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Abstract
Distributedmanufacturing is themainstreammodel to accelerate production. However, the heterogeneous production environ-
mentmakes engineer hard to find the optimal scheduling. This work investigates the energy-efficient distributed heterogeneous
permutation flow scheduling problem with flexible machine speed (DHPFSP-FMS) with minimizing makespan and energy
consumption simultaneously. In DHPFSP-FMS, the local search misleads the population falling into local optima which
reduces the convergence and diversity. To solve this problem, a bi-roles co-evolutionary algorithm is proposed which contains
the following improvements: First, the global search and local search is divided into two swarms producer and consumer
to balance computation. Second, three heuristic rules are designed to get a high-quality initialization population. Next, five
problem-based local search strategies are designed to accelerate converging. Then, an efficient energy-saving strategy is
presented to save energy. Finally, to verify the performance of the proposed algorithm, 22 instances are generated based on
the Taillard benchmark, and a number of numerical experiments are adopted. The experiment results state that our algorithm
is superior to the state-of-arts and more efficient for DHPFSP-FMS.

Keywords Distributed permutation flow shop scheduling problem ·Heterogeneous factory ·Energy-efficient ·Multi-objective
optimization · Bi-roles coevolution · Flexible machine speed

Introduction

With the development of industrial technology and global
trade, the order quantity increases fast for enterprises. How-
ever, limited to the production capacity of a single factory,
the jobs are distributed to different factories to parallel
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production [1–3]. This manufacturing mechanism is called
distributed production. Thus, distributed permutation flow
shop scheduling problem (DPFSP) received more attention
than the classical flow shop scheduling problem [4] based
on the above situation in recent years. For example, DPFSP
with assembly stage [5], DPFSP with no-wait time [6,7],
DPFSP with limited buffer [8], DPFSP with blocking [9],
DFSP with lot-streaming [10]. However, after summarizing
the previous work for DPFSP, it is found that the processing
time of each operation in each factory is the same which is
called homogeneous factories. Nevertheless, in most situa-
tions, the processing time might be different in each factory
because the machine type is different and limited to the
cost, which is called heterogeneous factories [11]. Thus,
researching distributed heterogeneous permutation flow shop
scheduling problem (DHPFSP) is more realistic. Because
of the variation in processing time, the optimization will
be more difficult than DPFSP which is more challenging.
Moreover, in flow shop environment, the machine process-
ing speed can be adjusted due to the features of the numerical
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control machine tool. The faster processing speed, the higher
energy consumption, and the shorter processing time [12].

Energy consumption is a key indicator reflecting the car-
bon emission [13]. After Industrial 4.0 is proposed, green
manufacturing became a trend of industrial development
[14]. To protect our environment and promote sustainable
manufacturing, green scheduling has been concerned more
in recent years [15,16]. Thus, the green indicator should be
also considered in DHPFSP.

The co-evolutionary algorithm is an efficient framework
that has been successfully applied to many fields [17]. Mean-
while, it is based on the thought of divide-and-conquer and
decomposes the difficult problem into several sub-problem
to solve [18]. The key idea is to assign different tasks to each
sub-population and solve the hard problem in the merged
population [19]. Considering the complexity of DHPFSP,
this work designs a framework called bi-roles co-evolution
(BCCE) which defines two populations producer P and
consumer C for DHPFSP. Moreover, the producer and con-
sumer are two concepts from biology. The producer P takes
charge of exploring the potential region to generate solutions
with great diversity. Furthermore, the consumer C buys the
Pareto solutions from P to preserve the historical elite solu-
tions without reducing the diversity of P . Meanwhile, the
consumer C will rewards P by replacing the worst individ-
uals of P with some high-quality solutions. This framework
is first proposed for DHPFSP which is never proposed
before. Meanwhile, it can efficiently balance the computa-
tion resources between exploration and exploitation.

This study focuses on solving the multi-objective dis-
tributed heterogeneous permutation flow shop schedul-
ing problem with flexible machine speed (DHPFSP-FMS),
where the makespan and total energy consumption (TEC)
are minimized simultaneously. The processing time is differ-
ent in each factory and each machine has a flexible speed
selection. To solve this problem, a novel co-evolutionary
framework for DHPFSP-FMS is proposed. First, the BRCE
is designed to balance computation resources. Second, three
heuristic rules are designed to get a high-quality population.
Then, five local search strategies based on problem features
are presented to improve the convergence. Finally, an effi-
cient energy-saving strategy is proposed. The motivation for
designing BRCE is stated as follows: (1) due to the complex-
ity of DHPFSP-FMS, the global search needs to be allocated
many computation resources. Moreover, if directly adopt-
ing local search to the whole population, fast convergence
reduces the chance to approach potential object space, which
reduces the diversity. Thus, a big swarmwithmuch computa-
tion is used for global search without influence by enhanced
operators and a small swarm is applied to local search to
improve the quality of Pareto solutions. (2) Traditional NEH
is based on several insertions that waste too much computa-
tion. Nevertheless, based on the features of DHPFSP-FMS,

the heuristic construction rule like adjusting speed can vastly
improve the convergence and diversity of the initial popula-
tion by one-time initialization. (3) Designing neighborhood
structures based on the critical path and problem features can
greatly increase the efficiency of local search. (4) Adjusting
speed selection can reduce the idle gap to efficiently save
energy consumption.

