
BRAZILDAM: A BENCHMARK DATASET FOR TAILINGS DAM DETECTION

Edemir Ferreira1, Matheus Brito1, Remis Balaniuk2, Mário S. Alvim1, Jefersson A. dos Santos1

1 Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil - CEP 31270-901
2 Universidade Católica de Brasília and Tribunal de Contas da União, Brasília, DF, Brazil - CEP 70042-900

{edemirm, msalvim, jefersson}@dcc.ufmg.br, matheusb@eng.grad.ufmg.br, remisb@tcu.gov.br

KEY WORDS: Tailings Dam Detection, Remote Sensing, Deep Learning

ABSTRACT:

In this work we present BrazilDAM, a novel public dataset based on Sentinel-2 and Landsat-8 satellite images covering all tailings

dams cataloged by the Brazilian National Mining Agency (ANM). The dataset was built using georeferenced images from 769

dams, recorded between 2016 and 2019. The time series were processed in order to produce cloud free images. The dams contain

mining waste from different ore categories and have highly varying shapes, areas and volumes, making BrazilDAM particularly

interesting and challenging to be used in machine learning benchmarks. The original catalog contains, besides the dam coordinates,

information about: the main ore, constructive method, risk category, and associated potential damage. To evaluate BrazilDAM’s

predictive potential we performed classification essays using state-of-the-art deep Convolutional Neural Network (CNNs). In the

experiments, we achieved an average classification accuracy of 94.11% in tailing dam binary classification task. In addition, others

four setups of experiments were made using the complementary information from the original catalog, exhaustively exploiting the

capacity of the proposed dataset.

1. INTRODUCTION

On 25 January 2019 a tailings dam at the Córrego do Feijão iron

ore mine in Brumadinho, Brazil, suffered a catastrophic slope

failure, followed by a mudflow that killed at least 248 people.

This tragic event, three years and two months after the rupture

of another large tailings dam in Mariana, which killed 19 people

and destroyed the village of Bento Rodrigues, has resurrected

the ghost of disasters that precarious structures can cause.

A tailings dam is typically an embankment used to store by

products of mining operations. Tailings can be liquid, solid, or

a mixture of fine particles suspended in liquid, usually toxic

and potentially radioactive. Solid tailings are often used as part

of the structure itself. These impoundments are designed for

permanent containment and are between the largest man-made

structures on Earth (Morgenstern, 2001).

The number of tailings dam failures has doubled in the past 20

years. Advances in mining technology have made it possible

to exploit lower grade deposits despite decreasing commodity

prices, which means disposing of more rejects and putting more

pressure on tailings facilities (Armstrong et al., 2019). Failure

of tailings dams can be catastrophic, rapidly releasing large

amounts of water and solid material, potentially causing large

loss of life and huge damages to the environment and property.

The risks, the challenges for long-term containment and the

relatively poor safety-record revealed by the numbers of failures

in tailings dams have led to an increasing awareness of the need

for enhanced safety provisions (ICOLD, 2001).

There is no complete inventory of active tailings impoundments

around the world. The lack of any comprehensive tailings dam

database has prevented meaningful analysis of the technical

failures that could help prevent future incidents. The records

are very incomplete on crucial data elements: design height of

dam, design footprint, construction type (upstream, downstream,

center line), age, design life, construction status, ownership

status, capacity, release volume, runout, etc (Yilmaz, Fall, 2017).

Risk management and early-warning of dangerous trends, like

accelerating displacements of slopes, are essential to support

decision making, but require frequent high quality data.

Remote-sensing has been increasingly used to build monitor-

ing applications. The identification of precursors to catastrophic

slope failures on tailing dams from space was proved possible us-

ing Interferometric Synthetic Aperture Radar (InSAR) (Carlà et

al., 2019). Satellite images can also be used in combination with

other sources of information in order to assess risk or investig-

ate specific circumstances on tailings dams collapses (Williams,

Strydom, 1999). Remote-sensing image analysis in combination

with machine learning methods have seen a massive rise in pop-

ularity for over the past few years. Machine learning has been

applied to tasks including image fusion, image registration, scene

classification, object detection, land use and land cover (LULC)

classification, segmentation, and object-based image analysis

(OBIA) (Ma et al., 2019). The use of these combined technolo-

gies can be very useful for the investigation of issues concerning

the tailings dams. Scene classification and image segmentation

could be used to acquire comprehensive tailings dam databases,

including footprints, heights, volumes, changes throughout time

and contained waste classification. These databases could be

used for risk assessment and monitoring by regulatory agencies

and local communities.

