
Breadcrumbs: efficient, best-effort content location
in cache networks

Elisha J. Rosensweig
Dept. of Computer Science

University of Massachusetts, Amherst, USA

Jim Kurose
Dept. of Computer Science

University of Massachusetts, Amherst, USA

Abstract—For several years, web caching has been used to
meet the ever increasing Web access loads. A fundamental
capability of all such systems is that of inter-cache coordination,
which can be divided into two main types: explicit and implicit
coordination. While the former allows for greater control over
resource allocation, the latter does not suffer from the additional
communication overhead needed for coordination.

In this paper, we consider a network in which each router has
a local cache that caches files passing through it. By additionally
storing minimal information regarding caching history, we de-
velop a simple content caching, location, and routing systems that
adopts an implicit, transparent, and best-effort approachtowards
caching. Though only best effort, the policy outperforms classic
policies that allow explicit coordination between caches.

I. I NTRODUCTION

For several years, web caching has been used to meet the
ever increasing Web access loads [1]. More recently, advocates
of content-centric networking [3], [2] have argued for raising
the level of abstraction of the atomic unit of data that is stored
and forwarded within the network from the packet to a file, or
other higher-level content unit. In both cases, content storage,
location, and forwarding within the network are of central
concern.

Although content storage (caching) systems come in many
forms and flavors, one fundamental capability of all such
systems is that of coordination, which can be divided into two
main types: explicit and implicit. With explicit coordination,
caches share their state (or state summaries), and additional
information such as access patterns and content popularity[4]
with each other. Using this information, each cache determines
what to cache, when to do so, and what to drop. The main
cost of such explicit schemes is the additional communication
overhead needed for coordination as well as coordination
algorithms that can be quite complex and sophisticated.

Implicit coordination, on the other hand, removes the need
for such elaborate reporting protocols. Instead, it relieson the
local cache management policies [5], as well as the relative
position of each cache in the network [6], to achieve good
performance. An example of such implicit coordination are
hierarchical cache systems [7], where caches are arranged
in a tree-like structure. Requests start out at the leaves of
the tree, and are routed towards the root until the content is
found, either in the tree or at an external source (via the root)
when the content is not present in the tree. In such systems,
it has been shown that caches lower down the tree tend to

contain files that are used more frequently, while upper levels
hold files with lower access rates [6]. Here, we see that the
architecture provides for implicit coordination to take place
between caches, causing them to contain different types of
files and so manage resources efficiently.

In this paper, we describe a simple content caching, location,
and routing system that adopts an implicit, transparent, and
best-effortapproach towards caching. We consider a network
scenario in which each router has a local cache that caches
files passing through it. Requests for a file are routed directly
towards the source of the file, and en-route check at each router
if a copy of the file is present at its cache, and download
it directly from there if found. Such caches are commonly
referred to as Transparent En-Route Caches (TERC) - ”trans-
parent” as neither the user nor the server are aware that any
such cache exists, and ”en-route” since they are accessed
during a standard request, on the path to the server [8][9].
The Breadcrumbs approach described in this paper is “best
effort” in that coordination is implicit, and forwarded requests
may (or may not) locate content while being routed among
the caches; if not located, content can always be eventually
retrieved from the source. Only a minimal amount of per-
file information (which we refer to as a “breadcrumb”) is
used in locating content. A breadcrumb stores the direction
in which a file was sent in the past, thus tying content routing
with content location and caching. We find that although our
system promises best-effort only, it performs well even when
compared to several classic, more stateful, explicit-cooperation
cache systems.

The main contributions of this paper are:
• Presentation of our Breadcrumbs system, that controls

query forwarding, cache replacement, and file routing.
• We develop a best-effort policy designed for forwarding

queries in search of cached content, and demonstrate its
utility for several sample network models.

• We compare the performance of our best-effort policy
with other policies, including those systems that are
more stateful. We find that our policy performs ex-
tremely well in comparison, locating cached content more
frequently than policies that use explicit coordination
between neighboring caches to control which files are
cached locally or dropped.

• We present a preliminary analysis of the impact of
employing our forwarding policy on the incoming query

traffic at a specific node. Specifically, we observe that
neighbors of a node that experiences an increase in
requests for a specific file, will tend to increase the rate of
queries for this file that they forward to this node. Thus
we get a sense of the nature of the implicit coordination
taking place between caches in such a network.

The rest of the paper is structured as follows. In Section
II we discuss related work with regards to caching systems
in general and, specifically, global ubiquitous caching. In
section III we describe at length the Breadcrumbs system,
devise a simple Best-Effort Content Search (BECONS) policy,
that allows for content to be located in a general caching
network, and present a concrete example of this policy. This
example helps point out several key behavioral factors of cache
netwroks when using BECONS in a Breadcrumbs system,
specifically its tendency to forward incoming queries at several
nodes to a single node, increasing the chance of retaining the
file there as long as it continues to be popular.

In section IV we take a look at the reaction of a the neigh-
bors of a cache in a Breadcrumbs system using BECONS.
We classify the trend of changes in the cache miss rate at
the neighboring caches and, as a result, the effects on the
original cache itself. We present here patterns as they emerge
in small-scale systems and try to extrapolate from these to
the behavior of a general network. More rigorous analysis is
left for future work. Section V presents simulation results,
that evaluate the performance of BECONS and compare it to
several, both explicitly-coordinated and implicitly-coordinated,
cache networks. We demonstrate here that cached information
is efficiently located using BECONS, reducing the load experi-
enced by servers and the delay experienced by users requesting
content. Finally, section VI presents possible extensionsto the
models presented in our work and some concluding remarks.