The rest of this work is mainly divided four parts. The
literature review and research gap are described in “Related
work”. The MILP model for DHPFSP-FMS is built and its
features are introduced in “Problem statement and model-
ing”. “Our approach: BRCE” described the proposed algo-
rithm. The experimental results are shown in “Experimental
results”. Finally, the conclusion of this work is described in
“Conclusions”.

Related work

Distributed permutation flow shop scheduling

DPFSP is first suggested by Naderi and Ruiz [20] which
defines the original model. The representative publications
of DPFSP in the recent 3 years will be introduced as follows.
Wang and Wang proposed a knowledge-based cooperative
algorithm for DPFSP with variable speed [17]. Moreover,
they designed an improved Nawaz–Enscore–Ham (NEH)
[21] initialization strategy by reducing processing speed
to get a high-quality population. Wang proposed a multi-
objective whale swarm algorithm with a problem-dependent
local search strategy for DPFSP with identical factory [22].
Shao studied blocking DPFSP with fuzzy processing time
and designed improved NEH to get an efficient population
[23]. Hamzadayi thinks DPFSP is a decision-making pro-
cess and proposed a bender decomposition algorithmwith an
enhanced NEH strategy to solve it [24]. Jing studied DPFSP
with due window and applied iterated greedy algorithm
(IGA) by insertion operation [25]. Huang extended DPFSP
with sequence-dependent set-up time and also used IGA
with local search to solve it [26]. Meanwhile, Rifai designs
an adaptive strategy to balance exploration and exploita-
tion for the same model [27]. Zhao considered the DPFSP
with blocking time and proposed a differential evolutionary
algorithm with ensemble initial strategy [28]. A parameter
adaptive social engineering algorithm is proposed by Fard
for DPFSP [29]. Shao mixed different blocking constrain
with DPFSP and designed an efficient IGA to solve it [30].
Furthermore, Li improved IGA with an adaptive probabil-
ity to accept worse solutions for escaping local optima [31].
Moreover, Chen proposed a population-based IGA for block-
ingDPFSP [32]. Zhao added a assemble stage forDPFSP and
adopted a matrix-cube encoding mechanism which contains
more information on the relationship between the best solu-
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tion and the others [33]. Moreover, Song extend the model
based on the former work with sequence-dependent setup
time and applied the genetic programming for selecting the
heuristics [34]. Zhen studied no-wait DPFSP with sequence-
dependent setup time [35]. Mao considered DPFSP with
machine preventive maintenance and used a restart strategy
to jump out of local optima [36]. Jing extended DPFSP with
uncertain processing time and applied to improve IGA for
it [37]. Li studied green DPFSP by minimizing total flow
time and energy consumption and designed anNSGA-II with
speed adjustment local search and right-shift energy-saving
strategy [38]. Schulz considered DPFSP with transportation
time and minimizing the makespan and energy consump-
tion of production and transportation [39]. Yang combined
blocking and assembly constraints to DPFSP and designed
a knowledge-driven heuristic to solve it [40]. Zhu added
no-wait and due window constraints to DPFSP [41]. Wang
studied DPFSP with assembly stage, set-up, and transporta-
tion time [5]. Moreover, Miyata fixed blocking time and
maintenance operation with DPFSP [42]. Li studied paral-
lel batching DPFSP with the deteriorating job and designed
a hybrid artificial bee colony algorithm for solving it [43].
Pan researched lot-streaming DPFSP and bind several jobs
together to schedule [44]. The same publications with differ-
ent names but same the accepted are [45].

In conclusion, the extension model of DPFSP can be
summarized as the following features: blocking time (mixed
blocking), assembly stage, sequence-dependent set-up time,
fuzzy processing time (uncertain time), variable machine
processing speed, no-wait (no-idle) time, machine main-
tenance time, lot-streaming (parallel batching or group)
scheduling, due window, and green (carbon- or energy-
efficient) scheduling. All of their publications are combined
these features and add them to DPFSP. The algorithm they
usemost is IGAcombinedwith local search (swap and insert)
and improve NEH strategies for initialization. However, the
factory type is the same in the above work. Nevertheless, the
factory type is not identical to practical manufacturing.

Distributed heterogeneous flow shop scheduling

DHFSJP has received growing concern in recent years. Chen
proposed an improved estimation distribution algorithm for
DHPFSP-FMS with the content machine speed and got a
better performance [46]. Shao designs multi-local search
strategies for DHPFSP-FMS which efficiently increase the
exploitation [47]. Li combined decomposition-based multi-
objective evolutionary algorithm with bee behavior for
DHPFSP-FMS which balances the convergence and diver-
sity [48]. Zhao designed a self-adaptive operators selection
strategy for DHPFSP-FMS which improves the efficiency of
local search [7]. Lu proposed a turn-off/on strategy to save
energy for DHPFSP-FMS by minimizing makespan, energy

consumption, and negative social impact [49]. Meng studied
DHPFSP-FMS with lot-streaming which binds a group of
jobs to be processed together and sequence-dependent set-
up time [50]. Lu fixed flow shop and hybrid flow shop as
DHPFSP-FMS [11]. However, the DHPFSP-FMS with vari-
able machine speed has few works.