Machine learning methods require rich training datasets in order

to fit, evaluate and test predicting models. The acquisition and

preparation of these datasets can be arduous or even impractic-

able if there are no trustful sources of ground truth information.

In order to facilitate and stimulate the use of machine learning

methods on the research on tailings dams issues, we have built a

dataset, named BrazilDAM, based on Sentinel-2 and Landsat-8

satellite images covering all tailings dams cataloged in Brazil.

In this paper, we present our dataset1, and show preliminary

1http://www.patreo.dcc.ufmg.br/brazildam-dataset/
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results on the use of deep learning methods for the discovery of

tailings dams on large area satellite images.

1.1 Motivations

Brazil is one of the main mineral exporters in the world. Mining

accounts for almost 7% of Brazil’s GDP and generates hundreds

of thousands of jobs, making it one of the most important as-

pects of national development and economic stability. Despite

its importance, mining activity has caused severe environmental

impact. Among the different environmental issues, mining activ-

ities has caused landscape degradation, erosion, soil contamina-

tion, groundwater and surface water pollution (IBRAM, 2017).

According to a report by the Brazilian National Water Agency -

ANA 2, there are 780 mining tailings dams in Brazil, which are

part of the 24,092 dams cataloged by the agency.

According to the report released by ANA, referring to 2017,

only 42% of the known dams are officially licensed. The lack of

comprehensive information forbids the proper risk classification

of 76% of all dams. The inspection of the dams is responsibility

of 39 different regional and four Brazilian federal government

agencies. However, most of regional agencies have no official

assigned team to work on dam safety control. This is the case of

state of Minas Gerais, where the most recent tragedies occurred.

As a consequence, in 2017 only 3% of the all catalogued dams

were visited by the supervisory bodies. Compromised struc-

tures were detected in 45 of the visited dams. ANA centralizes

the data reported by the inspection bodies and is supposed to

maintain and share the government official dams database. Nev-

ertheless, the lack of vital information is evident. For instance,

18,446 dams have no height information, 9,584 have no capacity

information, and 18,663 dams have not been classified for their

potential damage. Without this information it is not possible to

identify risky dams that should be closely monitored. There is

also evidence of a probably large number of uncatalogued dams.

In fact, Minas Gerais State Secretariat of Environment and Sus-

tainable Development - SEMAD, responsible for auditing dams

in that state, reported in 2017 the existence of 57 dams, a number

much lower than the 698 structures registered in the State of

Minas Gerais Environmental Foundation Dam Database.

The depicted scenario points to the need for better quality inform-

ation and better monitoring instruments concerning the tailings

dams in Brazil. The recent technologies on remote sensing and

machine learning can be used to create helpful solutions to be

used by the public administration and its supervisory bodies but

also by local communities and non governmental organizations.

1.2 Challenges and Contributions

In this paper, we claim the following contributions: (1) we

introduce a novel public dataset based on Sentinel-2 and Landsat-

8 satellite images covering all tailings dams cataloged in Brazil;

and (2) we provide a benchmark addressing the challenge of land-

use and land-cover classification for the proposed BrazilDAM

dataset using several modern CNN architectures.

2. DATASET ACQUISITION

The Brazilian National Mining Agency makes available on its

website a georeferenced database describing all officially re-

gistered tailings dams in the country (DNPM, 2019). The data-

base contains some identification information about the dams
2https://www.ana.gov.br/noticias/45-barragens-preocupam-orgaos-

fiscalizadores-aponta-relatorio-de-seguranca-de-barragens-elaborado-

pela-ana/rsb-2017.pdf/view ; Accessed 29-November-2019

and their owners and a spatial coordinates of a point indicating

each dam’s location. There is also some technical information

like the main ore, height, volume, constructive method, risk

category, potential damage associated with the dam.

The main providers of open access satellite imagery are NASA

and the European Space Agency (ESA), with the Copernicus-

Sentinel program and the Landsat Mission respectively. Both of

the satellites used, Sentinel-2 and Landsat 8, are sun-synchronous.

