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Entropy bounds applied to a system of N species of light quantum fields in thermal

equilibrium at temperature T are saturated in four dimensions at a maximal tem-

perature Tmax = MP lanck/
√
N . We show that the correct setup for understanding

the reason for the saturation is a cosmological setup, and that a possible explanation

is the copious production of black holes at this maximal temperature. The proposed

explanation implies, if correct, that N light fields cannot be in thermal equilibrium

at temperatures T above Tmax. However, we have been unable to identify a concrete

mechanism that is efficient and quick enough to prevent the universe from exceed-

ing this limiting temperature. The same issues can be studied in the framework of

AdS/CFT by using a brane moving in a five dimensional AdS-Schwarzschild space

to model a radiation dominated universe. In this case we show that Tmax is the

temperature at which the brane just reaches the horizon of the black hole, and that

entropy bounds and the generalized second law of thermodynamics seem to be vi-

olated when the brane continues to fall into the black hole. We find, again, that

the known physical mechanisms, including black hole production, are not efficient

enough to prevent the brane from falling into the black hole. We propose several

possible explanations for the apparent violation of entropy bounds, but none is a

conclusive one.

I. INTRODUCTION

Entropy bounds seem to imply that N light quantum fields cannot be in thermal equi-

librium at an arbitrarily high temperature. In four dimensions they are saturated at a

temperature equal to TMAX = MP /N 1/2 (here MP is the Planck mass). When entropy

http://arXiv.org/abs/hep-th/0404230v1
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bounds are saturated it is possible, in many cases, to identify a physical mechanism that

enforces them. The prime candidate for such a mechanism is black hole (BH) production. If

many BH’s are produced, the system goes into a kind of phase transition. In the new phase

the previous energy and entropy estimates are no longer valid. Since BH’s are more efficient

in storing entropy, the bounds are not violated.

We seek a physical mechanism that places an upper bound on the temperature, if such

an upper bound indeed exists. Since we wish to use semi-classical methods and avoid the

quantum regime, we focus on the limit of large N since then TMAX ≪ MP . As we will show,

the correct context for studying this issue is a cosmological context.

Previously, Bekenstein [1] argued that if the entropy of a visible part of the universe

obeys the usual entropy bound from nearly flat space situations [2], then the temperature is

bounded and therefore certain cosmological singularities are avoided. More recently, there

have been several discussions following a similar logic. Veneziano [3] suggested that since a

BH larger than a cosmological horizon cannot form [4], the entropy of the universe is always

bounded. This suggestion is related, although not always equivalent, to the application of

the holographic principle [5] in cosmology [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. In [16, 17, 18]

it was argued that the Hubble parameter H is bounded by entropy considerations, H ≤
HMAX ≡ MP√

N . In a cosmological context this is equivalent to T ≤ TMAX .

The AdS/CFT correspondence [19, 20] offers an alternative route and a new perspective

for the study of a system of a large number N of light fields in thermal equilibrium in

a cosmological setup by studying brane propagation in an AdS-Schwarzschild background

[21, 22, 23, 24, 25]. Branes moving in AdS-Schwarzschild space are expected to be dual

to finite temperature CFT’s in a cosmological background [26, 27]. However, the status of

the conjecture is somewhat weaker than the one relating to an AdS space without a brane

(see, for example, [28, 29, 30]). In this particular case the branes in AdS-Schwarzschild are

conjectured to be dual to a radiation dominated FRW universe, which is exactly the setup

that we are interested in. As we will show, the maximal temperature Tmax has a geometric

5D interpretation: it corresponds to the brane “just” reaching the BH horizon.

The conjectured duality between branes propagating in AdS-Schwarzschild space and a

radiation dominated FRW universe offers a novel perspective for studying the saturation of

the entropy bounds at TMAX . The issue becomes whether the brane can continue to fall into

the BH and continues to be dual to a CFT in a cosmological background at temperatures



3

above TMAX .

A possible way of viewing the propagation of branes in AdS-Schwarzschild is the following:

a thermal system with a known form of entropy is thrown into a BH, a process analogous

to the Geroch process. Here a 4D universe is thrown whole into a 5D BH, and so issues

concerning the generalized second law (GSL) and its relation to entropy bounds can be

addressed. As in the standard case, it is then possible to compare the total entropy of the

system before and after and to discuss cases in which a decrease in the total entropy is

suspected. We do indeed find that the GSL is violated as the brane falls into the BH.

