Breadcrumbs: efficient, best-effort content location
In cache networks

Elisha J. Rosensweig Jim Kurose
Dept. of Computer Science Dept. of Computer Science
University of Massachusetts, Amherst, USA University of Massachusetts, Amherst, USA

Abstract—For several years, web caching has been used tocontain files that are used more frequently, while upperi¢eve
meet the ever increasing Web access loads. A fundamentalhold files with lower access rates [6]. Here, we see that the
capability of all such systems is that of inter-cache coordiation, architecture provides for implicit coordination to takeapé

which can be divided into two main types: explicit and implidt bet h ina th ¢ tain diff ft f
coordination. While the former allows for greater control over ~2EWEEN caches, causing them fo contain different types o

resource allocation, the latter does not suffer from the adiional ~ files and so manage resources efficiently.

communication overhead needed for coordination. In this paper, we describe a simple content caching, logatio
In this paper, we consider a network in which each router has and routing system that adopts an implicit, transparend, an

a local cache that caches files passing through it. By additially best-effortapproach towards caching. We consider a network

storing minimal information regarding caching history, we de- L .
velop a simple content caching, location, and routing systas that ~SCENaro in which each router has a local cache that caches

adopts an implicit, transparent, and best-effort approachtowards ~ files passing through it. R?queStS for a file are routed dyrect
caching. Though only best effort, the policy outperforms chssic towards the source of the file, and en-route check at eachrrout

policies that allow explicit coordination between caches. if a copy of the file is present at its cache, and download
it directly from there if found. Such caches are commonly
referred to as Transparent En-Route Caches (TERC) - "trans-
For several years, web caching has been used to meetgheent” as neither the user nor the server are aware that any
ever increasing Web access loads [1]. More recently, adescasuch cache exists, and "en-route” since they are accessed
of content-centric networking [3], [2] have argued for nags during a standard request, on the path to the server [8][9].
the level of abstraction of the atomic unit of data that isesio The Breadcrumbs approach described in this paper is “best
and forwarded within the network from the packet to a file, affort” in that coordination is implicit, and forwarded neests
other higher-level content unit. In both cases, conterrag®, may (or may not) locate content while being routed among
location, and forwarding within the network are of centrahe caches; if not located, content can always be eventually
concern. retrieved from the source. Only a minimal amount of per-
Although content storage (caching) systems come in mafilg information (which we refer to as a “breadcrumb”) is
forms and flavors, one fundamental capability of all suchsed in locating content. A breadcrumb stores the direction
systems is that of coordination, which can be divided into twin which a file was sent in the past, thus tying content routing
main types: explicit and implicit. With explicit coordinah, with content location and caching. We find that although our
caches share their state (or state summaries), and additi@ystem promises best-effort only, it performs well even mvhe
information such as access patterns and content populld}ity compared to several classic, more stateful, explicit-eoajon
with each other. Using this information, each cache deteemi cache systems.
what to cache, when to do so, and what to drop. The mainThe main contributions of this paper are:
cost of such explicit schemes is the additional commurooati « Presentation of our Breadcrumbs system, that controls
overhead needed for coordination as well as coordination query forwarding, cache replacement, and file routing.

I. INTRODUCTION

algorithms that can be quite complex and sophisticated. o We develop a best-effort policy designed for forwarding
Implicit coordination, on the other hand, removes the need queries in search of cached content, and demonstrate its
for such elaborate reporting protocols. Instead, it redieghe utility for several sample network models.

local cache management policies [5], as well as the relativee We compare the performance of our best-effort policy
position of each cache in the network [6], to achieve good with other policies, including those systems that are
performance. An example of such implicit coordination are more stateful. We find that our policy performs ex-

hierarchical cache systems [7], where caches are arranged tremely well in comparison, locating cached content more
in a tree-like structure. Requests start out at the leaves of frequently than policies that use explicit coordination
the tree, and are routed towards the root until the content is between neighboring caches to control which files are
found, either in the tree or at an external source (via th€)roo cached locally or dropped.

when the content is not present in the tree. In such systemsy, We present a preliminary analysis of the impact of
it has been shown that caches lower down the tree tend to employing our forwarding policy on the incoming query

traffic at a specific node. Specifically, we observe thatent is done in a distributed manner. The basic concept is
neighbors of a node that experiences an increase tinuse something similar to Transparent En-Route Caches, in
requests for a specific file, will tend to increase the rate afich content is stored at caches associated with routeds, a
queries for this file that they forward to this node. Thusequests for files check the contents of these caches ea-rout
we get a sense of the nature of the implicit coordinaticio a public server, which is a known source for the content.
taking place between caches in such a network. Most of the research regarding such caches has focused on