They capture images with Multispectral Imager (MSI), however,

exist differences between the resolution and the wavelength of

each band.

To deal with Landsat and Sentinel-2 image collections we chose

to use the Google Earth Engine platform. The Google Earth

Engine (GEE) (Gorelick et al., 2017) is a cloud computing

platform designed to store and process huge datasets. The easily

accessible and user-friendly front-end provides a convenient

environment for interactive data and algorithm development.

Google archived all the Landsat and Sentinel image collection

and linked them to the cloud computing engine for open source

use. Besides to provide the computational infrastructure and the

image collections, the GEE API allows the images processing to

deal with some commons problems, as cloud cover.

According to (ESA, 2000-2019) the 13 spectral bands of Sentinel-

2 range from the Visible (VNIR) and Near Infra-Red (NIR) to

the Short Wave Infra-Red (SWIR). Also has three bands that

measure atmospheric effects (aerosols, cirrus, and water vapor).

Sentinel’s resolutions for RGB are 10 meters per pixel. This

satellite can cover the entire world in five days, and generate a

temporal ax of multi-spectral images.

Still, according to (Masek, 2019), the 11 spectral bands of Land-

sat 8 are collected in a different resolution (30 meters per pixel

in RGB) and wavelength range, although there is an intersection

between then. Landsat 8 can cover the entire globe every sixteen

days, doing 223 orbit cycle.

All this information available freely allows us to create a new

dataset that covers all dam labeled. Was used all bands of both

satellites and an annual time-series from January 1st, 2016 until

September 5th, 2019 (the date that our algorithm starts running).

2.1 Satellite Image Acquisition

To deal with this amount of data of both satellites, we choose

to use the Google Earth Engine. The engine works with a data

structures based on requests, the Image Collection is a stack

of images based in Earth Engine collection ID. This structure

allows operations like filtering, mapping, reducing, compositing

and iterating. Regarding the Image structure, are a raster com-

posed of one or more bands that withhold their name, data type,

scale, mask, and projection.

For image acquisition, we use the COPERNICUS/S2 Image

Collection for Sentinel and LANDSAT/LC08/C01/T1_TOA for

Landsat. As can be seen a workflow, in Figure 1, after choos-

ing the satellite some filters were made to improve the overall

quality.

The years were separated into four different folders, using the

date filter images of the years 2016, 2017, 2018 and 2019 were

obtained. This was done to create the time axis in the dataset.

Then, a boundary filter delimits the context of image acquisi-

tion. A square geometry was made, leaving the point coordinate
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Figure 1. Workflow that illustrates the image acquisition.

exactly in the center of the image. The distance between the

center and the closest borders are 1.9 kilometers, this resulted in

images with 384x384 pixels.

Using the metadata of the images, it was also possible to filter

the percentage of clouds within the images. This makes possible

to present the features more easily.

To improve the quality, a function was mapped in each of the

images of the collection, which removed all the pixels that were

marked as a cloud by the atmospheric context bands (QA60 for

the Sentinel and BQA in Landsat). Finally, to return a raster

Image was made a median operation between the images of the

Image Collection.

This operation, depicted in Equation 1, is based on the assump-

tion that clouds are not in the same place permanently. Therefore,

most parts of pixels in the same region will not have clouds. In

making the median we look for the most common pixel value,

which will be closest to the actual pixel value in that region. This

operation is done individually in each of the bands.

ρ(xj) ≈ median(ρ(x1,2,3,...,k)) (1)

where ρ(xj) = the observed band of interest

x = image with year delimitation

j = the jth pixel

k = is the total number of pixels

With all the images of that year, the demarcated context area, no

cloud pixels and the median operation performed are generate

the final image. However, we face some problems. By filtering

the amount of cloud by lest then 30%, some of the collections

returned no images. Some regions in Brazil are very humid and

have clouds for much of the year. To deal with this limitation,

we made an algorithm that increases this percentage by 10%

until they’re at least one image.

Another problem was some medians returning NaN (not a num-

ber). This was due to the removal of the flagged pixels with

clouds, all pixels on that time axis were removed. For these

cases, the median was calculated without the cloud removal

function. Even so, some requests did not return any images. In

this case, some folders were left with fewer files.