II. RELATED WORK

A. Ubiquitous global caching systems

There have been several attempts at developing ubiquitous
global caching systems [5][10][11][12]. Content DeliveryNet-
works (CDN), such as Akamai [14], use a coordinated set of
caches throughout the internet to supply content in an efficient
manner. Content is pushed to locations where it is requested
or, more importantly, predicted to be requested in the future.
The managing of the content is primarily done in a centralized
manner, and clients are ensured a baseline performance or QoS
(Quality of Service).

Distributed caching systems, in which no centralized author-
ity manages the distribution of data, have also been discussed.
The OceanStore project [12], to use a common example,
is designed to ensure ”global persistent data store” [15] by
having users contribute storage space to the system, and use
redundancy to ensure content is almost never unavailable
or lost. Our work here aims at best-effort caching instead,
accepting that content might, in theory, be unavailable within
the caching network, but in practice is usually available.

In our work here, we address an architecture in which
caching takes place in the network itself, and cache manage-

ment is done in a distributed manner. The basic concept is
to use something similar to Transparent En-Route Caches, in
which content is stored at caches associated with routers, and
requests for files check the contents of these caches en-route
to a public server, which is a known source for the content.
Most of the research regarding such caches has focused on
how to place a small number of these in an efficient way
[8] and where to cache specific objects [4], and has generally
addressed the question in a limited number of topologies. Our
work here assumes that all routers have been equipped with
a TREC-like cache, and that content is cached blindly as it
passes through.

Our work focuses on a similar framework to that discussed
extensively in [10][5]. Here, the authors attempt to solve
the problem of efficient cache replacement by introducing an
adaptive caching system named ACME. ACME uses machine
learning techniques in order to determine when and what to
cache locally, without explicit communication between caches.
It uses a pool of virtual caches, each managed by a different
static policy, that simulate the behavior of the cache had it
been using a specific static cache replacement policy. ACME
assigns weights to virtual caches and uses machine learning
algorithms to select the best current policies from the virtual
cache pool. In such a manner, ACME achieves improved
performance compared to any specific static policy. BECON
and the Breadcrumbs system differ from ACME in that we use
intelligentquery routing, instead of adaptive caching, in order
to improve performance. In this sense, the two architectures
are orthogonal to one another, and it is possible that combining
them would be advantageous. Such a task is beyond the scope
of this work.

B. Heterogeneous caching

It has been shown [16][6] that, in 2-level hierarchical cache
systems, performance can be improved by using different
cache replacement techniques at different levels. Using dif-
ferent policies at different levels is a form of implicit cache
coordination, such that a cache at a lower level skews the
patterns of incoming traffic in such a way that the resulting
traffic pattern allows a more efficient caching to take place at
the next level. This observation becomes less useful, however,
when considering the behavior of caches distributed through-
out the network, where a clear hierarchy does not exist. In
such systems, two neighboring nodes may reverse positions in
the hierarchy with respect to different sources. Specifically, if
nodesA andB are placed somewhere along the route between
serversS1 andS2, thenA will be higher up in the hierarchy
thanB with respect to (wlog)S1 and lower down with respect
to S2. Thus, in such cases, there is nostatic policy that can
be assigned to each cache that can enjoy the advantages of
heterogeneous caching. In [10][5] adaptive caching is usedto
solve this problem. In our work, we assume that all caches are
using the same cache replacement policy (e.g. LRU, FIFO),
and improve performance by employing other tools.

III. B READCRUMBS, AND WHERE THEY LEAD

A. Basic architecture

We envision a caching network where each node - a router
with an associated cache - sets aside some of its cache space
for the purpose of storing routing history, or breadcrumbs
(BC), of previously seen files. Each BC is a4 − tuple entry,
indexed by a global file ID (FID), containing the following
information:

• Time when the file past through the node. Only the most
recent such event is recorded.

• ID of node from which the file arrived.
• ID of node to which the file was forwarded.

A

C

B

D

t=7

t=3
f1

f1

(f1, 3, A, D)

(f1, 7, B, null)

(f1, 0, null, B)

Fig. 1. Breadcrumbs example

In the simple case portrayed in Figure 1, filef1 was sent
along the routeA−B−D and then delivered to its destination.
The source (server) and destination (user) of the file do not use
such caches, and so are ignored by enteringnull for entries
that point to these non-router locations. Thus, as the file is
downloaded, it leave behind it atrail of breadcrumbsat the
caches along its download path. As a BC requires very little
in terms of storage, we assume throughout the paper that a
BC for each file can be maintained at each cache indefinitely.

To begin our discussion of the breadcrumbs architecture,
lets consider a request for a file. This request/query will
be routed towards the server at which that file is known to
always reside. As this request is routed towards the server,it
may encounter a router with a breadcrumb for that file, thus
interceptinga trail of breadcrumbs for that file. At this point,
the query could be satisfied locally, if the file is contained in
the intercepting routers cache. Alternatively, the query can be
routed up or down the breadcrumb trail in an attempt to locate
the file. Note that the file can always be found by following
the breadcrumb trail upstream, but that the file may be also
be found (possible more quickly) downstream, as discussed
below. We also note that a similar notion of routing towards a
source, but then exploiting state found at an intercepting node
is used in multicast tree construction in core-based multicast
routing trees [13].