The rest of the paper is structured as follows. In Sectidiow to place a small number of these in an efficient way
Il we discuss related work with regards to caching systerf8] and where to cache specific objects [4], and has generally
in general and, specifically, global ubiquitous caching. laddressed the question in a limited number of topologies. Ou
section Il we describe at length the Breadcrumbs systemigrk here assumes that all routers have been equipped with
devise a simple Best-Effort Content Search (BECONS) pplicy TREC-like cache, and that content is cached blindly as it
that allows for content to be located in a general cachim@sses through.
network, and present a concrete example of this policy. ThisOur work focuses on a similar framework to that discussed
example helps point out several key behavioral factors dfiea extensively in [10][5]. Here, the authors attempt to solve
netwroks when using BECONS in a Breadcrumbs systetthe problem of efficient cache replacement by introducing an
specifically its tendency to forward incoming queries aesalv adaptive caching system named ACME. ACME uses machine
nodes to a single node, increasing the chance of retaining tBarning techniques in order to determine when and what to
file there as long as it continues to be popular. cache locally, without explicit communication betweentes:

In section IV we take a look at the reaction of a the neight uses a pool of virtual caches, each managed by a different
bors of a cache in a Breadcrumbs system using BECONsEatic policy, that simulate the behavior of the cache had it
We classify the trend of changes in the cache miss ratelgien using a specific static cache replacement policy. ACME
the neighboring caches and, as a result, the effects on #usigns weights to virtual caches and uses machine learning
original cache itself. We present here patterns as theygameslgorithms to select the best current policies from theuwirt
in small-scale systems and try to extrapolate from these dache pool. In such a manner, ACME achieves improved
the behavior of a general network. More rigorous analysis jgrformance compared to any specific static policy. BECON
left for future work. Section V presents simulation resultsand the Breadcrumbs system differ from ACME in that we use
that evaluate the performance of BECONS and compare ititnelligentquery routing instead of adaptive caching, in order
several, both explicitly-coordinated and implicitly-adiated, to improve performance. In this sense, the two architesture
cache networks. We demonstrate here that cached infonmative orthogonal to one another, and it is possible that coimdpin
is efficiently located using BECONS, reducing the load expetthem would be advantageous. Such a task is beyond the scope
enced by servers and the delay experienced by users rawesif this work.
content. Finally, section VI presents possible extenstorthe
models presented in our work and some concluding remarks.

Il. RELATED WORK B. Heterogeneous caching

A. Ubiquitous global caching systems It has been shown [16][6] that, in 2-level hierarchical each
There have been several attempts at developing ubiquit@ystems, performance can be improved by using different
global caching systems [5][10][11][12]. Content Delivéygt- cache replacement techniques at different levels. Usifig di
works (CDN), such as Akamai [14], use a coordinated set fefrent policies at different levels is a form of implicit ¢ee
caches throughout the internet to supply content in an effici coordination, such that a cache at a lower level skews the
manner. Content is pushed to locations where it is requestgiterns of incoming traffic in such a way that the resulting
or, more importantly, predicted to be requested in the &uturtraffic pattern allows a more efficient caching to take plaice a
The managing of the content is primarily done in a centrdlizéhe next level. This observation becomes less useful, hemvev
manner, and clients are ensured a baseline performanceSr @ten considering the behavior of caches distributed thHreug
(Quiality of Service). out the network, where a clear hierarchy does not exist. In
Distributed caching systems, in which no centralized authsuch systems, two neighboring nodes may reverse positions i
ity manages the distribution of data, have also been disdusshe hierarchy with respect to different sources. Specific
The OceanStore project [12], to use a common exampif@desA andB are placed somewhere along the route between
is designed to ensure "global persistent data store” [15] IsgrversS; andSs, then A will be higher up in the hierarchy
having users contribute storage space to the system, and thsa B with respect to (wlog)5; and lower down with respect
redundancy to ensure content is almost never unavailabdeS,. Thus, in such cases, there is smtic policy that can
or lost. Our work here aims at best-effort caching insteade assigned to each cache that can enjoy the advantages of
accepting that content might, in theory, be unavailabléiwit heterogeneous caching. In [10][5] adaptive caching is tised
the caching network, but in practice is usually available. solve this problem. In our work, we assume that all caches are
In our work here, we address an architecture in whialsing the same cache replacement policy (e.g. LRU, FIFO),
caching takes place in the network itself, and cache managed improve performance by employing other tools.

