since the function approximators that we consider are differentiable, we can apply gradient

descent with step size α to change the parameter vector in the direction of minimal mean

squared error,

∆w = −
1

2
α∇wJ(w) = αEπ[(vπ(s) − v̂(s, w))∇wv̂(s, w)] . (2.14)

The step size α is commonly known as the learning rate. Since we are updating the weights

as the agents are exploring, we use stochastic gradient descent,

∆w = α(vπ(s) − v̂(s, w))∇wv̂(s, w) , (2.15)

which will converge to the minimum mean square error with enough samples.

As an example, consider the case that the function approximator is linear combination

of state-dependent features x(s) ∈ Rn

v̂(s, w) = x(s) · w , (2.16)

where the features are chosen to capture the essential elements of the state. Then

∇wv̂(s, w) = x(s) and

∆w = α(vπ(s) − v̂(s, w)) · x(s) . (2.17)

Appropriate feature vectors can be found in many circumstances, and they are very useful

when the number of features is far less than the number of states. This seems particularly

relevant for string theory studies, where the number of states is extremely large, but the

number of features and / or experimental constraints is relatively small.

In reality, we do not know vπ(s), or else we wouldn’t be bothering to approximate it

in the first place. Instead, we will replace the value function with one of the estimators or

targets associated with MC, TD(0), or TD(λ). Letting T be the target, we have

∆w = α(T − v̂(s, w))∇wv̂(s, w) , (2.18)
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and then targets associated with MC, TD(0), or TD(λ) are

TMC = Gt TTD(0) = Rt+1 + γv̂(St+1, w) TTD(λ) = Gλ
t , (2.19)

where TTD(λ) is known as the λ-return. The targets are motivated by incremental value

function updates for each of these algorithms, see [30] for additional details.

We have discussed methods by which stochastic gradient descent may be used to

find the approximate value function v̂(s, w) and have it converge to having a minimum

mean square error, based on a followed policy π and associated value vπ(s). This is the

prediction problem. If we can find the approximate action-value function q̂(S,A,w) and

have it converge to having a minimum mean square error, we will have solved the control

problem, as given a converged q̂(S,A,w) the optimal policy can be chosen greedily (or

ǫ-greedily).

We therefore turn to action-value function approximation. If the action value function

is precisely known then stochastic gradient descent can be used to minimize the mean

squared error. The incremental update to the weights is

∆w = α(qπ(s, a) − q̂(s, a, w))∇wq̂(s, a, w) , (2.20)

which is proportional to the feature vector in the case of linear value function approxi-

mation. However, since the value function is not precisely known, the exact action value

function in the update is again replaced by a target T . For MC, TD(0) and TD(λ), T is

the same as the targets in (2.19), but with the approximate value functions v̂ replaced by

the approximate action value-functions q̂.

For both the prediction and control problems, the convergence properties depend on

the algorithms used (such as MC, TD(0), and TD(λ)), and on whether the function ap-

proximator is linear or non-linear. In the case that the function approximator is a deep

neural network, the target is chosen to be the loss function of the network.

2.2.2 Policy gradients

We have discussed the use of function approximators to approximate value functions. When

doing so, it is possible to converge to an optimal value function, from which an optimal

policy is implicit by choosing the greedy policy with respect to the optimal value function.

Another alternative is to use policy based reinforcement learning, where we learn the

policy π directly rather than learning it implicitly from a learned value function. In par-

ticular, a function approximator may be used for a stochastic policy

πθ(s, a) = P[a|s, θ] , (2.21)

which gives a probability of an action a given a state s and weight parameters θ ∈ Rn for

the policy approximation.4 We will again assume that our approximator is differentiable,

so that policy gradients can point in directions of optimal weight change. Policy gradients

maximize the parameters via gradient ascent with respect to an objective function J(θ)

4They are the analogs of the weights w for the value approximator discussed in the previous section.
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that is related to experienced rewards. The idea is that the objective function provides a

measure of how good the policy is, and therefore an optimal policy can be determined by

maximizing the objective function. Three common objective functions are

J1(θ) = vπθ
(s1) = Eπθ

[G1] ,

JV (θ) =
∑

s

dπθ
(s)vπθ

(s) ,

JR(θ) =
∑

s

dπθ
(s)

∑

a

πθ(s, a)Ra
s .

(2.22)

J1(θ) is a measure of the expected return given a fixed start state s1. In environments

where the episode does not end or there is not a fixed start state, JV (θ) computes the

average value by summing over values of given states, weighted by their probability dπθ
of

being visited while following policy πθ; dπθ(s) is the stationary distribution of the Markov

process. JR(θ) is the average reward per time step, where Ra
s is the reward received after

taking action a from state s.

To maximize the objective function, the parameters are updated via gradient ascent

∆θ = α∇θJ , (2.23)

where α is the learning rate. It is useful to rewrite policy gradients as

∇θπθ(s, a) = πθ∇θ log πθ(s, a), (2.24)

where ∇θ log πθ(s, a) is known as the score function. Central to optimizing policies via

function approximation is the policy gradient theorem:

Theorem. For any differentiable policy, for any of the policy objective functions J = J1,

J = JR, or J = JV ,

∇θJ(θ) = Eπθ
[∇θ log πθ(s, a) qπθ

(s, a)]. (2.25)

It depends only on the score function and action-value function associated with the

policy. In practice qπθ
(s, a) is not known, but can be approximated by MC, TD(0), or TD(λ)

as discussed above. An early MC policy gradient algorithm is called REINFORCE [34, 35],

but it has the downside of being rather slow. To solve this problem, we turn to actor-

critic methods.

2.2.3 Actor-critic methods

The downside of MC policy gradients is that they require waiting until the end of an

episode, and are therefore slow. Actor-critic methods solve this problem by updating the

policy online, not at the end of an episode. Since online methods are desirable and the

action-value function appears in the policy gradient theorem, it is natural to ask whether

one could simultaneously use a function approximator for both the action-value function

and the policy. Such methods are called actor-critic (AC) methods.
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In AC there are two updates to perform: the critic updates the action-value function

approximator by adjusting the weights w, and the actor updates the policy weights θ in the

direction suggested by the action-value function, that is, by the critic. Letting π̂θ(s, a) and

q̂w(s, a) be the approximated policy and action-value function, the gradient of the objective

function and policy parameter update are:

∇θJ(θ) ≃ Eπθ
[∇θ log π̂θ(s, a) q̂w(s, a)] , ∆θ = α∇θ log π̂θ(s, a) q̂w(s, a) . (2.26)

The critic is simply performing policy evaluation using value function approximation, and

therefore previously discussed methods are available to AC models.

There is also an important theorem for AC methods. A value function approximator

is said to be compatible to a policy πθ if

∇wq̂w(s, a) = ∇θ log πθ(s, a) . (2.27)

The compatible function approximation theorem is

Theorem. If the action-value function is compatible and its parameters minimize the mean

squared error, then the policy gradient is exact,

∇θJ(θ) = Eπθ
[∇θ log πθ(s, a) q̂w(s, a)] . (2.28)

In such a case actor-critic methods are particularly accurate.

A baseline function B(s) can be utilized to decrease variance and improve performance.

Critically, it does not depend on actions and therefore it can be shown that it does not

change the expectations in the policy gradient theorem. A particularly useful baseline is

the value function itself, B(s) = vπθ
(s). In this case we define the advantage function

Aπθ
(s, a) = qπθ

(s, a) − vπθ
(s), (2.29)

in which case the policy gradient theorem can be rewritten

∇θJ(θ) = Eπθ
[∇θ log πθ(s, a)Aπθ

(s, a)]. (2.30)

This is an estimate of the advantage of taking the action a in the state s relative to the

value of simply being in the state, as measured by vπθ
(s).

2.2.4 Asynchronous advantage actor-critics (A3C)

In this paper we utilize an asynchronous advantage actor-critic (A3C) [33] to study string

vacua. It is a model-free algorithm developed in 2016 that performs well relative to other

algorithms available at the time, such as deep Q-networks [36]. As expected based on

its name, A3C is an actor-critic method. The central breakthrough of [33] was to allow

for asynchronous reinforcement learning, meaning that many agents are run in parallel

and updates are performed on neural networks as the ensemble of agents experience their

environments. As an analogy, the idea is that workers (the agents) report back to a

global instance (the global policy and/or value functions) in a way that their communal
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experience leads to optimal behavior. Four different asynchronous methods were studied,

and the best performing method was an actor-critic that utilized the advantage function

to update the policy, i.e., an A3C. We refer the reader to the original literature for a more

detailed account.

For physicists with moderate computational resources, the use of A3C is a significant

advantage. This is because many reinforcement learning techniques require specialized

hardware such as GPUs or very large systems, whereas A3C may be run on a standard

multi-core CPU. Details of our A3C implementation are discussed in the next sections.

We note that we are facing a multi-task reinforcement learning problem, which we

tackle with two different methods. In the first method we employ, we check the various

goals sequentially, i.e. only start checking the N th task if the previous N − 1 tasks are

solved. We also only end an episode if all tasks have been solved. However, we do provide

increasing rewards for each of the tasks; for example the N th task receives a reward of 10cN

with c of order one, in order to incentivize the agent to strive for the larger reward of the

next task. In the second method, we learn the N tasks by choosing N different reward

functions that are tailored towards one specific task. Since the agents act asynchronously,

we simply utilize N ×M workers total, where M workers are learning to solve each of the

N tasks [37].

3 The environment for type IIA string theory

In this section we formulate the data of a d = 4, N = 1 compactification of type IIA

superstring theory in a form that is amenable for a computer analysis. We begin with a

general discussion, and then restrict to the case of orientifolds of toroidal orbifolds.

Defining data. A d = 4, N = 1 orientifold compactification of the type IIA superstring

with intersecting D6-branes is specified by:

• A pair (X, σ̄) where X is a compact Calabi-Yau threefold (compact Ricci-flat six-

manifold that is also complex and Kähler) and σ̄ is an antiholomorphic involution

which we also call Z2,O. The fixed point locus is a three-cycle πO6 that is wrapped

by an O6-plane.

• A collection D of stacks of Na D6-branes, a = 1, . . . , |D|, wrapped on three-cycles πa
and their orientifold images π′

a, where πa is a special Lagrangian submanifold, i.e.

volume minimizing in its homology class.

• A Gauss law and a K-theory constraint for D6-brane Ramond-Ramond charge, and

a supersymmetry condition; these are necessary in this context for a consistent su-

persymmetric compactification.

This data, which partially defines the compactification, is associated with a d = 4, N = 1

gauge theory sector.

– 15 –



J
H
E
P
0
6
(
2
0
1
9
)
0
0
3

Gauge group. The overall gauge group is given by

G =

|D|
⊗

a=1

Ga , (3.1)

where |D| is the number of D6 brane stacks and Ga is a non-Abelian Lie group whose type

is determined by the intersection of the brane stack with the orientifold plane.

• Ga = U(Na) if πa and πO6 are in general position,

• Ga = SO(2Na) if πa is on top of πO6,

• Ga = USp(Na) if πa is orthogonal to πO6.

Unbroken U(1). While each U(Na) brane stack contributes a U(1) factor, these can

be Stückelberg massive and hence not be present as a low energy gauge symmetry.5 For

toroidal orbifolds, the generators Ti of the massless U(1)s are given by the kernel of the

3 ×K matrix

Ti = ker(Nama
i ) , i = 1, 2, 3 , a = 1, . . . , number of U stacks , (3.2)

where K is the number of brane stacks with unitary gauge group and the ma
i are integers

characterizing the unitary brane stacks, cf. section 3.1. Note that for phenomenological

reasons, we demand that (at least) one U(1) remains massless, which can serve as the

hypercharge of the standard model. Since the rank is K − 3 generically, this requires in

general four U(Na) brane stacks.

Matter representations. Chiral multiplets may arise at brane intersections. The type

of matter and its multiplicity depends on the intersection.

• Bifundamental matter (�a,�b) may arise at the intersection of D6-branes on πa
and πb, with chiral index χ(�a,�b) = πa · πb ∈ Z, where � and � denote the

fundamental and anti-fundamental representation6 of the associated stack. Similarly,

χ(�a,�b) = πa · π
′
b ∈ Z.

• Matter in the two-fold symmetrized representation ( )a may arise at the intersection

of a D6-brane with the orientifold brane, with chiral index χ( )a = 1
2(πa · π

′
a − πa ·

πO6) ∈ Z.

• Matter in the two-fold anti-symmetrized representation ( )a may arise at the in-

tersection of a D6-brane with the orientifold brane, with chiral index χ( )a =
1
2(πa · π

′
a + πa · πO6) ∈ Z.

