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Abstract

The brassinosteroids (BRs) represent a class of phytohormones, which regulate numerous

aspects of growth and development. Here, a det2-9mutant defective in BR synthesis was

identified from an EMSmutant screening for defects in root length, and was used to investi-

gate the role of BR in root development in Arabidopsis. The det2-9mutant displays a short-

root phenotype, which is result from the reduced cell number in root meristem and

decreased cell size in root maturation zone. Ethylene synthesis is highly increased in the

det2-9mutant compared with the wild type, resulting in the hyper-accumulation of ethylene

and the consequent inhibition of root growth. The short-root phenotype of det2-9 was par-

tially recovered in the det2-9/acs9 double mutant and det2-9/ein3/eil1-1 triple mutant which

have defects either in ethylene synthesis or ethylene signaling, respectively. Exogenous

application of BR showed that BRs either positively or negatively regulate ethylene biosyn-

thesis in a concentration-dependent manner. Different from the BR induced ethylene bio-

synthesis through stabilizing ACSs stability, we found that the BR signaling transcription

factors BES1 and BZR1 directly interacted with the promoters of ACS7, ACS9 and ACS11

to repress their expression, indicating a native regulation mechanism under physiological

levels of BR. In addition, the det2-9mutant displayed over accumulated superoxide anions

(O2
-) compared with the wild-type control, and the increased O2

- level was shown to contrib-

ute to the inhibition of root growth. The BR-modulated control over the accumulation of O2
-

acted via the peroxidase pathway rather than via the NADPH oxidase pathway. This study

reveals an important mechanism by which the hormone cross-regulation between BRs and

ethylene or/and ROS is involved in controlling root growth and development in Arabidopsis.
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Author summary

Both brassinosteroids (BRs) and ethylene have been known to control root growth and

development. ROS have been also reported to play an important role in root development.

However, the relationship between BRs and ethylene or ROS in root growth and develop-

ment was not addressed before. In this study, a det2-9mutant defective in BR synthesis

was identified from an EMS mutant screening, displaying a short-root phenotype which is

result from the hyper-accumulation of ethylene and superoxide anions (O2
-). Exogenous

BR apply showed that BRs either positively or negatively regulate ethylene biosynthesis in

a concentration-dependent manner. Different from the BR induced ethylene biosynthesis

through stabilizing ACSs stability, we found that the BR signaling transcription factors

BES1 and BZR1 interacted with promoters of ACS7, ACS9 and ACS11 to repress their

expression, indicating a native regulation mechanism under physiological levels of BR.

The BR-modulated control over the accumulation of O2
- acted via the peroxidase pathway

rather than via the NADPH oxidase pathway. This study provides new insights into how

brassinosteroids control root growth through the cross-regulation with ethylene synthesis

and ROS.

Introduction

Roots are important plant ground organs, which absorb water and nutrients to control plant

growth and development. In higher plants, root growth is maintained by coordinating cell pro-

liferation and differentiation [1–3]. Plant hormones have been known to play a crucial role in

the regulation of root growth [4]. Recent studies in the Arabidopsis root have shown that dif-

ferent hormones control organ growth by regulating specific growth processes such as cell pro-

liferation, differentiation or expansion in distinct tissues. Plant hormones such as auxin,

cytokinin, abscisic acid, brassinosteroids, ethylene and gibberellins have been shown to be

involved in root growth through a range of complex interactions. The activities of these hor-

mones during root growth progression depend on cellular context and exhibit either synergis-

tic or antagonistic interactions. For example, ethylene enhances inhibition of root cell

elongation through upregulating the expression of ASA1 and ASB1 to enhance auxin biosyn-

thesis in Arabidopsis seedlings [5]. Furthermore, ethylene regulated root growth was also medi-

ated through modulating the auxin transport machinery [6]. In addition, cytokinin was also

found to control root growth through transcriptional regulation of the PIN genes and thus

influencing auxin distribution [7]. The balance between auxin and cytokinin signaling is cru-

cial during root growth. In Arabidopsis, cell division and cell differentiation largely determines

root meristem size, which is under the control of cytokinin and auxin through an ARR1/

SHY2/PIN circuit [1]. All these studies suggest that hormonal cross-talk plays a pivotal role in

the regulation of root growth.

The brassinosteroids (BRs) represent a class of phytohormones involved in a wide variety

and developmental processes including root development [8–12]. BR, detected by the BRI1

receptor, activates the transcription factors BES1 and BZR1, which in turn govern the tran-

scription of a large number of genes [13–16]. BRs are known to participate in root growth and

development, because mutants impaired with respect to either the synthesis or signaling of BR

develop foreshortened roots [17, 18]. However, excessive application of bioactive BR ham-

pered normal development of plants [19]. Therefore, a finely tuned cellular regulation of BR

levels is important for the development of plant. It has been found that BR deficient conditions

elicit the expression of BR biosynthesis genes, while increase in endogenous BR concentration

BRs control root growth through the regulation of ethylene synthesis and superoxide anions accumulation
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lead to feedback regulation of the expression of BR metabolic genes to maintain the homeosta-

sis of BR [20]. Recent studies demonstrate that BR interacts with plant hormones such as

abscisic acid, gibberellins, auxin and cytokinin to regulate plant growth and development [21–

23]. BR interacts with ethylene to regulate the gravitropic response of the shoot, and is involved

in ethylene-controlled processes in the hypocotyl of both light- and dark-grown seedlings [24,

25]. Exogenously supplied BR enhances the stability of type 2 of the enzymes 1-aminocyclo-

propane-1-carboxylate synthase (ACS5 and ACS9) and thus increasing ethylene production,

thereby modulating the hypocotyl growth of etiolated seedlings [26]. Though both BRs and

ethylene have been reported to regulate root growth and development, it is still unknown if

there is a cross-regulation between BRs and ethylene in this process.

In addition to plant hormones, the regulation of root growth has also been tightly linked to

reactive oxygen species (ROS). Root growth is profoundly affected by endogenously generated

ROS. While ROS were initially believed to merely represent a damaging by-product of the

plant’s stress response [27], they have been now recognized as signaling molecules [28]. For

example, ROS have been shown to be important for balancing cell proliferation and differenti-

ation during root growth, and have been proposed to adopt a signaling role during lateral root

formation [29, 30]. It has been reported that ROS produced in mitochondria of root tip cells in

response to the hormone abscisic acid (ABA) are responsible for regulating the root’s meriste-

matic activity [31]. A BR receptor-mediated increase of the cytosolic concentration of calcium

ions (Ca2+) regulates ROS production, thereby reducing the length of the hypocotyl in dark-

grown seedlings [32, 33]. Though BRs have been reported to regulate many plant biotic and

abiotic stresses through the regulation of ROS homeostasis [27, 34], the role of the cross-regu-

lation between BRs and ROS in root growth is largely unknown.

Here, the participation of BR in root growth and the extent of its cross-regulation with both

ethylene and ROS signaling were investigated by characterizing a novel A. thaliana det2

mutant allele (det2-9) selected on the basis of its short-root phenotype, which proved to be

defective with respect to BR synthesis. A key observation was that the det2-9mutant accumu-

lated more ethylene and ROS than the wild type. The increased accumulations of both ethylene

and ROS caused the short root phenotype in det2-9. This study reveals a mechanism about

how BRs regulate root growth through a cross-regulation with ethylene and ROS signaling.