Research gap and discussion

The previous work mainly focuses on DPFSP with the flex-
ible machine speed and DHPFSP-FMS with content speed.
TheDHPFSP-FMSwith flexiblemachine speed is never con-
sidered before.

The works about DHPFSP-FMS focus on combining
global search with local search in one population, which
will consume much computation on local search. The per-
formance of the final results is based on exploration period.
Thus, dividing global search and local search into two popu-
lations and dispatch more computation resource can increase
diversity of population. Meanwhile, the convergence can
keep in elite swarms.

The initialization strategy applied most is improved NEH
which inserts a job to every place to search for the best local
solution. However, this method will waste too much compu-
tation. The feature of DHPFSP-FMS with variable speed is
based on speed. Construct heuristics about speed can greatly
save computation to increase diversity and convergence.

The local search strategies of DHPFSP-FMS are so ran-
dom, which is efficient to search for better solutions. The
knowledge of features of DHPFSP-FMS is mainly based on
the critical path. Designing search strategies based on the
critical path can improve efficiency.

The publications of DHPFSP-FMS with variable speed
pay little attention to energy-saving strategy. Saving energy
can promote economic profit vastly, which is worth research-
ing.

Problem statement andmodeling

Problem statement

The DHPFSP-FMS with flexible speed has to solve three
sub-problems: (i) assign each job to different factories; (ii)
determine the job processing sequence in each factory; and
(iii) select a machine processing speed for each operation.
In DHPFSP-FMS, there are n jobs that need to be allocated
to n f factories. Each factory has m machines with different
processing times for each the same operation. Meanwhile,
each job has ni operations which must be processed in the
same factory. Each factory shares a permutation flow shop
scheduling problem. Moreover, each job will be processed
from M1 to Mnm which is the same for all jobs. By adjust-
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ing the processing sequence in each factory and selecting
different speed v f ,i,k , the makespan and energy consump-
tion is different. The real processing time prf ,i,k equals to
original processing time pof ,i, j divided v f ,i,k . Moreover, the

processing power equals to prf ,i, j × v2f ,i,k .
The assumptions of DHPFSP-FMS are given as below:

• All the factories start processing operations at time zero.
Moreover, all jobs and machines are available at time
zero in each factory.

• Eachmachine can only process one operation at the same
time. Meanwhile, interruption is not considered for each
operation.

• The processing times and energy consumption are certain
values.

• Every job can only select one factory and each job can
only be processed on one machine at a moment.

• The processing time of each operation on different
machine is different in each factory. Meanwhile the
machine speed v f ,i,k ∈ [1, 5].

• Transportation time, setup time, and energy consumption
are not considered. Moreover, machine breakdown and
dynamic events would not happen.

Table 1 gives an example of DHPFSP-FMS with two
factories, eight jobs, and two machines. Assuming the pro-
cessing sequence is � = {1, 5, 2, 6, 4, 7, 3, 8} and factory
assignment is FA = {1, 1, 2, 2, 1, 1, 2, 2}. The original pro-
cessing time of each job on each machine is can be seen in
Table 1 and the speed selections are at the right. Figure 1
shows the Gantt chart of this example. J1, J2, J5 and J6 are
assigned to F1, and the others are assigned to F2. The process-
ing time of each operation is accelerated by v f ,i,k . Finally,
the makespan of all factories depends on the max completion
time factory.

Table 1 An example for DHPFSP-FMS

pof ,i,k v f ,i,k

F1 F2 F1 F2

M1,1 M1,2 M2,1 M2,2 M1,1 M1,2 M2,1 M2,2

J1 10 5 8 4 5 5

J2 6 4 7 5 3 2

J3 2 3 4 2 2 1

J4 4 5 3 6 3 2

J5 2 1 4 2 1 1

J6 5 6 3 4 2 2

J7 7 5 8 6 4 2

J8 3 3 6 4 2 2

O4,2

M1

M2

Factory2

O8,2

O3,1

O3,2

O8,1

CF,2=10

Machine

t/h

O1,1M1

M2 O1,2

Factory1

O5,1

O5,2

O2,1

O2,2

O6,1

O6,2

CF,1=11.5
Machine

t/h

O4,1 O7,1

O7,2

Fig. 1 The gantt chart of the example in Table 1

MILPmodel for DHPFSP-FMS

Before modeling the DHPFSP-FMS, the notations used
throughout the study are defined as follows:

Indices:

– i, i ′: indices of all jobs, i ∈ {1, . . . , n};
– k, k′: indices of machines, k ∈ {1, . . . ,m};
– v, v′: indices of speed, v ∈ {1, . . . , nv};
– f : indices of factories, f ∈ {1, . . . , n f };
– t : job position of machine Mk in factory f , l ∈

{1, . . . , nt };

Parameters:

– n: the number of all jobs;
– n f : the number of factories;
– m: the number of all machines;
– nv: the max level of machine speed;
– nt : the number of all positions;
– I : set for jobs and I = {1, 2, . . . , n};
– F : set of factories and F = {1, 2, . . . , n f };
– M : set of machines and M = {1, 2, . . . ,m};
– T f ,k : set of job positions on machines MK in factory f
and T f ,k = {1, 2, . . . , nt };