The obvious question that arises from this architecture is
in which direction to follow a trail:upstream, towards the
last origin of the file, ordownstream, in the same direction
as the file was last sent. In the example presented in Fig.
1, a query arriving at nodeB could be routed upstream to
nodeA or downstream to nodeD. In what follows we focus

on the scenario where the file originated from some public
server, and the trail was discovered by first routing towards
the source. In such cases, heading upstream is equivalent to
continue heading towards the server, where the file is always
available for download.

Cache replacement schemes play a large part in determining
where queries should be routed. Specifically, if recently cached
or referenced items remain in the cache longer than older
items, as is the case with the standard LRU cache replacement
policy and others, routing a query downstream increases the
chance of finding a cached copy compared to routing upstream.
We assume that these policies are being used for cache
replacement for the rest of the paper, as they are commonly
used in practice, and discuss other types of cache replacement
policies at section VI. On the other hand, sincef ’s server
is upstream, routing in that direction will definitely result in
downloading the file, while a downstream search might reach
the end of the trail without finding a cached copy. In such an
event, the query will need to be re-routed back upstream in
search of the file, lengthening the download time.

Consequently, a reasonable first step in devising a content
search algorithm would be to define a threshold valueTf ,
and send queries downstream if-and-only-if the file was last
cached and forwarded within the lastTf time units; Otherwise
continue searching upstream. For lower values ofTf , queries
will have a higher chance of finding the file downstream, but
less queries will be taking advantage of possible copies cached
there. Conversely, for higher values ofTf more queries will
be sent downstream, but a larger fraction of them will reach
a dead end.

A more complete policy can be reached, however, once
we consider the effects of queries that download the content
from a downstream cache. Returning to Figure 1, imagine a
series of queries sent down by nodeB to nodeD, where
a cached copy is found. AfterTf time has passed since the
file was last cached atB, it will cease to forward queries
downstream, even though the file might still be cached there.
More importantly, since during this period queries were sent to
nodeD, it is expected that they refreshed the existing copies
at D or its descendants, extending the period during which
a copy is cached there. Thus, it would be advantageous to
continue forwarding queries downstream as long as queries
are sent there at a high rate.

Based on these observations, we propose the followingBest
Effort CONtent Search (BECONS) query routing policy. Let
c be some cache-node, and assume a queryqf arrived at time
t, discovering thatf is not present atc. Then, for some set of
valuesTf , Tqf

, nodec forwardsqf downstream if-and-only-if
1) File f was cached or refreshed (via successful query) at

c within [t − Tf , t]; or
2) A qf query passed throughc within [t−Tqf

, t] and sent
downstream.

This policy does not involve any explicit communication
between neighboring caches. However,Tf and Tqf

can be
chosen in several ways. They can be identical for all files or
tailored separately for each, and can change in response to

traffic fluctuations and network topology as well. Additional
factors, other than elapsed time, can be incorporated into
computing the utility of looking upstream and downstream,
and different nodes might select different threshold values.

B. S-BECONS: description and analysis

In this section we present Simple BECONS (S-BECONS), a
specific instance of the general BECONS policy, and analyze
two of its useful properties that make it an attractive candidate
for a query forwarding policy:trail stability andtrail invalida-
tion. Let c1, ..., cn be a downstream trail and assume a query
has begun its search downstream at timet = 0.

Definition 1: A BC is said to bevalid if it is being used to
forward unanswered queries.

As mentioned in the previous section, a BC is generated at a
node when a filef passes through the node, and remains in use
(i.e. valid) with BECONS policy as long as queries continue
to arrive at the node no more thanTqf

time units apart. A node
becomesinvalid when the interval between queries is longer
than this, in which case the BCtimes out, or when the node
determines somehow that the file is not present downstream
anymore.

Definition 2: A trail c1, ..., cn is said to bebroken if there
exist indices1 < i < j < k < n s.t. the breadcrumbs atci

andck are valid while the breadcrumb atcj in invalid.
Definition 3: The trailc1, ..., cj is said to bestableif it does

not become brokenduring a download search.
A query starting a search along a stable downstream trail

will therefore end its search if one of two things occurs: either
it has found a cached copy of the file being requested, or it will
reach an invalid BC and be rerouted back upstream, towards
the source. Since the trail is not broken at this time, all BCs
lower down are also known to be invalid.

Definition 4: A policy is said to havetrail invalidation built
in to it, if there is a way in whichci (1 ≤ i ≤ n) can determine
that the entire downstream trail (starting from it) does not
contain a copy of the file.

Surprisingly, it turns out that this property is readily avail-
able to a simple instance of BECONS, without the use of any
explicit communication between caches. We prove this below.

Let us look at the following instance of BECONS, termed
S-BECONS (Simple BECONS). In this policy , each file has
a pair of system-wide constants,Tf andTqf

. That is, for each
file these values are used atall the nodes. We focus here on a
single file, so we useTq instead of the more cumbersomeTqf

.
Queries are forwarded downstream when they arrive within
Tf and Tq of the last file or query (respectively) seen at the
node; if a BC at a node becomes invalid, queries of that type
are rerouted towards the source. We require thatTf ≥ Tq,
since a new file refreshes the presence of a file along an entire
downstream trail for certain, whereas a new query may or
may not refresh some nodes. Finally, we make the following
assumptions about the network properties:

• The propogation and queuing delay at links and routers
(respectively) are constant.