In section II we explain the saturation of entropy bounds at TMAX , and discuss possible

physical mechanisms that may lead to this saturation. In section III we discuss the issue from

a 5D perspective, and discuss possible physical mechanisms that may alter the propagation of

branes with respect to naive expectations. In section IV we offer several possible resolutions

of the puzzle that we have posed in the previous sections.

II. BLACK HOLE CREATION AND A MAXIMAL TEMPERATURE IN FOUR

DIMENSIONS

Consider a relativistic gas in thermal equilibrium at a temperature T . We assume that

the gas consists of N independent degrees of freedom in a box of macroscopic linear size R,

we further assume that R is larger than any fundamental length scale in the system, and

in particular R is much larger than the Planck length R ≫ lP . The volume of the box is

V = R3. Since the gas is in thermal equilibrium its energy density is ρ = N T 4 and its

entropy density is s = N T 3 (here and in the following we systematically neglect numerical

factors). As explained previously, we are interested in the limit of large N .

Under what conditions is this relativistic gas unstable to the creation of BH’s? The

simplest criterion which may be used to determine whether an instability is present is a

comparison of the total energy in the box ETh = N T 4R3 to the energy of a BH of the

same size EBH = M2
P R. The two energies are equal when T 4 = 1/N M2

P /R2. So thermal

radiation in a box and a BH of the same size have the same energy if

(TR)4 =
1

N M2
P R2. (1)

Another criterion that may help us to determine the presence of an instability to BH’s
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creation is to compare the thermal entropy STh = N T 3R3 to the entropy of the BH SBH =

M2
P R2. They are equal when T 3 = 1/N M2

P /R. So thermal radiation in a box and a BH of

the same size have the same entropy if

(TR)3 = 1/N M2
P R2. (2)

From eqs. (1) and (2) it is possible to conclude the well known fact that for fixed R and

N , if the temperature is low enough the average thermal energy is not sufficient to form

BH’s. For low temperatures the thermal fluctuations are weak and they do not alter the

conclusion qualitatively.

Here we are interested in the case RT > 1 which means that the size of the box is larger

than the thermal wavelength 1/T . The case RT < 1 has been considered previously in [31].

In this case the temperature is not relevant. Instead, the field theory cutoff Λ was shown

to be the relevant scale. In [31] we found a relationship between Λ, MP l and the number of

fields N which is somewhat different than what we find here between T , MP l and N .

Imagine raising the temperature of the radiation from some low value for which condition

(1) is not satisfied to higher and higher values such that eventually condition (1) is saturated.

Note that since TR > 1 eq. (1) is saturated before eq. (2). We assume that the size of

the box R is fixed during this process (the number of species N is also fixed), and estimate

the backreaction of the radiation energy density on the geometry of the box to determine

whether the assumption that the geometry of box is fixed is consistent. To obtain a simple

estimate we assume that the box is spherical, homogeneous and isotropic. Then its expansion

or contraction rate is given by the Hubble parameter H = Ṙ/R, which is determined by the

00 Einstein equation H2M2
P = N T 4. However, if eq.(1) is satisfied then 1

R2 M
2
P = N T 4,

and therefore HR ∼ 1. The conclusion is that if eq. (1) is saturated then the gravitational

time scale is comparable to the light crossing time of the box, and therefore it is inconsistent

to assume that the box has a fixed size which is independent of the energy density inside it.

The conclusion from the previous discussion is that we need to study the issue of stability

or instability to the creation of BH’s in a box filled with thermal radiation in a time-

dependent setting, namely, in a cosmological setting, where

H2M2
P = N T 4 . (3)

Entropy bounds such as the Hubble entropy bound and others are saturated if STh =
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N T 3H−3 = SBH = M2
P lH

−2. From eq. (3) we understand that this happens for

H = T , T = TMAX =
MP√
N

. (4)

Let us examine in more detail the physics of a radiation dominated (RD) universe at tem-

peratures near TMAX . If H = T , the cosmological horizon size H−1 becomes comparable

to the wavelength of a typical particle of the relativistic gas, λ ∼ T−1. If we go beyond

this temperature, the classical description of the particles that compose the gas in terms

of a homogeneous and isotropic fluid is no longer appropriate, and thus neither is eq. (3).

Alternatively, one can think of TMAX as the temperature at which the Jeans length of a

typical thermal fluctuation becomes comparable to the thermal wavelength, thus suggest-

ing, again, that the approximation of the gas by a homogeneous and isotropic fluid becomes

inappropriate. Yet another way to think about TMAX is as the temperature at which the

entropy within a thermal wavelength becomes comparable to the entropy of a BH of the

same size, thus making BH entropically favored over single particle excitations. Similarly,

at T = TMAX the thermal energy inside a “box” of size H−1, E = N T 4H−3 is equal to the

energy of a BH of the same size, and also the free energies of both states become comparable.