Results

Isolation and characterization of a short-root mutant

To identify novel determinants involved in the control of root growth, an ethyl methane sulfo-

nate (EMS)-mutagenized Arabidopsis population was screened by monitoring root length and

elongation. One mutant was subsequently named as short root 5 (sr5) (Fig 1A and 1B). The

length of the mutant root was only 23% of the one of a wild type (WT) seedling at 7–8 days

post germination. A longitudinal zonation pattern analysis showed that the size of its root api-

cal meristem (RAM) was significantly smaller than the WT control (Fig 1C). Both meristem

zone (MZ) and transition zone (TZ) in the RAM were substantially reduced in size. Cortical

cells in the mutant mature zone were significantly shorter than those in WT, and cell number

in the MZ was strongly reduced (Fig 1D and 1E and Table 1). The number of cells formed by

the RAM in sr5 was 1.8 fold fewer than that in the WT control. The length of the mutant’s

RAM was 67% of WT’s, and both its MZ and TZ were reduced in size (Table 1). The compro-

mised RAM in the mutant was accompanied by an increased cell cycle time which displayed

1.4 times longer than that in the WT control (Table 1). The signal obtained from the mitotic

cyclin B1;1 G2/M transition marker pCYCB1;1::GUSwas much weaker in the mutant than the

WT control (Fig 1F), an indication that cell proliferation was inhibited in sr5. The conclusion

BRs control root growth through the regulation of ethylene synthesis and superoxide anions accumulation
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was that the mutant’s short root derived from both a reduced MZ cell number and a smaller

cell size in the mature zone.

The mutated sr5 gene encodes DET2, a steroid 5α-reductase in the BR
synthesis pathway

When positional cloning was employed to identify the site of the sr5mutation, a position on

chromosome 2 flanked by the markers W20 andW22 was identified (S1A Fig). Sequencing of

Fig 1. The root of sr5mutant growth is restricted and its root meristem size is reduced. (A) The phenotype of five-
day old WT and sr5 seedlings. Bar = 1 cm. (B) Primary root growth over the first ten days following germination. Data
shown are mean±SE (n = 25). (C) Longitudinal zonation pattern in the primary roots of five-day oldWT and sr5
seedlings. Cell boundaries appear red following Propidium Iodide staining. The meristem zone (MZ) and transition
zone (TZ), which together form the root apical meristem (RAM), and the elongation zone (EZ) are indicated.
Bar = 50 μm. (D) Root cortical cell length in the maturation zone of five-day old WT and sr5 seedlings. Data shown are
mean±SE (n = 100), ��: means of sr5 andWT differ significantly (P<0.01). (E) Cell number in the proliferation
domain of five-day old WT and sr5 seedlings. Data shown are mean±SE (n = 25), ��: means of sr5 andWT differ
significantly (P<0.01). (F) pCYCB1;1::GUS expression in root tips of five-day oldWT and sr5 seedlings. Bar = 50 μm.

https://doi.org/10.1371/journal.pgen.1007144.g001

Table 1. WT and sr5 root growth and comparative analysis of their RAM activity.

Genetype RAM length
(μm)

MZ length
(μm)

MZ no. of
cells

TZ length
(μm)

Elongated cell length
(μm)

Rate of root growth
(μm/h)

Cell production rate
(cell h-1)

Cell cycle
duration (h)

WT 335±33A 209±28A 35±3A 126±17A 199±26A 327.8±48.6A 1.6±0.3A 14.6±3.2a

sr5 222±18B 149±7B 26±3B 73±7B 85±11B 74.4±16.8B 0.9±0.2B 20.4±5.9b

Different letters associated with values indicate a significant (upper-case letter: P<0.01, lower-case letter: P<0.05) difference between the WT and sr5means, based on

Duncan’s multiple range test.

https://doi.org/10.1371/journal.pgen.1007144.t001
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the genes present in the critical genomic region revealed that the mutant had a point mutation

causing a G-to-A transition at nucleotide position 107 after ATG in At2g38050 (DET2). The

root growth and seedling morphology of the reported det2-1mutant were indistinguishable

from those of sr5 (S1B and S1E Fig). Since the F1 hybrid sr5 x det2-1 retained the short-root

phenotype (S1C Fig), it was concluded that the sr5mutation likely involved a lesion in DET2.

Moreover the DET2 promoter driving DET2 cDNA fused to GFP-GUS (pDET2::DET2-GFP-

GUS) complemented the short-root phenotype in sr5 (S1D Fig), suggesting that the G107A

mutation in DET2 led to the short-root phenotype in the sr5mutant. In seedlings carrying the

transgene, GUS activity was detected both in the shoot and the RAM (S2 Fig). DET2 encodes a

steroid 5α-reductase acting in the BR synthesis pathway. The phenotype of sr5, which was sim-

ilar to that observed in det2-1 grown in darkness, was rescuable when the plants were treated

with exogenous BR (eBL) (S1B Fig). Since there are eight alleles of det2mutant have been

reported, we renamed the sr5mutant as the det2-9which was used for most of the analysis in

this study. We compared the expression levels of some BR induced genes between det2-9 and

det2-1 through Q-PCR analysis. The results showed that, though both mutants displayed

reduced expression levels of TCH4, BAS1, IAA17 and IAA19, the det2-9mutant has a higher

expression level of these BR-induced genes than the det2-1mutant (S3 Fig). Consistently, the

det2-9mutant had a weaker phenotype compared with the det2-1mutant (S1 Fig), indicating

that the point mutation at position 107 might not be a null allele.

Both ROS-responsive and ethylene-related genes were affected in det2-9

A RNA-seq approach was applied to compare the det2-9 root transcriptome with that of the

WT, a total of 1,480 and 1,116 genes were found to be, respectively, up- and down-regulated

(Fig 2A). Among the differentially expressed genes, based on the GO analysis we found that

there is a statistically significant enrichment in genes annotated as being linked to secondary

metabolic process and response to stimulus (P<0.01). It is not surprising for this enrichment

considering the dwarf phenotype of the mutant. Though the previous research has shown that

exogenously supplied BR can enhance the production of ethylene [26], the ethylene biosynthe-

sis and ethylene response factors were up-regulated in det2-9 according to our RNA-seq analy-

sis (Fig 2B). These genes included 1-aminocyclopropane-1-carboxylate synthase encoding

genes, 1-aminocyclopropane-1-carboxylate oxidase encoding genes and ethylene response fac-

tor encoding genes (S1 Dataset). According to our GO analysis, we also found that many of

genes belong to GO:0000302 (response to reactive oxygen species) were up-regulated signifi-

cantly in det2-9 (Fig 2C), which was in contrast with the previous reports showing that BR

could induce the generation of H2O2 [27, 34]. To confirm the RNA-seq results, we performed

a quantitative real time-PCR (qRT-PCR) assay on a selection of 20 ethylene related genes

which were differentially transcribed inWT and det2-9 seedlings grown in light and dark

growth conditions (Fig 2D and S4 Fig). Though the expression changes of most of ethylene

related genes were confirmed, we also found that some genes, for example ACS6, ERF6 and

ERF17, had little agreement between the transcript abundance by RNA-seq and qRT-PCR

analysis. Considering three independent repeats were done for the confirmations, the results

of qRT-PCR analysis are more reliable. These results suggest that both ROS and ethylene sig-

naling were enhanced in the det2-9mutant.