• Let hf be the delay associated with sending a file a single
hop, andhq the delay associated with forwarding a query
one hop and checking the content of a cache. Thenhf ≥
hq. This is a reasonable assumption, as files are assumed
to be much larger than a query.

Before we continue to analyze the behavior of S-BECONS,
a note about following downstream trails is in order. A trail
is created at download time by the file being cached along
a specific route. As the file gets flushed out of some nodes,
the breadcrumbs remain to point the direction of downstream
search. However, when a query is forwarded downstream, the
path it takes may traverse several different trails, as some
nodes downstream might have been refreshed recently. We
refer the reader to Figure 2. We see here two original trails
that were created independently:ABXC and laterDEXF .
A query heading down the trail starting at nodeA will then
follow the pathA−B −X −F , taking the freshest direction
at each node. This can only increase the probability of finding
the file lower down, as only the fresher trail is followed.

t=10

t=30

t=45

t=65

t=55

B

C

X

E

F

D t=35
t=0A

Trail

Fig. 2. Trail intersection. The arrows denote the direction the file was
download in the past when each trail was created (hf = 10). The freshest trail
of breadcrumbs might be a concatenation of several subsections of download
paths. As trailDEXF is fresher thanABXC, a query heading downstream
from node A will follow the pathABXF .

Based on the assumptions mentioned above, we prove the
following two claims.

Theorem 1:S-BECONS can determine trail invalidation if
a queryqf arrives atc1 from c2.

Proof: We prove this by way of induction on the length
of the trail. For the base case of a single link (2 nodes), ifc2

sends a query upstream toc1, this means that the file is not
cached atc2, and so the trail can be invalidated.

For the induction step, assume that the claim has been
proven for a trail of lengthk − 1 and now we prove it for
the case of lengthk. c2 forwarded a query upstream toc1, so
obviouslyc2 does not contain the file. In addition, the query
was forwarded upstream instead of downstream, so the BC at
c2 is invalid. This can be for one of two reasons:

• The BC at c2 has timed out, since no file or query
passed through within the required threshhold times. This,
however, is not possible, since we are assuming that the
BC at c1 is still valid. This BC is older than the one at
c2 by at leasthq, and since it has not timed out neither
could the one atc2.

• Node c2 has determined that the trailc3...cn is invalid,
based on the induction step.

Thus, based on the induction step we know that the file was
not cached along the trail when the query traversed it, and so
the entire trail can be invalidated.

Theorem 2:The downstream trail of a S-BECONS bread-
crumb trail is stable.

Proof: Let qf be a query, andt = 0 be the time at which
it began its search downstream. At timet = 0, we know that
c1 had a valid breadcrumb. We treat the two possible causes
for this:

• A file passed throughc1 within the last Tf time, the
earliest time beingt = −Tf . Thus, the earliest time for
which a BC will timeout at nodej > 1 is −Tf + (j −
1)hF +Tf = (j − 1)hf . On the other hand, for allj > 1
that qf reaches, the time will betj = (j − i)hq. Since
we assumehf ≥ hq, the query passes before timeout can
occur.

• An older queryq∗f passed throughc1 within the lastTq

time, the earliest time beingt = −Tq. If q∗f did not locate
the file until nodej, then using the same technique as
before we know thatq∗f reached nodej no earlier than
(j−1)hq−Tq, and the breadcrumb will timeout not before
(j − 1)hq, by which timeqf will reach nodej.
Otherwise, the file was located byq∗f at some node1 <
h < j, and a fresher trail continued for the nextj − h
hops. Since we knowTf > Tq, this trail will also not
timeout until the new query reaches nodej.

From all this we know that there can be no breaks in the
trail due to timeouts. What is left is to address the case of
a break due to other types of invalidations - namely, a query
backtracking up the trail. However, as we saw in Theorem 1,
if this happens than all the nodes from nodej until the end
of the trail have been invalidated, so there is no break in the
trail.

There are many advantages to a forwarding policy that
ensures stability and has the capacity for trail-invalidation.
To begin with, when a break in a trail occurs, the local
information at each node is not sufficient to know that lower
downstream there is a section that is still valid, and that the file
may be found there. Stability, therefore, ensures that a search
downstream will cover all valid breadcrumbs in the trail while
searching for the file.

Trail invalidation is a critical tool for an efficient routing
policy. Without trail invalidation, a node might continue for-
warding queries downstream even though the file is no longer
available there. These queries would then experience a large
delay, and eventually the file is downloaded from the source.
Furthermore, the fact that S-BECONS is able to perform trail
invalidation without tagging individual queries and keeping
track of all their identities makes the system fast, efficient and
practical.

Finally, we observe here the emergence of aborder node-
a node from which point and down all queries are forwarded
downstream, and for all other nodes queries are forwarded

upstream. This is a result of the stability property - if a
breadcrumb at nodej has not timed out, the same holds for all
nodes lower down. The existence of such a node is important
since it means that queries intercepting the trail anywhere
lower than the border node will all be forwarded down until
the file is located. The cache containing this file will enjoy
a considerable increase in the incoming rate of queriesqf ,
and allow it to keep the file stored for an extended period of
time. A policy that does not allow the emergence of border
nodes, on the other hand, will not allow such an aggregation
of queries to form, increasing the number of cache misses and
allowing less coordination between caches overall.

