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Figure 1: A sample scene has been rendered using alum-bronze and blue-metallic-paint materials from MERL

database [9]. Left: Image based on the original data. Right: Image based on the reconstructed data using only 5%

of the original (The Peak-to-Signal Ratio is 51.63 dB).

ABSTRACT

Compressive sensing is a technique for efficiently acquiring and reconstructing the data. This technique takes

advantage of sparseness or compressibility of the data, allowing the entire measured data to be recovered from

relatively few measurements. Considering the fact that the BRDF data often can be highly sparse, we propose to

employ the compressive sensing technique for an efficient reconstruction. We demonstrate how to use compressive

sensing technique to facilitate a fast procedure for reconstruction of large BRDF data. We have showed that

the proposed technique can also be used for the data sets having some missing measurements. Using BRDF

measurements of various isotropic materials, we obtained high quality images at very low sampling rates both for

diffuse and glossy materials. Similar results also have been obtained for the specular materials at slightly higher

sampling rates.
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1 INTRODUCTION

Real world materials display different reflection char-

acteristics. Accurate representation of the distribution

of light reflected from the surface of a material has long

been studied in computer graphics. A class of functions

called Bidirectional Reflectance Distribution Function

(BRDF) defined in terms of incoming and outgoing

light directions is commonly used to describe such re-

flectance properties.

Various models have been proposed for approximating

the BRDF. It has been shown that some of these models

meet the reciprocity and energy conserving principles.
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However they generally fail to capture the reflectance

properties of all material types. A natural approach to

tackle this problem is to fit the underlying models to

measured BRDF data. Since small numbers of parame-

ters are involved in these models, only the correspond-

ing estimates need to be stored for reconstruction of

BRDF. Fitting can also be performed on data sets hav-

ing some missing measurements. Nevertheless, such

fitting procedure leads to some approximation errors

for certain materials and its implementation is difficult

in most cases because of its computational complex-

ity [12].

A general and simple method for approximating the

BRDF would be to use directly the measured BRDF

data which is obtained on a regular grid using some

version of gonioreflectometers. Then the intermedi-

ate BRDF values can be estimated by an interpolation.

However, the BRDF data obtained in this way is gener-

ally noisy and contains some missing observations due

to some difficulties in measuring BRDF around grazing

angles [14].
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A major difficulty of using the BRDF data is its large

size. Even if the raw data were correct and com-

plete, its size would be prohibitively large for an effi-

cient storage and for a rendering application. An al-

ternative approach is to compress the measured BRDF

data using some well-known compression techniques.

These techniques are based on using basis functions

(splines, spherical harmonics, wavelets, and Zernike

polynomials), dimension reduction techniques (Prin-

cipal Component Analysis, Independent Component

Analysis and Cluster Analysis) and matrix factorization

(Non-negative Matrix Factorization and Tensor Prod-

ucts). Empirical results have shown that these com-

pression based techniques can provide an accurate and

compact representation of BRDF data but do not offer

an efficient importance sampling [8].

Generally, BRDF measuring systems suffer from occlu-

sion problems because of using cameras, projectors, or

even mirrors. In such cases, acquiring BRDFs over a

full hemisphere may not always be possible. In some

other cases measurements taken at certain angles may

be prohibitively noisy and cannot be used for render-

ing. A possible approach for handling this problem

is to ignore the missing or highly noisy measurements

and fit an analytical model to the remaining part of the

data [12]. Cleary the resulting fitting will not be ade-

quate due to increased degree of the lack-of-fit of the

model.

In this work we propose to employ an interesting tech-

nique namely the compressive sensing that can be used

to reconstruct the missing BRDF measurements effi-

ciently. It turns out that the proposed technique also

provides an effective way of compressing the BRDF

data.

The compressive sensing (which is also referred in the

literature as compressed sensing or compressive sam-

pling) has been evolving rapidly [3]. This technique

takes advantage of the sparseness or compressibility of

the data, allowing the entire measured data to be recov-

ered from relatively few measurements using some op-

timization techniques. It has been shown that compres-

sive sensing can also be used for data sets that contain

some missing measurements [6].

We apply the compressive sensing approach on a large

BRDF data for rendering applications. Based on the

empirical results, we show that compressive sensing

technique can be used effectively for image reconstruc-

tion. In Figure 1, we present rendered images based

on measured BRDF data sets with 95% of its elements

removed randomly and reconstructed on the right, and

the original image on the left. This example illustrates

the power of the proposed technique for reconstructing

measured BRDF data using only a small portion of it.