BRs either positively or negatively regulate ethylene biosynthesis in a
concentration-dependent manner

Ethylene signaling in the det2-9mutant was monitored by the expression of the pEBS::GUS

ethylene signaling reporter. The strength of the GUS signal was considerably higher in the

BRs control root growth through the regulation of ethylene synthesis and superoxide anions accumulation
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mutant than that in the WT (Fig 3A), suggesting that an enhanced level of ethylene signaling

occurred in det2-9. The increased ethylene response in det2-9was abolished by the presence of

10 nM eBL during seedling growth (Fig 3A). The ethylene content was considerably higher in

the det2-9mutant than that in WT seedlings (Fig 3B and 3C). The transgene line pDET2::

DET2-GFP-GUS/det2-9 complemented the higher level of ethylene observed in det2-9 (Fig 3C).

Treatment with the BR synthesis inhibitor propiconazole (PPZ) also resulted in higher ethyl-

ene content in light-grownWT seedlings, while eBL (10 nM, a concentration which partially

rescued the short-root phenotype in det2-9) treated WT or bes1-D (a mutant which displays an

enhanced BR signaling response) light-grown seedlings both showed a reduction in ethylene

content (Fig 3B). A similar profile of ethylene content was also observed when seedlings were

grown in darkness (S5 Fig). All these above chemical treatment experiments and mutant anal-

ysis suggest that both exogenous applied low levels of BR and native BR signaling negatively

regulated ethylene biosynthesis.

Fig 2. RNA-Seq analysis of the det2-9 andWT root transcriptome. (A) Differential transcription in det2-9 andWT.
Genes, which were significantly induced or repressed in det2-9 compared with WT, appear in, respectively, the upper
left (in red) and bottom right (in green) hand portions of the plot. RPKM: reads per kilobase per million reads, DEGs:
differentially expressed genes. (B, C) A heat map representation of the transcriptional behavior of genes associated with
ethylene (B) and responding to ROS (C) based on the GO analysis. �: means more than two times up change in the
expression genes of det2-9 compared to WT. (D) A qRT-PCR expression analysis of a selection of genes related to
ethylene in det2-9 compared to WT. Data shown are mean±SE (n = 3), ��: means of det2-9 andWT differ significantly
(P<0.01).

https://doi.org/10.1371/journal.pgen.1007144.g002

BRs control root growth through the regulation of ethylene synthesis and superoxide anions accumulation
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In addition, we also observed that root growth was inhibited gradually by eBL at concentra-

tions ranging from 10 to 5000 nM (Fig 4A and 4B). While the hypocotyl length was unchanged

when treated with low concentration of eBL (<500 nM) but reduced sharply when the concen-

tration of eBL greater than 500 nM (Fig 4A). Furthermore, dark-grown seedling hypocotyls

treated with higher concentration of eBL (�500 nM) displayed a typical “triple response”, indi-

cating the enhanced ethylene response (Fig 4A). Therefore, we further examined the effects of

BR on ethylene production using different concentrations of eBL. The results showed that eth-

ylene content was greatly reduced in seedlings treated with low concentration of eBL (10 or

100 nM) while it was strongly increased when the concentration of eBL greater than 500 nM

(Fig 4D). Consistently, both GUS staining analysis with the pEBS::GUS transgene line and an

examination of ethylene response factors (ERFs) expression using qRT-PCR analysis show

that low concentrations (10–100 nM) of BR inhibits ERF expression while high concentrations

(�500 nM) of BR enhanced expression (Fig 4C and 4E), consistent with the change ethylene

Fig 3. The det2-9mutant accumulates more ethylene thanWT. (A) Ethylene-induced GUS activity (pEBS::GUS) in
det2-9 andWT. Seedlings of det2-9 andWT were grown for five days either in the presence or absence of 10 nM eBL,
and were stained for GUS activity analysis. Each treatment involved 20–30 seedlings; here, representative samples are
presented. Bar = 1 cm. (B) Ethylene content in indicated BR-related transgenic andWT nine-day old seedlings
exposed to either eBL (10 nM) or propiconazole (2 μM) under light conditions. Data shown are mean±SE (n = 5). ��:
means of det2-9, bes1-D, WT+eBL,WT+PPZ differ significantly frommean of WT (P<0.01). (C) Ethylene content in
five-day old WT, det2-9 and pDET2::DET2-GFP-GUS/det2-9 seedlings in light conditions. Data shown are mean±SE
(n = 5). ��: means of det2-9 andWT differ significantly (P<0.01).

https://doi.org/10.1371/journal.pgen.1007144.g003

BRs control root growth through the regulation of ethylene synthesis and superoxide anions accumulation
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levels. In summary, BR either positively or negatively regulate ethylene biosynthesis depends

on the levels of BRs.

The enhanced ethylene response contributes to the short-root phenotype in
det2-9

When det2-9mutant seedlings were grown on a medium containing either silver nitrate

(AgNO3, an antagonist of ethylene signaling) or 2-aminoethoxyvinyl glycine (AVG) (an inhib-

itor of ethylene synthesis), the root growth of det2-9mutant was partially rescued, producing

Fig 4. BR affects root growth and ethylene production in Arabidopsis. (A) and (B) Phenotype of five-day old Col-0
seedlings grown in different concentrations of BR. Bar = 1 cm. Data shown are mean±SE (n = 30). ��: means
significantly different in treated seedlings versus control (P<0.01). (C) Ethylene-induced GUS activity (pEBS::GUS) in
seedlings grown on different concentration of eBL. Seedlings of pEBS::GUSwere grown for five days in the presence of
different concentrations of eBL, after which they were stained for GUS activity. Each treatment involved 20–30
seedlings; here, representative samples are presented. Bar = 1 cm. (D) Ethylene levels in seedlings grown in the
presence of different concentration of eBL. Data shown are mean±SE (n = 30). ��: means in treated seedlings
significantly differ from control (P<0.01). (E) Transcript abundance of ERFs in WT grown in different concentration
of eBL. ��: means in treated seedling significantly differ from untreated samples (P<0.01).

https://doi.org/10.1371/journal.pgen.1007144.g004
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root lengths almost double than those developed by the non-treated mutant seedlings. How-

ever, both treatments inhibited the root growth of WT seedlings (Fig 5A and 5B). In addition

inhibition of ethylene signaling by AgNO3 rescued the cortical cell length in det2-9 (S6 Fig).

On the other hand, the root cell elongation and root growth of the mutant seedlings was found

to be more sensitive to ACC (a precursor of ethylene synthesis) (Fig 5A and 5B and S6A Fig).