While this data encodes much of the physics, it is difficult to implement on a computer, as

e.g. special Lagrangian submanifolds are notoriously difficult to construct explicitly.

5From the low energy point of view, these symmetries appear as global symmetries that still influence

physical observables such as Yukawa couplings.
6For SO and USp groups, these will be the lowest-dimensional irreducible representations.
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3.1 IIA Z2 × Z2 orbifold

We would like to translate this data into a form that is amenable for a computer analysis.

First, we specify to the case that X = T 6/(Z2 × Z2 × Z2,O), where the Z2 × Z2 are the

orbifold action and Z2,O is the orientifold action. Second, we restrict to the case that the

O6-plane and D6-branes wrap factorizable three-cycles, i.e. three-cycles that are one-cycles

on each of the three T 2 factors in T 6 = T 2 × T 2 × T 2. Each such one-cycle is specified

by a vector in Z2. We will refer to them as (n1,m1), (n2,m2), (n3,m3), for each of the

three T 2 factors, respectively. These are the wrapping numbers along the basis of one-

cycles (π2i−1, π2i). On each T 2 we can define a (directed) symplectic intersection product

of one-cycles. For a product of three two-tori with wrapping numbers

πa = (na
1,m

a
1, n

a
2,m

a
2, n

a
3,m

a
3) , πb = (nb

1,m
b
1, n

b
2,m

b
2, n

b
3,m

b
3) , (3.3)

the intersection product is given by

Iab =
3
∏

i=1

(na
im

b
i − nb

im
a
i ). (3.4)

The orientifold action σ̄ acts on the basis of one-cycles as

σ̄ : π2i−1 → π2i−1 − 2biπ2i , σ̄ : π2i → −π2i , (3.5)

where bi is the tilt parameter. In addition to the orientifold action we also mod out a

non-freely acting Z2 × Z2 symmetry with generators θ and ω that act on the coordinates

zi of the three tori as

θ : (z1, z2, z3) 7→ (z1,−z2,−z3) , ω : (z1, z2, z3) 7→ (−z1, z2,−z3) ,

θω : (z1, z2, z3) 7→ (−z1,−z2, z3) .
(3.6)

There are only two choices for the complex structure of the torus that are compatible with

the orbifold and orientifold action: the rectangular torus (bi = 0) and the tilted torus

(bi = 1
2). The combination

π̃2i−1 = π2i−1 − biπ2i (3.7)

is orientifold even, and in the basis (π2i, π̃2i−1) the wrapping numbers are (ni, m̃i), where

m̃i = mi + bini. For notational convenience, we also define the real quantities

U0 = R
(1)
1 R

(2)
1 R

(3)
1 , Ui = R

(i)
1 R

(j)
2 R

(k)
2 , (3.8)

with i, j, k ∈ {1, 2, 3} cyclic and R
(i)
1 and R

(i)
2 the radii of the ith torus. We furthermore

define the combination b̂ = (
∏

i(1 − bi))
−1, and the products

X̂0 = b̂n1n2n3 , X̂i = −b̂nim̃jm̃k , (3.9)

Ŷ 0 = b̂m̃1m̃2m̃3 , Ŷ i = −b̂m̃injnk , (3.10)

for i, j, k ∈ {1, 2, 3} cyclic. The unhatted quantities are defined in the same way with the

factors bi set to zero. As each stack of D6-branes a = 1, . . . , |D| has its own (ni,mi) for
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i = 1, 2, 3, the X̂ and Ŷ variables will often carry a subscript a that denotes a particular D6-

brane stack. In [38], the quantities X̂I , I = 0, 1, 2, 3 are denoted by P,Q,R, S, respectively.

Note that if all winding numbers ni,mi of a brane stack with N branes have a common

multiple µ, the stack can be re-expressed as a stack with winding numbers ni/µ,mi/µ and

N +µ branes. Therefore, we demand that winding numbers on the torus be coprime, which

translates into the condition

(Y 0
a )2 =

3
∏

i=1

gcd(Y 0
a , X

i
a) . (3.11)

In terms of these quantities on the orbifold, we can concisely state the various consis-

tency condition we have to impose on the compactification:

Tadpole cancellation. The tadpole cancellation condition can be understood as RR

charge conservation, i.e. we have to balance the positive charge of the D-branes against the

negative charge of the Orientifold planes. The conditions read

∑

a

NaX̂
0
a = 8b̂,

∑

a

NaX̂
i
a =

8

1 − bi
, i ∈ {1, 2, 3} . (3.12)

K-Theory constraint. Another consistency constraint needed to ensure that the string

background is well-defined can be derived from K-Theory. It guarantees that the multi-

plicity of fundamental representations of USp(2) is even and can be written as

∑

a

NaŶ
0
a ≡ 0 mod 2 , (1 − bj)(1 − bk)

∑

a

NaŶ
i
a ≡ 0 mod 2 , (3.13)

for i, j, k ∈ {1, 2, 3} cyclic. Violation of this condition will lead to a global gauge

anomaly [39] known as Witten anomaly [40].

Supersymmetry. The necessary conditions for unbroken supersymmetry (SUSY) read

3
∑

I=0

Ŷ I
a

UI

= 0,

3
∑

I=0

X̂I
aUI > 0 . (3.14)

These conditions are much harder to check than the others, i.e. the tadpole, K-theory,

spectrum, and gauge group. The latter require linear algebra, while the SUSY conditions

require solving a coupled system of equalities and inequalities. We will describe how we

implemented the check in Python in section 4.2.

Data structures. We now define concrete data structures that encode the data of one

of these type IIA orbifold compactifications.

Definition. A plane is a vector (n1,m1, n2,m2, n3,m3) ∈ Z6 that represents the O6-plane.

Definition. A stack is a vector (N,n1,m1, n2,m2, n3,m3) ∈ Z7 that represents a D6 stack.

Definition. A state s is a set s = (b1, b2, b3, U0, U1, U2, U3, O,D), where bi ∈ {0, 12},

U0, Ui ∈ R+, O is a plane, and D is a set of stacks. The set of states is

denoted S.
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These are the data inputs that are central to our analysis.

The particle spectrum is a simple function of a state s. The gauge group G(s) is

encoded in the brane stacks D as explained above. The structure of bifundamental matter

fields in a state s is encoded in f(s) ∈ Z|D|(|D|−1). Furthermore there may also be matter

fields in s that are in two-index tensor representations. These may be encoded in a vector

t(s) ∈ Z2|D|. The vectors f(s) and t(s) may be combined into a vector encoding all of the

matter in s, m(s) ∈ Z|D|(|D|+1). The spectrum P(s) of a state s is therefore

P(s) = (G(s),m(s)). (3.15)

The computation of P(s) is fast, as it depends only on simple conditional statements and

linear arithmetic.

Despite the ease with which physical outputs P(s) can be computed for any state

s ∈ S, the global structure of S is not known, and in fact even its cardinality is not known,

though it is finite [38]. In addition to P, we also need to check the K-Theory, tadpole, and

SUSY conditions.

Let us now put this data into the context of RL. Let S be the set of states, A the

abstract set of possible actions, and A(s) be the set of concrete actions on a particular

state s. We will also use st and at to denote a state and an action at a discrete time t,

respectively.

Definition. An action a is a map a : S → S that changes the set of stacks D.

Strictly speaking, this action should be called stacks-action, since it modifies the brane

stacks without changing the compactification space properties such as the tilting parame-

ters bi. Since there are only a few discrete choices, we take the bi fixed during run time and

set up different runs with different bi. From (3.12), we find that the tadpole cancellation

constraints become stronger if we tilt the tori. Thus, one would expect most solutions to

appear on three untilted tori. While this is not discussed in the original papers [38, 41] to

the best of our knowledge, three untilted tori cannot give rise to an odd number of families.

To see this, note that the chiral index can be written as

χ :=
∑

a>b

Ia′b − Iab = 2

3
∑

i=1

X̂b
i Ŷ

a
i , (3.16)

with X̂, Ŷ as defined in (3.9). Since ni,mi are integers for untwisted tori, so are X̂, Ŷ ,

and hence χ is always even. This was also “rediscovered” by the RL agents, which never

produced any three generation model (or odd generation model in general) when run on

three untwisted tori. This led us to conjecture and prove that this was indeed impossible.

3.2 Truncated IIA Z2 × Z2 orbifold

3.2.1 Truncating state and action space

To test RL methods in string theory we will study a simplified set of type IIA compactifi-

cations where the state space is truncated. Specifically, we take

N ∈ {0, 1, . . . , Nmax}, ni ∈ {−n,−n + 1, . . . , n− 1, n}, mi ∈ {0, 1, . . . ,m}, (3.17)
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with a fixed upper bound Dmax on |D|. Note that setting N = 0 in a stack amounts

effectively to removing it from D. Thus, we truncate by restricting to a Dmax-stack model

where each stack can have at most Nmax branes and the wrapping numbers are restricted

according to parameters n and m. The values of N have to chosen to allow for standard

models, i.e. Nmax ≥ 3, and the mi’s are chosen non-negative since the their negatives are

automatically included as orientifold images. Since each stack is specified by a vector

d = (N,n1,m1, n2,m2, n3,m3), (3.18)

there are Nmax × (2n+ 1)3 × (m+ 1)3 choices per stack, such that the number of states in

the system without taking into account any symmetries is

Nall
states =

[

Nmax(2n + 1)3(m + 1)3
]Dmax

. (3.19)

However, this can be reduced by symmetries. We distinguish two inequivalent types of

symmetries of a state s:

• Symmetries that lead to physically equivalent, indistinguishable models.

• Symmetries that connect a state s with a different state s′ such that both s and s′

are solutions that differ in their properties (e.g. in the moduli Ui) on a level that is

not part of the current analysis but will eventually lead to inequivalent models.

Since we are ultimately interested in full solutions, we will only consider symmetries

of the first type as true symmetries whose redundancies we want to eliminate. A pri-

ori, we can construct an infinite set of states by sending one or more of the parameters

(Nmax, Dmax, n,m) to infinity. While symmetries relate different states, this set will still

contain infinitely many inequivalent states. Finiteness of the construction is only guar-

anteed if one combines symmetries with the physical constraints of tadpole and SUSY

conditions; in the current context, this was shown in [38]. This interplay7 has also been

observed in other string constructions [1, 42–46]. We do not implement this combination

of constraints and symmetries to reduce the state space to a finite set, since it is extremely

difficult to carry out. Furthermore, the resulting set is most likely still much too large.

Also, we want the machine to learn this connection itself.

The symmetries originate from two sources. First, we can reparameterize the tori.

As explained above, due to the orientifold action we need to include mi as well as −mi.

Changing the signs of all three mi simultaneously corresponds to switching all branes with

their orientifold images. Changing signs on two (out of the three) distinct pairs (ni,mi) and

(nj ,mj) simultaneously corresponds to an orientation-preserving coordinate transformation

on the D6-branes.

Second, we can simply permute and relabel the tori and all their defining proper-

ties, which amounts to permuting X̂ and Ŷ . In order to ensure that the physical con-

straints (3.12) and (3.14) remain unchanged we extend the action of the permutation of

7Note that these discussions focus on a given construction. It is not known, for instance, whether the

number of Calabi-Yau threefolds is finite.
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the X̂ and Ŷ to the moduli. Note that the symmetry operation that permutes the X̂ and

Ŷ corresponds to a simultaneous 90 degree rotation of two of the three tori,

(ni,mi) → (mi,−ni) and (ni,mi) → (mj ,−nj) . (3.20)

In order to implement this symmetry, we need to truncate the allowed range of the integers

ni and mi to the same upper bound, n = m. We also need to simultaneously permute the

moduli Ui of the tori accordingly.

We present an upper bound on the number of inequivalent states via the following

considerations. First, we look at the three types of symmetries described above:

(S1) : (ni,mi, nj ,mj , nk,mk) 7→ (ni,−mi, nj ,−mj , nk,−mk) ,

(S2) : (ni,mi, nj ,mj , nk,mk) 7→ (−ni,−mi,−nj ,−mj , nk,mk) ,

(S3) : (ni,mi, nj ,mj , nk,mk) 7→ (mi,−ni,mj ,−nj , nk,mk) .