– T
′
f ,k : set of top nt − 1 positions on machines MK in

factory f and T f ,k = {1, 2, . . . , nt − 1};
– V : set of speeds and V = {1, 2, . . . , nv};
– pof ,i,k : The original processing time for operation Oi,k

job Ii processed by machine Mk in factory f ;
– WI the idle power when machine stands by;
– WO processing power when machine processing opera-

tion;
– L: a large integer for keeping the consistency of the

inequality;
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Decision variables:

– Oi,k : The kth operation of job Ii on machine Mk ;
– v f ,i,k : The speed selection of operation Oi,k on machine

Mk in factory f ;
– prf ,i,k : The real processing time of operation Oi,k on

machine Mk in factory f ;
– S f ,i,k : the starting time of operation Oi, j in factory f ;
– Ff ,i,k : the finishing time of operation Oi, j in factory f ;
– B f ,k,t : the beginning time of machine Mk at position t in
factory f ;

– C f ,k,t : the completion time of machine Mk at position t
in factory f ;

– EP : total processing energy consumption;
– EI : total idle energy consumption;
– EM

f ,k,t : idle energy consumption of machine Mk at posi-
tion t in factory f ;

– TEC: total energy consumption;
– Cmax: the makespan of a schedule;
– X f ,i,k,v,t : The value is equals to 1, if operation Oi,k is

processed on machine Mk with speed Vv at position t in
factory f ; otherwise it is set to 0;

– Yi, f : The value is equals to 1, if job Ii is assigned to
factory f ; otherwise is set to 0;

The objectives of DHPFSP-FMS include makespan and
TEC. The machine speed is faster, the makespan is lower and
the TEC is higher. Thus, makespan and TEC conflict. Their
equations are elaborated as follows:

min F1 = Cmax = max
{
Ff ,i,m

}
,∀i ∈ I , f ∈ F . (1)

min F2 = TEC = EP + EI (2)

EP =
∑

f ∈F

∑

i∈I

∑

k∈M

∑

v∈V

∑

t∈T f ,k

WO · prf ,i,k

·v2f ,i,k · X f ,i,k,v,t (3)

EI =
∑

f ∈F

∑

k∈K

∑

t∈T ′
f ,k

WI · (B f ,k,t − C f ,k,t−1) (4)

Themixed-integer linear programmingmodel ofDHPFSP-
FMS with two objective functions is introduced as follows:

{
min F1 = Cmax

min F2 = TEC
(5)

subject to:

∑

f ∈F
Yi, f = 1, ∀i ∈ I (6)

∑

v∈V
X f ,i,k,v = 1,∀i ∈ I , k ∈ M, f ∈ F (7)

S f ,i,m +
∑

v∈V

∑

t∈T f ,k

pof ,i,m/v f ,i,m · X f ,i,m,v,t ≤ C f ,m,nt ,

∀i ∈ I , f ∈ F (8)

C f ,m,nt ≤ Cmax, ∀ f ∈ F (9)

S f ,i,k +
∑

v∈V

∑

t∈T f ,k

pof ,i,k/v f ,i,k · X f ,i,m,v,t ≤ S f ,i,k+1,

∀i ∈ I , k ∈ {1, . . . ,m − 1}, f ∈ F (10)
∑

i∈I

∑

k∈K
X f ,i,k,v,t ≥

∑

i∈I

∑

k∈K
X f ,i,k,v,t+1,

∀ f ∈ F, v ∈ V , t ∈ T
′
f ,k (11)

B f ,k,t+1 − B f ,k,t ≥
∑

i∈I

∑

k∈K
X f ,i,k,v,t · pof ,i,k/v f ,i,k,

∀ f ∈ F, v ∈ V , t ∈ T
′
f ,k (12)

EM
f ,k,t + L ≥

(
B f ,k,t+1 − B f ,k,t

−
∑

i∈I

∑

k∈K
X f ,i,k,v,t · pof ,i,k/v f ,i,k

)
· WI ,

∀ f ∈ F, v ∈ V , t ∈ T f ,k (13)

B f ,k,t ≥ S f ,i,k − L · (1 − X f ,i,k,v,t ),

∀i ∈ I , k ∈ K , f ∈ F, v ∈ V , t ∈ T f ,k (14)

B f ,k,t ≤ S f ,i,k − L · (1 − X f ,i,k,v,t ),

∀i ∈ I , k ∈ K , f ∈ F, v ∈ V , t ∈ T f ,k (15)

0 ≤ S f ,i,k ≤ L, ∀i ∈ I , k ∈ K , f ∈ F (16)

L ≥ B f ,k,t ≥ 0, ∀ f ∈ F, k ∈ K , t ∈ T f ,k (17)

where Eq. (5) is objective function which is makespan and
TEC. Equation (6) makes sure a job only be dispatched to
one factory. Equation (7) guarantees that every job has to be
processed on one machine at the same time. Equations (8)–
(9) state the makespan constrain. Equation (10) states that
the proceeding must be finished before the current opera-
tion starts. Equation (11) indicates that each operation must
be delivered to the preceding positions only when they are
free. Equation (12) guarantees that the idle time is more than
zero. Equation (13) defines the energy consumption between
two adjacent positions on the samemachine. Equations (14)–
(15) ensure the constrain between operation start time and
machine start time. Equations (16)–(17) are value bound-
aries.