For the not-dam locations, where was used the coordinate above

and under each clip. This can be seen in Figure 2(a), where the

red square is the clip of a dam and in blue and green are the clips

of not dams. To ensure that none of the not dam label contains a

dam in itself, we delete the images where exists an intersection

with the base location of the dam as can be noticed in Figure

2(b).

(a) Not dam acquisition. (b) Intersection issue.

Figure 2. Explanation of not dam images acquisition and

intersection issues.

It is important to attend that some images get noised, or neither

were added to the dataset. The reasons of those were the im-

pression of data coordinates, few quality images in a year or

artifacts created by the median operation. As are shown in Fig-

ure 3, where the 3(a) there is an example of failure in the satellite

acquisition and in 3(b) we have some artifacts created by the

median when a mosaic was necessary.

(a) High noise image. (b) Mosaic image.

Figure 3. Examples of bad images in acquisition of dams.

3. DATASET BENCHMARKING

To establish a benchmark for the proposed dataset, experiments

was done using state-of-the-art deep learning networks in the fol-

lowing tasks: Dam classification, Ore classification, Construct-

ive method, Risk category and Associated Potential Damage.

For each of the tasks performed, only images extracted from

sentinel satellite in the year 2019 were used. To statistically

validate the classification results, the cross-validation procedure

was used, where the data used for training and testing are ro-

tated to simulate the results in an independent data set. Without

loss of generality, the results and discussions can be extended

to the rest of the data. In order to fully exploit the data, six

different neural network architectures were used for each classi-

fication task: AlexNet (Krizhevsky, 2014), DenseNet (Huang et

al., 2017), Inception (Szegedy et al., 2016), ResNet (He et al.,

2016), SqueezeNet (Iandola et al., 2016) and VGG (Simonyan

et al., 2014). For the training of the models the implementa-

tion of the PyTorch library (Paszke et al., 2017) was used. In

addition, the Adam algorithm was used as optimizer in each

of the networks, varying the learning rate parameter between

λ = {10−2, 10−3, 10−4}. Reported results were acquired by av-

eraging the balanced accuracy across the 5 cross-validation folds.

Besides, 95% confidence intervals of the mean were also repor-

ted. In ours report tables, the first column contains the methods

and learning rate that achieved the best results. The second and

third columns show a mean balanced accuracy and 95% con-

fidence interval obtained from 5-fold cross-validation. Each of
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the following sections details the experimental protocol used

to evaluate the proposed tasks, as well as the results, obtained

followed by a discussion of it.

3.1 Dam Classification

According to ANA, a large part of the ore dams have not yet been

registered or cataloged in the national safety policy. This is ex-

pensive work and requires a lot of manpower to cover the entire

Brazilian territory. While there is a duty for companies to report

dam construction, they often do not, causing soil contamination

or disruption due to poor planning.

In the dam classification task, a total of 1925 images were used

(where 769 are labeled as dams and 1156 as non-dams). The

results obtained can be seen in the Table 1

Config A.A. (%) CI 95%

VGG 1E-04 93.23 91.65 - 94.80
Inception 1E-04 93.61 92.02 - 95.20
DenseNet 1E-04 94.11 92.30 - 95.92

SqueezeNet 1E-04 89.44 86.57 - 92.31
AlexNet 1E-04 91.77 89.46 - 94.09
ResNet 1E-03 90.78 89.43 - 92.13

Table 1. This table shows the balanced accuracy of methods on

the Dam Classification Task.

As can be observed in the results, the model with the largest

lower level of the confidence interval was highlighted. Despite

the result obtained by DenseNet, all the architectures used had

results considered satisfactory by the authors. In order to better

understand the misclassifications of the generated model, we

highlight two examples of incorrectly classified samples. Ex-

amples of false positive and negative can be seen in Figure 4.

(a) False Negative (b) False Positive

Figure 4. Examples of dam and non-dam samples incorrectly

labeled. Images (a) is false negative (dam image predicted as

non-dam) and image (b) is a false positive (non-dam image that

have been classified as dam)

As can be seen from figure 4, image (a) show an example of false

negative (image that is a dam but was classified as non-dam).

In figure (a), although it is possible to observe a dam in the

upper left corner of the image, its center is composed only of

vegetation. This is a case of geographic coordinate error, where

data provided by ANA do not correctly present the center of

the structure. In the example of image (b), the image have poor

visual quality, with the presence of artifacts or clouds.