(3.21)

Since symmetries (S2) and (S3) leave the winding numbers of one torus invariant, there are

three symmetry generators of type (S2) and three symmetry generators of type (S3). By

analyzing the group structure, we find that the three generators of (S3) generate a (Z4)
3

symmetry. Furthermore, each Z4 group of (S3) contains one of the Z2 groups generated

by (S2) as a subgroup. Moreover, the three Z4 symmetries do not commute with the (Z2)

symmetry generated by (S1). Thus, the symmetry operations generate the group (Z4)
3⋊Z2

of order 128. Thus, we obtain

N rough
states =

[

Nmax
(2n + 1)6

128

]Dmax

, (3.22)

as a first rough estimate for the number of states after symmetry reduction. However, we

can further refine this count. First, (3.22) overcounts the number of states since it contains

cases in which (ni,mi) = (0, 0) and cases in which ni and mi are not co-prime. On the

other hand, it undercounts since e.g. (S1) stabilizes cases where all mi are zero. The first

overcounting can be corrected by subtracting

• 3(2n + 1)4 to take into account cases where (ni,mi) vanish for one torus,

• 3(2n + 1)2 to take into account cases where (ni,mi) vanish for two tori,

• 1 to take into account cases where (ni,mi) vanish for all three tori.

To account for the overcounting, we need to re-instate a factor of 2. Lastly, we are left

with the cases in which ni and mi are not co-prime. These are very hard to count, since it

requires knowledge of the distribution of primes. However, for small upper bounds n and

m, this doesn’t happen very often. Up to this overcounting, we find that the number of

states is given by

N symm
states =

[

Nmax
(2n + 1)6

128
+ (2n)3 −

1

128
[3(2n + 1)4 + 3(2n + 1)2 + 1]

]Dmax

. (3.23)
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Even in the most conservative case where we take Nmax = 3 and Dmax = 4 (needed to

accommodate SU(3)C and U(1)Y , respectively), we find that the number of configurations

grows very rapidly:

n = m 1 2 3 4 5

w symm 2.8 × 105 3.0 × 1010 7.2 × 1013 2.7 × 1016 3.2 × 1018

w/o symm 1.8 × 1011 1.1 × 1016 1.9 × 1019 5.6 × 1021 5.5 × 1023

(3.24)

This minimum requirement would in practice exclude many models, such as constructions

with more than one hidden sector gauge group and limits the rank of the hidden sector to

SU(3). On the other hand, the more hidden sector gauge groups we have the more likely

we will find exotically charged particles.

3.2.2 The Douglas-Taylor truncation

In this section we perform a different type of truncation where our system is described in

the language of A-branes, B-branes, and C-branes8 of Douglas-Taylor [38]. The advantage

of this approach is that Douglas-Taylor took into account some necessary conditions for

A-branes, B-branes, and C-branes to satisfy the tadpole and supersymmetry conditions,

and therefore by using this language of A-B-C-branes we cut down on the number of

inconsistent states that are considered.

To carry out the computation of the number of possible states in our truncation, we

must define a number of quantities. Let DA, DB, and DC be the number of A-stacks, B-

stacks, and C-stacks that are considered. Let NA, NB, and NC be the maximum number

of branes in any A-stack, B-stack, or C-stack. Let dA and dB be the upper bound on the

absolute value of any winding number for an A-stack or B-stack. The analogous quantity

for C-stacks does not exist because primitivity requires the would-be dC = 1, so we do not

use it.

A-branes. We first compute an upper bound on the number of possible sets of A-

branes [38]. A-branes have four non-vanishing tadpoles X̂I and there are four possibilities

for the signs of the n’s and m’s if one takes into account necessary constraints from tadpole

cancellation (3.12) and supersymmetry (3.14). The three n’s may have sign + + +, in

which case the possible signs for the m’s are + − −, − + −, or − − +. Alternatively, the

n’s may have signs + + −, in which case the m’s must have sign + + −. So there are four

possibilities for sets of signs. The possible number of sets of A-stacks is less than or equal to

NA-stacks ≤

DA
∑

i=0

(

4NAd
6
A

i

)

, (3.25)

which follows from the fact that the number of possible A-stacks is 4NAd
6
A.

B-branes. We turn to B-branes, which have two non-vanishing tadpoles and two vanish-

ing tadpoles. Direct calculation shows that there are six possible combinations such that

there are precisely two vanishing tadpoles, and furthermore tadpole cancellation (3.12)

and supersymmetry (3.14) require that the two non-vanishing tadpoles are positive. These

solutions are collected in table 1.
8This is not related to generalized (p, q) 7-branes, which are also referred to as A,B,C-branes.
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X0 X1 X2 X3

n1n2n3 −m2m3n1 0 0

n1n2n3 0 −m1m3n2 0

n1n2n3 0 0 −m1m2n3

0 0 −m1m3n2 −m1m2n3

0 −m2m3n1 0 −m1m2n3

0 −m2m3n1 −m1m3n2 0

Table 1. Possible winding number combinations for B-branes.

Next, we have to address the question of how many possible sign choices there are

for winding numbers in table 1 consistent with the positivity constraint. A brute force

calculation verifies the following combinatorics, but we can argue directly using a few

useful facts. One is that all of the six solutions have precisely one winding number that

appears in both tadpoles, and four that appear in one or the other. So there are five signs

to choose. Furthermore, three of the six solutions have one tadpole with a minus sign, and

three have minus signs on both tadpoles.

Consider any of the three solutions with only one minus sign. Regardless of whether

the repeated quantity is plus or minus, the rest of the variables in one tadpole will have

to give a minus, while the rest in the other will have to give a plus, 2 choices each for a

factor of 4. Then there is the choice associated with the sign of the repeated quantity, for

another factor of 2, bringing us to 8. This argumentation holds for three of the solutions,

bringing us to 24. They are unique because the different solutions have different entries set

to zero. Consider any of the three solutions with two minus signs. Suppose the repeated

entry is plus. Then the remaining two variables in each tadpole have to give an overall

minus to each tadpole to make the overall tadpole positive. These are 2 × 2 possibilities

since the remaining sets of two variables can each be +− or −+. Multiplying by 3 for the 3

solutions brings it to 12. Now suppose the repeated entry is minus. Then the remainder of

the variables in the tadpole have to give an overall plus. This gives another 2× 2× 3 = 12.

All in all, we see that the six solutions allow for a total of 48 different sign possibil-

ities for the winding numbers. We therefore have that the number of sets of B-stacks is

bounded by

NB-stacks ≤

DB
∑

j=0

(

48NBd
5
B

j

)

, (3.26)

where the number of possible B-stacks, 48NBd
5
B follows from the above combinatorics and

the fact that one of the winding numbers must vanish, so it is d5B rather than d6B as in the

case of A-stacks.

C-branes. Now let us consider C-branes, which have one non-vanishing tadpole. This

arises from three vanishing winding numbers, and the possibilities are m1 = m2 = m3 = 0,

m1 = n2 = n3 = 0, n1 = m2 = n3 = 0, and n1 = n2 = m3 = 0. By the supersymmetry

condition (3.14), the non-vanishing tadpole must be positive, and in each case there are

four choices of signs that render the tadpole positive, so there are four solutions and four
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sign choices. Thus the possible number of sets of C-stacks is bounded by

NC-stacks ≤

DC
∑

k=0

(

16NC

k

)

, (3.27)

which follows from the fact that there are 16NC possible C-stacks.

In all, the upper bound on the number of orbifold configurations in the truncation is

NDT
states ≤

[

DA
∑

i=0

(

4NAd
6
A

i

)

]

×

[

DB
∑

j=0

(

48NBd
5
B

j

)

]

×

[

DC
∑

k=0

(

16NC

k

)

]

. (3.28)

Note that DA ≤ 4NAd
6
A, since higher DA would be adding zero in the sum for any i >

4NAd
6
A; similar statements hold for DB and DC

Number of states. We now study the upper bound as a function of the truncation

parameters in order to determine which truncations may be feasible to study. Again, the

(very restrictive) minimum requirement is NA = NB = NC = 3 and DA + DB + DC = 4,

to allow for an SU(3)C gauge group to arise from an A-stack, B-stack, or C-stack and

for a massless9 U(1)Y , respectively. As in the pure symmetry reduction case (3.24), even

this most conservative upper bound grows quickly with growing dA and dB. Since the

truncation described here takes into account some necessary conditions for supersymmetry

and tadpole cancellation, the numbers are lower than those in the last line of (3.24), which

was an upper bound without any further constraints imposed. However, in this setup,

symmetries are only partially accounted for, and hence the number are larger than the first

line of (3.24). In order to quote the numbers, we take all integer partitions of 4 of length

three for DA + DB + DC and set dA = dB. Since the number of states grows with 4d6A
and 48d5B, the size is dictated by dA for dA > dB and by dB for dB ≥ dA in the parameter

range we consider. The number of states is then given by

dA = dB 1 2 3 4 5

7.4 × 107 3.6 × 1013 1.5 × 1017 6.2 × 1019 6.9 × 1021
(3.29)

The results from (3.24) and (3.29) clearly illustrate how large the configuration space

is. Even if we allow winding numbers between −1 and +1, a complete scan will take con-

siderable time, and a systematic search for winding numbers larger than two is completely

unfeasible. This necessitates using other techniques to traverse the string landscape con-

figuration space even for this single choice of compactification manifold. In the following,

we will explain the different agents we set up for an analysis with Reinforcement Learning.

3.3 Different views on the landscape: environment implementation

3.3.1 The stacking environment

As explained in the previous sections, we truncate the action and state space available

to our agents. The first possibility for traversing the truncated landscape of the Z2 × Z2

9This is based on the argument that a 3 ×K matrix will have a non-trivial kernel for K > 3; for very

special choices of winding numbers, K = 3 could be sufficient.
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toroidal orientifold compactifications of Type IIA string theory is based on the Douglas-

Taylor truncation outlined in section 3.2.2. The idea of the stacking environment is to first

set an upper bound Dmax of brane stacks we allow to be used. Each of these Dmax stacks

can be taken as an A-,B-, or C-brane stack. In addition, we allow the agent to change the

number of branes Na in each stack up to Nmax. If the agent sets Na of any stack to zero,

this brane stack is completely removed and an entirely new stack can be added. We thus

have the following actions:

Definition. An add-brane-action produces D′ by selecting a single stack da ∈ D and

incrementing the number of branes in this stack, Na → Na + 1.

Definition. A remove-brane-action produces D′ by selecting a single stack d ∈ D and

reducing the number of branes in this stack, Na → Na − 1. If Na reaches

zero, the entire stack da is removed from D.

Definition. A new-action produces a new set of stacks D′ by adding a new stack da to

D with initially one brane, Na = 1. Further branes can be added to this new

stack by subsequent add-brane-actions.

Note that, depending on the state of the environment, some of the actions can be

illegal actions. Illegal actions are:

• Adding a brane to a stack that has already Nmax branes

• Creating a new brane stack if there are already Dmax brane stacks

• Creating a new brane stack da whose winding numbers coincide with those of another

stack db ∈ D that is already in the model

If the agent tries to perform an illegal action, the action is disregarded and the agent is

punished as detailed in section 4.1.

If we denote the number of A,B,C branes by µA, µB, µC , the cardinality N stack
action of the

action space of the stacking environment is

N stacking
action = Dmax + Dmax + (µA + µB + µC) , (3.30)

counting the number of add-brane-actions, remove-brane-action, and new-actions,

respectively.

3.3.2 The flipping environment

The flipping environment uses a different strategy to describe the configuration space of

D6 brane stacks on the orientifold background. Just like the stacking environment, agents

in this environment can increase or decrease the number of branes in any given stack.

However, instead of adding/removing entire stacks, the agent in the flipping environment

can “flip”, i.e. increment or decrement any of the winding numbers in any of the stacks by

one unit. Thus, for this environment, we do not use the distinction of brane types A, B,

and C. Instead, we produce any brane stack by increasing/decreasing winding numbers. In
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order to truncate the state space of this environment, we employ the truncation discussed

in section 3.2.1.

The environment has the following four types of actions:

Definition. An add-brane-action produces D′ by selecting a single stack da ∈ D and

incrementing the number of branes in this stack, Na → Na + 1.

Definition. A remove-brane-action produces D′ by selecting a single stack d ∈ D and

reducing the number of branes in this stack, Na → Na − 1. If Na reaches

zero, the entire stack da is removed from D.

Definition. An increase-winding-action produces D′ by selecting a single stack da ∈ D

and increasing a single winding number na
i or ma

i by one unit. Depending

on the tilting of the torus and the winding number, this increase might be

half-integer or integer.

Definition. A decrease-winding-action produces D′ by selecting a single stack da ∈ D

and decreasing a single winding number na
i or ma

i by one unit. Depending

on the tilting of the torus and the winding number, this decrease might be

half-integer or integer.