[1l. BREADCRUMBS, AND WHERE THEY LEAD on the scenario where the file originated from some public
A. Basic architecture server, and the trail was discovered by first routing towards

the source. In such cases, heading upstream is equivalent to

We envision a caching network where each node - a route tinue heading towards the server, where the file is always

with an associated cache - sets aside some of its cache SRRSS bl for download

for the purpose of storing routing history, or breadcrumbs Cache replacement schemes play a large part in determining

.(BC)’ of previously seen files. Each BC '546_ tuple entry_, where queries should be routed. Specifically, if recentbhea
indexed by a global file ID (FID), containing the fOIIOW'ngor referenced items remain in the cache longer than older

mform_anon: _ items, as is the case with the standard LRU cache replacement
« Time when the file past through the node. Only the mogbjicy and others, routing a query downstream increases the
recent such event is recorded. chance of finding a cached copy compared to routing upstream.
« ID of node from which the file arrived. We assume that these policies are being used for cache
« ID of node to which the file was forwarded. replacement for the rest of the paper, as they are commonly
used in practice, and discuss other types of cache replaxteme
(f1, O, null, B)
1 policies at section VI. On the other hand, sinfis server
@ \t=3 is upstream, routing in that direction will definitely resin
\ downloading the file, while a downstream search might reach
(f1.3,A D) the end of the trail without finding a cached copy. In such an
_— fl event, the query will need to be re-routed back upstream in
\ search of the file, lengthening the download time.
\ t=7 Consequently, a reasonable first step in devising a content
(f1, 7, B, null) search algorithm would be to define a threshold véalye
and send queries downstream if-and-only-if the file was last
Fig. 1. Breadcrumbs example cached and forwarded within the |85t time units; Otherwise

continue searching upstream. For lower value§'pfqueries

In the simple case portrayed in Figure 1, fife was sent will have a higher chance of finding the file downstream, but
along the routed — B— D and then delivered to its destinationless queries will be taking advantage of possible copielsezhc
The source (server) and destination (user) of the file do s@t there. Conversely, for higher values Bf more queries will
such caches, and so are ignored by enterinly for entries be sent downstream, but a larger fraction of them will reach
that point to these non-router locations. Thus, as the file dsdead end.
downloaded, it leave behind it tail of breadcrumbsat the A more complete policy can be reached, however, once
caches along its download path. As a BC requires very littiée consider the effects of queries that download the content
in terms of storage, we assume throughout the paper thairem a downstream cache. Returning to Figure 1, imagine a
BC for each file can be maintained at each cache indefinitedgries of queries sent down by nodeto node D, where

To begin our discussion of the breadcrumbs architectugecached copy is found. Aftef; time has passed since the
lets consider a request for a file. This request/query wfile was last cached aB, it will cease to forward queries
be routed towards the server at which that file is known t@ownstream, even though the file might still be cached there.
always reside. As this request is routed towards the seitverore importantly, since during this period queries weret $en
may encounter a router with a breadcrumb for that file, thudeD, it is expected that they refreshed the existing copies
interceptinga trail of breadcrumbs for that file. At this point,at D or its descendants, extending the period during which
the query could be satisfied locally, if the file is containad ia copy is cached there. Thus, it would be advantageous to
the intercepting routers cache. Alternatively, the queny be continue forwarding queries downstream as long as queries
routed up or down the breadcrumb trail in an attempt to loca#e sent there at a high rate.
the file. Note that the file can always be found by following Based on these observations, we propose the folloBeej
the breadcrumb trail upstream, but that the file may be alEd#fort CONtent Search (BECONS) query routing policy. Let
be found (possible more quickly) downstream, as discussef€ some cache-node, and assume a qge®yrived at time
below. We also note that a similar notion of routing towards %a discovering thaif is not present at. Then, for some set of
source, but then exploiting state found at an interceptingen valuesTy,T;,, nodec forwardsg, downstream if-and-only-if
is used in multicast tree construction in core-based nadtic 1) File f was cached or refreshed (via successful query) at

routing trees [13]. ¢ within [t — T, t]; or
The obvious question that arises from this architecture is2) A ¢y query passed throughwithin [t — T, ¢] and sent
in which direction to follow a trail:upstream towards the downstream.