C. File download path

Once a cached copy is discovered, it is downloaded to the
user that requested it. For this download, the file may be routed
to its destination in two ways:

• Download Follows Query (DFQ) - the file backtracks
along the route the query took.

• Download Follows Shortest Path (DFSP)- the file is
sent along the shortest path to the destination.

These download policies have different delays associated with
them, but more importantly, they determine the new locations
where the file will be re-cached on its way to the destination.
These differences are illustrated in Figure 3.

Stage 2A

B

C

D

E

F

G

f

A

B

C

D

E

F

G
f

A

B

C

D

E

F

G

f

q

q q

DFSPDFQ

Stage 1

Fig. 3. DFQ vs. DFSP. In each diagram, the file download (blue line) occurs
prior to the query (red line). The top diagram shows how the query is routed
downstream to find a copy of the file. The bottom two diagrams demonstrate
the differences and implications of using different file download policies. The
shaded triangle represents the direction in whichq will be sent.

DFQ has the file cached at the locations in the hierarchy
where the query arrived, and thus prepares the ground for
additional queries that might arrive if the file exhibits local
popularity. However, in such a case only some of the caches
will experience it, since successfully-answered requestsat a
node will not be forwarded upstream, and so its ancestors will
experience a much lower rate of queries of the same type.
DFSP, on the other hand, will deliver the file in the shortest
possible manner to the user, in the given state of the system,
though perhaps place file copies in locations where the file
will not be requested at all.

Notation Meaning
Ix(k) Incoming rate ofqk at nodex.
Ox(k) Cache miss rate ofqk at nodex.
+[y] An increase of variable y (e.g.+[Ix(k)]
−[y] A decrease of variable y (e.g.−[Ix(k)]

TABLE I
FREQUENTLY USED NOTATION

Another major implication of the downloading route is the
stability of the query forwarding table at the interceptionpoint
c0. When employing DFQ, the filef is cached only along
nodes through whichqf passed, and specificallyc0. Fromc0,
f is forwarded to the requested destination using shortest path
routing. This causes a change in the query forwarding table at
c0, since this new destination is now the most recent direction
in which the file was sent. Thus, next time a cache-miss occurs
at c0, the query will be forwarded along this fresher trail.

DFSP, alternately, ensures a more stable query forwarding
table. Since the file is routed along the shortest path, it
might not pass throughc0. Nodec0 is then oblivious to what
happens downstream, and is only aware that a copy of the
file was successfully found. It can thus continue to forward
queries downstream in the same direction. As we discussed
in the previous section when addressing border nodes, if the
flow of queries is high enough, this can ensure with high
probability that a copy shall remain cached downstream. This
stability of forwarding tables and cache contents downstream
can therefore improve the performance of BECONS compared
to when using DFQ, as the probability of finding a cached
copy downstream increases. This behavior is supported by the
simulations we performed (section V).

IV. I MPLICIT LRU CACHE COORDINATION

Our BECONS query forwarding policy modifies the direc-
tion in which queries are routed in order to locate cached files
in the network. A modification will occur only when the rate
of queriesqf is above a certain threshold, as expressed by
Tf andTqf

. When such a change in routing takes place, this
will cause a sudden increase in queries coming in to nodes
downstream. It is not clear, however, how neighboring nodes
will react to such an influx. Therefore, given a nodex that
experiences an increase in queries of typeqf from upstream,
we would like to know how the combined rate ofqf at node
x is affected, asx’s neighboring nodes react to this change at
x.

A network cache can be thought of as a query filter, allowing
incoming queries to move on to the next hop only when a
cache miss occurs. This filter tends to be tighter, and allow a
smaller fraction of queries of typeqi to proceed, asqi takes
up a larger part of the incoming query distribution. Formally,
assume that the steady-state distribution of arriving queries
is p = (p1, ..., pn) wherepi is the probability that the next
request will be for filefi, and

∑n

i=1 pi = 1. If ri is the rate
of such requests,R = {r1, ..., rn} r =

∑
r′∈R r′, we get

pi = ri/r. Then, aspi increases the probability of a cache
miss decreases.

The probability of a cache miss for ofqi, as a function of
the arrival rate ofqj (j 6= i), is monotonic in its behavior. As
rj increases,fj takes over a cache slot for longer stretches
of time and in such a manner forces other files to be dropped
more frequently. Using the notation in Table I we can write
that for any cachex,

+[Ix(i)] ⇒ +[Ox(j)] (j 6= i) (1)

The same cannot be said, however, for the missrate of qi as
a function ofri, when the rate of incoming queries of all other
files, termedbackground traffic, remain unchanged. At one
extreme we know that whenpi → 0, less queries are coming in
and so the miss rate decreases as well, as it is bounded by the
incoming rate. At the other extreme, aspi → 1, cache misses
become rare and the cache miss rate goes to0 as well, and no
cache misses occur forqi when pi = 1. Assuming therefore
that the background traffic remains the same, the miss rate as
a function of the incoming rate has an upper bound.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Incoming rate

M
is

s
ra

te

Fig. 4. LRU miss-rate unimodality. We plot here the miss rate of a single
file as it’s incoming rate of queries increases, while the background traffic
remains the same. Background traffic normalized to 10, cachesize is 50. The
peak miss rate increases as the overall number of users in thesystem grows
from 150 to 1050.