All of the above supports the qualitative conclusion that a state of N degrees of freedom

cannot be in thermal equilibrium at temperatures above TMAX . We will try to examine this

issue more quantitatively below.

Let us first close some possible loopholes in our analysis. One possible loophole could

have been if thermal fluctuations were too large. This is not the case. The ratio of the

energy in thermal fluctuations,

∆E2

E2
=

1

N
1

T 3R3
, (5)

is small compared to the average value of the energy in this regime and is much smaller

than unity for RT > 1, and N ≫ 1. Another possible loophole could have been, as in [31],

a clash with the assumption that the semiclassical treatment is valid. Since, in the case at

hand, the energy is dominated by the mean value of ρ, and not by the fluctuations, we do

not have problems with black hole evaporation: in fact it turns out that for

T ≤ TC =

√

640π

N MP (6)

BH’s can be treated classically and, as can be seen by inserting the correct numerical factors

into the definition of TMAX , TMAX < TC .
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In any case, it is clear that at TMAX a significant change must occur in the way we

describe thermal equilibrium and the assumption that we can treat gravity as semiclassical,

only providing matter with a geometric background. All these considerations are well known

in the case N = 1; but if N is a large number the relevant scale can be much smaller than

the Planck scale.

We would like to discuss the issues in a more quantitative way. We would like to estimate

the time scale for the collapse of perturbations which, if frequent and strong enough, will

lead to production of black holes. The perturbation equations which govern their evolution

are well known [32]; we present here the equation governing the dynamics of the Bardeen

potential Φ, in longitudinal gauge

6Φ̈ + 24HΦ̇ + 12(Ḣ + H2)Φ − 2∆Φ = 0 , (7)

with H ≡ Ṙ/R, the dot denoting the derivative with respect to conformal time η, and ∆ the

spatial Laplacian operator. The solution of the perturbation equations is quite standard.

First, by means of the spatial Fourier transform the Laplacian operator is expressed in terms

of the comoving wavenumber k as ∆ → −k2. Then one notices that, since the background

evolves as a power law in conformal time, and, in particular, for a radiation dominated

contracting universe one has R(η) ∼ −η, with −∞ < η < 0, the solution for the mode Φk

can be expressed in terms of the variable x ≡ kη as:

Φk(η) = AkF (x) , (8)

where F (x) (whose explicit form is not needed here) scales as x−2 for x → −∞, diverges as

x−3 for x → 0, and is of order one for x ∼ −1.

The factor Ak can be determined through the perturbed Friedmann equation which gives

a relation between the Bardeen potential and the density perturbation:

Φk(η) =
3

2x2

δρk(x)

ρ
. (9)

We now observe that the thermal energy fluctuations are dominated by the comoving

wavenumber kT ≡ RT since the higher modes are exponentially suppressed in the Boltz-

mann distribution, and that we can estimate them via eq. (5). We further observe that at

the time ηMAX when the critical temperature TMAX is attained, one has x = −1 for the

mode that dominates the fluctuations. By combining all these elements we may express the
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Bardeen potential at ηMAX in terms of an initial thermal fluctuation at some early time ηi:

ΦkT
(ηMAX) =

3

2

1√
N (RT )3/2

1

x2
i F (xi)

F (−1) . (10)

The factor x2
i F (xi) is of order one, and so is F (−1); this leads us to the conclusion that the

Bardeen potential is still small at the critical time, due to the large factor
√
N (RT )3/2 in

the denominator.

To summarize, we have found that if the initial perturbations are provided by thermal

fluctuations, then their initial amplitude is very small, and since they grow only as a power

law, they do not have enough time to become large before the critical temperature is reached.

We conclude that BH production from thermal perturbations is not quick enough, so entropy

bounds seem to be violated.

At this point we cannot proceed further with semiclassical methods and get a better idea

on the state of a system when the temperature is increased beyond TMAX , or even whether

this is possible at all.

III. FEEDING A 4D BRANEWORLD TO A 5D BLACK HOLE

We can gain some insight about the meaning of TMAX , and perhaps some further tech-

nical control by modelling a 4D RD universe as a brane moving in an AdS5-Schwarzschild

spacetime.