In this case, we allow the agent to “remove” a brane stack by setting the number of

branes in the stack to zero. Depending on the state the environment is in, there might be

the following illegal moves:

• Adding/removing a brane from a full/empty brane stack

• Flipping a winding number from a state that has zero branes

• Increasing/decreasing a winding number beyond its maximum/minimum n or m

• Changing a winding number of a stack da ∈ D such that all winding numbers of the

stack da match those of another stack db ∈ D

• Changing a winding number such that the resulting winding numbers are not

co-prime.

In the first four cases, we discard the illegal move and punish the agent. The last case is

somewhat different. In order to reach some winding configurations, the agent might have

to go through a state in which the co-prime condition is violated. Hence, if the agent

chooses to perform a winding-action, we increase/decrease the selected winding number

by one unit and check the co-prime condition. If this condition is violated, we keep in-

creasing/decreasing the winding number until either the co-prime condition is satisfied or

the move becomes illegal since the agent tries to change a winding number beyond the

specified cutoff. Also note that, in contrast to the stacking environment, the agent in the

flipping environment has to start from a valid brane configuration — if all winding numbers

were set to zero, the agent couldn’t reach any valid winding configuration since it can only

change one winding number at a time. This is why we start from a random but fixed set of
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winding configurations for each of the Dmax states, and populate each stack with a random

but fixed number of branes Na.

The number of the actions Nflipping
action of the flipping environment is simply

Nflipping
action = Dmax + Dmax + 6Dmax + 6Dmax , (3.31)

counting the number of add-brane-actions, remove-brane-actions, increase-winding-actions,

and decrease-winding-actions, respectively.

3.3.3 The one-in-a-billion search environments

Our final environment uses yet another strategy to model the landscape. It is a restriction

of the stacking and the flipping environment that ensures the presence of the non-Abelian

part of the Standard Model gauge group. In more detail, we set Dmax to four and fix

the numbers of branes per stack to Na = (3, 2, 1, 1). These are the type of brane stacks

also considered in [41]. The authors identify four possible realizations of the standard

model particle content for these brane stacks. Essentially, there is a choice whether the

non-Abelian part of the second brane stack realizes an SU(2) or Sp(1) gauge group, which

are isomorphic to SU(2) on the level of their Lie algebras. Depending on this choice, the

hypercharge generator will be different. Moreover, there are different possibilities to realize

some of the particles, for example the right-handed quarks transforming as (3,1) can be

realized as (�̄, 1) or as ( , 1). For details see [41].

Since the number of stacks as well as the number of branes per stack are fixed, an

agent in this environment can just change the winding numbers in the stacks. The one-in-

a-billion search agent that is based on the stacking agent will change all 6 winding numbers

at once by inserting a brane of type A, B, or C, while the one based on the flipping agent

will just change a single winding number of a single stack at a time. In both cases the

number Na of branes in the stack is kept fixed. Let us discuss the version based on the

stacking agent first. This has the following action:

Definition. A change-stack-action produces D′ by selecting a single stack da ∈ D and

exchanging all six winding numbers by new ones from a list of possible A,B,C

brane stacks while keeping the number Na of branes in the stack unchanged.

The only illegal move in this environment is to use the same winding numbers in differ-

ent stacks:

• Changing all winding numbers of a stack da ∈ D such that they match those of

another stack db ∈ D

For this version of the one-in-a-billion environment, the number of the actions N1:B-stacking
action is

N1:B-stacking
action = 4(µA + µB + µC) , (3.32)

which counts the number of change-stack-actions as Dmax = 4.

The flipping version of the one-in-a-billion agent has the following actions:

Definition. An increase-winding-action produces D′ by selecting a single stack da ∈ D

and increasing a single winding number na
i or ma

i by one unit. Depending

on the tilting of the torus and the winding number, this increase might be

half-integer or integer.
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Definition. A decrease-winding-action produces D′ by selecting a single stack da ∈ D

and decreasing a single winding number na
i or ma

i by one unit. Depending

on the tilting of the torus and the winding number, this decrease might be

half-integer or integer.

The illegal moves become:

• Increasing/decreasing a winding number beyond its maximum/minimum n or m

• Changing a winding number of a stack da ∈ D such that all winding numbers of the

stack da match those of another stack db ∈ D

• Changing a winding number such that the resulting winding numbers are not co-

prime.

For this version of the one-in-a-billion environment, the number of the actions

N1:B-flipping
action are

N1:B-flipping
action = 4 × 6 × 2 = 48 , (3.33)

since each of the Dmax = 4 stacks has 6 winding numbers that can be decreased or increased.

3.3.4 Comparison of environments

The agents in all three environments navigate and “perceive” the string landscape differ-

ently. There are a number of points we would like to make along these lines:

• Two states that might be nearby (i.e. reachable with a single or very few actions)

in one environment might be far away or even unreachable for another environment.

Consequently, the way the consistency constraints, the gauge groups, and the spec-

trum can change with each step is also different for different environments. For

example, while one agent might have to strongly violate tadpole cancellation at an

intermediate state in order to move from one consistent state to the next, another

might just be able to move along a valley in which the tadpole constraint is kept in-

tact or violated only slightly. Similarly, in one perspective, the majority of states that

satisfy the consistency constraints (tadpole, K-Theory, SUSY) might be close to a

physically viable state (gauge group, matter content) but not vice versa. That means,

some type of states might cluster while others are evenly distributed throughout the

landscape.10

• The order or priority in which the agents check the various mathematical and physical

constraints can be influenced by the reward function. Since the constraints for all

agents are the same, we can use the same reward functions (up to a few differences

related to the different illegal actions), which are discussed in section 4.1.

10While it would be interesting to study whether such clustering occurs, this is beyond the scope of the

current paper.
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• One perspective on the landscape might be more “natural” for an agent to learn than

another. Deciding which environment will be best requires a deep understanding of

the structure of the landscape, in particular of the way the system of coupled Dio-

phantine equations (arising from our constraints) behaves. Lacking this knowledge,

we simply try different approaches.

If one perspective were considerably better than the others, this might tell us about the

nature of the landscape (i.e. the structure of the underlying mathematical constraints), or

which implementation is better suited for Reinforcement Learning.

Concerning this point, it should be noted that the cardinality of state space is huge in

all cases (cf. section 3.2), and the encoding of the data of a state is the same for each agent.

Hence, the neural network that predicts the value of a state will get the same input for all

environment implementations, and it will have to deal with huge numbers of different states

in all cases. However, the cardinality of the action spaces varies considerably between the

environments, cf. (3.30), (3.31), (3.32), (3.33), with the flipping environments having much

smaller action spaces. Consequently, training the neural network that predicts the next

action is much faster, since the network is smaller.

Let us concretely contrast the stacking and flipping environments. The stacking envi-

ronment has already some necessary conditions built in. However, it needs to take many

steps in order to just change the wrapping numbers: for a stack with Na branes, changing

the wrapping numbers requires Na actions to remove the stack, one action to add a new

stack with the new wrapping numbers, and another Na − 1 actions to add the branes back

onto the stack.

The agent in the flipping environment, in contrast, can change a single wrapping

number with just a single action. However, if the agent wants to change all six wrapping

numbers wa
i = (na

i ,m
a
i ) by a considerable amount to w′ a

i = (n′ a
i ,m′ a

i ), it requires at least
∑

i |w
a
i − w′ a

i | actions. If several states in between do not satisfy the co-prime condition,

this number will be even higher.

The way in which the agents in the one-in-a-billion environments can get from a set of

winding numbers w to another set w′ are the same as for the stacking and flipping agents

they are based on. However, they can never reach states with a non-Abelian hidden sector.

3.4 A3C implementation via OpenAI Gym and ChainerRL

For the study of the landscape we use asynchronous advantage actor-critic (A3C) rein-

forcement learning. The method is based on [47]. It was benchmarked against other RL

algorithms such as Deep Q-networks (DQN). Already after 24h of training on a CPU, A3C

was found to outperform DQN’s that were trained for 8 days on a GPU. The benchmark

was carried out using Atari games.

Since our work is the first application of reinforcement learning to explore the string

landscape, there is currently no information on how the performance transfers from their

benchmark problems to string theory. It would certainly be interesting to try different

RL methods and algorithm implementations and compare their performance against each

other. This is, however, beyond the study initiated in this paper.
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Figure 1. Interfacing the physics environments with ChainerRL via OpenAI gym.

For the implementation of the algorithm, we use the OpenAI environment [32] in con-

junction with the A3C implementation from the ChainerRL library [48]. The environment

class Env in gym is used as an interface between the environment implementation and the

A3C agent as implemented in ChainerRL, cf. figure 1. Inheritance from the gym.Env class

requires overriding the following methods11 (in order of importance for this project):

• step: the agent calls this method to traverse the string landscape. The agent calls

step with a specific action and expects a new state, a reward, an indicator whether

the episode is over, and a dictionary for additional information as its return.

• reset: this method is called at the start of each episode and resets the environment

to its initial configuration. It returns the start state.

• seed: this method is used for seeding the pseudo random number generators (RNGs).

While the RNGs still produce pseudo-random numbers for all seeds, if an RNG is

seeded with the same initial data, it will always produce the same sequence of random

numbers. This serves the purpose of reproducibility of runs.

• close: this allows for final cleanups when the environment is garbage collected or

the program is closed; we do not need a special implementation here.

• render: this allows to render the environment’s state and output. We don’t use

this method to monitor the state of the agent and the environment. Instead, we

include outputs directly in the ChainerRL implementation of the A3C agent and in

the asynchronous training loop.

While the details of our systematic hyperparameter search are given in section 4, we

discuss here some hyperparameters which we varied initially to find good values but then

kept fixed across all experiments (most are default in the ChainerRL implementation). In

our implementation, we use processes = 32 A3C agents that explore the landscape in

parallel for 24 hours or until a combined number of steps = 108 have been performed.

Every eval-interval = 105 steps we run the agent for eval-n-runs = 10 episodes in

evaluation mode to monitor its progress. In order to generate the plots in section 4, we

monitor the states and their properties encountered by the agents while exploring. We use

a learning rate of lr = 7× 10−4 and set weight-decay = 0. As a cutoff for the sum of the

11Since Python does not support interfaces or abstract classes, gym.Env implements these methods to

raise a NotImplementedError.
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return in (2.1) we choose t-max = 5. The policy evaluation network is trained to maximize

the log probability (i.e. the logarithm of the output of the policy neural network) plus the

entropy. We set the relative weight between these training goals to beta = 0.01, which

ensures sufficient exploration at the beginning (since mainly the entropy is maximized) and

exploitation towards the end of training (since mainly the policy is optimized). To further

ensure exploration, the next actions are not selected greedily but drawn from all action

probabilities using the Gumbel distribution.

4 Systematic reinforcement learning and landscape exploration

In this section we describe the details of exploring the landscape of type IIA orbifold

compactifications with RL. We will perform a series of experiments for the stacking agent,

the flipping agent, and the two one-in-a-billion-agents that test the ability of each agent to

learn how to satisfy string consistency conditions and find features of the Standard Model.

For comparison, we will also implement an agent that picks actions at random, which is

implemented by simply returning a zero reward, independent of the actual action taken by

the agent.

For our presentation here, we fix the background geometry to be T 6/(Z2 ×Z2 ×Z2,O)

with two untwisted and one twisted torus, b = (0, 0, 1/2) and a fixed orientifold plane. The

agent is exploring vacua in this background by changing the winding number of D6 brane

stacks as well as the number of branes in the stacks.

We begin by describing the reward functions and associated value assignments we

use, including the physical meaning of the rewards. We then describe the details of the

experiments performed for the different agents and environments and compare results.

4.1 Reward functions

We will define reward functions according to two natural goals in this system: 1) finding

fully consistent string models, by which we mean states that satisfy the tadpole cancella-

tion (3.12), K-theory (3.13), and supersymmetry (3.14) conditions, and 2) finding models

that are as close to the Standard Model as possible (SM-like). The reward functions are

organized according to whether consistency is prioritized over being SM-like, vice versa,

both are equally prioritized, or only one or the other is checked. For brevity we will refer to

these as CONSISTENCY-SM, SM-CONSISTENCY, SIMULT, CONSISTENCY, and SM

respectively. We will describe each in more detail below.

Before doing so, we first introduce various features that play a role in the reward

function. There are two binary features, according to whether or not the supersymmetry

conditions (3.14) are satisfied, and also whether or not the K-theory conditions (3.13) are

satisfied. Two other features are what we refer to as the tadpole distance (∆TC) and the

SM distance. The tadpole distance is a measure of the distance from tadpole cancellation,

∆TC := |8 − P | + |4 −Q| + |4 −R| + |8 − S| , (4.1)

which is zero iff the tadpole cancellation conditions (3.12) for one twisted torus are satisfied.

