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Abstract. – Three solutions of the Brans-Dicke theory with a self-interacting quartic poten-
tial and perfect fluid distribution are presented for a spatially flat FRW geometry. The physical
behavior is consistent with the recent cosmological scenario favored by supernova type-Ia ob-
servations, indicating an accelerated expansion of the Universe.

Introduction. – Recent observations of type-Ia supernovae with redshift up to about z � 1
provided evidence that we may live in a low–mass-density Universe, with the contribution of
the non-relativistic matter (baryonic plus dark) to the total energy density of the Universe
of the order of Ωm ∼ 0.3 [1]. The value of Ωm is significantly less than unity [2], and,
consequently, either the Universe is open or there is some additional energy density ρ sufficient
to reach the value Ωtotal = 1, predicted by inflationary theory. Observations also show that
the deceleration parameter of the Universe q is in the range −1 ≤ q < 0, and the present-day
Universe undergoes an accelerated expansionary evolution.
Several physical models have been proposed to give a consistent physical interpretation

to these observational facts. Photons propagating in extra-galactic magnetic fields can os-
cillate into very light axions, so the supernovae appear dimer and more distant than they
really are [3]. For the missing energy one candidate is the vacuum energy density, or the
cosmological constant Λ [4]. A charged Universe, in which the long-range force carriers have
a small mass, has been considered as a cause for the cosmic acceleration in [5]. Another
possibility are cosmologies based on a mixture of cold dark matter and quintessence, a slowly
varying, spatially inhomogeneous component [6]. An example of implementation of the idea
of quintessence is the suggestion that it is the energy associated with a scalar field Q with
self-interaction potential V (Q). If the potential energy density is greater than the kinetic one,
then the pressure associated to the Q-field is negative [7]. Quintessence models that accom-
modate the present-day acceleration tend to accelerate eternally, and, as a consequence, the
resulting space-times exhibit event horizons [8]. A wide class of quintessence models, with
eternal acceleration, associated with static metrics, have been presented in [9].
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Brans-Dicke (BD) theory may explain the present accelerated expansion of the Universe
without resorting to a cosmological constant or quintessence matter [10]. The conditions under
which the dynamics of a self-interacting BD field can account for the accelerated expansion
have been considered in [11–14]. Accelerated expanding solutions can be obtained with a
quadratic self-coupling of the BD field and a negative coupling constant ω [11]. A cosmic
fluid obeying a perfect-fluid–type equation of state cannot support the acceleration [13]. The
nature of the scalar field potential compatible with a power law expansion in a self-interacting
BD cosmology with a perfect-fluid background has been analyzed in [14]. Models with non-
minimal coupling of the scalar field have been considered in [15]. Complicated cosmological
scenarios, with a four-dimensional effective action connected with supergravity and string
theory, have been obtained in [16].
It is the purpose of the present letter to consider some exact classes of solutions of the

field equations in the framework of BD theory with a quartic potential, V (φ) ∼ φ4. By means
of some appropriate transformations, the field equations can be reduced to a system of two
independent Riccati’s type differential equations. Three classes of exact solutions of the field
equations are presented, and their physical properties are investigated in detail.

Field equations, geometry and consequences. – The physical model we are considering is
the Brans-Dicke action, along with a self-interacting potential V (φ), coupled to the matter
field Lagrangian Lm via the action

S =
∫
d4x

√−g
(
φR− ω

φ
φ,αφ,α − V (φ) + Lm

)
, (1)

where ω is the BD coupling parameter. For ω = −1 this action is identical to the low-energy
string theory action. In the present letter we use units so that 8πG = c = 1.
For a homogeneous flat space-time, with scale factor a, filled with a perfect fluid, with

pressure pm and energy density ρm, the Einstein-Brans-Dicke gravitational field equations are

3H2 =
ρm + ρφ

φ
, 2Ḣ + 3H2 = −pm + pφ

φ
, (2)

where ρφ and pφ are the energy density and pressure associated to the BD scalar field, given by