We also demonstrate the effectiveness of compressive

sensing technique for reconstruction of BRDF data hav-

ing some missing or noisy measurements.

The paper is organized as follows: In Section 2 we

explain briefly the compressive sensing technique. In

Section 3 we present the problems encountered during

BRDF data acquisition. In Section 4 we describe our

reconstruction algorithm and in Section 5 we show ex-

perimental results. Section 6 is devoted to conclusions

and discussions.

2 COMPRESSIVE SENSING

Compressive sensing technique, emerging over the past

few years, has attracted considerable attention in digital

signal processing. In this section we summarize com-

pressive sensing technique for completeness. A good

treatment of the topic may be found in [2, 5].

An n-dimensional signal is called sparse if it can be rep-

resented as a linear combination of smaller number of

some basis vectors. The key idea behind compressive

sensing technique is that sparse signals can be recon-

structed perfectly in terms of smaller number of basis

vectors.

Suppose that discrete time signals are represented by

an n× 1 column vector x. Without loss of generality,

higher dimensional data can also be represented by a

vector by making an appropriate arrangement of the

signal measurements. For example four dimensional

BRDF data with a resolution n = n1 × n2 × n3 × n4

where ni,(i = 1,2,3,4) is the resolution of the ith di-

mension, can be viewed as an n× 1 vector. It is well

known that a vector can be transformed into another

n×1 vector s. through an n×n orthogonal basis matrix

Ψ as

x = Ψs (1)

Since Ψ is an orthogonal matrix, this equation can be

solved for s as s = Ψ′x where Ψ′ is the transpose of

Ψ. If s is known or can be estimated from the sample

data then x can be reconstructed easily from the above

equation. This representation similar to that of principal

components in the sense that the vectors x and s are the

equivalent representations of the signals. In principal

components representation, Ψ is determined adaptively

from the sample data and the first k ≤ n nonzero entries

of s corresponding to significant row vectors in Ψ are

used to recover x.

Compressive sensing technique uses the sparsity prop-

erty of the signals. If a signal is sparse then some of

the entries of s in Eq. (1) is expected to be zero leading

to a representation with a reduced dimensionality. The

underlying approach provides a non-adaptive technique

where entries of the matrix is fixed and only a small
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portion of the sample data is used for reconstruction of

the vector x.

Suppose that a signal is k-sparse that is only k entries of

s in Eq. (1) is nonzero. Let y = ϕx where ϕ is an m×n

sampling matrix (m ≤ n) and y is an m×1 vector. From

Eq. (1) y can be expressed as

y = ϕx = ϕΨs = Θs (2)

where Θ is an m × n transformation matrix, Ψ and s

are defined as in Eq. (1). Clearly, this system of m si-

multaneous linear equations with n unknowns cannot be

solved for s as the number of independent linear equa-

tions is much less than the number of unknowns. In a

special case when signals are assumed to be k-sparse

then a solution could be possible if the locations of the

nonzero coefficients are known and m ≥ k. A necessary

and sufficient condition is that the transformation ma-

trix should not change the lengths of the k-sparse vec-

tors [1]. It has been shown that this condition is satis-

fied if the sampling matrix ϕ is chosen to be an iden-

tically and independently distributed gaussian matrix.

An interesting result with this Gaussian matrix is that

k-sparse signals of length n can be reconstructed using

only m× 1 vector y where m ≥ ck log(n/k) < n and c

is a small constant random number generated from a

Gaussian distribution.

The reconstruction algorithm for a k-sparse sample of

size n should be able to determine the k nonzero and

(n− k) zero entries in n× 1 vector s. Finding the best

combination out of m nonzero and n−m zero combi-

nations of the entries in s is difficult. However an ap-

proximate solution can be obtained by minimizing the

quantity

ξ (s) =
n

∑
i=1

|si| (3)

with the constraint y = Θs where s = (s1,s2, · · · ,sn) is

the sparse coefficient vector [1]. This process is known

as ℓ1-norm optimization. An interesting result with ℓ1-

norm optimization is that it tends to concentrate the en-

ergy of the signals onto a few nonzero entries of s as

opposed to the least squares which tends to spread the

energy around. The reconstruction algorithm then con-

sists of the following steps:

i Determine an m×n sampling matrix ϕ
ii Obtain the m×1 measurement vector as y = ϕx

iii Determine an n×n orthogonal basis matrix Ψ

iv Find the coefficient vector s using ℓ1-minimization

v Reconstruct x using Eq. (1).