In addition, both WT and det2-9mutant seedlings displayed similar cell numbers in root

meristem under the same treatment with either AgNO3 or ACC (S6B Fig). This result suggests

that the BR deficiency caused short-root phenotypes in det2-9was mediated by the effect of

ethylene signaling on root cell elongation. Consistently, the octuple acsmutant CS16651

Fig 5. Enhanced ethylene synthesis is involved in the inhibitory effect of BR on root growth. (A, B) Root growth of
WT and det2-9 in the presence of either AVG, AgNO3 or ACC under light conditions. Data shown in B are mean±SE
(n = 30); ��: means of det2-9 andWT differ significantly (P<0.01). Bar = 1 cm. (C) Root growth in the presence of
propiconazole (2 μM) of the octuple acsmutant CS16651, the ein2-5mutant and the ein3/eil1-1 double mutant. Data
shown are mean±SE (n = 30); ��: means of CS16651, ein2-5, ein3/eil1-1 andWT differ significantly (P<0.01). The root
phenotype (D) and root length measurement (F) of five-day oldWT, ein3/eil1-1, det2-9 and four lines of det2-9/ein3/
eil1-1 triple mutant seedlings. Bar = 1 cm. Data shown are mean±SE (n = 30); ��: means significantly differ fromWT
(P<0.01). The root phenotype (E) and root length measurement (G) of five-day oldWT, acs9, det2-9 and det2-9/acs9
double mutant seedlings. Bar = 1 cm. Data shown are mean±SE (n = 30); ��: means significantly differ fromWT
(P<0.01).

https://doi.org/10.1371/journal.pgen.1007144.g005
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(acs2-1/acs4-1/acs5-2/acs6-1/acs7-1/acs9-1/amiRacs8acs11), ein2-5 and the ein3/eil1-1 double

mutant, which have defects in either ethylene biosynthesis or ethylene signaling, were less

affected by the PPZ treatment thanWT (Fig 5C). The short-root phenotype of det2-9was par-

tially recovered in the det2-9/acs9 double mutant and det2-9/ein3/eil1-1 triple mutant (Fig 5D–

5G). These results indicate that the short-root phenotype in det2-9 partly result from enhanced

ethylene biosynthesis and ethylene signaling.

BR regulates ethylene biosynthesis via BZR1/BES1-mediated repression of
ACS

A promoter analysis showed that promoters of ACS6, 7, 9, 11, along with ACO1 and 3 (all these

genes were strongly up-regulated in det2-9, Fig 2) contained a BRRE and/or an E-box, the

binding sites for BES1 and BZR1 (Fig 6A). The direct interaction of the ACSs by BES1 or BZR1

was confirmed by a chromatin immunoprecipitation (ChIP)/qPCR analysis in FLAG-tagged

BES1 or YFP-tagged BZR1 transgenic lines (Fig 6A). A series of yeast one-hybrid assays were

conducted to further verify whether any of these promoters was regulated directly by either

BES1 or BZR1. The outcome was that in yeast BES1 interacted with the promoters of ACS7

Fig 6. Interaction of BZR1/BES1 transcription factors with various ACS promoters. (A) ChIP/qPCR assay. A scheme of the
promoters of ACS6, 7, 9 and 11 are shown with the position of BRRE-box (black) and E-box (gray). Graphs show the ratio of bound
promoter fragments (P1-P5) versus total input detected by qPCR after immuno-precipitation in p35S::BZR1-YFP and pNP::
BES1-FLAG seedlings by YFP or FLAG antibodies. Data shown are mean±SE (n = 9). (B) Yeast one-hybrid binding assay involving
BZR1/BES1 and ACS6, 7, 9 and 11 promoters. (C) Transient expression in A. thaliana protoplasts. BZR1 or BES1 transcription factors
were co-transfected with either ACS7, 9 or 11 promoters. The LUC to REN ratio is shown and indicated the activity of the
transcription factors on the expression level of the promoters. LUC: firefly luciferase activity, REN: renilla luciferase activity. Data
shown are mean±SE (n = 9); ��: means significant difference compared to control (P<0.01).

https://doi.org/10.1371/journal.pgen.1007144.g006
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and 9, while BZR1 did so with the promoters of ACS9 and 11 (Fig 6B). Neither of the two tran-

scription factors interacted definitively with the ACS6 (Fig 6B), ACO1 or the ACO3 promoter

(S7 Fig). The trans-activity of BES1 or BZR1 with the ACS promoters was further demon-

strated in a transient dual LUC expression assay in A. thaliana mesophyll protoplasts. The

over-expression of both BES1 and BZR1 strongly repressed the activity of ACS promoters (Fig

6C), confirming that either BES1 or BZR1 can repress ACS7, 9 and 11 gene expression in vivo.

A previous study reported that short-term treatment with eBL resulted in dephosphoryla-

tion of BES1 (its active form) inWT and in det2-1, but not in bri1-5 or bin2-1 signaling BR

mutants [35]. Therefore we further investigate the expression of ACSs in BR signaling mutants

including bri1-116 and bin2-1. qRT-PCR results showed that the expression of ACS6, 7, 9 and

11 increased in the det2-9 (see also Fig 2D), bri1-116 and bin2-1mutant compared with WT

(S8 Fig). The expressions of these four ACS genes decreased when treated with eBL to a lower

extent in bri1-116 or bin2-1mutants compared with the det2-9mutant (S8 Fig). These results

indicate that BR signaling pathway is required for the BR-mediated repression of ACS gene

expression, via direct regulation by the BES1 and BZR1 transcription factors.

The short-root phenotype in det2-9was partly attributed to the hyper-
accumulation of O2

-

The transcriptomic analysis in det2-9mutant roots identified genes responding to ROS as BR-

targets (Fig 2C). Therefore, we further analyzed det2-9mutant for defects in ROS using the

nitroblue tetrazolium (NBT) staining method to detect the presence of O2
- in vivo [36]. The

NBT signal was higher in the det2-9mutant than that in the WT control (Fig 7A), while there

was no clear difference when 3,3’-diaminobenzidine (DAB) staining was used to visualize the

level of H2O2 present [37] (S9 Fig). This suggests that det2-9 accumulated O2
- but not H2O2.

Treatment with eBL substantially reduced the extent of the O2
- hyper-accumulation in det2-9

(Fig 7A). Meanwhile, the BR-signaling defective mutant bri1-116 hyper-accumulated O2
-,

while BR-signaling enhanced plants (p35S::BRI1-GFP or bes1-D) accumulated less superoxide

anion in their roots compared with WT plants (Fig 7B), indicating that BR signaling sup-

presses the accumulation of O2
-. Therefore, root growth analysis was done using det2-9mutant

seedlings were exposed to two different O2
- scavengers, namely superoxide dismutase (SOD)

[38] and 1,3-dimethyl-2-thiourea (DMTU) [39]. The root length in det2-9was significantly

increased in the presence of 0.65U/ml SOD, while the same treatment inhibited root growth in

WT seedlings (Fig 7C). Similarly, a concentration of 0.1 to 2 mMDMTU treatment, which has

no effect on root growth inWT seedlings, could significantly increase root lengths in det2-9

(Fig 7D).