last origin of the file, ordownstreamin the same direction This policy does not involve any explicit communication
as the file was last sent. In the example presented in Fiptween neighboring caches. Howevéy, and 7, can be

1, a query arriving at nodé3 could be routed upstream tochosen in several ways. They can be identical for all files or
node A or downstream to nod®. In what follows we focus tailored separately for each, and can change in response to

traffic fluctuations and network topology as well. Additibna « Lethy be the delay associated with sending a file a single
factors, other than elapsed time, can be incorporated into hop, andh, the delay associated with forwarding a query
computing the utility of looking upstream and downstream, one hop and checking the content of a cache. Thek

and different nodes might select different threshold v&lue hg. This is a reasonable assumption, as files are assumed
to be much larger than a query.
B. S-BECONS: description and analysis Before we continue to analyze the behavior of S-BECONS,

In this section we present Simple BECONS (S-BECONS) g, note about following downstream trails is in order. A trail
specific instance of the general BECONS policy, and analysecreated at download time by the file being cached along

two of its useful properties that make it an attractive cdati & SPecIfic route. As the file gets flushed out of some nodes,
for a query forwarding policytrail stability andtrail invalida- the breadcrumbs remain to point the direction of downstream

tion. Let ¢y, ..., ¢, be a downstream trail and assume a queﬁ?amh- However, when a query is forwarded downstream, the
has begun its search downstream at time 0. path it takes may traverse several different trails, as some

nodes downstream might have been refreshed recently. We
refer the reader to Figure 2. We see here two original trails
t were created independentlyBXC' and laterDEX F'.
query heading down the trail starting at nodewill then

low the pathA — B — X — F, taking the freshest direction

at each node. This can only increase the probability of fipdin
et]he file lower down, as only the fresher trail is followed.

Definition 1: A BC is said to bevalid if it is being used to
forward unanswered queries.

As mentioned in the previous section, a BC is generated a
node when a filgf passes through the node, and remainsin u
(i.e. valid) with BECONS policy as long as queries continu
to arrive at the node no more thdp, time units apart. A node
becomesdnvalid when the interval between queries is long
than this, in which case the Bimes out or when the node
determines somehow that the file is not present downstream
anymore.

Definition 2: A trail ¢4, ..., ¢, is said to bebrokenif there
exist indicesl < i < j < k < n s.t. the breadcrumbs at
and¢;, are valid while the breadcrumb af in invalid.

Definition 3: The trailcy, ..., ¢; is said to bestableif it does
not become brokeduring a download search.

A query starting a search along a stable downstream trail
will therefore end its search if one of two things occursheit
it has found a cached copy of the file being requested, or lit wil
reach an invalid BC and be rerouted back upstream, towards

Trail intersection. The arrows denote the direction the file was

the source. Since the trail is not b.rOke.n at this time, all Bdc;f%gwnload in the past when each trail was created £ 10). The freshest trail
lower down are also known to be invalid. of breadcrumbs might be a concatenation of several subseatif download

Definition 4: A policy is said to haverail invalidation built ~ paths. As trallD EX F' is fresher thanABX C', a query heading downstream
in to it, if there is a way in which; (1 < i < n) can determine o™ nede A will follow the pathABX F".

that the entire downstream trail (starting from it) does not Based on the assumptions mentioned above, we prove the
contain a copy of the file. following two claims.

Surprisingly, it turns out that this property is readily 8a Thegrem 1:S-BECONS can determine trail invalidation if
able to a simple instance of BECONS, without the use of a%yqueryqf arrives ate; from cs.

explicit communication between caches. We prove this below = proof: We prove this by way of induction on the length

Let us look at the following instance of BECONS, termeg the trail. For the base case of a single link (2 nodes); if

S-BECONS (Simple BECONS). In this policy , each file hagends a query upstream tg, this means that the file is not
a pair of system-wide constantg; and7,,. That is, for each cached at», and so the trail can be invalidated.