For precision, we will take the following representation for the bulk spacetime

ds2 = −H(R)dt2 +
1

H(R)
dR2 + R2dΩ2

3 , (11)

where H(R) = 1 + R2

L2 − b4L2

R2 vanishes at the black hole horizon RH and b =

(

8G
(5)
N

3π
M
L2

)1/4

,

M being the black hole mass. L is related to the cosmological constant of the AdS and

also to the brane tension λ, which is tuned in such a way as to make a vanishing effective

cosmological constant on the brane. Note that the line element in eq.(11) describes only the

part of spacetime outside the BH horizon; this will become important and relevant shortly

when we discuss the fate of a brane that is about to fall into the BH.

For the AdS/CFT correspondence to be valid, b must be large b ≫ 1 [26], that is, the

black hole must be large and hot compared to the surrounding AdS5. In this limit the closed
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4D universe can be treated as flat, and we can write RH ≃ bL, and b ≃ πLT0, where T0 is

the Hawking temperature of the black hole.

The motion of the brane through the bulk spacetime is viewed by a brane observer as a

cosmological evolution. According to the prescription of the RS II model [33], the 4D brane

is placed at the Z2 symmetric point of the orbifold. On the other hand, in the so called

mirage cosmology [22], the brane is treated as a test object following a geodesic motion.

In both cases the evolution of the brane in the AdS5-Schwarzschild bulk mimics a FRW

radiation dominated cosmology. Thus, both prescriptions are useful for our purposes. We

will keep them in mind in the following discussion.

The brane can be described by its radial position as a function of the proper time of the

brane Rb(τ). The evolution of Rb(τ) is determined by an effective Friedmann equation:

(

Ṙb

Rb

)2

=
b4L2

R4
b

− 1

R2
b

, (12)

where the dot here stands for a derivative with respect to cosmic time. Since, as we recall,

b ≫ 1 so that the curvature term is always negligible, we ignore it in the following. Eq. (12)

expresses the dynamics of the brane in terms of 5D quantities; we now focus on the case of a

contracting brane and translate those quantities into 4D ones in order to be able to compare

eq. (12) with eq. (3).

The AdS/CFT correspondence tells us that the number of species in the CFT is given

by N = L3/G
(5)
N , while the 4D and the 5D Newton’s constants are related by LG

(4)
N = G

(5)
N

(again, we consistently ignore numerical factors). This is enough to make a comparison

between eq. (12) and eq. (3) and to obtain the temperature measured on the brane as

T = b/Rb, which is also in accordance with the AdS/CFT correspondence. In passing, we

notice that one should not confuse the temperature of the boundary CFT that is dual to

the AdS bulk theory with the Hawking temperature of the AdS BH as measured by a bulk

observer located at the coordinate R. The latter is given by T0/
√

H(R) and scales with R

in a similar way to the CFT temperature only in the asymptotic limit R → ∞.

We now wish to see what happens in the 5D picture when the limiting temperature is

approached on the brane. By expressing MP ≡
√

G
(4)
N and N in terms of 5D quantities we

can see that TMAX ≃ 1/L and, since the corresponding value for R is b/TMAX , we find that

T → TMAX =⇒ Rb → RH . (13)
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TMAX is reached exactly when the brane reaches the BH horizon and is about to enter into

the black hole!

At this point the whole meaning of the AdS/CFT correspondence becomes unclear since,

as we have noted before, it is valid only for the region outside the BH horizon. In the RS II

picture the brane represents the boundary of the bulk spacetime, which means that beyond

the brane at R > Rb there is an identical copy of the bulk spacetime at R < Rb. So, as the

brane reaches and then crosses the horizon, namely after Rb (the position of the brane) has

become less than RH (the horizon), the 5D spacetime is described by two identical copies of

the interior region of an AdS-Schwarzschild space, cut at R = Rb and glued together, with

the brane placed at the Z2 symmetry point. At this point the 5D BH disappears, and it is

not clear which brane CFT should be the dual of the bulk theory.

One could imagine avoiding confusion about the interpretation of the AdS/CFT corre-

spondence when the brane reaches the BH horizon if the brane motion is interpreted accord-

ing to the “mirage” prescription. In this case, the brane is not the boundary of spacetime.

Rather, it is a probe brane moving through the fixed bulk background. This approach is

slightly more helpful in our case. A reasonable interpretation of what transpires at horizon

crossing is that the 4D universe simply ends its existence and disappears into the BH. The

BH “eats” the 4D universe, its mass increases and so does its size, and entropy. Therefore

the final state from a 5D point of view is simply an AdS5-Schwarzschild space with a larger

BH.