The peroxidase pathway, but not the NADPH oxidase pathway, is required
for the hyper-accumulation of O2

- in det2-9

The accumulation of O2
- in det2-9 can be the result of the activation of two signaling pathways:

peroxidase or NADPH oxidase. When the NADPH oxidase pathway was blocked by the pres-

ence of either diphenylene iodonium (DPI) [40] or ZnCl2 [41], det2-9mutant roots were

insensitive to any treatment (Fig 8A and 8B). Consistent with this result, the abundance of

transcripts of the four NADPH oxidase genes (RBOHC,D, F and G) was identical in det2-9

andWT (S10A Fig). The root growth response to PPZ treatment of three mutants rbohD,

rbohF and rbohD/Fwas also similar to the one of WT (S10B Fig). NBT staining showed that

the BR deficiency-induced O2
- hyper-accumulation by PPZ treatment was unaffected in both

plants harboring p35S::NADPHD-GFP and the rbohD/F double mutant (S10C Fig). And O2
-

hyper-accumulates in det2-9/rbohD and det2-9/rbohD/Fmutants similarly to det2-9, compared
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with WT (S10D Fig). These experiments allow us to conclude that the hyper-accumulation of

O2
- in det2-9 did not involve the NADPH oxidase pathway. So attention was focused on the

peroxidase pathway [29], by treating seedlings with either salicylhydroxamic acid (SHAM)

[42] or 1,10-phenanthroline (1,10-Phe) [43], inhibitors of peroxidase activity. The root length

of det2-9was significantly increased by both treatments, whereas root growth of WT was

slightly inhibited (S11A and S11B Fig). NBT staining showed that the levels of O2
- in det2-9

reduced sharply when treated with SHAM or 1,10-Phe but no obvious changes were observed

when treated with DPI or ZnCl2 (Fig 8C), which was consistent with the NBT staining

observed in det2-9/rbohD and det2-9/rbohD/Fmutants compared with WT and det2-9 (S10D

Fig). When the transcription of genes encoding peroxidase was investigated, no clear-cut dif-

ferences were visible between the mutant andWT (S12 Fig), but peroxidase activity was much

stronger in the det2-9mutant and was reduced when seedlings were treated with exogenous

BR (Fig 8D). Thus the hyper-accumulation of O2
- in det2-9was likely the effects of an

increased peroxidase activity.

Relationship between ethylene and O2
-

Given that the level of both ethylene and O2
- was enhanced in det2-9, the question arose as to

whether ethylene and ROS interacted with one another. O2
- accumulation was initially assayed

inWT and det2-9 plants treated with either AVG or ACC (Fig 9A). NBT staining showed that

the ACC treatment had a positive and AVG had a negative effect on superoxide anion accumu-

lation in WT roots (Fig 9A). This indicates that ethylene induces an accumulation of O2
- in

Fig 7. BR represses the accumulation of superoxide anions. (A) Five-day old det2-9 andWT seedlings grown in the
presence or absence of eBL (10 nM), then assayed for the superoxide anion using NBT. Bar = 1 cm. (B) Superoxide
anion accumulation in the root tips of BR-signaling enhanced plants (p35S::BRI1-GFP and bes1-D) and BR signaling
deficient plants (bri1-116). Bar = 50 μm. (C, D) Elongation of the primary root of WT and det2-9 seedlings exposed to
either (C) superoxide dismutase (SOD) or (D) 1,3-dimethyl-2-thiourea (DMTU). Data shown are mean±SE (n = 30);
Asterisks means significant difference from the control-treated plants (��P<0.01).

https://doi.org/10.1371/journal.pgen.1007144.g007
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Arabidopsis. NBT staining also showed that p35S::EIN3-GFP accumulated more O2
- than WT,

but when treated with PPZ, the extent of O2
- accumulation was similar among p35S::

EIN3-GFP, ein3/eil1-1 andWT (S13 Fig), indicating that there was another pathway indepen-

dent from ethylene participating in O2
- accumulation when BR synthesis was blocked with

PPZ treatment. In the det2-9mutant, there was no clear increasement for ACC-induced super-

oxide anion accumulation, but the AVG treatment reduced it, which is also an indication that

the increase in superoxide anion accumulation was at least partially dependent on ethylene

production in det2-9. Since peroxidase activity in det2-9was higher than that in WT (Fig 8D),

an experiment was conducted to compare peroxidase activity in plants carrying p35S::EIN3-

GFP, the ein3/eil1-1 double mutant andWT. The result showed that the peroxidase activity

was not clearly affected in p35S:EIN3:GFP, ein3/eil1-1 compared with the wild-type control

(Fig 9B), indicating that ethylene signaling pathway is unlikely to activate the POD pathway

for BR-regulated accumulation of O2
- in det2-9mutant.

To investigate whether the O2
- accumulation can alter normal ethylene signaling, we com-

pared the expression level of pEBS::GUSwhen treated or not with methyl viologen (MV, a

superoxide anion propagator) treatment. As shown in Fig 9C, the expression level of pEBS::

GUS reporter was considerably induced when treated with MV, suggesting that an O2
-

Fig 8. BR inhibits the synthesis of superoxide anions through the peroxidase pathway. The length of the primary
root of WT and det2-9 seedlings when exposed to inhibitors of NADPH oxidase (A) diphenylene iodonium, (B) ZnCl2.
Asterisks means significant difference from the control-treated plants (��P<0.01). (C) NBT staining of WT and det2-9
when exposed to salicylhydroxamic acid (SHAM), 1,10-phenanthroline (1,10-Phe), diphenylene iodonium (DPI) and
ZnCl2. Bar = 50 μm. (D) Peroxidase activity inWT and det2-9 nine-day old seedlings treated or not with eBL (10 nM).
Data shown are mean±SE (n = 6); ��: means differ significantly (P<0.01).

https://doi.org/10.1371/journal.pgen.1007144.g008
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accumulation can increase ethylene content. We then measured the primary root growth of

ein2-5, ein3/eil1-1 and wild type when treated or not with MV. Mutants in ethylene signaling

were more resistant than WT to the negative effects of MV on root growth (Fig 9D). The

expression of genes encoding ACS and ACO, analyzed by qRT-PCR, increased when treated

with MV (S14 Fig). These results further indicated that O2
- accumulation can alter normal eth-

ylene production.

Discussion

The BRs are well recognized as promoters of cell elongation, also in addition to their involve-

ment in the de-etiolation response, where the opening of the apical hook is thought to require

Fig 9. Relationship between ethylene and superoxide anion. (A) NBT staining of WT and det2-9 seedlings exposed
to either AVG or ACC. Bar = 50 μm. (B) Peroxidase activity (POD) in WT, p35S::EIN3-GFP and the ein3/eil1-1 double
mutant seedlings. Data shown are mean±SE (n = 6); no significant differences calculated. (C) Ethylene-induced GUS
activity (pEBS::GUS) in theWT when treated or not with methyl viologen (MV). Bar = 1 cm. (D) Primary root length
of WT, ein2-5 and ein3/eil1-1when treated with various MV concentrations. Data shown are mean±SE (n = 30); ��:
means significant difference compared to WT (P<0.01).

https://doi.org/10.1371/journal.pgen.1007144.g009
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a decrease in the level of ethylene synthesis [17, 44, 45]. It was found that BR enhances ethylene

production through the synergistic interaction with eto1 and eto3 [46]. Another study from

the same lab showed that supplying BR exogenously promotes ethylene synthesis in the A.

thaliana seedlings via stabilizing ACS5 and ACS9 protein [26]. This BR-induced ethylene pro-

duction was also observed in mung bean and maize [47, 48]. However, in jujube fruit, 5 μM

BR-treated fruits caused a significantly lower level of ethylene during storage and the inhibi-

tion fruit ripening [49]. These contradictory results indicate the complicated effects of BR on

ethylene synthesis. However, all these observations are based on the chemical treatment with

BR.