file these values are usedalt the nodes. We focus here on a For the induction Step, assume that the claim has been

single file, so we usé; instead of the more cumbersofig,. proven for a trail of lengtht — 1 and now we prove it for
Queries are forwarded downstream when they arrive withjfe case of lengtlk. ¢, forwarded a query upstream tg, so
Ty andT;; of the last file or query (respectively) seen at thgpviously ¢, does not contain the file. In addition, the query
node; if a BC at a node becomes invalid, queries of that tyR@s forwarded upstream instead of downstream, so the BC at
are rerouted towards the source. We require fhat> T,, ., is invalid. This can be for one of two reasons:
since a new file refreshes the presence of a file along an entir¢ The BC at c» has timed out, since no file or query
downstream trail for certain, whereas a new query may or nassed through within the required threshhold times. This,
may not_refresh some nodes. Finally, we make the following however, is not possible, since we are assuming that the
assumptions about the network properties: BC ate; is still valid. This BC is older than the one at

» The propogation and queuing delay at links and routers ¢, by at leasth,, and since it has not timed out neither

(respectively) are constant. could the one ats.

or

o Nodec; has determined that the trai}...c,, is invalid, upstream. This is a result of the stability property - if a
based on the induction step. breadcrumb at nodghas not timed out, the same holds for all

Thus, based on the induction step we know that the file wAgdes lower down. The existence of such a node is important
not cached along the trail when the query traversed it, and $¥9C€ it means that queries intercepting the trail anywhere

the entire trail can be invalidated. m lower than the border node will all be forwarded down until
Theorem 2:The downstream trail of a S-BECONS breagthe file is located. The cache containing this file will enjoy
crumb trail is stable. a considerable increase in the incoming rate of quegies

and = 0 be the time at which and allow it to keep the file stored for an extended period of
¢ time. A policy that does not allow the emergence of border

es, on the other hand, will not allow such an aggregation
of queries to form, increasing the number of cache misses and
allowing less coordination between caches overall.

Proof: Let ¢; be a query,
it began its search downstream. At time- 0, we know tha
c1 had a valid breadcrumb. We treat the two possible cau
for this:

» A file passed through; within the last7; time, the _
earliest time being = —T}. Thus, the earliest time for C. File download path

which a BC will timeout at nodg > 1 is =T + (j — Once a cached copy is discovered, it is downloaded to the
Dhp+Ty = (j—1)hs. On the other hand, for ajl > 1 user that requested it. For this download, the file may beetbut
that ¢y reaches, the time will bé; = (j — i)h,. Since to its destination in two ways:

we assumé:; > hy, the query passes before timeout can , pownload Follows Query (DFQ)- the file backtracks

occur.) o along the route the query took.
« An older queryq; passed through, WIth_ the lastT, . Download Follows Shortest Path (DFSP) the file is
time, the earliest time being= —T75. If ¢} did not locate sent along the shortest path to the destination.

Lhi file unt;l ”Odeﬁ" tt]en ust:ng thedgame te(l:_hnlqr:Je 4Fhese download policies have different delays associattd w
gorehwe nowdthatzé reac\jc e l?o _”9 o earlier L a;n them, but more importantly, they determine the new location
(7 —=1)he—T,, and the breadcrumb will timeout not beforg,pqre the file will be re-cached on its way to the destination.

(J — 1”?‘1' by Wh,iCh timeg; will reach node;. These differences are illustrated in Figure 3.
Otherwise, the file was located at some nodé <

h < j, and a fresher trail continued for the neit- h (»)

hops. Since we knowW’; > T, this trail will also not f

timeout until the new query reaches nofle
From all this we know that there can be no breaks in the O—C©—0O
trail due to timeouts. What is left is to address the case of ‘ g ‘ ‘
a break due to other types of invalidations - namely, a query (o) @7®
backtracking up the trail. However, as we saw in Theorem 1,
if this happens than all the nodes from nogentil the end orQ () (n) oFsp
of the trail have been invalidated, so there is no break in the ‘ ‘
trail.

There are many advantages to a forwarding policy that ®77 ®7

ensures stability and has the capacity for trail-invalatat f { J Q‘ H ‘ a
To begin with, when a break in a trail occurs, the local © ® ®4f,

information at each node is not sufficient to know that lower
downstream there is a section that is still valid, and thafile Fig 3. DFQ vs. DFSP. In each diagram, the file download (khe) loccurs
may be found there. Stability, therefore, ensures that eclseaprior to the query (red line). The top diagram shows how thergis routed

downstream will cover all valid breadcrumbs in the trail {ghi downstream to find a copy of the file. The bottom two diagranmaafestrate
the differences and implications of using different file cdwad policies. The

searching for the file. shaded triangle represents the direction in whichill be sent.