We are thus studying a process analogous to the Geroch process, with the significant

difference that, in the case at hand, an entire universe is thrown into the BH. Therefore we

can look at the entropy balance during the process and see whether the GSL is respected or

not.

In order to have a vanishing effective cosmological constant on the brane, one has G
(5)
N λ ≃

L−1; this means that at horizon crossing the total energy of the brane is

E|R=RH
≃ b3L2

G
(5)
N

. (14)

Comparing E to M ≃ b4L2

G
(5)
N

we see that for b ≫ 1 the total energy of the brane is much

smaller than the BH mass E ≪ M .

The entropy of the 5D black hole is S = A(RH)/4G
(5)
N , with the area of the horizon given

by A(RH) = 2π2R3
H . When the brane falls into the BH, the entropy of the BH is increased
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by the following amount:

δS ≃ 1

4G
(5)
N

E
δA(RH(M))

δM
≃ EL2

RH

≃ EL

b
. (15)

For the GSL to hold, the total entropy of the system should increase in the process

δS > Sb . (16)

Since Sb = 2π2R3
HNT 3 ≃ EL is the total entropy on the brane when it is about to fall into

the BH, we find that for the total entropy to increase

b < 1 . (17)

However, for the AdS/CFT correspondence to hold, b has to be much larger than unity

b ≫ 1! If indeed b ≫ 1, then apparently the GSL is violated in this process. We have

thus found that a violation of the GSL in the 5D bulk corresponds to a violation of the

entropy bounds in the 4D brane. The situation is completely analogous to the one discussed

in connection with the ordinary Geroch process where the GSL is apparently violated if the

falling object does not satisfy the Bekenstein bound. This issue has a long history (see, for

example, [2], [35]-[40]) and is controversial to some extent. We do not attempt to take sides

in the debate, but rather to simply point out the similarities.

In any case, if the previous interpretations are correct, we must conclude that the

AdS/CFT correspondence seems to be incapable of describing a RD universe in thermal

equilibrium at temperatures above TMAX ; in the mirage approach this happens because the

brane that hosts the CFT disappears, while in the RS II picture it is the other way around:

the 5D BH ceases its existence. In both cases, this sudden breaking of the correspondence

lends support to the significance of TMAX as a temperature above which thermal equilibrium

physics is altered.

We may try to use the 5D picture to understand in a more qualitative way what is the

physical mechanism that renders TMAX a limiting temperature. Black hole creation and the

subsequent “breaking” of the brane seemed to be one of the possibilities in the 4D picture.

From the brane world point of view this would correspond to the formation of “blisters” on

the brane. In fact, since the temperature of the brane scales as 1/Rb, if a piece of brane is

closer to the BH with respect to the rest of the brane, then the local temperature on that

piece will be higher, as will its energy density. A piece of the brane that has higher energy
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density has a higher local magnitude of the Hubble parameter. Therefore the speed at which

it falls towards the BH is increased, and we expect a “blister” to form on the brane. Thus a

local oscillation of the brane position would be seen by a brane observer as a local density

perturbation which is further amplified as the brane falls towards the BH. This mechanism

can be studied by looking at perturbation equations for the position of the brane. Since

these are coupled to the bulk metric perturbations of the AdS5, it seems that the full set of

perturbation equations must be studied.

However, as it turns out, in our case one can study the perturbations directly from the

4D brane point of view: it is sufficient to write down the projected Einstein equations on

the brane as

Gµν = −Eµν , (18)

Eµν being the projected bulk Weyl tensor on the brane (see [34]), and to perturb them.

Eq. (18) looks so simple because there is no matter on the brane, just the tension which is

fine-tuned in order to cancel the bulk cosmological constant, so that both disappear from

the dynamics. The only effective source term is then the projection of the bulk Weyl tensor,

which we parameterize as a fluid with energy density ρǫ and pressure pǫ = −ρǫ/3 (Eµν is

traceless). Thus the system of perturbation equations is closed and can be solved without

reference to the 5D picture. Notice that this happens because of the simplicity of the model

at hand: if we had some matter on the brane this would no longer have been true.

In the end, the perturbation equations look exactly the same as in the pure 4D scenario

discussed in the previous section and the same physical considerations about the growth of

perturbations are valid. So it seems that the standard picture is confirmed: as R → RH ,

H → T , and at horizon crossing the typical modes in the thermal bath become unstable.