ρφφ
−1 =

ω

2
ψ2 +

V (φ)
2φ

− 3Hψ, pφφ
−1 =

(
1 +

ω

2

)
ψ2 − V (φ)

2φ
+ ψ̇ + 2Hψ, (3)

where we denoted H = ȧa−1 and ψ = φ̇φ−1. ψ gives the rate of change of the gravitational
constant G(t), ψ = − Ġ(t)

G(t) .
The wave equation for the BD field takes the form

ψ̇ + ψ2 + 3Hψ =
(ρm − 3pm)φ−1

(2ω + 3)
− 1
(2ω + 3)

(
2V (φ)
φ

− dV (φ)
dφ

)
. (4)

The energy conservation of the matter implies ρ̇m + 3(ρm + pm)H = 0.
We assume that the self-interaction potential V (φ) has the form V (φ) = V0φ

4, V0 = const.
This form corresponds to chaotic inflation model, where the constant V0 is subject to the
constraint V0 < 10−12, coming from the observational limits on the amplitude of fluctuations
in the cosmic microwave background [17].
With this choice, and with the use of eqs. (2)-(4), we obtain the following equation de-

scribing the dynamics of the Universe:

ψ̇ − 3
ω
Ḣ =

6
ω
H2 − 1

2
ψ2 − 3Hψ. (5)
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We introduce the following matrices:

L =
(
ψ̇ − 3

ω
Ḣ

)
, MT =

(
ψ H

)
, A =


−1

2
−3
2

−3
2
+
6
ω


 . (6)

Then eq. (5) can be written as a matrix equation in the form L =MTAM .
We define two new variables ψ̂, Ĥ, which are obtained by means of a linear transformation,

described by the matrix K, and applied to the matrix M̂ ,

M =
(
ψ
H

)
= KM̂ =

(
f+K

−1
+ f−K−1

−
K−1

+ K−1
−

)(
ψ̂

Ĥ

)
, (7)

where f+, f−,K+ and K− are real numbers.
In the new variables (ψ̂, Ĥ) we have L = M̂TKTAKM̂ . We choose the elements of

the matrix K so that KTAK is a diagonal matrix, with the diagonal elements λ∓ given by
the eigenvalues of A. The eigenvectors and the eigenvalues of the matrix A are given by(
f+K

−1
+ K−1

+

)T
,
(
f−K−1

− K−1
−

)T
, where λ∓ = 12−ω∓s

4ω , f∓ = 12+ω∓s
6ω , K∓ =

√
f2∓ + 1 and

s =
√
144 + 24ω + 37ω2. s satisfies the condition s ≥ 0,∀ω.

Therefore the equations satisfied by the new unknown functions ψ̂, Ĥ are

a−
dψ̂
dt

− λ−ψ̂2 = a+
dĤ
dt
+ λ+Ĥ

2 = F (t), (8)

where we have introduced a solution generating function F (t) and denoted a∓ = ε±K−1
± (f±−

3ω−1), with ε± = ±1.
Classes of exact solutions of the field equations. – In order to obtain some classes of

general solutions of eqs. (8), we assume first that ψ̂ and Ĥ are given by ψ̂ = c−t−1, Ĥ = c+t
−1,

c± = const. These functional forms of the new variables satisfy eqs. (8) if the consistency
condition α− = α+ relating the parameters a∓, c∓ and λ∓ holds, with α∓ = −a∓c∓+ε∓λ∓c2∓.
By choosing F (t) = α−t−2 = α+t

−2, we separate eqs. (8) into a system of Riccati’s differential
equations given as

a−
dψ̂
dt

− λ−ψ̂2 =
α−
t2
, a+

dĤ
dt
+ λ+Ĥ

2 =
α+

t2
. (9)

The mathematical form of F (t) has been chosen in order to obtain an exact solution of
eqs. (8). The system (9) has the particular solutions ψ̂0 = c−t−1 and Ĥ0 = c+t

−1. With
the help of the standard transformations ψ̂ = u−1 + ψ̂0, Ĥ = v−1 + Ĥ0 Riccati’s differential
equations are transformed into two linear Bernoulli’s equations.
Therefore, a first class of general solutions of eqs. (9) is given by