Problem features

Property 1: The makespan is mainly determined by speed
selection. Increasing the speed of the critical path can reduce
makespan.

Proof 1: Assuming the original makespan is C(π), where π

is the critical path. Then, increase the speed of an operation v1
to v2. Suppose themakespanC(π) = A+pof ,i,k/v1,where A
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is the total processing time of other critical operations and is
constant. For v2 > v1, so that pof ,i,k/v1 > pof ,i,k/v2. More-

over, C(π
′
) = A + pof ,i,k/v2 < C(π). Thus, the property 1

has been proved.

Property 2: The TEC is based on speed selection and idle
time. Select smaller speed can lower the TEC when it does
not change Cmax.

Proof 2: Assuming the original TEC is E1 and the critical
path is π . Suppose that there exists an idle time gap T1 which
is sufficiently big, which is more than the change of finish
time of an operation �F . Reduce the speed of the operation
v1 to v2. First, E1 = B + T1 ∗ WI where B is other energy
consumption, and �F = pof ,i,k/v1 − pof ,i,k/v2 < 0. Then,
the T2 = T1 + �F < T1. Thus, E2 = B + T2 ∗ WI < E1

and property 2 have been proved.

Property 3: Inserting one job in the critical factory to the
factory with a sufficiently small finish time can reduce the
makespan.

Proof 3: Supposing the original makespan is C f1(π), where
π is the critical path. Assume that there exists a factory f2
which has a sufficiently small makespan C f2 < C f1(π).
Randomly select a job from the critical factory and insert
it into factory f2. Then, C(π) = C(π) − p f1,i,k and C f2 =
C f2 + p f2,i,k < C(π). Thus, the makespan is reduced and
property 3 has been proved.

In conclusion, frequently changing speed selection and
factory assignment can efficiently reduce makespan and
TEC.

Our approach: BRCE

Framework of BRCE

There are two different roles in BRCE which are producer
swarm P and consumer swarm C. P has content size ps and
C sizes dynamically. Moreover, P executes global searching
without being affected and generates the Pareto solutions
as production. Meanwhile, C absorbs Pareto solutions and
adopts enhanced operators to them. The producer plays a
role in keeping diversity and the consumer has to keep
convergence and save computation resources. As shown in
Fig. 2, first, the heuristic initialization is adopted to get
high-quality solutions. Second, the producerP generates off-
spring and environment selection by the fast non-dominated
sorting genetic algorithm (NSGA-II) [51]. Next, the con-
sumer C absorbs the Pareto solutions from P . Then, the
consumer executes problem-specific local search strategies
to enhance convergence and diversity. Moreover, the energy-

Heuristic

initialization

NFEs<MaxNFEs?

Evolutionary

operator

Y

Environmental

selection I

Absorb Pareto

solutions

Local Search

Energy saving

Producer Consumer

Pareto

solutions

N

End

Environmental

selection II

Mating selection

Fig. 2 Parasitic evolutionary framework for distributed shop schedul-
ing

saving strategy is executed to reduce TEC. Furthermore, C
adopts preserves the Pareto solutions of itself as a new swarm.
Finally, the final Pareto solutions set will be output by C.

Encoding and decoding

In this work, two vectors and a matrix are used to represent
a solution for DHPFSP-FMS. Figure 3 shows the encod-
ing schema for DHPFSP-FMS. Moreover, the encoding and
decoding schema is as follows: Encoding schema: there are
three vectors which are job sequence (JS), speed selection
(SS), and factory assignment (FA). Moreover, all operations
of each job must be dispatched to the same factory.

Decoding schema First, all jobs are allocated to different
factories according to the FA. Second, the job sequence of
each factory can be obtained from JS. Next, each job will be
processed from machine M1 to Mm and the real processing
time is got by dividing the speed by SS. Finally, themakespan
and TEC can be get after all jobs are processed.

Initialization

Initialization strategy is essential for the shop scheduling
problems problems [13]. To vastly improve convergence and
save computation, three heuristics are proposed as follows:

Maximum speed rule: Randomly initial JS and FA. Select
the biggest speed for all operations. The Cmax can reduce
to the smallest range to explore.
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J4 J2 J1 J5 J3
Job sequence

1×n

v1,1 v2,1 v3,1 v4,1 v5,1

v1,2 v2,2 v3,2 v4,2 v5,2

v1,3 v2,3 v3,3 v4,3 v5,3

Speed

selection

n×m

F1 F2 F1 F2 F1

Factory

assignment

1×n

Fig. 3 An example for encoding schema for DHPFSP-FMS

Minimum speed rule: Randomly initial JS and FA. Select
the smallest speed for all operations. The TEC can reduce to
the smallest interval to explore.

Balance load rule: Randomly initial JS and SS. Calculate
the sum of the processing time of each job on all machines
in each factory. T f ,i = ∑m

1 pof ,i,k,∀i ∈ I , f ∈ F . For each
job, select the factory with the smallest workload of current
scheduling. If there are factories with the same load, select
the one with smaller T .