However their growth follows a power law only, and thus there is not enough time for the

instability to invalidate the whole picture.

Another possible 5D mechanism that could modify our discussion and its conclusion about

the saturation of the entropy bounds is the interaction of the bulk Hawking radiation with

the brane. Since, as we have seen, the temperature of the Hawking radiation diverges at the

horizon, one might have expected that at some point the Hawking radiation pressure becomes

so high that it prevents the brane from falling into the BH. Perhaps the Hawking radiation

pressure could cause the brane to bounce back and change its contraction into expansion or
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cause it to float just above the horizon. We think that this is unlikely. However, clearly the

issue deserves further study, especially in light of the fact that for b ≫ 1 the temperature of

the Hawking radiation is also very large. For boxes falling into BH’s the issue was debated

extensively in the context of the relationship between the GSL and entropy bounds [35]-[40].

We would like to make a few observations about the possible influence of the Hawking

radiation on the motion of the brane.

First, in AdS space the geometry provides a confining environment for the radiation

which is then in equilibrium with the BH. Notice also that, unlike the pure Schwarzschild

case, here the equilibrium is stable. The pressure on the brane results from the difference

in the force exerted on the two sides of the brane. If the system is in thermal equilibrium

and the brane is moving through the radiation fluid, then the pressure on it depends on

the interaction of the brane with the radiation. If it is transparent, then the radiation does

not exert any pressure on the brane, and if it is opaque, then the radiation pressure can be

estimated by the pressure of a fluid at the Hawking temperature.

The Hawking temperature at the position of the brane is given by TH = T0/
√

H(Rb) ≃
b

L
√

H(Rb)
. Substituting H(Rb) = 1+

R2
b

L2

(

1 − b4L4

R4
b

)

, we see that as long as the distance of the

brane from the horizon Rb − bL remains finite, then TH ∼ b/Rb ∼ Tbrane. We then observe

that the Hawking radiation pressure is smaller by a factor of N compared to the pressure

on the brane, which in turn determines the acceleration of the brane towards the BH. We

conclude that as long as the distance of the brane from the horizon is not particularly small,

the Hawking radiation pressure is not likely to alter its motion significantly.

When the brane does get close to the BH it seems that the Hawking radiation pressure

can affect the motion of the brane. However, it is not clear whether the fluid description of

the Hawking radiation is valid in the vicinity of the horizon. The wavelength of a typical

particle in thermal bath at temperature T is λ ∼ T−1, and the typical wavelength of the

Hawking radiation in our AdS-Schwarzschild spacetime is

λH(R) ∼ πL

b

√

R2

L2
− b4L2

R2
, (19)

where we have taken into account the behavior of the local Hawking temperature as discussed

above.

On the other hand the physical distance of a spacetime point with radial coordinate R
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from the horizon is

d(R) =

∫ R

bL

√

gRR(x)dx =
L

2
log





(

R

bL

)2

+

√

(

R

bL

)4

− 1



 . (20)

Notice that although gRR diverges near the horizon, d(R) is always finite at finite R.

Now observe that as one gets close to the horizon (i.e. for R − bL ≪ bL), the following

relation holds

λH(R) → 2πd(R) , (21)

meaning that the typical wavelength λH becomes larger than (or in any case, of the same

order of magnitude as) the physical distance from the horizon, thus implying that the de-

scription of the Hawking radiation as a fluid becomes inappropriate at this point. One could

then argue that the Hawking radiation forms mostly at distances d ∼ bL from the black hole

and larger, and that for smaller distances there is no significant radiation pressure. This

means that Hawking radiation pressure cannot stop the brane from falling into the BH as

it approaches the horizon.

These issues were discussed in the context of falling boxes most recently by Marolf and

Sorkin [40], and previously by others. We conclude that the answer depends on the detailed

dynamics of the system.

IV. DISCUSSION AND POSSIBLE RESOLUTION

We have seen that a special value of the temperature TMAX = MP /
√
N emerges in

various contexts. We have seen that such a value arises in four dimensional models as the

temperature at which entropy bounds are saturated, and in five dimensional models as the

effective induced temperature on a brane propagating in AdS-Schwarzschild spacetime as it

reaches the horizon of the bulk BH and is about to disappear into it. We have also shown

that in the five dimensional picture the GSL is violated as the brane falls into the BH.