In this study, a new mutant allele of DET2, det2-9, was identified based on the short-root

phenotype (Fig 1 and S1 Fig). DET2 encodes a steroid 5α-reductase involved in BR biosynthe-

sis, catalyzing the formation of campestanol with campesterol as substrates. Since another

allele det2-1 and other mutants such as cpd and dwf4which have defects in different steps of

BR biosynthesis also displayed short-root phenotype [50–52], it is unlikely that campesterol

accumulation caused the short-root phenotype. The short-root phenotype is most likely a

result of the reduced BRs synthesis in det2-9 since externally applied BRs could largely rescued

the mutant phenotypes (S1 Fig). Through genetic analysis and chemical treatment, we found

that the short-root phenotype in det2-9was partly the resulted of over accumulation of ethyl-

ene leading to enhanced ethylene signaling (Figs 3 and 5). The ethylene content was consider-

ably higher in the det2-9mutant than that in WT seedlings (Fig 3B). Treatment with the BR

synthesis inhibitor propiconazole (PPZ) also resulted in higher ethylene content in light-

grownWT seedlings, while eBL (10 nM, a concentration which enhances the growth of root in

det2-9) treated WT or bes1-D (a mutant which displays an enhanced BR signaling response)

light-grown seedlings both showed a reduction in ethylene content (Fig 3B). A similar profile

of ethylene content was also observed when seedlings were grown in darkness (S5 Fig). Tran-

scriptional profiling showed that a number of ACS genes were up-regulated in the det2-9

mutant both in light and dark growth conditions, consistent with its increased level of ethylene

(Figs 2B, 2D and 3 and S4 and S5 Figs). Since the BR signaling transcription factors BZR1 or

BES1 bind to ACS promoters to repress their expression (Fig 6), we analyzed BR signaling

pathway by using bri1-116 or bin2-1mutants and found that the BR-mediated down-regula-

tion of ACS genes was greatly reduced in these two mutants compared with det2-9 (S8 Fig),

further indicating BZR1 or BES1 mediated BR signaling negatively regulates the expression

ACS transcription factors. This result indicates that native physiological levels of BRs nega-

tively regulate ethylene production through BZR1 or BES1 mediated transcriptional regulation

of ACSs.

Since our results and Zhu et al.’s observations [49] are in contrast to other reports which

showed that BRs enhanced ethylene biosynthesis [26, 46–48], we further did dosage-dependent

assay to test the effects of BR on ethylene productions and root growth. Not surprisingly, root

growth was inhibited gradually by eBL at concentrations ranging from 10 to 5000 nM (Fig 4A

and 4B). However, ethylene content was greatly reduced in seedlings treated with low concen-

tration of eBL (10 or 100 nM) while it was strongly increased when the concentration of eBL

greater than 500 nM (Fig 4D). Root growth analysis under both treatment suggests that both

high and low levels of ethylene cause a short-root phenotype (Fig 4D), which is consistent with

the previous reports. In the octuple acsmutant (CS16651), which has only 10% ethylene level

compared with WT, a reduced root growth phenotype was observed [53]. The acs9mutant

also displays a short root phenotype (Fig 5E). The high levels of BR (500 nM or 1000 nM BR)

induced ethylene production is also consistent with the previous reports in Arabidopsis [26,

46]. This study together with previous reports clearly showed that BRs either positively or neg-

atively regulate ethylene biosynthesis in a concentration-dependent manner to control root
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growth. Certainly, since BR can also interact with other plant hormones such as auxin, ABA,

cytokinin and jasmonic acid to regulate myriad aspects of plant growth and developmental

processes in plants [54, 55], externally applied BR treatment caused root-growth phenotype

might be also result from the interaction between BR and other plant hormones.

ROS represent not only a by-product of stress response, but also influence growth and

development in response to both internal developmental signals and external environmental

cues [28]. The contrasting ROS status in the cell proliferation and the cell differentiation zones

has recently been shown to be an important driver of root growth [29]. A mitochondria local-

ized P-loop NTPase was also reported to regulate quiescent center cell division and distal stem

cell identity through the regulation of ROS homeostasis in Arabidopsis root [56]. It has been

pointed out that ABA-promoted ROS regulates root meristem activity [31]. In cucumber

plants exposed to exogenous BR, H2O2 accumulates as a result of an increased activity of

NADPH oxidase [27], while in tomato, the same result is achieved by the up-regulation of

RBOH1 [57]. BR has been documented as inducing a receptor-dependent increase in cytosolic

Ca2+, which stimulates NADPH oxidase-dependent ROS production [32, 58]. Thus, although

the participation of BR in root growth and development is accepted, its interaction with ROS

signaling has not been systematically explored to date. Here, a key finding was that the det2-9

mutant hyper-accumulated O2
-, which in itself likely contributed to the short root phenotype

(Fig 7). BR inhibited the synthesis of O2
- via the peroxidase (Fig 8C and 8D and S11 Fig) rather

than via the NADPH oxidase (Fig 8A and 8B and S10 Fig) pathway. These results suggest that

H2O2 and superoxide anion respond dissimilarly to BR in A. thaliana seedlings. While the

level of H2O2 rises rapidly upon exposure to exogenous BR, the one of the superoxide anion is

repressed. In addition, the hyper-accumulation of ethylene displayed by det2-9 contributed to

a rise in the superoxide anion content in a peroxidase-independent manner (Fig 9A and 9B).

In summary, according to this study together with the previous reports, a proposed model

was given in Fig 10. We suggest that BR inhibits ethylene synthesis by activating the transcrip-

tion factors BZR1 and BES1 under low levels. These transcription factors bind directly to the

ACS promoters, thereby suppressing ACS expression and damping the level of ethylene synthe-

sis under normal growth conditions. While high levels of BR induce ethylene biosynthesis

either through increasing the stability of ACSs or influencing auxin signaling regulated ethyl-

ene production [47, 59, 60]. The possible regulation mechanism of BES1/BZR1’s activity under

different levels of BR maybe refer to the regulation mechanism of ARF3 under different levels

of auxin. Recent study has found that ARF3 acts as a repressor or activator depends on auxin

concentration [61]. At the same time, BR inhibits the synthesis of O2
- via the peroxidase path-

way, but not NADPH oxidase pathway, which serves to regulate the growth of the A. thaliana

seedling root. The accumulation of the O2
- is also partially controlled by ethylene signaling in

a peroxidase-independent manner and the O2
- accumulation can enhance ethylene signaling

by increasing the expression of ACSs and ACOs. Understanding how ethylene mediates BR sig-

naling to control the accumulation of the O2
- represents a logical follow-up research target.