Additionally, we conjecture that the miss rate will, in fact,
be unimodal, experiencing a single peak miss rate and then
decreasing monotonically aspi increases. Support for this can
be found in Figure 4, which was produced by simulating the
behavior of LRU using the approximation algorithm presented
in [17]. In this simulation, we set the combined rate of the
background traffic to be constant, and gradually increased the
rate of incoming queries for a specific file, plotting its miss
rate as a result. The background traffic is distributed uniformly
- each file has the same probability of being the next to arrive.
The different curves in the figure represent the miss rate for
different amounts of files in the system. As the number of files
increases, so does the miss rate, since there is greater chance
that a new file will arrive at the cache and require some file
to be dropped.

To characterize this behavior we say that ifIx(i) is pre-
peak,

+[Ix(i)] ⇒ +[Ox(i)]. (2)

and otherwise, ifIx(i) is post-peak,

+[Ix(i)] ⇒ −[Ox(i)]. (3)

Some details regarding the location of this peak point can
be found in Section VI. For our purposes here, we rely solely
on the unimodal structure - the existence of such a peak point
- in order to characterize the changes in the query rates at the
surrounding nodes.

Relationships (1)-(3) are the building blocks of the analysis
that follows. We focus our attention in this paper on the 3-
node network presented in Figure 5, and leave an extensive
discussion of the problems and methodologies presented here
to a future work.

First, consider the case of two neighboring nodes,x, y, in
the aforementioned figure. Cache misses ofq1 at nodex are
forwarded toy, and cache misses ofq2 at nodey are forwarded
to x. We observe the following behavior:

Lemma 1:+[Ox(1)] ⇐⇒ +[Oy(2)]
Proof: Assuming that an increase occurred in the output

of nodex (wlog), this will lead to the following series of rate
changes:

+[Ox(1)] ⇒ +[Iy(1)] ⇒exp.(1) +[Oy(2)]

The increase in the miss rate at nodey will have the same
effect on nodex.

This behavior is one ofreciprocation - if x increases the
load on nodey, y in return increases the load on nodex,
though of a different type of query. Reciprocation can also
clarify what a new steady-state of the system may look like.
As x sends more of the load forq1, y reacts by sharing some of
the load forq2 with nodex in return. The converse tendency
can be seen to exist when there is a decrease in miss rates
from one node. From this result we get the following property
as well:

Corollary 1: +[Iy(1)] ⇐⇒ +[Ox(1)]
Proof: We’ve seen that+[Iy(1)] ⇒ +[Oy(2)], and

Lemma 1 completes the proof.
The importance of Corollary 1 is thatx increases the rate

of q1 being sent toy as a result of the original increase
at y, even thoughx may have had nothing to do with this
original increase. Thus, we observe here an implicit form
of coordinated load-balancing between neighboring caches:
as nodey dedicates more resources to storef1, some of its
neighbors increase the rate ofq1 queries that are sent its way.
This increase in queries has the direct effect of reducing cache
misses forq1, allowing y to specializein storing this file. At
the same time, nodex is free to dedicate more resources for
storing other files, such asf2.

For a more complete understanding of this mechanism, we
expand this model to include a third node,z (Fig. (5)). Node
z forwards (receives) cache misses ofq2 (q1) to (from) node

x y

q2

q1 q1

q2

z

Fig. 5. 3-node cache network

y. As we shall see, it is here that the unimodularity of the
miss rate comes into play.

If nodey is in pre-peak state for bothq1 andq2, we get the
following sequence:

+[Iy(1)] ⇒ex.(2) +[Oy(1)] ⇒ +[Iz(1)]

⇒ex.(1) +[Oz(2)] ⇒ +[Iy(2)] ⇒ex.(2) +[Oy(2)]

If node y is in post-peak state for bothq1 and q2, we get
the following sequence:

+[Iy(1)] ⇒ex.(3) −[Oy(1)] ⇒ −[Iz(1)]

⇒ex.(1) −[Oz(2)] ⇒ −[Iy(2)] ⇒ex.(3) +[Oy(2)]

Both of these cases behave the same from the perspective of
nodex: an increase inIx(2) flowing in from y. As we have
seen in Lemma 1, this causes an increase in+[Ox(1)] ⇒
+[Iy(1)], which is the starting event of the previous two
sequences. This means that the traffic coming in from both
x and z shifts the system in the same direction: an increase
of q1 at nodey.

The third and final case is whenq1 is post-peak whileq2

is pre-peak. Once again, we trace the sequence of changes in
the query rates:

+[Iy(1)] ⇒ex.(3) −[Oy(1)] ⇒ −[Iz(1)]

⇒ex.(1) −[Oz(2)] ⇒ −[Iy(2)] ⇒ex.(2) −[Oy(2)]

As opposed to what we saw in the first two cases, here the
traffic coming in fromz seems to have two opposing effects on
the rate ofq1 at y. On the one hand,−[Oy(2)] ⇒ −[Ox(1)],
while on the other, an increase inq1 queries aty is what started
the entire process. Based solely on our high-level analysis, we
are unable to determine what the new trend of the system
will be as a result. We do, however, propose the following
conjecture:

Conjecture 1:Whenq1 is post-peak andq2 is pre-peak, the
reduction in queries coming in toy from x is smaller than the
increase that causes the reduction.