Based on those rules mentioned above, the initial popu-
lation consists of four sub-populations sizing ps/4, which
are generated by executing three rules and random initializa-
tion. Moreover, initialized producer swarm P can cover the
extreme space of two objectives which increases the conver-
gence and diversity and saves computation resources.

Global search

Mating selection To improve search efficiency, two players’
tournament selection is applied to generate a mating pool
[51,52].

Genetic operator Due to the complexity of DHPFSP-FMS, a
large step perturbation is necessary. In this study, the partial
match crossover (PMX) is adopted for JS [11]. Meanwhile,
the uniform crossover (UX) is applied to SS and FA [53].
Figure 4 gives the procedure of PMX and UX. It is worth
noting that the SS also applied UX for crossover. Moreover,
each child generated by the crossover step has a probability
Pm to adopt two mutation strategies. JS mutation: randomly
swap two positions. SS mutation: randomly reselect a speed
for an operation. FA mutation: randomly reassign a factory

J4

J4 J2 J1 J5 J3JS1

J4 J2J1 J5J3JS2

J2 J1 J5JS4

J4 J2J1 J5J3

J4J5J3JS3 J4J2 J1J5J3

J3

(a) PMX

1 2 2 1 2FA1

2 1 2 2 1FA2

1 0 0 1 1rand

2 2 2 2 1FA3

1 1 2 1 2FA4

(b) UX

Fig. 4 a PMX and b UX

for a job. If there exists an empty factory, regenerate a FA
vector.

Environmental selection I The offspring generated by the
genetic operator is merged with producer P . The combined
population is selected by fast non-dominated sorting and
crowding distance strategy [51].

Knowledge-driven local search

In shop scheduling problems, designing local search strate-
gies according to problem features can greatly improve
efficiency. Based on the features of DHPFSP-FMS, five
neighborhood structures Ni , i ∈ [1, 5] are proposed to
enhance convergence and diversity which are described as
follows:

N1 (Swap in whole JS) This is a simple structure that aims
to increase the diversity and search step.

N2 (swap in critical factory) Randomly selecting two crit-
ical operations in the critical factory and swapping their
positions can reduce makespan.

N3 (insert in critical factory) Randomly select two opera-
tions in the critical factory and insert the latter into the front
of the former.

N4 (Increase speed of critical job) Based on property 1
mentioned in Section III-C, randomly selecting a critical job
and increasing its speed can reduce makespan.

N5 (Randomly factory assignment) Based on property 3,
randomly selecting a critical job and assigning it to another
factory can reduce makespan.

From those neighborhood structures mentioned above,
this work adopts a variable neighborhood search to consumer
C with random selection. If the new solution dominated the
old, it will replace the old. If they do not dominate each other,
add the new solution to C.

Energy-saving strategy

The energy-saving technique is a critical step for green
scheduling [13]. However, the strategy has to be designed
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according to problem features. Based on property 2, the
TEC mainly depends on idle time and speed selection. Thus,
a speed-decreasing strategy is proposed to save energy. In
conclusion, idle time can be summarized as two following
conditions (Fig. 5):

Condition 1 The start time of current operation S f ,i,k equals
to the former operation’s Ff ,i ′,k finish time on the same
machine but the last operation of the same job’s finish time
Ff ,i,k−1 is less than S f ,i,k .

Rule 1: If S f ,i,k > Ff ,i,k−1, decrease the speed of
Oi,k−1. If the new finish time of Oi,k−1 is smaller than
S f ,i,k , accept the speed change. Repeat above step until the
S f ,i,k < Ff ,i,k−1.

Condition 2 S f ,i,k equals to the last operation of the same
job’s finish time Ff ,i,k−1 but the former operation’s Ff ,i ′,k
finish time on the same machine is less than S f ,i,k .

Rule 2: If S f ,i,k == Ff ,i,k−1 and S f ,i,k > Ff ,i ′,k ,
decrease the speed of Oi ′,k . If the new finish time of Oi ′,k is
smaller than S f ,i,k , accept the speed change. Repeat above
step until the S f ,i,k < Ff ,i ′,k . It is worth noting that this
changewill delay the latter operation and increasemakespan.
Thus, to overcome this problem, if the start time of latter
operation Oi ′,k+1 cannot be obtained ahead or S f ,i ′,k+1 ==
Ff ,i ′,k , the speed will not change. To simplify the rule, only
the operation stays on the last machine, the rule 2 is executed.

The energy strategy is executed as follows:
Step 1: if the solution has not executed the energy-saving

strategy and the number of function evaluations has been
consumed over 90%, divide all jobs into each factory based
on FA.

Step 2: for each factory, calculate the start time of cur-
rent operation S f ,i,k . and judge the condition by comparing
Ff ,i ′,k and Ff ,i,k−1.

Step 3: execute rule 1 or rule 2 to decrease speed selection.

Step 4: repeat the above step until all factories have been
slowed down speed.

Experimental results

The proposed algorithm BRCE has been described in detail
in “Our approach: BRCE”. In this section, detailed experi-
ments are designed to evaluate the performance ofBRCE.All
algorithms are coded in MATLAB on an Intel(R) Xeon(R)
Gold 6246R CPU@ 3.4GHz with 384G RAM. The running
experiment is Matlab2020b with the parallel toolbox.