3.2 Ore classification

Tailings dams are earth structures built to store mining waste.

These residues are defined as the sterile fraction produced by ore

extraction in a mechanical and/or chemical process that divides

the crude mineral into concentrate and tailings. Although the

waste is a material that does not have great economic value, its

storage is crucial to avoid social and environmental impacts. In

this task, the dam images were classified according to their main

mining tailings. This monitoring is important to ensure that no

dams are receiving deposits of other types of tailings illegally.

In this experiment, a total of 769 images of dams were used.

Among the 769 dams, there are a total of 59 different types of

ores. Thus to avoid unbalance between classes, only classes with

at least 10 samples were selected, resulting in 15 classes. The

rest of the images were assigned to the "others" class, totaling 16

classes. The results obtained can be seen in Table 2. Since in this

task a multiclass classification is made, for a better interpretation

of the results we can use the confusion matrix seen in Figure 2.

Config A.A. (%) CI 95%

VGG 1E-04 60.22 54.14 - 66.30
Inception 1E-04 69.13 65.27 - 72.99
DenseNet 1E-04 72.42 68.55 - 76.30
SqueezeNet 1E-04 63.71 59.64 - 67.79
AlexNet 1E-04 57.96 51.92 - 63.99
ResNet 1E-04 71.62 68.38 - 74.87

Table 2. This table shows the balanced accuracy of methods on

the Ore Classification Task.
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Figure 5. Confusion matrix of Ore Classification task.

Looking at Table 2, it is possible to observe again that the best

result was obtained by DenseNet reaching about 72% of the bal-

anced accuracy. However, as we can see in the confusion matrix

of Figure 5, except for class 15, which represents the category

"others", the model was able to successfully discriminate the

different types of minerals between the dam images, considering

that in a multiclass scenario, the random result is 6%.

3.3 Construction Methods

The construction of tailings dams is directly influenced by the

type of tailings to be deposited. Hydraulic embankment dams

can be made from three main methods: upstream elevation,

downstream elevation, and centerline method. Although all

forms start from the construction of a starting dike, the difference

in methods is mainly in the direction in which the elevation
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is made. The monitoring method used in its construction is

extremely important to avoid the creation of dams built illegally,

which are not suitable for a particular area or ore deposit.

In this task, a total of 769 images of dams were used. Among the

769 dams, there are a total of 5 different building types: Down-

stream method, Upstream method or unknown, Center Line

method, Single-step method, Undefined. The results obtained

can be seen in the Table 3

Config A.A. (%) CI 95%

VGG 1E-04 51.18 49.03 - 53.33
Inception 1E-04 53.30 50.81 - 55.80
DenseNet 1E-04 55.47 50.41 - 60.54

SqueezeNet 1E-04 43.89 38.04 - 49.75
AlexNet 1E-04 49.16 45.97 - 52.35
ResNet 1E-04 45.25 44.10 - 46.40

Table 3. This table shows the balanced accuracy of methods on

the Construction Method Task.

Looking at Table 3, it is possible to notice that all trained mod-

els achieved unsatisfactory results in the construction method

classification task. Also, unlike other tasks, the results have high

confidence intervals. These results can be explained by some

factors, such as (1) low spatial resolution, since to distinguish

the construction method,it would be necessary to obtain a spatial

detailing of the dam contours; (2) the absence of height inform-

ation on the sensor, the height data in the image is crucial to

distinguish different declines of dam heights, and consequently

its construction method; (3) dams with different construction

methods in the same region, it is very common to have differ-

ent tailings dams side by side but with different construction

methods, as we can see in the examples in figure 6.

(a) Upstream method (b) Single Step method

Figure 6. Examples of dams of different construction methods

within the same region. Figure (a) shows a dam constructed using

the Upstream method, while in a nearby region we have the image

(b) of a dam constructed using the Single Step method.

These sets of samples end up biasing the final classification

model, which receives in its training set almost identical samples

with different classes, reducing its effectiveness in the test set.

3.4 Risk Category

The risk of dam failure is measured by considering technical

and conservation characteristics. This information is provided

by companies to the enforcement agency, as well as emergency

action plans and periodic monitoring and conservation reports.