ψ̂ =
t2n−

d− − n−
c−(1+2n−) t

2n−+1
+ c−t−1, Ĥ =

t−2n+

d+ +
n+

c+(1−2n+) t
−2n++1

+ c+t−1, (10)

where we have denoted n∓ = c∓λ∓a−1
∓ . d∓ are arbitrary constants of integration.
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With the use of the linear transformation (7) the solution for (ψ,H) is obtained in the
form

ψ =
f+K

−1
+ c− + f−K−1

− c+

t
+ f+K−1

+

t2n−

d− − n−
c−(1+2n−) t

2n−+1
+

+f−K−1
−

t−2n+

d+ +
n+

c+(1−2n+) t
−2n++1

, (11)

H =
K−1

+ c− +K−1
− c+

t
+K−1

+

t2n−

d− − n−
c−(1+2n−) t

2n−+1
+

+K−1
−

t−2n+

d+ +
n+

c+(1−2n+) t
−2n++1

. (12)

The BD scalar field and the scale factor of the Universe are

φ = φ0t
f+K−1

+ c−+f−K−1
− c+

[
d− − n−

c−(1 + 2n−)
t2n−+1

]− f+K
−1
+ c−

n− ×

×
[
d+ +

n+

c+(1− 2n+)
t−2n++1

] f−K
−1
− c+

n+

, (13)

a = a0t
K−1

+ c−+K−1
− c+

[
d− − n−

c−(1 + 2n−)
t2n−+1

]−K
−1
+ c−
n− ×

×
[
d+ +

n+

c+(1− 2n+)
t−2n++1

]K
−1
− c+
n+

, (14)

where a0 > 0 and φ0 > 0 are constants of integration.
Another class of exact solutions of the gravitational field equations in the BD theory with

matter fluid is obtained by assuming for the generating function the form F (t) = β = const.
In this case eqs. (8) take the form

a−
dψ̂
dt
= λ−ψ̂2 + β, a+

dĤ
dt
= −λ+Ĥ

2 + β. (15)

Depending on the sign of the parameters λ−, λ+ and β, we obtain two distinct classes of
solutions. In the first case we assume that λ− > 0, −λ+ > 0 and β < 0. With this choice the
general solutions of eqs. (15) are given by

ψ̂ = −
√
|β|λ−1

− coth
[
N−(t− t0)

]
, Ĥ = −

√
−|β|λ−1

+ coth
[
N+(t− t0)

]
, (16)

where N± =
√
ε∓λ±|β|a−1

± . This solution is mathematically consistent for values of ψ̂ and Ĥ

so that ψ̂ >
√

|β|
λ−
, ψ̂ < −

√
|β|
λ−
and Ĥ >

√
|β|
−λ+

.
With the use of the transformation (7) we obtain

ψ = −f+K−1
+

√
|β|λ−1

− coth
[
N−(t− t0)

] − f−K−1
−

√
−|β|λ−1

+ coth
[
N+(t− t0)

]
, (17)
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Fig. 1 – Time evolution of the energy density of the matter ρm (solid curve) and of the scalar field
ρφ (dashed curve) (in units of 10−47 GeV4) for the first class of solutions for ω = −2, d− = 0.32,
d+ = 0.53, c− = −1.95, V0 = 0.0064 and c+ = −0.54. The time is expressed in units of 10Gy.

and
H = −K−1

+

√
|β|λ−1

− coth
[
N−(t− t0)

] −K−1
−

√
−|β|λ−1

+ coth
[
N+(t− t0)

]
. (18)

On integration, we obtain the BD scalar field and the scale factor:

φ = φ0 sinh
− f+K

−1
+

√
|β|λ−1

−
N−

[
N−(t− t0)

]
sinh−

f−K
−1
−
√

−|β|λ−1
+

N+
[
N+(t− t0)

]
, (19)

a = a0 sinh
−K

−1
+

√
|β|λ−1

−
N−

[
N−(t− t0)

]
sinh−

K
−1
−
√

−|β|λ−1
+

N+
[
N+(t− t0)

]
. (20)

A third class of solutions is obtained by assuming λ− > 0, −λ+ > 0 and β > 0. The
solution can be formally obtained from the previous one by means of the substitution β → −β,
coth ix→ 1

i cotx, etc. In all these cases the energy density and pressure of the baryonic matter
and of the scalar field follow from the field equations (2), (3).