Instances andmetrics

Because DHPFSP-FMS cannot find an open source bench-
mark, this work generates 22 different scales of instances for
DHPFSP-FMS based on the Taillard benchmark to evaluate
the performance of the proposed BRCE [54]. The job num-
ber ranges from n ∈ {20, 50, 100, 200} and the number of
factories belongs to n f ∈ {2, 3}. The number of machines in
each factory nm =∈ {5, 10, 20}. The processing time of each
operation is different in heterogeneous factories. The pro-
cessing power WO = 2.0 kWh and the idle powerWI = 1.0
kWh. Finally, 22 instances are generatedwith different scales
which are named by n_m_n f . The stop criterion isMaxNEFs
= 400× n (at least 20,000). The dataset can be downloaded
from https://cuglirui.github.io/downloads.htm.

Three multi-objective optimization metrics are used to
measure the performance of different algorithms which are
Hypervolume (HV) [55], Generation distance (GD) [51],
and Spread [51]. Meanwhile, their formulations are given
as below:

HV (P, r) =
P⋃

x∈P

v(x, r), (18)

where P is the Pareto solutions got by each algorithm, and r
is the reference point.Moreover, for calculating the boundary
solutions for HV, r is set (1.1, 1.1). x is a normalized Pareto
solution. v is the volume value of the hypercube. Moreover,
the higher HV, the better the comprehensive performance of
an algorithm.

GD(P, P∗) =
√∑

y∈P minx∈P∗ d(x, y)2

|P| , (19)

where P∗ is the best Pareto solutions got by all algorithms,
P is the Pareto solutions set of each algorithm, and d(x, y)
states the Euclidean distance between x ∈ P and y ∈ P∗.
Moreover, the lower theGDvalue, the better the performance
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of an algorithm

Spread = dl + d f + ∑N−1
i=1 ‖di − d̄‖

dl + d f + (N − 1)d̄
(20)

where d is the Euclidean distance of adjacent Pareto solu-
tions. Moreover, the lower the Spread value, the better.

Parameters calibration

The parameter configuration has a great impact on the
performance of an algorithm in solving DHPFSP-FMS.
The proposed BRCE contains three parameters which are
population size ps, mutation rate Pm , and the enhance-
ment strategies start rate of the whole computation resource
Et . A Taguchi approach of design-of-experiment (DOE)
[56] is adopted by the software Mintab18. The parameter
level is given as follows: ps = {100, 150, 200}; Pm =
{0.1, 0.15, 0.2}; Et = {0, 0.5, 0.9}. An orthogonal array is
L9(33) generated in this calibration experiment. For fairness,
each parameter runs 10 independent times with the same stop
criteria (MaxNFEs = 400× n). The means of all metrics for
10 runs are collected. Figure 6 shows the main effects plot of
three parameters for three metrics. The bigger the HV met-
rics values, the better the performance. Moreover, GD and
Spread have the opposite regular of HV. Based on compre-
hensive observation, the best configure of parameter setting
is that ps = 100, Pm = 0.2, and Et = 0.9.

Effectiveness of the components in BRCE

To evaluate each improvement part of BRCE, some variant
algorithms are generated as follows: (i) BRCE-C without
the coevolutionary framework is set only the traditional one
population evolution which is used to prove the effectiveness
of the proposed framework; (ii) to evaluate the effectiveness
of the proposed energy-saving strategy, BRCE with energy-
saving strategy called (BRCE + E) is set; (iii) BRCE + EV
is set with energy-saving strategy and variable neighborhood
search and compared with the former variant to prove the
effectiveness of local search; (iv) BRCE + EVH embedded
with heuristic initialization is compared to the former algo-
rithm to prove the effectiveness initialization strategy. For
fairness comparison, each algorithm runs 20 independent
times on all instances with the same stop criteria (MaxN-
FEs = 400× n at least 20,000). All algorithms are coded by
MATLAB.

Table S-I shows the statistical results of all metrics of
all variant algorithms. Moreover, the bold values mean the
best. Furthermore, Table 2 lists the Friedman test results,
where the confidence level α = 0.05. Some conclusions
can be obtained as follows: (1) the p value is less than

0.05, which means a significant difference between all vari-
ants. (2) the comparison results of BRCE and BRCE-C can
prove the effectiveness of the proposed bi-roles coevolution-
ary framework for the distributed shop scheduling problem.
(3)ComparingBRCE+EwithBRCEcanprove the effective-
ness of the proposed energy-saving strategy. (4) Comparing
BRCE + E and BRCE + EV, the HV and GD metrics rank
higher but Spread ranks lower, which ensures the proposed
local search can efficiently increase convergence whereas the
diversity is reduced. This is because the Pareto solutions are
closer to each other. (5) Comparing BRCE+EVHandBRCE
+ EV, the HV and Spread rank first but GD sharply reduces.
This is because the proposed heuristic initialization rules gen-
erate many solutions with the smallest Cmax and TEC. Thus,
the diversity of producer P vastly increases and the compu-
tation resource is divided into more search directions. BRCE
+ EV has a population with higher density which can con-
verge to the middle range well and result in increasing the
distance between the middle of Pareto Front and the middle
of Pareto solutions of BRCE + EVH. Finally, the BRCE +
EVH can find solutions with the smallest Cmax and TEC and
more Pareto solutions than BRCE + EV, which provides a
more practical reference to manufacturing. It is acceptable
that the GD metric is worse than other variants.