We have presented some examples for the appearance of this special value of the tem-

perature, and have provided arguments supporting its existence or that a change in the

description of equilibrium physics at this temperature is required. We have not provided

conclusive evidence as to whether a specific physical mechanism is responsible for enforcing

such a maximal temperature, or whether one exists at all. We have not been able to identify
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a single mechanism that is efficient and quick enough to prevent the universe from exceeding

the limiting temperature nor to identify the required changes in the description of physics

at this temperature.

We list a few possibilities which we leave as unsolved puzzles and interesting problems

for future research:

1. Entropy bounds give the correct limiting temperature in their currently known form.

Some enforcing mechanism exists which is still unknown.

2. Entropy bounds need to be modified such that the limiting temperature disappears,

and they are consistent at all temperatures.

3. Brane world AdS/CFT correspondence is valid for the model that we are considering:

that the brane falls into the BH and entropy bounds are violated.

4. Brane world AdS/CFT correspondence in this particular context is not valid when

the brane approaches the horizon and falls into the BH. When modified appropriately,

for example by correctly taking into account the influence of the Hawking radiation

pressure or the growth of perturbations or the effects of additional induced matter on

the brane, entropy bounds remain valid in their currently known forms.

5. Both the AdS/CFT correspondence in this specific context and the currently known

entropy bounds are not valid for temperatures of about TMAX .

6. The number of light fields N is fundamentally limited, a fact which is well represented

by entropy bounds, and therefore considering the large N limit N → ∞, as is done

in the AdS/CFT correspondence, is incorrect.

At this point in time we do not have a clear preference or a clear indication from our

calculations as to which of these possibilities is correct. We hope that future research will

help to resolve the issues that we have discussed.

V. ACKNOWLEDGMENTS

This research was supported in part by the Israel Science Foundation under grant no.

174/00-2 and by the NSF under grant no. PHY-99-07949. S. F. was partially supported by



15

the Kreitman foundation. R. B. thanks the KITP, UC at Santa Barbara, where this work

was completed. We thank the participants of the string cosmology program at KITP for

comments and D. Marolf in particular for discussions and helpful suggestions.

[1] J. D. Bekenstein, Int. J. Theor. Phys. 28, 967 (1989).

[2] J. D. Bekenstein, Phys. Rev. D 23, 287 (1981); J. D. Bekenstein, Phys. Rev. D 49, 1912

(1994) [arXiv:gr-qc/9307035].

[3] G. Veneziano, Phys. Lett. B454, 22 (1999) [arXiv:hep-th/9907012].

[4] B. J. Carr and S. W. Hawking, Mon. Not. Roy. Astron. Soc. 168, 399 (1974); B. J. Carr,

Astrophys. J. 201, 1 (1975);

[5] G. ’t Hooft, arXiv:gr-qc/9310026; L. Susskind, J. Math. Phys. 36, 6377 (1995)

[arXiv:hep-th/9409089].

[6] W. Fischler and L. Susskind, arXiv:hep-th/9806039.

[7] R. Easther and D. A. Lowe, Phys. Rev. Lett. 82, 4967 (1999) [arXiv:hep-th/9902088].

[8] N. Kaloper and A. D. Linde, Phys. Rev. D 60, 103509 (1999) [arXiv:hep-th/9904120].

[9] D. Bak and S. J. Rey, Class. Quant. Grav. 17, L83 (2000) [arXiv:hep-th/9902173];

[10] R. Bousso, JHEP 9907, 004 (1999) [arXiv:hep-th/9905177];

[11] R. Bousso, JHEP 9906, 028 (1999) [arXiv:hep-th/9906022];

[12] R. Bousso, Class. Quant. Grav. 17, 997 (2000) [arXiv:hep-th/9911002];

[13] R. Brustein and G. Veneziano, Phys. Rev. Lett. 84, 5695 (2000) [arXiv:hep-th/9912055].

[14] E. Verlinde, arXiv:hep-th/0008140;

[15] I. Savonije and E. Verlinde, Phys. Lett. B 507, 305 (2001) [arXiv:hep-th/0102042].

[16] R. Brustein, Phys. Rev. Lett. 84, 2072 (2000) [arXiv:gr-qc/9904061].

[17] R. Brustein, S. Foffa and R. Sturani, Phys. Lett. B 471, 352 (2000) [arXiv:hep-th/9907032].

[18] R. Brustein, S. Foffa and G. Veneziano, Phys. Lett. B 507, 270 (2001) [arXiv:hep-th/0101083].

[19] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)]

[arXiv:hep-th/9711200].

[20] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, Phys. Rept. 323, 183

(2000) [arXiv:hep-th/9905111].