Discussions and final remarks. – The first class of solutions depends on the set of five
arbitrary constants c−, d±, V0 and ω. To determine them from the actual observational
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Fig. 2 – Dynamics of the deceleration parameter for the first class of solutions for ω = −1.8 (solid
curve), for ω = −2 (dotted curve), and for ω = −2.2 (dashed curve). We have used the values
d− = 0.32, d+ = 0.53, c− = −1.95, V0 = 0.0064 and c+ = −0.54. The time is expressed in units of
10Gy.
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Fig. 3 – Time evolution of the energy density of the matter ρm (solid curve) and of the scalar field
ρφ (dashed curve) (in units of 10−47 GeV4) for the second class of solutions, for ω = −2, β = 0.001
and V0 = 0.0073. The time is expressed in units of 10Gy.

data we take the matter pressure to be zero, pm = 0. For the age of the Universe and the
Hubble constant we adopt the values t = 14Gy and H0 = 65 km s−1Mpc−1 [1]. The density
parameters of the matter and of the BD scalar fields are defined as Ωm = ρm

3H2φ = 0.25 and
Ωφ =

ρφ

3H2φ = 0.75, respectively [1]. For the deceleration parameter q =
d
dt

1
H − 1, which is

an indicator of the accelerating behavior, we assume an actual value of q = −0.5. Therefore,
by taking ω as a free parameter, we have four observational constraints to be satisfied by the
model. Thus the numerical values of the constants c−, d± and V0 can be obtained from fitting
the model with the observations. Generally, a physical solution for the resulting non-linear
system of algebraic equations can be obtained only for small negative values of ω.
The variation of the energy density of the matter and of the BD field is represented, for the

first class of solutions, in fig. 1. Generally, the energy density of the scalar field dominates the
matter energy density, thus providing the dominant contribution to the total energy density.
The deceleration parameter is represented, for different values of ω < 0, in fig. 2. q is negative,
with values in the range −1 < q < 0, indicating an accelerating evolution of the Universe.
The second class of solutions depends (by choosing t0 = 0) on three parameters, β, V0 and

ω. Their numerical values can be obtained so that the solution fits the actual observational
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Fig. 4 – Dynamics of the deceleration parameter in the second class of solutions for ω = −1.8 (solid
curve), ω = −2 (dotted curve) and ω = −2.2 (dashed curve). In all cases we have used the values
β = 0.001 and V0 = 0.0073. The time is expressed in units of 10Gy.
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values of H, Ωm and Ωφ. The resulting algebraic system of equations has also a physical
solution only for small negative values of ω.
The time variations of the energy density of the matter and of the BD field, and of q for

the second class of solutions are represented in figs. 3 and 4. The energy density of the scalar
field dominates the matter energy density, and the evolution is accelerating.
Therefore, these two classes of solutions are compatible with the observed cosmological

data only for small negative values of the coupling parameter of the BD field. Another
important observational bound requires Ωφ < 0.044 at nucleosynthesis [18]. This condition
can also be satisfied by appropriately choosing the matter equation of state in the very early
stages of evolution of the Universe. Generally, in the present models we have ρφ > ρm, and
the evolution is accelerating. An accelerating expansion during the whole evolution of the
Universe is not favored by the current models of structure formation. However, as shown
in [19], the scalar field, which is non-minimally coupled to gravity, may undergo clustering
processes, eventually forming density perturbations, which can be investigated only within a
non-linear approach, and leading to the formation of some cosmic structures. On the other
hand, to satisfy the actual observational constraints, a much larger value than that predicted
by the inflationary scenario is needed for the constant V0.
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