3 BRDF DATA WITH MISSING OR

NOISY MEASUREMENTS

Commonly, BRDF measurements are obtained using a

gonioreflectometer, a computer controlled device which

typically has a photometer and a light source. Often the

underlying system requires huge amount of measure-

ments. For example, when an angular resolution of 1

degree is used, with a uniform sampling then the un-

derlying system would require approximately one and

a half million of measurements. It has been reported

that measurements of reflectance at grazing angles are

difficult to obtain accurately. For example, in evaluat-

ing several analytical BRDF models, Ngan et. al. [12]

have ignored the data within an incoming and outgo-

ing angles greater than 80 degrees considering that they

are in general unreliable. In some other cases the opti-

cal elements of the system do not allow measurements

at all at certain positions resulting considerable amount

of missing data [11]. Experimental results have shown

that approximately 60-65% of the measurements taken

at the grazing angles and 10-15% of the measurements

in the remaining region contain some reciprocity related

errors [8]. On the other hand, Romerio et. al. [13] have

mentioned about the existence of lens flare artifacts in

BRDF measurements.

4 RECONSTRUCTION OF BRDF

MEASUREMENTS

In this work, the compressive sensing technique is ap-

plied on isotropic BRDF data which is assumed to have

some missing measurements. For this purpose the three

dimensional data is divided into sub-sample blocks of

size 15 × 15 × 15. Random samples were generated

from these sub-samples at a predefined sampling ra-

tio. Finally, the resulting uniform random samples were

used to reconstruct the underlying blocks employing the

compressive sensing technique. An ℓ1-norm optimiza-

tion algorithm proposed by van den Berg and Friedlan-

der [16] was used for estimating the sparse vector s as

defined in Eq. (1).

As was explained in the preceding section, the com-

pressive sensing technique requires using a sampling

matrix ϕ , and an orthogonal basis matrix which is in-

coherent with this sampling matrix. A number of sam-

pling methods have been proposed for reconstructing

signal data [3, 4]. Unfortunately, these methods can-

not be applied on BRDF data directly unless an ap-

propriate sampling strategy is used for obtaining the

BRDF measurement. It is obvious from Eq. (2) that

when the vector x contains some missing data points,

that is when some of the entries are missing, then the

corresponding dot product between the vector x and the

rows of the Gaussian matrix ϕ cannot be determined.

To overcome this difficulty, we proceed to use a differ-

ent sampling procedure namely point sampling which

is based on using a permutation matrix instead of a ran-

dom Gaussian matrix. It is shown that the permuta-

tion matrices are coherent with the basis matrices which

produce highly sparse data like the ones that are based
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Figure 2: Computed Gini’s indices of sparsity coefficients obtained in Fourier domain for BRDF measurements of

30 isotropic materials. Higher index values are found with log transformations.

on wavelets [15]. In our work we created an n× n ba-

sis matrix Ψ whose entries are obtained through Fourier

transforms. It is reported that Fourier basis matrices of-

ten do not produce sparse coefficients in vector s for

real-world images [15]. However, our empirical results

based on BRDF data have shown that highly sparse co-

efficients can be obtained with Fourier basis matrices

when they are used with permutation matrices (point

sampling). This property of using Fourier basis matri-

ces is demonstrated in Figure 2. In this figure, Gini’s

indices are obtained and plotted for each material. Sim-

ilar results based on log transformations of BRDF are

also obtained and shown on the same figure. Higher

values of Gini’s index corresponds to higher sparsity of

the measured data. It is seen that, the Gini’s indices

obtained for this case is found in the range (0.68, 0.85).

The permutation matrix which consists of zeros and

ones are provided by generating these numbers using a

simple random sampling techniqe without replacement.

During the sampling process, if an entry of this matrix

corresponding to a missing value in the vector x is 1

then it is set to 0 and the next available position is set to

1.

It is assumed that the BRDF measurements must be

positive [10]. However some data sets contain negative

values as a result of certain sampling errors. We used

log transform of the BRDF measurements to preserve

Figure 3: Left: Image based on BRDF measurements.

The presence of lighting artifacts due to negative BRDF

values. Right: Image obtained with log transformation.

the underlying property of BRDF. Our empirical results

have shown that such transformation also increases the

sparsity of the BRDF data. This situation is illustrated

in Figure 3. It is seen in the figure that negative values

cause some artifacts under illumination.