Conceptually, this is a measure of the amount of brane charge that must be added to the
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system. Note that a more refined measure, such as the separate distances for P , Q, R, and

S would also have been conceivable.

The Standard Model distance (∆SM) is more involved. It is a measure of the distance

from the Standard Model gauge symmetry and spectrum. Since SM gauge factors SU(3)C
(SU(2)L) arise from D6-brane stacks carrying U(3) (U(2) or Sp(1)), respectively, we can

count the number of missing gauge group factors if the model has no U(3) stack, or no

U(2) or Sp(1) stack. Furthermore, the model has to have a massless U(1) symmetry that

realizes the weak hypercharge U(1)Y . If there is no missing group factor, we can compute

all possible ways of labeling the matter spectrum of the D6-brane theory with the three

families of SU(3) × SU(2) representations of the SM. Each labeling has an associated

number of exotic particles charged under SU(3) × SU(2). The possibility of realizing the

standard model is non-unique for the following reasons:

• There might be more than one SU(3) brane stack that can serve as the strong sector

of the Standard Model.

• There might be more than one SU(2) or Sp(1) brane stack that can serve as the weak

sector of the Standard Model.

• Standard model particles might be realized in different ways (e.g. the 3̄ of SU(3) can

be realized as a complex conjugated representation or a two-fold anti-symmetrized

representation).

• If there are additional (vector-like) states, there is a choice which ones are considered

as SM particles and which ones as exotics (this will influence the choice for the U(1)

hypercharge generator).

We define the number of exotics to be the number of non-Standard Model particles for

the best possible assignment of the Standard Model sector. Written as left-chiral fermions

in representations of SU(3) × SU(2) × U(1), the minimal supersymmetric Standard Model

spectrum is

3 × [(3, 2) 1

6

+ (3, 1) 1

3

+ (3, 1)− 2

3

+ (1, 2)− 1

2

+ (1, 1)1] + 1 × [(1, 2)− 1

2

+ (1, 2) 1

2

]. (4.2)

and if the state exhibits particles not listed here, we call them exotics.12

In order to denote the consistency and particle physics properties of the states encoun-

tered by the agents we use the following shorthand notations:

• TC: the D6-brane tadpole cancellation condition (3.12) is satisfied.

• TCK: the tadpole cancellation conditions and also the K-theory constraints (3.13)

are satisfied.

• TCKS: the tadpole cancellation, K-theory constraints, as well as the SUSY condi-

tions (3.14) are satisfied. Note: states with this label are fully consistent supersym-

metric string compactifications.

12If right-handed neutrinos (1, 1)0 are present, these are not counted as exotics.
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• SM GG: the state contains stacks of branes that realize SU(3) × SU(2), as well as at

least one massless U(1).

• TCKS+SM: the state is a fully consistent string model with SU(3)×SU(2), a massless

U(()1), and at least one of the following: three families of left-handed quarks, three

families of right-handed quarks, or three families of leptons plus Higgs doublets.

Other Standard Model and / or exotic particles may or may not be present; however,

arbitrary combinations are not possible, since the anomaly constraints are satisfied.

Let us now explain the different reward functions in more detail. Each reward is

initialized to zero and then changes according to the following ordered sets of SM and/or

consistency checks.

CONSISTENCY. CONSISTENCY comprises checking for a vanishing tadpole, as well

as the K-theory and SUSY constraints. We check the constraints in this order, since

especially the SUSY constraint is very expensive to check and we want to avoid checking

it if the configuration is already inconsistent for other reasons. The consistency reward RC

is thus

RC =



























0 if 0 < ∆TC ≤ 8

−∆TC × tadpoleDistanceMultipler if ∆TC > 8

TC Reward if TC, i.e. ∆TC = 0

TCK Reward if TCK

TCKS Reward if TCKS

. (4.3)

Note that for small enough tadpole mismatches, 0 < ∆TC ≤ 8, the agent is neither rewarded

nor punished. If the mismatch is too large, the punishment (note the minus sign in the

reward) is proportional to the distance from a tadpole-cancelling state. If the tadpole is

cancelled, a large reward is awarded. If in addition, the K-Theory constrained is satisfied,

an even larger reward is given, and if on top of that the SUSY conditions are met a yet

larger reward is returned. Note that we check these constraints sequentially, so a state that

satisfies SUSY but not the tadpole might actually receive no reward or even a punishment.

SM. SM comprises sequential checks for the particle physics properties of the model.

First, it is checked whether the gauge group SU(3) × SU(2) × U(1) of the Standard Model

is realized. If not, the punishment is proportional to the number ∆GG of missing gauge

groups. If all three gauge group factors are present, the agent is awarded a reward and the

irreducible representations and the multiplicity of all massless particles are determined and

compared against the Standard Model content (4.2). If several assignments of potential

Standard Model matter is possible, the one that closest resembles the actual spectrum is

chosen, and the punishment is proportional to the number ∆EX of extra (or missing) par-

ticles in the spectrum (which we call exotics by a slight abuse of terminology) as compared

to the Standard Model. If the model has the exact number of Standard Model Particles,
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the agent receives a big reward. The Standard Model reward RSM is thus

RSM=











−∆GG × missingGroupFactorDistance if ∆GG 6= 0

SMlike Reward−∆EX × missingParticleDistance if ∆GG = 0,∆EX 6= 0

SM Reward if ∆GG = ∆EX = 0

.

Note the minus sign in the first and second line that lead to a punishment rather than

a reward.

SIMULT. In SIMULT, we check — as the name suggests — the consistency and particle

physics properties of the model simultaneously and reward or punish the agent according

to both aspects. This is computationally expensive since it requires finding all possible

Standard Model particle realizations and checking the SUSY constraints. The reward

is simply

RSIMULT = RC + RSM .

CONSISTENCY-SM. CONSISTENCY-SM first performs all consistency checks and

only proceeds to check SM properties if all consistency constraints are satisfied, i.e. if the

model is TCKS. This is more efficient than SIMULT, since checking all possible Standard

Model realizations is computationally rather expensive. The reward structure is

RC-SM=

{

RC if not TCKS

RC + RSM if TCKS
.

SM-CONSISTENCY. SM-CONSISTENCY is similar to CONSISTENCY-SM, but

with the order of the sequential checks inverted. This means we first check all particle

physics properties and only once these are satisfied we proceed to checking consistency of

the model. This seems less intuitive for a physicist, since usually we want to ensure that

the model is consistent in order to be able to trust our matter computations. If e.g. SUSY

is broken, computation of the massless particle spectrum changes. Also, if the tadpole

is not cancelled, the theory will have anomalies. Nevertheless, we try this order to see

whether or not it is beneficial for the learning process of the agent. Also, this is much more

efficient than checking consistency as for a model that e.g. does not even have the Standard

Model gauge group, since especially the SUSY consistency check is computationally very

expensive. The reward structure is

RSM-C=

{

RSM if ∆SM 6= 0

RSM + RC if ∆SM = 0
.

STC. STC is another reward function that checks for consistent compactifications, specif-

ically for a vanishing tadpole and also the SUSY constraints. Both constraints are in each

case, unlike CONSISTENCY which only checked the SUSY constraints if the tadpole con-

ditions are satisfied. This will be relevant in section 4.5 when we study whether the agent

– 34 –



J
H
E
P
0
6
(
2
0
1
9
)
0
0
3

can learn a human-derived strategy using so-called filler branes. The consistency reward

RSTC is initialized to 0 and is incremented as

RSTC+ =



























0 if 0 < ∆TC ≤ 8

−∆TC × tadpoleDistanceMultipler if ∆TC > 8

TC Reward if TC, i.e. ∆TC = 0

S Reward if S

STC Reward if STC

. (4.4)

The output module saves state information at regular time intervals in our experiments,

according to information that is stored about states as they are encountered. For reasons of

timing, the information that is saved depends on the reward function. For instance, check-

ing the supersymmetry conditions involves solving a constrained quadratic programming

problem (see section 4.2), and therefore the SUSY condition should be checked judiciously.

Consider as an example experiments that utilize SM-CONSISTENCY. There, the SUSY

conditions are not checked unless the SM GG part of the reward function passes. Therefore

states in such experiments could satisfy the SUSY condition but not be labelled as such,

because the state has not passed the other sequential checks in the reward function.

4.2 SUSY conditions and constrained quadratic programming

While most physical and consistency constraints can be checked using linear algebra, the

SUSY conditions (3.14) require solving a set of coupled equations and inequalities.

In most cases, this can still be reduced to a simple linear algebra problem via an

algorithm that we refer to as the BCD algorithm. The supersymmetry conditions (3.14)

include an equality that may be rewritten as

1

U0

(

Ŷ 0
a + Ŷ 1

a

U0

U1
+ Ŷ 2

a

U0

U2
+ Ŷ 3

a

U0

U3

)

= 0, (4.5)

where the ratios of moduli UI are independent of the brane-stack index a. Defining the

ratios of moduli

j =
U0

U1
, k =

U0

U2
, l =

U0

U3
, (4.6)

we may rewrite this as

Aa + Ba j + Ca k + Da l = 0, ∀a. (4.7)

This equation defines a hyperplane in moduli space, and as the number of brane stacks

goes up, it is increasingly likely that there are no solutions to the system of hyperplane

constraints. More specifically, in certain circumstances we may check the SUSY conditions

quickly, as follows. First, find a triple of brane stacks such that the three hypersurface

equations define a matrix equation with full rank. Next, invert that matrix to solve uniquely

for the (j, k, l) consistent with supersymmetry. Finally, check for those specific (j, k, l)

whether the rest of the supersymmetry conditions are satisfied. This BCD-algorithm can

be applied whenever such a full-rank matrix exists.

– 35 –



J
H
E
P
0
6
(
2
0
1
9
)
0
0
3

If the BCD algorithm cannot be applied we need to check existence of a common

solution to the system of equations and inequalities (3.14) by other means. To do so, we

need to find a solution subject to a positivity constraint on the variables of the problem.

We phrase the problem as a constraint minimization problem that can be solved using

the optimization implementations from the scipy library of Python. By benchmarking

different approaches we find that Sequential Least Squares Programming (SLSQP) works

best for our purposes. In order to rewrite (3.14) as an SLSQP problem, we minimize

f(tI) = (t0Ŷ 0 + t1Ŷ 1 + t2Ŷ 2 + t3Ŷ 3)2 , (4.8)

where tI := 1/U I with U I defined in (3.8). Note that instead of solving an equation, we are

minimizing a scalar function. This is equivalent to solving the equation since we minimize

the square of a real equation. This is bounded from below by zero, which is a solution to

the original problem.

But we are not done yet: we have to solve this minimization problem subject to two

constraints. First, since the U I are a product of three radii, they have to be positive.

Furthermore, in order to trust the supergravity approximation, they should not become

too small and hence the tI cannot become too large. Hence we have upper and lower bounds

on the tI . Second, we need to solve the inequalities of the SUSY constraints, i.e. the second

set of equations in (3.14). We do this by specifying the constraints on the tI as bounds

and the SUSY inequalities as constraints in SLSQP. We then minimize (4.8) numerically

starting from a random initial guess and check that there exists a minimum sufficiently

close to zero. Since the algorithm might fail to converge at all or might converge to a

local minimum rather than to zero, we repeat this step 10 times. If no solution sufficiently

close to zero is found it is assumed that no solution to the SUSY conditions exist. This

might disregard perfectly fine models, but since the minimization procedure is significantly

impacting the runtime, we find this to be a good compromise. During our benchmarks,

we have analyzed thousands of configurations and compared them against methods that

are much slower but guaranteed to converge to the global minimum, and we have never

observed any discrepancy.

4.3 Neural network architecture

We tried different neural network architectures for the value and policy evaluation networks.

We tried deep feed-forward neural networks with different numbers of hidden layers, differ-

ent numbers of nodes per layer, and different activation functions. We furthermore tried

recurrent neural networks with a Long Short Term Memory (LSTM) layer. We found that

the performance is not too sensitive to the hyperparameters of the network. The networks

we used for value and policy evaluation are given in figure 2.

The policy network gets the current state the agent is in as its input, i.e. a vector13

in R7Dmax . This is fed into four hidden layers, the first three have 50 nodes and a ReLU

activation function, while the fourth layer has 200 nodes and a ReLU activation. The output

13Remember that each brane stack is specified by the number of branes Na and six (half-)integer winding

numbers.
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Figure 2. The neural network architectures used for policy and value evaluation.

layer is a vector in RNenv

actions , where the number of actions differs for different environments,

cf. (3.30)–(3.33). The softmax layer is used to assign a probability to each action, see

figure 2(a).

The value network also receives the current state as a vector in R7Dmax , followed by

four hidden layers, again three with 50 nodes, one with 200 and all with ReLU activation.