Comparison and discussions

To further evaluate the effectiveness of our approach, BRCE
is compared to the classical MOEAs like MOEA/D [57] and
NSGA-II [51]. Furthermore, two state-of-art algorithm for
DHPFSP-FMS named PMMA [46] and KCA [17] is com-
pared. The parameters are set with the best configuration in
each reference. The crossover rate Pc = 1.0, mutation rate
Pm = 0.2 and population size ps = 100 for MOEA/D,
NSGA-II and BRCE. The population size ps = 40, elite
rate η = 0.2 and update rate α = 0.1 for PMMA. The
population size ps = 10, local search times LS = 100
and energy-efficient rate PE = 0.6 for KCA. The number
of neighborhoods T = 10 for MOEA/D. To conduct a fair
comparison, all MOEAs share the same stop criteria (MaxN-
FEs = 400 × n ≥ 20,000). Because of the complexity
of DHPFSP-FMS, this comparison experiment adopted 20
independent runs in 22 instances.

Table S-II shows statistical results (mean and standard
deviation values) of all comparison algorithms for three met-
rics in 22 instances. Moreover, the symbol “−/=/+” means
significantly inferior, equal, or superior to BRCE. Mean-
while, the best value is marked with bold. As Table S-II
shows, as for HV and Spread metrics BRCE is significantly
better than all comparison algorithms, which proves BRCE
has better comprehensive performance and diversity than
comparison algorithms. As for the GD metric, BRCE is sig-
nificantly superior to MOEA/D, PMMA, and KCA over 20
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Fig. 6 Main effects plot of three metrics: a HV, b GD, and c spread

Table 2 Overall ranks through
the Friedman test among all
variant algorithms (a level of
significant α = 0.05)

MOEAs HV GD Spread

Rank p value Rank p value Rank p value

BRCE-C 4.455 1.24E-13 4.092 6.54E-10 3.409 2.51E-13

BRCE 4.092 3.682 3.091

BRCE + E 2.955 2.091 2.727

BRCE + EV 2.500 1.409 4.773

BRCE + EVH 1.000 3.727 1.000

Table 3 Overall ranks through
the Friedman test among all
comparison algorithms (a level
of significant α = 0.05)

MOEAs HV GD Spread

Rank p value Rank p value Rank p value

NSGA-II 2.318 7.19E−15 1.909 1.77E−14 2.636 4.48E−13

MOEA/D 3.773 4.546 2.909

PMMA 4.773 4.318 4.000

KCA 3.136 2.864 4.455

BRCE 1.000 1.364 1.000

instances. This is because it is designed based on problem
feature and the advantage of the framework which balance
the computation resource. However, the BRCE is worse than
NSGA-II in eight instances. This is because the number of
Pareto solutions of BRCE is too many and cannot focus on
converging in themiddle range. Although themetric is lower,
the BRCE can find solutions with smaller objectives, which
is acceptable. Table 3 indicates the Friedman rank test results
among all comparison algorithms in all instances, where the
confidence level α = 0.05. BRCE ranks first for all metrics,
where p value is less than 0.05, which proves BRCE is sig-
nificantly better than comparison algorithms.

The success of BRCE relays on its design. First, the
proposed bi-roles coevolutionary framework can efficiently
balance computation resources between exploration and
exploitation. Second, three heuristic rules are proposed to
vastly converge to the boundary of objectives. Next, aiming
at the problem characteristics five neighborhood structures
are designed to enhance convergence. Next, to enhance the
success rate of local search, a deep Q-network is adopted.
Finally, an efficient energy-saving strategy is introduced to

efficiently lower idle time to reduce TEC. Moreover, Fig. 7
shows their Pareto front with the best HV metric overall 20
runs.Considering the convergence and diversity of PF,BRCE
can find better Pareto solutions on two sides than all com-
parison algorithms, which means BRCE can find solutions
with smaller objective functions and get closer approxima-
tions toward practical PF. Because of the large number of
Pareto solutions, BRCE has not enough resources to explore
the middle reign. Thus, the convergence of the middle region
is worse than NSGA-II. However, BRCE can find solutions
with better Cmax and TEC, which states the proposed BRCE
can solve DHPFSP-FMS well.

Conclusions

This paper proposed a bi-roles coevolutionary algorithm for
energy-efficient distributed heterogeneous permutation flow
shop scheduling problemswith flexiblemachine speed. First,
a novel bi-roles coevolutionary framework was proposed to
solve DHPFSP-FMS. Second, three heuristic rules are pro-
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posed to get an initialization population with high quality.
Next, five knowledge-driven neighborhood structures were
designed for optimizing DHPFSP-FMS based on three fea-
tures. Then, an energy-saving strategy based on reducing
speed was presented to efficiently save TEC. Finally, the
experimental results indicated that BRCE is significantly bet-
ter than different types of comparison algorithms in terms of
getting Pareto solutions with better convergence and diver-
sity.

In our future work, we will consider the following task:
(i) apply BRCE to other distributed heterogeneous shop
scheduling problems; (ii) consider an assembly stage of
DHPFSP-FMS; and (iii) consider the dynamic situations in
DHPFSP-FMS.
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