Trail invalidation is a critical tool for an efficient routin
policy. Without trail invalidation, a node might continuerf DFQ has the file cached at the locations in the hierarchy
warding queries downstream even though the file is no longehere the query arrived, and thus prepares the ground for
available there. These queries would then experience a& laggiditional queries that might arrive if the file exhibits dbc
delay, and eventually the file is downloaded from the sourgeopularity. However, in such a case only some of the caches
Furthermore, the fact that S-BECONS is able to perform trailill experience it, since successfully-answered requasta
invalidation without tagging individual queries and kegpi node will not be forwarded upstream, and so its ancestots wil
track of all their identities makes the system fast, effiteemd experience a much lower rate of queries of the same type.
practical. DFSP, on the other hand, will deliver the file in the shortest

Finally, we observe here the emergence dfoader node- possible manner to the user, in the given state of the system,
a node from which point and down all queries are forwardeédough perhaps place file copies in locations where the file
downstream, and for all other nodes queries are forwardedl not be requested at all.

Notation | Meaning

p; = ri/r. Then, asp; increases the probability of a cache

I.(k) Incoming rate ofg;, at nodex. .
O. (k) | Cache miss rate of;. at nodez. miss decreases.
+[y] | Anincrease of variable y (e.g- (1. (k)] The probability of a cache miss for of;, as a function of
—[y] A decrease of variable y (e.g-[1: (k)] - . N s S -
the arrival rate ofy; (j # 1), is monotonic in its behavior. As
TABLE | r; increases,f; takes over a cache slot for longer stretches
FREQUENTLY USED NOTATION of time and in such a manner forces other files to be dropped

more frequently. Using the notation in Table | we can write
that for any cache,

Another major implication of the downloading route is the 1) = +10.(i L 1
stability of the query forwarding table at the interceptmint HEG] = 4000 G #9) @)

co. When employing DFQ, the fil¢f is cached only along The same cannot be said, however, for the massof ¢; as
nodes through which; passed, and specificalty. Fromco, g function ofr;, when the rate of incoming queries of all other
f is forwarded to the requested destination USing shortdist pﬁlesi termedbackground traﬁ]c remain unchanged_ At one
routing. This causes a change in the query forwarding tatblegktreme we know that when — 0, less queries are coming in
co, since this new destination is now the most recent directigihd so the miss rate decreases as well, as it is bounded by the
in which the file was sent. Thus, next time a cache-miss OCCWigoming rate. At the other extreme, as— 1, cache misses
at Co, the query will be forwarded along this fresher trail. become rare and the cache miss rate gom We”, and no
DFSP, alternately, ensures a more stable query forwardiggche misses occur faf whenp; = 1. Assuming therefore
table. Since the file is routed along the shortest path, tiat the background traffic remains the same, the miss rate as
might not pass throughy. Nodec, is then oblivious to what a function of the incoming rate has an upper bound.
happens downstream, and is only aware that a copy of the
file was successfully found. It can thus continue to forward 008
gueries downstream in the same direction. As we discussed
in the previous section when addressing border nodes, if the
flow of queries is high enough, this can ensure with high 005
probability that a copy shall remain cached downstreams Thi
stability of forwarding tables and cache contents dowastre
can therefore improve the performance of BECONS compared
to when using DFQ, as the probability of finding a cached
copy downstream increases. This behavior is supportededy th
simulations we performed (section V). o0z