The basic justification for this conjecture is this: Since it
is the influx in queries that causes the reduction fromx, this
reduction will be proportional to the influx.

Based on all the above, we formulate the following two
principles that help explain the manner in which neighboring
caches react to changes in queries at a specific cache.

Theorem 3:The reaction of the neighboring caches to an
increase (decrease) of queries aty dependsonly on the state of
these queries at nodey, and not on the state at the neighbors.

Proof: From Lemma 1 we know that each neighbor
reciprocates the behavior it observes (via queries) at nodey.

Thus, the pre-peak and post-peak state of a query at nodey is
the only thing that determines the manner in which neighbors
will respond.

This property is a very useful one, as it allows for some
insight into the behavior of a cache system, even when only
a small portion of it is available, or when analysis of the
complete system is intractable.

Theorem 4:In the 3-node network discussed here, ifq1 is
past its peak point at nodey, an increase ofq1 queries will
result in a reduction in the miss rate ofqi.

Proof: As we’ve shown in the previous section, the result
of an increase ofq1 from some source is an overall increase in
Iy(1). At the same time, we know that whenq1 is post-peak
we get

+[Iy(1)] ⇒ −[Oz(2)]

that is, a reduction in the overall rate ofq2 coming in. Thus,
p1 grows at the expense ofp2. This, in turn, decreases the
cache misses w.r.t.q1.

This theorem relies on Conjecture 1. One implication of
this theorem is that when a query at some node has past its
peak point, an increase in queries at it will greatly stabilize
the presence of the file at the cache. In order to pass this peak
point, a large volume of queries must be focused on a single
cache. As discussed earlier, using BECONS with DFSP file
forwarding is designed to achieve just this.

V. SIMULATIONS

As part of evaluating the behavior and performance of
the Breadcrumbs network, we simulated and compared the
behavior of several routing and cache-replacement algorithms.
We built an event-driven simulator that generates requestsfor
files at every node and sends them into the network. The
requests (queries) are routed within the network until theyfind
the file, either cached or at a source, and then the file is sent
towards the requesting node. Both the location of the public
servers and the number of files assigned to each were chosen
at random (uniformly).

We let all delays in the system be constant. These include
query and file propagation delays, queuing delays and down-
load time at server. These assumptions are an approximation
of the behavior when the network is not congested. In the
future, however, we plan to have our simulation environment
expanded to allow load-dependent delays to be incorporatedas
well. The values used in the simualtions discussed here used
the parameters displayed in Table II.

Requests are generated at each node in the network with
the identical exponential distribution. Files being requested
were selected at random, using the same distribution at each
node, for which we chose both uniform and zipf. For every
sequence of such events, we simulated the behavior of the
entire system using different combinations of routing policies
and cache replacement algorithms. We looked at the following:

• Routing to the source, with LRU. This is the simplest
policy, and the baseline for performance evaluation.

Parameter Value Parameter Value
Download from source 25 File hop 10

Query hop 1 Cache Access 1
sources 10 # nodes 100

files 300

TABLE II
SIMULATION PARAMETERS

• S-BECONS with LRU. Tf and Tqf
were set to be

identical for all files. File routing was tested with both
DFSP and DFQ.

• Routing to the source, using two types of explicitly-
coordinated LRU:

– a file enters a cache only if it is not located in any
direct neighbor, and a file is dropped from the cache
using LRU, but choosing the LRU file that is also
cached in one of the neighbors, if it exists.

– a file enters a cache only if it is not located in the
neighbor cache en-route to the source of the file
being requested. Dropping a file is also done using
LRU but selecting from the files that are cached at
the next hop, if possible.

We found that DFQ performed approximalty the same as
the simple, route-to-source policy, and so we present here our
results only with regards to DFSP. In Figure 6 we present
the relative number of downloads from a source as a function
of cache size and policy. We simulated a system with300
distinct files, when cache sizes are10, 20, 30 and 40. As
can be seen from the results, S-BECONS performs well in
comparison to explicitly-cooperative systems, and outperforms
them when the cache size is small. Cooperating caches show
performance gains mainly due to the fact that a group of caches
acts as a single larger cache. However, when the cache size is
realtively small compared to the number of different files, as
in our framework, these gains are depleted, and finding cached
material by following breadcrumbs reduces the load on servers
much more.

We analyzed as well the time associated with an average
download, and found similar behavior to emerge in the data
here as well: for smaller cache sizes, the time per download
decreases when employing our S-BECONS policy. These
results, however, rely heavily on the system parameters, such
as propagation and queueing delay. More realistic and trace-
driven simulation are required in order to validate this behavior
in real systems. This is left for future work.

VI. M ODEL EXTENSIONS AND CLOSING COMMENTS

A. Cache replacement policies

In this work we focused primarily on the LRU cache re-
placement policy, and in general on policies in which recency
is explicitly considered when determining what file to drop
when needed. Other than LRU, policies such as FIFO and LFU
are included in this category. Here we refer to the implications
of our work to systems that employ other types of cache
replacement policies.