Materials andmethods

Plant materials and growing conditions

All of the A. thaliana mutants and/or transgenic lines utilized are in a Col-0 background; the

following have been described elsewhere: det2-1 [62], bes1-D [13], bri1-116 [63], bin2-1 [64],

p35S::BRI1-GFP [65], ein2-5 [66], ein3/eil1-1 [67], acs9 [68], p35S::BZR1-YFP [69], pNP::BES1-

FLAG [70], p35S::EIN3-GFP [71], and p35S::NADPH-GFP [72]. And rbohD, rbohF, rbohD/F all

described in Torres’ paper [73]. The octuple acsmutant (CS16651, acs2-1/acs4-1/acs5-2/acs6-1/

acs7-1/acs9-1/amiRacs8acs11) [53] was obtained from the Arabidopsis Biological Resource
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Center (ABRC, Columbus, OH, USA), and the marker lines pCYCB1;1::GUS [74] and pEBS::

GUS [75] from early research. The 1501-bp upstream region from the DET2 start cordon and

the cDNA of DET2 were amplified and linked to the GFP-GUS reported in gateway vector

PKGWFS7.1 [76] to obtain pDET2::DET2-GFP-GUS reporter construct. Prior to germination,

the seed was surface-sterilized by fumigation in chlorine gas, held for two days at 4˚C on solid-

ified half strength Murashige and Skoog (MS) medium, then transferred to a growth room

providing a 16 h photoperiod and a constant temperature of 20˚C.

Microscopy, growth measurement and histochemical GUS staining

Root tips were imaged by laser-scanning confocal microscopy. The number (obtained from a

count of cells in the cortex file extending from the quiescent center to the TZ) and length of

cortical and mature epidermal cells were obtained from microscope images using ImageJ soft-

ware. The criteria for defining the MZ and TZ were those described by Napsucialy-Mendivil

et al. [77]. The cell production rate was based on the rate of root growth and the length of fully

elongated cells, and the cell cycle time on cell production and the number of cells present in

the MZ, as described by Napsucialy-Mendivil et al. [77]. The number of cells displaced from

the cell proliferation domain (Ntransit) during a 24 h period was estimated from the equation

Fig 10. Proposed model to explain how BR regulates root growth in A. thaliana. BR inhibits ethylene synthesis by
activating the transcription factors BZR1 and BES1 to repress the transcription of ACSs under low levels. While high
levels of BR induce ethylene biosynthesis either through increasing the stability to ACSs or influencing auxin signaling
regulated ethylene. At the same time, BR inhibits the synthesis of O2

- via the peroxidase pathway, but not NADPH
oxidase pathway, which serves to regulate the growth of the A. thaliana seedling root.

https://doi.org/10.1371/journal.pgen.1007144.g010
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Ntransit = (24 ln2 NMZ)/T, where NMZ represents the number of cells in the RAMMZ and T

means cell cycle time in hours. Histochemical GUS staining was performed according to the

method described by Gonzalez-Garcia et al. [78].

Map-based cloning of the gene underlying the sr5mutation

The mapping population was the F2 generation of the cross sr5 x Landsberg erecta. Genomic

DNA was extracted from each F2 seedlings showing the sr5 phenotype. Simple sequence length

polymorphism markers were used for the initial genome-wide linkage analysis, following

Lukowitz et al. [79]. To enable fine mapping, 22 PCR-based markers were designed to target

the relevant region of the A. thaliana genome sequence.

RNA-Seq

RNA was isolated from the roots of six day-old det2-9 andWT seedlings using the TRIzol

reagent (Invitrogen, Carlsbad, CA, USA) and treated with DNase I to remove contaminating

genomic DNA. The preparation was enriched for mRNA by introducing magnetic beads

coated with oligo (dT). The resulting mRNA was fragmented into fragments of about 200 nt,

and the cDNA first strand was then synthesized via random hexamer priming. After synthesiz-

ing the second strand with DNA polymerase I, the ds cDNA was purified using magnetic

beads coated with oligo (dT) and End reparation is then performed. Adaptors were then

ligated to each end of the fragments, and the products were size-selected by gel electrophoresis.

Finally, the fragments were amplified based on the adaptor sequences, purified using magnetic

beads coated with oligo (dT) and dissolved in the appropriate amount of Epstein-Barr solu-

tion. The concentration and integrity of the ds cDNA was monitored using a 2100 Bioanaylzer

device (Agilent Technologies Japan Ltd.). The cDNA was then sequenced using an Ion Proton

platform (www.thermofisher.com). Low quality and adaptor sequences were removed and the

remaining sequences were then aligned to the A. thaliana genome sequence using SOAP2 soft-

ware. Individual transcript abundances were expressed in the form of the number of reads per

kilobase per million reads (RPKM), and differentially transcribed genes were identified using

the thresholds FDR�0.001 and |log2|�1 [80].

qRT-PCR

The RNA template required for qRT-PCR was isolated using an RNeasy PlantMini kit (Qia-

gen, Hilden, Germany) following the manufacturer’s protocol. After treating with DNase I to

remove contaminating genomic DNA, a 2 μg aliquot was reverse-transcribed using a Tran-

scriptor First Strand cDNA Synthesis kit (Roche, Basel, Switzerland), following the manufac-

turer’s protocol. The subsequent qRT-PCRs were run on a MyiQTM Real-time PCR Detection

System (Bio-Rad, Hercules, CA, USA) using FastStart Universal SYBR Green Master mix

(Roche, Basel, Switzerland). Each sample was represented by three biological replicates, and

each biological replicate by three technical replicates. The reference sequence was AtACTIN2

(At3g18780). Primer sequences are given in S2 Dataset.

Ethylene quantification

Ten seedlings were placed in a 100 mL vial containing 50 mL solidified half strength MS either

with or without eBL or PPZ, and immediately capped. The vials were held under a 16 h photo-

period and a constant temperature of 20˚C. After seven days, a 10 μL sample of the headspace

was subjected to gas chromatography using a GC-6850 device equipped with a flame ioniza-

tion detector (Agilent Technologies Japan Ltd.).
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Yeast one-hybrid assay

The coding sequences of BES1 and BZR1were inserted separately into the EcoRI-XhoI cloning

site of pGADT7 (Takara, USA), while the promoter sequences of ACS6, 7, 9, 11, ACO1 and 3

were inserted into the cloning site of pAbAi. The primer sequences used in the construction of

the various constructs are given in S2 Dataset. Each of the constructs (including an empty vec-

tor for control purposes) was transferred separately into yeast Y1HGold using the PEG/LiAc

method. The yeast cells were plated onto SD/-Ura/-Leu medium containing various concen-

trations of Aureobosidin A to allow for a highly stringent screening of interactions. The proce-

dure followed the manufacturer’s protocol given for the Matchmaker Gold Yeast One-Hybrid

Library Screening System (www.clontech.com).

Chromatin immunoprecipitation (ChIP)

Ten day old transgenic plants were used for the ChIP assay following Gendrel et al. [81]. The

quantity of precipitated DNA and input DNA was detected by qPCR. For each ACS promoter,

primers were designed to amplify a fragment of length ~70–150 bp lying within the 2 kbp of

sequence upstream of the transcription start site. The relevant primers are given in S2 Dataset.

Enrichment was calculated from the ratio of bound sequence to input.

Transient expression

The BES1 or BZR1 coding sequences were amplified and the resulting sequences introduced

into pBI221 to place them under the control of the CaMV 35S promoter. The ACS promoter

sequences were amplified and introduced into the pGreenII0800-LUC reporter vector. Both

recombinant plasmids were then transferred into A. thaliana protoplasts. Firefly luciferase

(LUC) and renillia luciferase (REN) activities were measured using the Dual-Luciferase

Reporter Assay System (www.promega.com). LUC activity was normalized against REN activ-

ity [82]. Details of all primers used are given in S2 Dataset.