In the case of dams that meet Política Nacional de Segurança

de Barragens (PNSB) criteria, they should also receive periodic

visits from enforcement agents. However, supervision in Brazil

is still limited and heavily dependent on the monitoring of the

Config A.A. (%) CI 95%

VGG 1E-04 78.39 73.91 - 82.87
Inception 1E-04 82.91 79.11 - 86.71
DenseNet 1E-04 86.93 81.02 - 92.84

SqueezeNet 1E-04 66.26 58.68 - 73.83
AlexNet 1E-04 59.41 55.17 - 63.64
ResNet 1E-03 83.36 78.99 - 87.72

Table 4. This table shows the balanced accuracy of methods on

the Risk Category Task.

miners themselves, further increasing the risks of ore mining.

(Costa, 2019)

To circumvent this manual inspection procedure, we have refor-

mulated the problem as an image classification problem. In this

case, given a subset of dam images already labeled with their

risk categories, we try to predict the rest of the images using

only the aerial image of the region.

In this experiment, from a total of 769 images of dams, only 423

were used. This selection was made because of the lack of label

of 344 samples and 2 other images were removed to avoid the

unbalance problem, since they are the only ones with the label

"High". Thus given the selection, there are 423 images of dams

divided between the classes: "Low", "Medium". The results

obtained in this task can be seen in the Table 4.

In this experiment, it is possible to observe high average values,

but with large confidence intervals as well. This is a consequence

of the general criteria considered for the risk category of a dam.

According to Brazilian federal dam safety legislation, risk labels

take into consideration: 1) Technical characteristics, 2) Dam

conservation status, 3) Safety Plan. While some technical fea-

tures such as Dam Height, Dam Crown Length are easily visible

in terms of images, the Dam Conservation and Safety Plan prop-

erties are not used. The absence of this information increases

the uncertainty of the model.

3.5 Associated Potential Damage

While the risk category concerns aspects of the dam itself that

may influence the likelihood of an accident, its associated poten-

tial damage is damage that may occur regardless of its likelihood

of occurrence. This damage occurs due to rupture, leakage, soil

infiltration or dam malfunction and can be graded according to

loss of life, social, economic and environmental impacts.

In this experiment, a total of 425 images of dams were used,

since the remains 344 images labels are not available. Images

are divided into 3 classes of associated potential damage: Low,

Medium, and High. The results obtained can be seen in Table 5

Config A.A. (%) CI 95%

VGG 1E-04 54.63 49.21 - 60.06
Inception 1E-04 62.87 59.43 - 66.30
DenseNet 1E-03 57.64 56.25 - 59.03

SqueezeNet 1E-04 50.92 45.00 - 56.83
AlexNet 1E-04 55.32 50.77 - 59.86
ResNet 1E-04 55.96 51.83 - 60.09

Table 5. This table shows the balanced accuracy of methods on

the Associated Potential Damage Classification Task.

As in the risk classification task, the complexity of this task is

directly linked to the general criteria considered in the category.
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Items such as protected areas, infrastructure or services, or es-

sential utilities equipment are hardly extracted in the form of

aerial imagery. Another very important factor in this task is the

consideration and existence of downstream population with a

potential loss of human life. As the training of the neural net-

work only takes into account a radius of approximately 1.9km

(due to the size of the image used), any housing development

outside this perimeter is not considered.

4. CONCLUSION

In this work we introduced BrazilDAM, a novel public dataset

based on Sentinel-2 and Landsat-8 satellite images covering

all tailings dams cataloged in Brazil. In addition, we provided

a benchmark addressing the challenge of land-use and land-

cover classification using several modern CNN architectures in

the tasks of dam classification, ore classification, constructive

method, risk category and associated potential damage. Further-

more, our results suggest that deep neural networks are capable

of generalizing well in some proposed tasks (Dam classification,

Ore classification, Risk Category), whereas in other tasks (Con-

struction method Associated Potential Damage) it shows poor

results, possibly due to the low spatial resolution of images and

contextual information considered. To the best of our knowledge,

BrazilDAM is the first dataset of Brazil’s tailings dams. We hope

the dataset encourages the community to develop and test vari-

ous data-driven algorithms to further boost the state-of-the-arts.

As future work, we intend to evaluate the trained models in large

scale, over the entire territorial of Brazil.
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