Policies that do not explicitly reward recency can be divided
into two categories: Those that do not consider recency at all,
and those that prefer less recent items. The latter are usually
not used for cache replacement purposes, but rather as an
admission control algorithm, determining which files to cache
in the first place [10]. When such admission control is in use,
the first nodes past the interception point might not contain
the file, but past them the same considerations used in this
work should apply.

Static policies that only use other considerations, such asfile
size or type, can be thought of as implicitly rewarding recency.
For example, if caches prioritize large files over small ones,
the routing algorithm can compute the probability of finding
a cached copy downstream based on its size and the traffic
characterization of the network. Here too, recently arrived files
will tend to remain longer in the cache compared to files
with the same properties(e.g. same size). Even when same
property files are selected randomly for dropping, the longer
a file remains in a cache the more random selections it must
survive. Thus, border nodes will emerge in many systems with
a variety of cache replacement policies.

B. Peak node characteristics

We noted earlier that the miss rate of a query is unimodal.
As can be seen from our analysis thus far, the exact location
of this peak rate can be crucial to the behavior of the system
as a whole. Preliminary results seem to indicate that, when the
background traffic is assumed to be uniformly distributed, the
peak miss rate will tend to occur around whenpi = 1/K (Fig.
7), whereK is the volume of the cache in terms of number
of cachable files.

This approximation is closer to the mark as the number of
files in the system grows, since then more new files arrive
that cause file drops. Such behavior can be explained by the
fact that once the number of queries takes up1/K-th of the
queries, a query will arrive on average within the time needed
to refresh the position of the file in the LRU queue, and thus
maintain the file in the cache for a high percentage of time.

REFERENCES

[1] A. Datta et. al.World Wide Wait: A Study of Internet Scalability and
Cache-Based Approaches to Alleviate It, Management Science Volume
49 , Issue 10, October 2003, pp. 1425 - 1444.

[2] D. Raychaudhuri, R. Yates, S. Paul, J. Kurose, “The Cache-and-Forward
Network Architecture for Efficient Mobile Content DeliveryServices in
the Future Interne t, ITU-T Innovations in NGN,” ITU-T Innovations in
NG,N May 2008.

[3] Van Jacobson, “A New Way to Look at Networking”,
http://video.google.com/videoplay?docid=-6972678839686672840

[4] X. Tang, S. T. Chanson,Coordinated En-Route Web CachingIEEE
Transactions on Computers, Vol 51 No. 6, 2002 pp. 595-607.

[5] I. Ari et al ACME: Adaptive Caching Using Multiple Experts, Proceed-
ings in Informatics, vol. 14, Carleton Scientic, 2002.

[6] H. Che, Z. Wang, and Y. Tung,Analysis and Design of Hierarchical
Web Caching Systems, IEEE INFOCOM 2001 pages 1416-1424.

[7] A. Chankhunthod et. al.A hierarchical Internet object cache. In Pro-
ceedings of the 1996 USENIX Annual Technical Conference, San Diego,
CA, 1996.

[8] P. Krishnan, D. Raz, Y. Shavit,The Cache Location Problem,
IEEE/ACM Transactions on Networking (TON) Volume 8 , Issue 5
(October 2000) Pages: 568 - 582

Fig. 6. Relative number of downloads from sources, using DFSP and two
types of coordinated LRU caching. All values are normalizedby the number of
downloads from source experienced when routing to the source with standard
LRU. The smaller the value, the less load experienced at the sources.

100 200 300 400 500 600 700 800 900 1000
0.7

0.75

0.8

0.85

0.9

0.95

1

Number of files in the system

In
co

m
in

g
pr

ob
ab

ili
ty

 n
or

m
al

iz
ed

 b
y

ca
ch

e
si

ze

Fig. 7. Peak miss rate. Values are normalized by1/K. As the number of
files in teh system increases, the miss rate reaches its peak when the incoming
ratio is in the vicinity of1/K.

[9] Y. Jin,W. Qu, K. Li,A Survey of Cache/Proxy for Transparent Data
ReplicationSecond International Conference on Semantics, Knowledge
and Grid, 2006. SKG ’06.

[10] I. Ari, Design And Management Of Globally Distributed Network
Caches, PhD dissertation 2004, http://www.soe.ucsc.edu/ ari/Ari-PhD-
Thesis.pdf

[11] S. Bhattacharjee, K. L. Calvert, E.W. Zegura,Self-organizing wide-area
network cachesIEEE INFOCOM 1998 vol. 2 pp. 600-608.

[12] J. Kubiatowicz et. al.OceanStore: An Architecture for Global-Scale Per-
sistent Storage, ACM SIGARCH Computer Architecture News Volume
28 , Issue 5 December 2000, pp. 190-201.

[13] A. J. Ballardie, P. F. Francis, and J. Crowcroft (August1993). ”Core
Based Trees”,ACM SIGCOMM Computer Communication Review,23
(4): 85 95.

[14] http://www.akamai.com.
[15] http://oceanstore.cs.berkeley.edu/info/overview.html
[16] M. Busari and C. Williamson.Simulation evaluation of a heteroge-

neous web proxy caching hierarchy. In IEEE Proceedings of the 9th
International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS 01), pages
379388, Cincinnati, OH, Aug. 2001.

[17] A. Dan, D. Towsley,An approximate analysis of the LRU and FIFO
buffer replacement schemes, Proceedings of the 1990 ACM SIGMET-
RICS conference on Measurement and modeling of computer systems
1990 pp. 143 - 152.