NBT assay for the superoxide anion

The roots of five day-old seedlings were immersed for 15 min in 2 mMNBT in 20 mM phos-

phate buffer (pH 6.1). The reaction was stopped by transferring the seedlings into distilled

water. The material was then imaged under a light stereomicroscope.

Peroxidase activity measurement

Tissue peroxidase activity was measured by a spectrophotometric analysis (420 nm) of the for-

mation of purpurogallin from pyrogallol in the presence of H2O2. The roots of nine day-old

seedlings were harvest and weighted. Tissue homogenate was prepared using 9 times phos-

phate buffer and then centrifuged for 10 min in 3500 rpm. The supernatant was used for per-

oxidase activity measurement. A single unit of enzyme was defined as the amount catalyzed

and generated 1 μg pyrogallol by 1.0 mg fresh tissues in the reaction system at 37˚C. Peroxidase

activity was calculated from the formula provided with the peroxidase assay kit (Jiancheng Bio-

engineering Institute, Nanjing, China).

Accession numbers

Sequence data for genes used in this study can be found in the Arabidopsis Genome Initiative

or GenBank/EMBL databases under the following accession numbers:

DET2 (At2g38050), BES1 (At1g19350), BZR1 (At1g75080),ACS1 (At3g61510), ACS2

(At1g01480),ACS4 (At2g22810), ACS5 (At5g65800),ACS6 (At4g11280),ACS7 (At4g26200),
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ACS9 (At3g49700),ACS11 (At4g08040),WOX5 (At3g11260), ARF10 (At2g28350), ARF16

(At4g30080),ARR1 (At3g16857), SHY2 (At1g04240), BRI1 (At4g39400), CYCB1;1 (At4g37490),

ACO1 (At2g19590),ACO2 (At1g62380),ACO3 (At2g05710), ACO4 (At1g05010), ACO5

(At1g77330), ERF6 (At4g17490), ERF13 (At2g44840), ERF17 (At1g19210), ERF104 (At5g61600),

ERF105 (At5g51190), EBS (At4g22140), EIN3 (At3g20770), EIL1 (At2g27050), RBOHC

(At5g51060), RBOHD (At5g47910), RBOHF (At1g64060), RBOHG (At4g25090), TCH4

(At4g57560), BAS1 (At2g26710), IAA17 (At1g04250), IAA19 (At3g15540),ACTIN2

(At3g18780).

Supporting information

S1 Fig. Positional cloning of the gene underlying the sr5mutation. (A) The mutated gene

maps to chromosome 2. The sr5 allele sequence differs from the WT allele of At2g38050 by a

point mutation causing a shift from G to A at position 107. (B) Phenotype of five day-old sr5

and det2-1 seedlings exposed to eBL (10 nM) either under lit or non-lit conditions. Bar = 1 cm.

(C) Root phenotype of five day-old seedlings of the F1 hybrid sr5 x det2-1 and its reciprocal.

Bar = 1 cm. (D) Root phenotype of a five day-old sr5 seedling carrying the transgene pDET2::

DET2-GFP-GUS. Bar = 1 cm. (E) Phenotype of WT, sr5 and det2-1 17 day-old seedlings.

Bar = 1 cm.

(TIF)

S2 Fig. GUS expression in five-day old sr5 seedling carrying the transgene pDET2::

DET2-GFP-GUS. Bar = 50 μm.

(TIF)

S3 Fig. Relative transcript abundance of BR induced genes in seedlings of WT, det2-9 and

det2-1.

(TIF)

S4 Fig. Relative transcript abundance of ACC synthase genes (ACS2, 4, 6, 7, 8, 9, 11) in

dark-grown seedlings of WT and det2-9. ��: means significant difference compared to control

(P<0.01).

(TIF)

S5 Fig. The det2-9mutant accumulates more ethylene thanWT when grown in darkness.

Ethylene production by five day-old seedlings of various BR-related transgenic andWT seed-

lings exposed to either eBL(10 nM) or propiconazole (2 μM) in dark conditions. Data shown

are mean±SE (n = 5). ��: means significant difference compared to control (P<0.01).

(TIF)

S6 Fig. Effect of ethylene on cell length and cell number in RAM. (A) Cortical cell length in

the maturation zone of five day-old WT and det2-9 seedlings when treated with AgNO3 or

ACC. Data shown are mean±SE (n = 25), Different letters associated with values indicate a sig-

nificant difference (P<0.01). (B) Cell number in the proliferation domain of five day-old WT

and det2-9 seedlings when treated with AgNO3 or ACC. Data shown are mean±SE (n = 25),

Different letters associated with values indicate a significant difference (P<0.01).

(TIF)

S7 Fig. Neither BES1 nor BZR1 interact directly with the ACO1 or ACO3 promoters, as

indicated by a yeast one-hybrid binding assay.

(TIF)
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S8 Fig. A qRT-PCR analysis of genes involved in ethylene production in BR mutants. Rela-

tive transcript abundance of ACC synthase genes (ACS6, 7, 9, 11) in WT, det2-9, bri1-116 and

bin2-1 when treated with or without eBL (10 nM).

(TIF)

S9 Fig. The production of H2O2 in the det2-9mutant andWT five-day-old seedlings.WT

and det2-9 roots are stained by DAB to quantify H2O2 levels. Bar = 50 μm.

(TIF)

S10 Fig. The BR-mediated inhibition of superoxide anion synthesis does not operate

through the NADPH oxidase pathway. (A) Transcription of RBOH genes, assayed by

qRT-PCR inWT and det2-9 seedlings. (B) Relative root length in the mutants rbohD, rbohF

and rbohD/F in the presence or absence of propiconazole (2 μM). Data shown are mean±SE

(n = 30). (C) NBT staining of root of WT, 35S::NADPHD-GFP and rbohD/F plants exposed to

propiconazole (2 μM). Bar = 50 μm. (D) NBT staining of root of WT, p35S::EIN3-GFP and

ein3/eil1-1 plants exposed to eBL (10 nM) or propiconazole (2 μM). Bar = 50 μm. (E) NBT

staining of root of WT, det2-9, rbohD, rbohD/F, det2-9/rbohD and det2-9/rbohD/F plants.

Bar = 50 μm.

(TIF)

S11 Fig. Primary root length of WT and det2-9 seedlings when exposed to inhibitors of

peroxidase.

(TIF)

S12 Fig. Transcription of genes encoding peroxidase in det2-9 andWT, assayed by

qRT-PCR.

(TIF)

S13 Fig. NBT staining of root of WT, p35S::EIN3-GFP and ein3/eil1-1plants exposed to

eBL(10 nM) or propiconazole (2 μM). Bar = 50 μm.

(TIF)

S14 Fig. Transcription of genes encoding ACC synthase (ACS) and ACC oxidase (ACO)

when treated or not with MV, assayed by qRT-PCR. ��: means in treated seedling signifi-

cantly differ from untreated samples (P<0.01).

(TIF)

S1 Dataset. Different expression genes related to ethylene in det2-9.

(XLSX)

S2 Dataset. List of primer sequences used in this paper.

(XLSX)
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