The output layer is just a single node, which corresponds to the value of the given state,

see figure 2(b).

For the LSTM layer, we fed the entire state sequentially to the LSTM and selected

the last output. The rationale behind this was to get a prediction once the network has

seen the entire state. Since the physics is invariant under permutations of the stacks in

a state, and the LSTM “averages” over the input, the hope was that the result would

be permutation invariant and could thus help the network learn faster. While the results

improved a bit, the training time increased as well considerably, such that we abandoned

this approach.

4.4 Learning to solve string consistency conditions

Before we tackle the full-fledged analysis we benchmark the agents with regard to whether

they can learn to solve string consistency conditions. To this end, we run 32 stacking agents

with reward function CONSISTENCY (4.3), and end the game once a consistent model

is found. In order to get better statistics, we run the agents for a background with three

untwisted tori; these allow for more possibilities to satisfy the tadpole, but do not allow

for an odd number of families.

Note that tadpole cancellation and the K-theory constraint lead to a coupled system of

Diophantine equations in the winding numbers (na
i ,m

a
i ). The SUSY constraints contain in

addition qualities and inequalities for the three real parameters (i, j, k), which are subject

to positivity constraints. However, we are not interested in moduli stabilization at this

point, which means that the SUSY conditions will leave flat directions. Hence, we can find
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(a) Mean score. (b) Average number of steps. (c) Entropy.

Figure 3. Plots illustrating how the agent learns to solve the IIA tadpole constraint.

rational solutions (or integer solutions, after clearing the denominator) for (i, j, k)as well.

This way, we obtain a coupled, nonlinear system of Diophantine equations and inequalities

in the winding numbers and Kähler parameters.

To analyze how well the agents perform in solving this system, we perform 10 test runs

every 105 steps and compute the average score as well as the entropy of states encountered

in these runs (this data is recorded automatically by ChainerRL). We run the stacking

agent with (Dmax, DA, DB, γ) = (7, 2, 1, 0.99) and 32 workers for roughly 3 × 107 steps.

For the sake of illustration, we start with the single objective for the agent to solve the

Diophantine equations associated with the tadpole cancellation condition (3.12). We use a

reward of TC Reward = 106 and end the episode once a tadpole cancelling model is found

or after 104 steps. The analog of (3.12) for ∆TC on three untwisted tori is

∆TC := |8 − P | + |8 −Q| + |8 −R| + |8 − S| . (4.9)

The results of the run are shown in figure 3. We plot on the x-axis the total number of

steps all agents have taken together. All data in the plots is recorded for the 10 evaluation

runs, which occur every 105 steps. Let us explain the plots in more detail.

Figure 3(a) illustrates that the agent learns to solve TC around roughly O(106) steps.

Note that the punishment (4.9) is an order O(10) number (unless the distance is smaller

than 8, in which case the agent is not punished at all) while the reward is 106. Initially, the

agent randomly performs actions leading to states that do not satisfy the tadpole. Each

such action is punished by an order one number. After 104 steps, the episode ends and the

agent is reset. At that point the agent will have received a total negative reward of order

O(105). This explains the average reward score in the first 106 steps. After that,the agent

starts to learn how to solve the tadpole constraint. If it solves the constraint in k of the 10

test runs, it will receive an average reward of 0.1(k× 106 − (10− k)× 105), which explains

why the points for the average score occur around k × 105 for k ∈ [−1, 10], depending on

how often the agent manages to solve the constraint within the 10 test runs.
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Figure 4. Plots illustrating how the agent learns to solve multiple RL-tasks: first to solve the IIA

tadpole constraint, then the K-theory constraint, and finally the SUSY constraints.

Figure 3(b) illustrates that the agent is not only learning to solve the tadpole constraint,

but that it is getting more and more efficient in doing so. We show on the y-axis the average

number of steps per episode. An agent that never finds a TC state is reset after 104 steps,

so this is the upper bound in this plot. Note that we record only finished episodes, so the

actual number can be somewhat larger if the agent is just about to finish an episode when

the data is written to disk; in the worst case, this can lead to a factor of 2 in the averaged

number of steps. In the beginning, the average number of steps is around O(104), indicating

that most agents are reset without finding TC states. After about 106 steps, as the agent

learns how to solve TC, the average number of steps per episode drops to few × 103. At

around 2 × 106 steps, the agent solve TC in all test runs (cf. figure 3(a)). Nevertheless,

the agent is still improving its efficiency, i.e. the number of steps it needs to take in order

to find tadpole cancelling solutions. At the end, the average number of steps has dropped

to O(100). Note that, due to the reward structure, the agent is not incentivized to solve

the TC constraints in as little steps as possible (which is O(10)) as long as it stays close

enough (within a total distance of ∆TC ≤ 8) to a tadpole cancelling solution.

We also want to know whether the agent is actually exploring the landscape and using

its learned heuristics to solve the Diophantine equations or whether it is just randomly

stumbling upon a solution and keeps reproducing that (exploration vs exploitation). As

a measure for how diverse the solutions found by the agents are we look at the entropy

of the agents in figure 3(c). As we can see, the entropy is roughly constant (if anything,

it is increasing over time), which indicates that the agent takes different actions and thus

arrives at different states. We also confirm this by explicitly looking at the solutions the

agents finds. Since we are using the stacking agent, which is based on the A,B,C brane

construction, we know that the solutions are genuinely different and not related by a

symmetry action to one another.
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Finally, we show the average score for a multi-tasking agent that successively learns

to solves tadpole cancellation, K-Theory, and SUSY in figure 4. In the beginning, the

agent does not solve any of the consistency requirements and is receives a punishment

proportional to the tadpole distance as in the TC case, thus ending up at −105. Again,

after having taken around 106 steps, the agent has learned how to solve TC, for which it

receives the TC Reward = 106 and is now also testing for the K-theory constraint. Once

it receives feedback on its performance with regard to K, it learns to solve TC and K

simultaneously between 106 and 5 × 106 steps, which is rewarded with TCK Reward = 109.

Once TCK is solved, the SUSY constraints start to be checked. After 6 × 106, the agent

learns to incorporate these as well, leading to fully consistent TCKS models and a reward

of TCKS Reward = 1012.

We can also demonstrate learning of the different constraints by studying the relative

frequency with which the agent finds models that satisfy the various constraints. We find

that in the beginning for less than 3 × 106 steps, when the agent has not yet learned to

produce models that satisfy the TC or K constraint, the ratio between models with TC

and TCK is 1 : 5. This is consistent with the statistics of [41], where the authors also

find a reduction factor of 5 from imposing the K theory constraint on the untwisted torus

(however, they impose K theory last, i.e. their models satisfy already the SUSY constraint).

At the end of the run, the reduction factor has dropped to 3, indicating that the agent is

doing better in finding models that satisfy the K-theory constraint as compared to randomly

sampling the landscape. Of course, our numbers are too small for reliable statistics, but

since we already reproduce the factor of 5, we are optimistic that our sampling size is

sufficient. Likewise, we see a drop in the ratio of TCK to TCKS from initially around 5

down to 3 as soon as the agent learns to take SUSY into account.

4.5 Learning a human-derived strategy: filler branes

The last section demonstrates that the RL agent learns a strategy to solve the coupled

Diophantine equations in the TCKS setup. There is no human-derived strategy for doing

this, and we are not attempting to find out the strategy employed by the agent, which in

general falls in the realm of intelligible AI, an area of active research.

Instead, we look at a slightly modified setup in which humans have derived a strategy

to partially decouple the system of equations. The strategy is to use so-called “filler”

branes (see, e.g., [49]). These are D6-branes that do not contribute to the supersymmetry

conditions, but do contribute to the tadpole cancellation conditions. Therefore, one may

add filler branes to supersymmetric D6-brane configurations in order to try to satisfy the

tadpole cancellation conditions, but without spoiling the supersymmetry conditions. In

the language of [38], it is C-branes that do not contribute to the SUSY conditions, and

therefore should be identified as filler branes. The filler brane strategy cannot be utilized in

the setup of section 4.4 (which sought to solve the tadpole cancellation conditions first since

it used CONSISTENCY), since the strategy is only useful in helping to solve the tadpole

conditions when the SUSY conditions are already satisfied, not the other way around.

Our goal is therefore to utilize a different reward function in order to investigate

whether an RL agent can learn the filler brane strategy as (part of) its solution approach,

i.e. to use C-branes to solve the supersymmetry and tadpole cancellation conditions. We
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(a) Finding STC Models. (b) Using filler branes.

Figure 5. RL learning a human-derived strategy to solve SUSY and tadpole conditions.

will utilize the STC reward function, which allows filler branes to potentially be a useful

strategy because it always checks both the SUSY and tadpole conditions. More specifically,

our experiment utilizes the STC reward function with tadpoleDistanceMultipler= 10,

TC Reward= 106, S Reward= 101, and STC Reward= 1014. We run an A3C on the untilted

torus with 32 workers for a maximum of 108 steps or 24 hours, whichever comes first,

with (dA, dB) = (2, 1) and a maximum number of stacks |D| = 10. As training progresses,

we keep track of configurations that are S, TC, or STC (corresponding to solving SUSY,

tadpole, or both) and the percentage of A-branes, B-branes, and C-branes that are utilized

in those solutions up to that point in the training. For this truncation with(dA, dB) = (2, 1)

there are 108 A-brane cycles, 48 B-brane cycles, and 16 C-brane cycles, respectively. A

random walker that adds a new brane stack would therefore utilize these types 62.8%,

27.9%, and 9.3% of the time, respectively.

The results of the experiment are presented in figure 5. We first notice that the agent

only takes about 107 steps and its run is stopped due to 24 hours time constraint. As we

shall see below, agents that utilize a different reward function reach 108 steps before the 24

hours expire. This is due to the fact that for the STC reward function the SUSY condition

is checked at every step, and it is computationally expensive. We see from figure 5(a) that

the agent does not begin finding STC models until around 2.5 million steps, and does so

at a reasonable rate thereafter, finishing with over 125 STC models after 107 steps. On

the other hand, from figure 5(b) we see that the agent is using about 50% A-branes, 30%

B-branes, and 20% C-branes after 200, 000 steps; even by this time, it has already deviated

from the percentages that a random walker would utilize. However, the percentage of

C-branes utilized goes up dramatically for the next few million steps, until the agent has

utilized over 80% C-branes by the time it has taken 2.5 million steps, which is about when

it begins to find STC models. From that point, the agent finds STC models consistently,

continuing to utilize C-branes 80% of the time. These percentages of A-branes, B-branes
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and C-branes utilized are across all models recorded by the agent, including S, TC, and

STC. However, if one restricts to studying the percentages only for STC models, it is still

the case that over 80% of the branes are C-branes.

In obtaining this result, we note that it depends critically on the choice of S Reward

relative to TC Reward and STC Reward. Specifically, if instead of our parameters one instead

changes S Reward to 106, matching TC Reward, then no STC models are found. This is

simply because the agent can receive a large reward move after move by adding a C-brane

to a SUSY solution, which maintains the SUSY property and adds the large S Reward.

This takes the system far away from tadpole cancellation, but the agent does not mind

because maintaining SUSY is very rewarding. This explains the absence of STC models

for this choice of parameters, and was what led us to instead choose S Reward = 101.

Summarizing, the agent has clearly learned the human-derived strategy that utilizes

filler branes. Despite its successes, our results below will not use this strategy because of

the large amount of time it takes to check the SUSY condition.

4.6 Systematic RL stacking agent vs. random agent experiments

In order to find promising hyperparameter settings we perform a box search over (part of

the) hyperparameter space. We do this for the stacking agent and then apply the best set

to the flipping and the one-in-a-billion agents. In total, we perform 108 experiments for

the stacking agent, each with 32 workers. Each experiment requires making the follow-

ing choices:

• Discount factor γ ∈ {.99, .9999, .999999}.

• Brane bounds (dA, dB) ∈ {(2, 1), (2, 2), (3, 1)}.

• Reward type given by SIMULT, CONSISTENCY-SM, or SM-CONSISTENCY, or

a multi-task A3C agent. In the multi-task agent, half of the workers use CONSIS-

TENCY as their reward function, and half use SM.

• One of three possible reward value assignments as detailed in tables 2, 3, or 4 in the

appendix.

Each experiment trains the agent for 108 steps, or 24 hours, whichever comes first.14 Output

is saved according to the discussion at the end of section 4.1, and we remind the reader

that the checks that are performed, and hence the properties of the models specified in the

output, depends on the choice of reward function.