5 RESULTS

To demonstrate the efficiency of the compressive sens-

ing approach, we considered a data set based on vari-

ous isotropic materials acquired by Matusik et.al. [10]

from MERL MIT database [9]. In this data set 1458000

measurements are provided for each material. We se-

lected 30 isotropic materials to represent various dif-

fuse and reflection properties. ℓ1-norm estimates of the

coefficient vectors for each material were computed in

Fourier domain. Gini’s index [7] is used as a measure

of sparsity and computed for each case.

It is seen in Figure 2 that in 25 materials out of 30, the

sparsity indices based on log transformation are found

to be higher than those based on the original data.

To investigate the effect of the sampling ratio on the vi-

sual quality of the reconstructed images, random sam-

ples with ratios 1%, 2.5%, 5%, 10%, 25%, 50% were

generated from six different materials namely dark-

red-paint, green-fabric, blue-metallic-paint, gold-paint,

fruitwood-241, chrome-steel were chosen. These mate-

rials were chosen to reflect the diffuse, glossy and spec-

ular properties of reflection. Rendered spheres based

on the original data is shown in the first row of the Fig-

ure 4 while the reconstructed images are presented in

the following rows. The insets for each sphere repre-

sents the difference image between the corresponding

reconstructed and the original images scaled by 8. The

Peak-to-Signal(PSNR) values are also given for each

reconstructed image.

It is interesting to see that images with a visually ac-

ceptable quality could be obtained by sampling only

1% of the measurements for diffuse and glossy mate-

21st International Conference on Computer Graphics, Visualization and Computer Vision 2013

Full papers proceedings 91 ISBN 978-80-86943-74-9



Reference images

45.04 dB 45.72 dB 41.58 dB 43.01 dB 41.68 dB 26.92 dB

49.54 dB 50.62 dB 47.58 dB 48.42 dB 44.73 dB 35.36 dB

51.46 dB 51.83 dB 51.71 dB 51.22 dB 50.26 dB 43.20 dB

52.33 dB 52.49 dB 52.51 dB 51.90 dB 51.82 dB 47.20 dB

52.48 dB 52.72 dB 52.62 dB 52.01 dB 52.11 dB 48.86 dB

52.51 dB 52.76 dB 52.64 dB 52.02 dB 52.15 dB 48.99 dB

Figure 4: Rendered spheres under global illumination. First two columns: Diffuse materials (dark-red-paint,

green-fabric), Third and fourth columns: Glossy materials (blue-metallic-paint, gold-paint), Last two columns:

Specular materials (fruitwood-241, chrome-steel) [9]. First row: Original images. Second row through seventh

row: Images obtained at 1, 2.5, 5, 10, 25, and 50 percent. Insets indicate the scaled differences between the given

image and the corresponding original image.
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46.54 dB 47.52 dB 51.96 dB 42.75 dB

51.02 dB 52.27 dB 51.34 dB 51.14 dB

51.10 dB 48.63 dB 48.75 dB 41.83 dB

45.51 dB 50.65 dB 49.78 dB 45.06 dB

51.51 dB 51.58 dB 48.90 dB 46.31 dB

51.95 dB 48.60 dB 49.04 dB 49.76 dB

Figure 5: Reconstructed images using 5% of the BRDF measurements of randomly selected 24 isotropic materials

from MERL data base. Insets indicate the differences between the given image and the corresponding original

image. PSNR values are given for each material.
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rials. In all cases except the first two cases for chrome-

steel corresponding to 1% and 2.5% sampling ratios,

the PSNR values are above 40 db. These results demon-

strate the power of the compressive sensing approach

when dealing with BRDF data having missing measure-

ments. It can also be seen from Figure 5 that com-

pressive sensing approach produces visually acceptable

quality for all material types by sampling only 5% of

the original data.

6 CONCLUSIONS AND DISCUSSIONS

In this work we analyzed the potential use of com-

pressive sensing technique to facilitate a fast procedure

for processing large BRDF data. In image reconstruc-

tion, compressive sensing can be more efficient than

traditional sampling when data is sparse. Consider-

ing the fact that the BRDF data often can be highly

sparse, it can be reconstructed efficiently using com-

pressive sensing technique. We have demonstrated that

the proposed technique can also be used for the data

sets having some missing or unreliable measurements.

Using BRDF measurements of various isotropic mate-

rials, we have shown that high quality images can be re-

constructed at very low sampling ratios both for diffuse

and glossy materials. Similar results also have been ob-

tained for the specular materials at slightly higher sam-

pling ratios.

It is well known that modeling and representation of

anisotropic data is difficult. More data acquisition is

needed for this case as compared with isotropic ma-

terials. We expect that the proposed approach can be

extended to BRDF reconstruction for anisotropic mate-

rials.
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