[21] P. Kraus, JHEP 9912, 011 (1999) [arXiv:hep-th/9910149].

http://arXiv.org/abs/gr-qc/9307035
http://arXiv.org/abs/hep-th/9907012
http://arXiv.org/abs/gr-qc/9310026
http://arXiv.org/abs/hep-th/9409089
http://arXiv.org/abs/hep-th/9806039
http://arXiv.org/abs/hep-th/9902088
http://arXiv.org/abs/hep-th/9904120
http://arXiv.org/abs/hep-th/9902173
http://arXiv.org/abs/hep-th/9905177
http://arXiv.org/abs/hep-th/9906022
http://arXiv.org/abs/hep-th/9911002
http://arXiv.org/abs/hep-th/9912055
http://arXiv.org/abs/hep-th/0008140
http://arXiv.org/abs/hep-th/0102042
http://arXiv.org/abs/gr-qc/9904061
http://arXiv.org/abs/hep-th/9907032
http://arXiv.org/abs/hep-th/0101083
http://arXiv.org/abs/hep-th/9711200
http://arXiv.org/abs/hep-th/9905111
http://arXiv.org/abs/hep-th/9910149


16

[22] A. Kehagias and E. Kiritsis, JHEP 9911, 022 (1999) [arXiv:hep-th/9910174].

[23] D. Ida, JHEP 0009, 014 (2000) [arXiv:gr-qc/9912002].

[24] B. Wang, E. Abdalla and R. K. Su, Phys. Lett. B 503, 394 (2001) [arXiv:hep-th/0101073].

[25] B. Wang, E. Abdalla and R. K. Su, Mod. Phys. Lett. A 17, 23 (2002) [arXiv:hep-th/0106086].

[26] E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998) [arXiv:hep-th/9803131].

[27] S. S. Gubser, Phys. Rev. D 63, 084017 (2001) [arXiv:hep-th/9912001].

[28] L. Anchordoqui, J. D. Edelstein, C. Nunez, S. E. Perez Bergliaffa, M. Schvellinger, M. Trobo

and F. Zyserman, Phys. Rev. D 64, 084027 (2001) [arXiv:hep-th/0106127].

[29] S. Nojiri, S. D. Odintsov and S. Ogushi, Int. J. Mod. Phys. A 17, 4809 (2002)

[arXiv:hep-th/0205187].

[30] R. Maartens, arXiv:gr-qc/0312059.

[31] R. Brustein, D. Eichler, S. Foffa and D. H. Oaknin, Phys. Rev. D 65, 105013 (2002)

[arXiv:hep-th/0009063].

[32] V. F. Mukhanov, H. A. Feldman and R. H. Brandenberger, Part Phys. Rept. 215, 203 (1992).

[33] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999) [arXiv:hep-th/9906064].

[34] T. Shiromizu, K. i. Maeda and M. Sasaki, Phys. Rev. D 62, 024012 (2000)

[arXiv:gr-qc/9910076].

[35] W. G. Unruh and R. M. Wald, Phys. Rev. D 25, 942 (1982).

[36] L. X. Li and L. Liu, Phys. Rev. D 46, 3296 (1992).

[37] J. D. Bekenstein, Phys. Rev. D 49, 1912 (1994) [arXiv:gr-qc/9307035].

[38] W. G. Anderson, Phys. Rev. D 50, 4786 (1994) [arXiv:gr-qc/9402030].

[39] J. D. Bekenstein, Phys. Rev. D 60, 124010 (1999) [arXiv:gr-qc/9906058].

[40] D. Marolf and R. Sorkin, Phys. Rev. D 66, 104004 (2002) [arXiv:hep-th/0201255].

http://arXiv.org/abs/hep-th/9910174
http://arXiv.org/abs/gr-qc/9912002
http://arXiv.org/abs/hep-th/0101073
http://arXiv.org/abs/hep-th/0106086
http://arXiv.org/abs/hep-th/9803131
http://arXiv.org/abs/hep-th/9912001
http://arXiv.org/abs/hep-th/0106127
http://arXiv.org/abs/hep-th/0205187
http://arXiv.org/abs/gr-qc/0312059
http://arXiv.org/abs/hep-th/0009063
http://arXiv.org/abs/hep-th/9906064
http://arXiv.org/abs/gr-qc/9910076
http://arXiv.org/abs/gr-qc/9307035
http://arXiv.org/abs/gr-qc/9402030
http://arXiv.org/abs/gr-qc/9906058
http://arXiv.org/abs/hep-th/0201255