In order to determine how well the stacking agent is performing on this problem, we

must compare to a control study. For that reason, we perform 9 experiments for the random

agent. In each experiment, we choose:

• Brane bounds (dA, dB) ∈ {(2, 1), (2, 2), (3, 1)}.

• Reward type given by SIMULT, CONSISTENCY-SM, or SM-CONSISTENCY, or a

multi-task A3C agent.

14The latter is due to computer cluster limitations.
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Note that the reward value returned by the reward function does not affect the random

agent in any way. Instead, we must choose a reward function so that the checks that are

performed (and hence the output information) can be compared to the results of the RL

agents in a meaningful way.

We now turn to a discussion of the results, as plotted in figures 6–8. In each of these

figures, we monitor the progress of the agents each 106 steps. In order to not overload

the plots, in the range 106 to 107 we plot each data point, whereas in the range 107 to

108 we average over 10 data points, and in the interval 108 to 109 we average over 100

points, and so on. This way, we get ten data points in each order of magnitude interval.

The number of models satisfying various constraints are plotted. These include tadpole

cancellation (TC), TC plus the K-theory constraint (TCK), TCK plus the supersymmetry

conditions (TCKS),15 having the Standard Model gauge group (SM GG), and satisfying

all consistency conditions while having the Standard Model gauge group (TCKS + SM).

Results for the stacking agent and random agent with reward function SIMULT are

presented in figure 6. For all value sets we present the results of the best-performing RL

agents, and for value sets 1 and 2 we also present the results for an agent that demon-

strates clear learning at late times, as demonstrated by sudden sharp increases. Results

are comparable for all three value sets, but we discuss value set 1 since results there are

optimal by a small margin.

Let us first compare the results for the best value of the discount factor γ = .999999.

From the top plot in figure 6, we see that the stacking agent has found 4 × 108 models

with SM GG after 2×107 steps; by contrast, the random agents have factor of O(20) fewer

models with SM GG after the same number of steps. The stacking agent has found O(200)

models with TCK after 2×107 steps, and the random agents have found a factor of O(100)

fewer models after the same number of steps. By 2 × 107 steps, the stacking agent has

found O(50) fully consistent string models, i.e. those with TCKS, while the random agents

find their first fully consistent model (a single one) at around 2.5 × 107 steps.

Let us next compare agents by their truncation parameters (dA, dB). We note that for

value sets 1 and 2, the (dA, dB) = (3, 1) agents learn to find Standard Model gauge groups

much more slowly than the (dA, dB) = (2, 2) agents, but then increase their learning at

late times so that the results are nearly comparable at the end of their runs; however, the

difference in performance is also correlated with the different discount factors γ. We will

discuss this more for the SM-CONSISTENCY experiments below. Note that the for larger

and larger (dA, dB), we truncate less and less the possible string configurations. On the

other hand, the number of possible configurations increases exponentially, which requires

much more runs for the agent to “get acquainted” with the landscape. However, already for

(dA, dB) = (2, 2) there are O(1010) to O(1013) possible states, depending on the truncation.

It is, however, not known whether the exact Standard Model is among them.

Results for the stacking agent and random agent with reward function

CONSISTENCY-SM are presented in figure 7. Since consistency conditions (TCKS) are

checked before particle physics conditions with this reward function, any model found with

15TCKS models are fully consistent supersymmetric string models.
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Figure 6. Experimental results for reward function SIMULT. Results depend on choices of value

sets as in table 2. Results for value sets 1, 2, and 3 are at top, middle, and bottom, respectively.
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Figure 7. Experimental results for reward function CONSISTENCY-SM. Results depend on

choices of value sets as in table 3. Results for value sets 1, 2, and 3 are at top, middle, and

bottom, respectively.
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Figure 8. Experimental results for reward function SM-CONSISTENCY. Results depend on

choices of value sets as in table 4. Results for value sets 1, 2, and 3 are at top, middle, and

bottom, respectively.
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the Standard Model gauge group is necessarily consistent, which explains the presence

of TCKS+SM models and the absence of models that have only the SM GG. The plots

demonstrate the efficacy of the agents at solving various string consistency conditions. We

see that there are many TCK models but no TC models, implying that all of the models

that satisfy TC also satisfy the K-theory conditions. In general for the RL agents, there

are about an order of magnitude more TCK models than TCKS models. Comparing the

best-performing stacking agent to the best-performing random agent in all three plots, we

find that the associated stacking agent finds a factor of O(200) more TCK models and a

factor of O(50) TCKS models.

It is interesting to compare these CONSISTENCY-SM results to the agent of sec-

tion 4.5 that utilized the STC reward function and learned the filler brane strategy. After

slightly under 107 steps, which took 24 hours since SUSY was checked at every step, the

agent found about 125 models that satisfied the SUSY and tadpole cancellation conditions.

In contrast, the best CONSISTENCY-SM agents (see figure 7), found over 200 TCKS mod-

els in 24 hours, albeit utilizing 108 steps. Since CONSISTENCY-SM checks the tadpole

conditions first, it cannot be utilizing the filler brane strategy, for reasons discussed above.

In addition, checking tadpole cancellation first saves time from the costly evaluation of the

SUSY conditions. We conclude that the CONSISTENCY-SM agents have learned a new

strategy for finding consistent string models that is about twice as efficient per unit time

as the filler brane strategy.

Results for the stacking and random agent with reward function SM-CONSISTENCY

are presented in figure 8. Here, consistency conditions would only be checked for models

that have the Standard Model gauge group and three Standard Model families, possibly

with exotics. Since no models that satisfy the latter constraints were found in these runs,

the experiments never check for consistency, and therefore all output of these experiments

is limited to features related to being SM-like. Accordingly, the plots appear to be much

simpler, but this is an artifact of the ordering of when conditions are checked. We find

that the best-performing stacking agent finds a factor of O(20) more models with SM GG

than the best-performing random agent. This factor of improvement is consistent with the

results of the SIMULT experiments. As with the SIMULT experiments, we again see that

some of the RL agents learn to find the Standard Model gauge group very slowly at early

times, but then learning picks up at late times. From the plot with value set 2, we see that

the key effect must be the different in the discount factor γ, since (dA, dB) have the same

values for the two discrepant RL plots. We therefore conclude that it is likely the large γ

factor (γ = .999999 vs γ = .99) that leads to sharp learning at late times in the SIMULT

case. This could indicate a property of the landscape as perceived by the stacking agent:

at late time, the agent has learned how to get to a good state, but getting there requires

moving through states with a smaller reward. For larger γ, the agent takes future rewards

more into consideration for its current policy, which means it temporarily accepts going

through states with small rewards.

Summarizing these experiments, we find that the best RL agent often picks up factors

of O(20), O(200), and O(50) relative to random agents in finding models with SM GG,

TCK, and TCKS, respectively. The best-performing agents have (dA, dB) = (2, 2). We
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also find that smaller discount factors γ leads to faster learning, but large γ can lead to

rapid learning at late times that may lead to optimal performance.

4.7 Additional stacking agent experiments

Having performed systematic experiments to find promising hyperparameters for stacking

agents, we would like to perform two additional experiments using the best-performing

hyperparameters. Specifically, we will perform three new experiments. In each, 32 A3C

workers take 108 total steps (or 24 hours, whichever comes first) using (dA, dB) = (2, 2), γ =

0.9999, and reward CONSISTENCY-SM with value assignment 2. The two experiments

differ in the following ways, named according to what is different about them:

• Experiment WIDER-AND-DEEPER: throughout this paper, the policy and value

function neural networks have 4 hidden layers, three with 50 nodes and one with 200,

or in some cases two hidden layers with 200 nodes each. In WIDER-AND-DEEPER,

they have 4 layers with 2000, 2000, 2000, and 200 hidden nodes, respectively.

• Experiment TMAX: instead of using the default value tmax = 5, this experiment

takes tmax = 20. The parameter tmax is the number of steps that are taken in

between policy and value function updates, so by increasing tmax in this way the

agent sees four times as many states before updating its behavior.

Results of these experiments are presented in figure 9, where results from WIDER-AND-

DEEPER and TMAX are presented in green and orange, respectively.

In order to see how well these new experiments perform, we would like to compare

each to a previous RL experiment that performed well. We call the latter RL-CONTROL,

which is the experiment with (dA, dB) = (2, 2), γ = 0.9999, and reward CONSISTENCY-

SM with value assignment 2. The results of RL-CONTROL are the orange data points

in the middle plot of figure 7. RL-CONTROL found 40 TCK and 10 TCK models after

6 million steps; after 108 steps, it found O(2000) TCK and O(250) TCKS models. For

convenient comparison, RL-CONTROL is plotted in figure 9 in red.

Examining figure 9, we see that WIDER-AND-DEEPER performs poorly compared

to RL-CONTROL. Specifically, after 108 steps, WIDER-AND-DEEPER finds a factor

of O(10) fewer TCK and TCKS models. This is perhaps not surprising, since wider and

deeper networks are expected to have better behavior at late times, but take longer to train.

Therefore, if training times are not long enough, wider networks networks can actually have

lower performance, as seen here. We see that TMAX performs poorly compared to both

WIDER-AND-DEEPER and RL-CONTROL. After 108 steps, it has found only 8 TCK

models and 3 TCKS models, which is orders of magnitude below CONTROL. A priori in

a given environment it is not clear what value of tmax is optimal. Since immediate updates

(tmax = 1) and end of episode updates (tmax = tend) are both typically sub-optimal choices,

in a given environment the optimal value of tmax is, a priori, unclear. From the TMAX

experiment, we see that in this environment the optimal value is likely below tmax = 20.
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Figure 9. Number of models of different types found for the additional stacking experiments

WIDER-AND-DEEPER and TMAX.

4.8 Flipping and one-in-a-billion agents

Let us discuss the results of the flipping agent as well as the two one-in-a-billion agents.

They were run with good hyperparameters as determined by the stacking agent, (dA, dB) =

(2, 2), γ = 0.99, and reward structure CONSISTENCY-SM. The top left plot in figure 10

shows the overall number of steps on the x-axis and the total number of distinct models

that satisfy at least one of the phenomenological or consistency constraints on the y-

axis. This means, each plotted model has to satisfy at least TC or SM; however, due to

the reward structure CONSISTENCY-SM used in the experiments, SM is only checked

after all consistency constraints TCKS are checked, so the points correspond to tadpole-

canceling models.

As we can see, the 1:billion stacking agent finds the most models of these type, roughly

at a constant rate of 10−5; after 106 steps, the agent has found 10 different models and at

108 steps the agent has found 1000 models. The flipping agent performs slightly weaker at

the beginning, but catches up to the 1:billion stacking agent at around 108 steps. Lastly,

the 1:billion flipping agent performs worse by roughly a factor of 10. We again include the

best stacking agent (called RL-CONTROL in the previous section) for comparison. We

find that it outperforms the best agent in this section, i.e. the 1:billion stacking agent, by

roughly a factor of 2 when it comes to satisfying TC. Since the stacking agent has more

freedom in satisfying the tadpole as compared to the 1:billion stacking agent (the latter

cannot introduce a hidden sector to satisfy the tadpole), this result is to be expected.

However, we find that the 1:billion stacking agent outperforms the stacking agent once we

impose all constraints TCKS+SM. The 1:billion stacking agent is able to catch up to the

other stacking agent since it has the last constraint already built in, while the stacking

agent has not had too much time to learn to take the SM constraint into account.

It is somewhat surprising that the 1:billion stacking agent initially outperforms the

flipping agent. This tells us that the agent can learn traversing the landscape by exchanging
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Figure 10. Results for the flipping and the two one-in-a-billion agents, with the best stacking

agent included for comparison. We show the overall number of models (top left), the rate of finding

new models (top right), and the properties of the found models (bottom) for reward function

CONSISTENCY-SM and hyperparameter γ = 0.99.

entire stacks more easily as compared to changing single winding numbers. However, after

a while the agent becomes equally effective with both methods. This is probably due to

the fact that flipping can lead to many more illegal moves than stacking. The fact that

the 1:billion flipping agent performs worse than the unconstrained flipping agent is to be
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expected, since the latter flipping agent has more degrees of freedom (i.e. the hidden sector

stacks) to adjust and can hence cancel the tadpole more easily.

The top right plot of figure 10 shows the rate at which the agents discover new models

(as compared to reproducing a model they have found previously). This can be used to

monitor the exploration of the agents. All agents explore the landscape very well, with a

new-model-rate of 80 to 100 percent for most of the training time. The rate of the flipping

agents is lower than the one of the stacking agent. The reason for this is that the agents

are reset every 105 steps to their initial configuration. The flipping agents probably have to

traverse the same models from their start configuration each time before they can branch

out and reach new models. The stacking agent, in contrast can “jump” from the start

configuration to any other winding configuration.

The bottom plot of figure 10 shows how the three agents learn to satisfy the different

constraints over time (i.e. over number of steps). First we note that all agents never find

TC models but always TCK. So, the K-theory constraint is automatically satisfied in all

models. The TCK markers follow those of plot 1, which is due to the fact that the points

in plot 1 correspond to the models that satisfy at least TC. At around 5× 106, the flipping

agent starts finding models that also satisfy the SUSY constraints. Most of the TCKS

models which the 1:billion agents find automatically also satisfy the SM constraint, since

by construction their winding numbers are such that the SM gauge group is already built

in. After 108 steps, both the flipping and the 1:billion stacking agent have found around

10 TCKS+SM models.

In summary, we find that the agent learns to traverse the landscape more easily by

stacking. As an added bonus, the exploration rate of the stacking agent is higher than

that of the flipping agent due to the structure of the landscape when traversed by flipping

single winding numbers. The flipping agent learns quickly to satisfy SM, such that after

108 steps, the agents find the same number of TCKS+SM models. We thus conclude that

the agents can learn the properties needed for SM rather easily. The best model we could

find, however, was found by the 1:billion flipping agent, which satisfied all constraints and

had 8 exotics. Here the number of exotics is the minimum number of exotics as computed

for each of the four hypercharge embeddings studied in [41]; as there, we do not impose

a massless hypercharge for the sake of comparison. The best models of the flipping and

1:billion stacking agent had 14 and 18 exotics, respectively. So while the agents have not

found the exact MSSM, they get rather close within 24h of running time.

4.9 Comparison with earlier work

It is instructive to compare our results with the results of [41]. Let us briefly recap their

approach, which is different from ours. The authors fix the complex structure parameters

to successively increasing values and find all winding numbers compatible with the SUSY

constraints for this fixed complex structure. For these values, they then check which

assignments satisfy the tadpole constraints. In this way they find O(108) models with TC

and S, and O(2 × 107) models with TCKS. However, the authors allow for untilted and

tilted tori, quoting that 1.6 percent of the models live on tilted tori. In our analysis of the
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SM quantities, we have focused on tilted tori, since untilted tori cannot accommodate the

Standard Model since they do not allow for an odd number of generations.

The authors ran their search on a cluster a decade ago for 4 × 105 CPU hours. We

compare their result with the TCKS models as given in figure 7 for CONSISTENCY-SM

reward structure, which correspond to 32 agents running for at most 24h (we did not keep

track of the precise running time, but since the agent reaches 108 steps, it has to be less

than 24h). Since we run 32 agents on 8 hyperthreaded cores, we get at most 24 CPU hours

(or 192 core hours). Making the conservative assumption that in the case of [41] all models

on tilted tori correspond to exactly one tilted torus, the authors find around O(105) TCKS

models in O(105) hours, while our agents finds O(102) models in O(10) hours. It is very

difficult to account for the increase in speed of CPUs, RAM and storage, as well as for

the fact that they searched over tilted and untilted tori, while our run was for tilted tori

only but also included all Standard Model checks. This makes a more detailed comparison

impossible. However, since the authors construct all winding number combinations within

a given box (whose size is set by the complex structure parameters), we assume that their

findings are comparable with our random search, which is outperformed by our agent by a

factor O(10) to O(100), which seems plausible from the above comparison.

Based on their observations, the authors of [41] estimate that the chance of finding a

Standard Model among a TCKS model is one in a billion; they construct a total of 108

states, which leaves them with O(0.1) Standard Models in their ensemble. We want to

use this landscape statistic for a very rough estimate of what to expect in our case. For

(dA, dB) = (2, 2), there are an estimated 1013 states in our truncation according to (3.24).

We note that this number of states was computed for three untwisted tori; for two untwisted

and one twisted, which we looked at, there are less permutation symmetries and the number

will be somewhat larger. The random agent finds TCKS states at a rate of 10−8, so

we expect roughly 105 TCKS states in this truncation. In order to estimate how many

Standard Models are among these, we make the assumption that the statistics of [41] carries

over to our case. They find various suppression factors leading to the overall suppression

of 10−9. The largest two suppression factors of 10−5 and 10−3 come from demanding three

generations of quarks and leptons, respectively. As explained around (3.16), this can only

be achieved if at least one torus is tilted, which is the case in one percent of the examples

of [41]. We thus estimate this suppression factors to be 10−3 and 10−1 for cases with tilted

tori, respectively. This puts the overall likelihood of finding a Standard model amongst

TCKS states on geometries where some tori are twisted at around 1 : 105. Since we have

105 TCKS states in the (2, 2) truncation, we expect this to contain O(1) Standard Models.

For larger values of (da, dB) in the truncation, these numbers go up significantly, cf. (3.24).

The authors of [41] do not find models with three generations of quarks and leptons,

even though they do not impose a massless hypercharge. We impose a massless hypercharge

and find models with a net number of three generations (i.e. number of generations minus

number of anti-generations) of quarks, plus O(10) exotics. We do not monitor further the

irreducible representations with respect to the Standard Model and the hidden sector of

these exotics.

We would also like to compare our work to [52], which also used the notion of A-branes,

B-branes, and C-branes from [38]. They found a polynomial time algorithm for enumerating
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ways in which intersecting brane models may potentially realize a pre-determined gauge

group G, and they executed this algorithm for the group SU(()3) × SU(()2) × U(()1). On

the other hand, they looked specifically at the number of distinct realizations of a gauge

subgroup G, not necessarily counting the number of ways to add additional branes and

form a complete model. While a comparison with our work is hard, since we look for

full models satisfying all constraints, their results also point towards some structure in

the landscape of string vacua. Whether the agent exploits this structure in solving the

Diophantine equations is, however, beyond the scope of this paper

5 Discussion and summary

In this paper we have proposed deep reinforcement learning (RL) as a model-free way to ex-

plore the string landscape with artificial intelligence (AI). In deep RL, an AI agent explores

an environment in which it may receive both positive and negative rewards, teaching itself

strategies that lead to improved behavior over time. This is a mature field in computer

science that has led to state-of-the-art results in other fields, famously in playing Go [28]

and folding proteins, but also in physics, e.g. for quantum control [50] and quantum error

correction [51].

Our general RL proposal for the string landscape consisted of three concrete ideas:

that RL is suitable for studying the string landscape since it may be used in environments

with exponentially large numbers of states; that RL could discover new strategies that

could lead to superior results; and that RL is model-free, in the sense that RL algorithms

can be applied to many different environments, which allows string theorists to focus on

the string environment rather than developing a new algorithm. In our environment of

choice for this paper, which was an orientifold compactification of type IIA string theory,

we demonstrated that RL can make progress towards each of these goals.

More broadly, understanding the particle physics and cosmology implications of string

theory requires grappling with its large and computationally complex landscape of vacua.

Though formal progress is certainly necessary, it is difficult to imagine obtaining a complete

understanding without concrete and intelligent exploration. Our results demonstrate for

the first time that progress can be achieved with artificial intelligence in the context of

reinforcement learning. It is easy to imagine the use of reinforcement learning in other

string theoretic contexts, including outside of landscape studies, due to the model-free

nature of many of its algorithms.

Let us summarize the main results of our RL string landscape analysis.

Our A3C agents explored the environment of compactifications of type IIA superstring

theory with intersecting D6-branes. This is a doubly constrained system: for the sake of

consistency and stability we impose tadpole cancellation, K-theory, and supersymmetry

constraints; for the sake of particle physics we attempt to find a model as close to the

Standard Model of particle physics as possible. Together, these constraints give rise to a

coupled system of Diophantine equations,16 which are notoriously difficult to solve (see,

e.g., [9] for a study of Diophantine undecidability in string theory), in a space of possible

16Strictly speaking, the SUSY constraints in general need to be solved over R, but since we are not

stabilizing moduli we can consider solutions in Q (or equivalently Z) that lead to Diophantine equations.
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states that grows exponentially with input size. Nevertheless, our A3C agents perform

very well. They significantly outperform random walkers, sometimes by several orders of

magnitude, despite having learned only from their experience rather than being explicitly

programmed.

Our agents explore a concrete set of type IIA compactifications on a fixed geometry

known as a toroidal orbifold. We test and discuss different but equivalent ways of describing

and traversing this landscape. Since we need to solve a multi-task reinforcement learning

problem, we try different approaches that differ in the order in which the various physical

and string consistency conditions are imposed and checked and discuss their influence on

the agent’s ability to learn strategies to solve these tasks. We also change the way in which

the agent perceives the landscape, i.e. what it means to take a step. This heavily impacts

which states are “close” to one another in the landscape, i.e. which string configurations

can be reached from any given configuration with a few number of steps. Consequently,

this also impacts the strategy the agent has to learn for solving the various conditions.

We find that the best results are obtained using the CONSISTENCY-SM reward func-

tion in the stacking environment. The former denotes the order in which we impose the

various constraints, which is checking successively for tadpole cancellation, K-theory, su-

persymmetry, Standard Model gauge group, and the Standard Model spectrum. The latter

refers to how the agent traverses and thus perceives the landscape. The agent takes steps

by either adding or removing entire brane stacks, which means it chooses the homology

class of cycles (which is characterized by the winding numbers around each of the 6 torus

cycles, up to a certain truncation) on which to wrap the D6 branes. For each stack, the

agent can furthermore increase or decrease the number of branes in the stack.

Compared to the best-performing random walkers, we find that this RL agents pick

up factors of O(20), O(200), and O(50) in the number of models found with the Standard

Model gauge group (without imposing consistency), tadpole cancellation and K-theory,

and those two conditions plus supersymmetry, respectively. Unfortunately, we did not

succeed in finding an exact realization of the Standard Model, as in each case we found a

number of exotics. Note that it is possible that type IIA compactifications on a Z2 × Z2

toroidal orbifold with one tilted torus does not admit a single Standard Model solution; the

brute-force search of [41], which ran for over 105 CPU hours, also did not find a consistent

Standard Model solution in this compactification.

We have demonstrated that in the STC approach of solving the string consistency

conditions, the RL agent can learn human-derived heuristic strategies, while in the TCKS

approach, where no strategy of solving the Diophantine equations is known to humans,

the agent derived a new strategy that is about twice as efficient at finding fully consistent

string models per unit time. Specifically, using the STC reward we demonstrated that

the agent learns to find tadpole canceling supersymmetric models by disproportionately

using so-called filler branes, which contribute to the tadpole cancellation conditions but

not the SUSY conditions. It finds about 125 such models in 24 hours, taking 107 steps.

A CONSISTENCY-SM agent finds over 200 such models in 24 hours, however, and the

choice of reward function forbids the agent from utilizing the filler brane strategy. Instead,

the agent found a strategy that is more efficient per unit time.
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It would be interesting to understand whether there is a simple interpretation of the

efficient strategy. We leave this and other studies to future work, but anticipate exciting

progress in a number of directions.
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A Value sets for reward functions

Property Value 1 Value 2 Value 3

tadpoleDistanceMultiplier 1 1 1

TC Reward 106 106 106

TCK Reward 107 108 107

TCKS Reward 108 1010 108

missingGroupFactorDistance 100 100 106

missingParticleDistance 10 10 10

SMlike Reward 108 1010 108

SM Reward 109 1012 109

Table 2. Value assignments for the SIMULT reward function.

Property Value 1 Value 2 Value 3

tadpoleDistanceMultiplier 1 1 1

TC Reward 107 107 107

TCK Reward 108 109 108

TCKS Reward 109 1011 109

missingGroupFactorDistance 104 104 106

missingParticleDistance 104 104 106

SMlike Reward 1011 1013 1011

SM Reward 1013 1015 1013

Table 3. Value assignments the CONSISTENCY-SM reward function.
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Property Value 1 Value 2 Value 3

tadpoleDistanceMultiplier 500 500 500

TC Reward 1011 1013 1011

TCK Reward 1012 1015 1012

TCKS Reward 1013 1017 1013

missingGroupFactorDistance 50 50 106

missingParticleDistance 1 1 106

SMlike Reward 106 106 108

SM Reward 109 109 109

Table 4. Value assignments for the SM-CONSISTENCY reward function.

Property Value 1 Value 2 Value 3

tadpoleDistanceMultiplier 1 1 1

TC Reward 107 107 107

TCK Reward 108 109 108

TCKS Reward 109 1011 109

Table 5. Value assignments for the CONSISTENCY reward function.

Property Value 1 Value 2 Value 3

missingGroupFactorDistance 50 50 106

missingParticleDistance 1 1 106

SMlike Reward 107 109 108

SM Reward 109 1011 109

Table 6. Value assignments for the SM reward function.
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