0.05

Miss rate
o
°
f

0.03

IV. IMPLICIT LRU CACHE COORDINATION

.
0 02 04 06 0.8 1 12 14
Incoming rate

Our BECONS query forwarding policy modifies the direc-
tion in which queries are routed in order to locate cached filgig. 4. LRU miss-rate unimodality. We plot here the miss rate of a single
in the network. A modification will occur only when the ratéile as it's incoming rate of queries increases, while thekbeaund traffic
of queriesq; is above a certain threshold, as expressed fans e same Backgroud veffc omalized (o 10, cedes 50, Tre
Ty andT,,. When such a change in routing takes place, thism 150 to 1050.
will cause a sudden increase in queries coming in to nodes
downstream. It is not clear, however, how neighboring nodesAdditionally, we conjecture that the miss rate will, in fact
will react to such an influx. Therefore, given a nodehat be unimodal experiencing a single peak miss rate and then
experiences an increase in queries of typerom upstream, decreasing monotonically as increases. Support for this can
we would like to know how the combined rate @f at node be found in Figure 4, which was produced by simulating the
x is affected, as’s neighboring nodes react to this change adiehavior of LRU using the approximation algorithm presdnte
x. in [17]. In this simulation, we set the combined rate of the
A network cache can be thought of as a query filter, allowingackground traffic to be constant, and gradually increalsed t
incoming queries to move on to the next hop only when rate of incoming queries for a specific file, plotting its miss
cache miss occurs. This filter tends to be tighter, and allowrate as a result. The background traffic is distributed urifg
smaller fraction of queries of typg to proceed, ag; takes - each file has the same probability of being the next to arrive
up a larger part of the incoming query distribution. Formall The different curves in the figure represent the miss rate for
assume that the steady-state distribution of arriving igger different amounts of files in the system. As the number of files
is p = (p1,...,pn) Wherep; is the probability that the next increases, so does the miss rate, since there is greatezechan
request will be for filef;, and>""" , p; = 1. If r; is the rate that a new file will arrive at the cache and require some file
of such requestsR = {ry,..,m,} 7 = > .z, We get to be dropped.

To characterize this behavior we say that/jf(i) is pre- T L

L (0)] = +[0(0)]- 2 o —

and otherwise, ifl, (i) is post-peak
L (0)] = =[0(0)]. @)

Some details regarding the location of this peak point can As we shall see, it is here that the unimodularity of the
be found in Section VI. For our purposes here, we rely soleigiss rate comes into play.
on the unimodal structure - the existence of such a peak poinif nodey is in pre-peak state for both andq., we get the

- in order to characterize the changes in the query rateseat thllowing sequence:

Fig. 5. 3-node cache network

surrounding nodes.
+[Z,(1 1 1. (1
Relationships (1)-(3) are the building blocks of the anialys HLWD Ze@ +O,M)] = +IL()
that follows. We focus our attention in this paper on the 3- Zer (1) HO:(2)] = +y(2)] Zer2) +[0y(2)]

node network presented in Figure 5, and leave an extensivef node y is in post-peak state for botfy andg., we get
discussion of the problems and methodologies presented hgje following sequence:

to a future work.

First, consider the case of two neighboring nodes;, in ()] = —[0,0)] = —[L(1)]
the aforementioned figure. Cache misses;ofit nodez are e (1) —10:(2)] = —[I(2)] =er.(3) +[0y(2)]
forwarded tay, and cache misses gf at nodey are forwarded

to z. We observe the following behavior: nodex: an increase i, (2) flowing in from y. As we have
Lemma 1:+[0,(1)] < +[0,(2)] seen in Lemma 1, this causes an increasetj0,(1)] =
Proof: Assuming that an increase occurred in the outpgrt[1)], which is the starting event of the previous two
of nodex (wlog), this will lead to the following series of ratesequences. This means that the traffic coming in from both
changes: x and z shifts the system in the same direction: an increase
of ¢; at nodey.
FHOWI =+ M) Zeap.y +O4(2)] 'Iqhe third aynd final case is whep is post-peak whileg,
The increase in the miss rate at nogevill have the same is pre-peak. Once again, we trace the sequence of changes in

Both of these cases behave the same from the perspective of

effect on noder. m the query rates:
This behavior is one ofeciprocation- if x increases the
load on nodey, y in return increases the load on node
/ ; , I,(1 o —-[0,(1 —[I.(1
though of a different type of query. Reciprocation can aIsJE[y(1)]) [0y (V] = =[L=(1)]
clarify what a new steady-state of the system may look like. Zer.1) —10:(2)] = ~[,(2)] Zew.(2) —[0y(2)]

As x sends more of the load fai, y reacts by sharing some of As opposed to what we saw in the first two cases, here the
the load forg, with nodez in return. The converse tendencyraffic coming in fromz seems to have two opposing effects on
can be seen to exist when there is a decrease in miss rafgSrate ofg; aty. On the one hand-[0,(2)] = —[0.(1)],
from one node. From this result we get the following properiyhile on the other, an increasegn queries ay is what started

as well: the entire process. Based solely on our high-level analyss
Corollary 1: +[I,(1)] < +[0.(1)] are unable to determine what the new trend of the system
Proof: We've seen that+[,(1)] = +[0,(2)], and will be as a result. We do, however, propose the following
Lemma 1 completes the proof. B conjecture:

The importance of Corollary 1 is that increases the rate Conjecture 1:Wheng; is post-peak ang; is pre-peak, the
of ¢; being sent toy as a result of the original increasereduction in queries coming in t@from x is smaller than the
at y, even thoughr may have had nothing to do with thisincrease that causes the reduction.
original increase. Thus, we observe here an implicit form The basic justification for this conjecture is this: Since it
of coordinated load-balancing between neighboring cachésthe influx in queries that causes the reduction frenthis
as nodey dedicates more resources to stgie some of its reduction will be proportional to the influx.
neighbors increase the rate @f queries that are sent its way. Based on all the above, we formulate the following two
This increase in queries has the direct effect of reducitbea principles that help explain the manner in which neighbmrin
misses forg;, allowing y to specializein storing this file. At caches react to changes in queries at a specific cache.
the same time, node is free to dedicate more resources for Theorem 3:The reaction of the neighboring caches to an
storing other files, such ag. increase (decrease) of querieg atepend®nly on the state of

For a more complete understanding of this mechanism, weese queries at nodg and not on the state at the neighbors.
expand this model to include a third node(Fig. (5)). Node Proof: From Lemma 1 we know that each neighbor
z forwards (receives) cache missesqgf(q1) to (from) node reciprocates the behavior it observes (via queries) at pode

Thus, the pre-peak and pqst-peak state of a query at@dﬁe DownIEZ:ja?:()er:frsource V;i';e P;{:”Qg;er V?I(;’e

the only thing that determines the manner in which neighbors Query hop 1 Cache Access 1

will respond.] # sources 10 # nodes 100
This property is a very useful one, as it allows for some # files 300

insight into the behavior of a cache system, even when only TABLE II

a small portion of it is available, or when analysis of the SIMULATION PARAMETERS

complete system is intractable.

Theorem 4:In the 3-node network discussed heregiifis
past its peak point at nodg an increase of; queries will
result in a reduction in the miss rate @f

Proof: As we've shown in the previous section, the result
of an increase of; from some source is an overall increase in
I,(1). At the same time, we know that whe is post-peak

o S-BECONS with LRU.7Ty and T, were set to be
identical for all files. File routing was tested with both
DFSP and DFQ.

o Routing to the source, using two types of explicitly-
coordinated LRU:

we get
— a file enters a cache only if it is not located in any
+HI (1] = —[0:(2) direct neighbor, and a file is dropped from the cache
that is, a reduction in the overall rate @f coming in. Thus, using LRU, but choosing the LRU file that is also
p1 grows at the expense gk. This, in turn, decreases the cached in one of the neighbors, if it exists.
cache misses W.r.,. - — a file enters a cache only if it is not located in the

neighbor cache en-route to the source of the file

This theorem relies on Conjecture 1. One implication of ! - e !
being requested. Dropping a file is also done using

this theorem is that when a query at some node has past its ; :
peak point, an increase in queries at it will greatly stabili LRU but selecting from the files that are cached at
the presence of the file at the cache. In order to pass this peak the next hop, if possible.

point, a large volume of queries must be focused on a single¥Ve found that DFQ performed approximalty the same as
cache. As discussed earlier, using BECONS with DFSP fflee simple, route-to-source policy, and so we present hare o

forwarding is designed to achieve just this. results only with regards to DFSP. In Figure 6 we present
the relative number of downloads from a source as a function
V. SIMULATIONS of cache size and policy. We simulated a system gith

distinct files, when cache sizes até, 20, 30 and 40. As

As part of evaluating the behavior and performance b, pe seen from the results, S-BECONS performs well in
the Breadcrumbs network, we simulated and compared parison to explicitly-cooperative systems, and otiGueTs

behavior of several routing and cache-replacement algost hem when the cache size is small. Cooperating caches show
We built an event-driven simulator that generates requests yarformance gains mainly due to the fact that a group of cache
files at every node and sends them into the network. TE@ts as a single larger cache. However, when the cache size is
requests (queries) are routed within the network until &y o tively small compared to the number of different files, a
the file, either cached or at a source, and then the file is sebur framework, these gains are depleted, and finding cache

towards the requesting node. Both the location of the publig,ierial by following breadcrumbs reduces the load on ssrve

servers and the number of files assigned to each were chosRh more.

at random (uniformly). We analyzed as well the time associated with an average

We let all delays in the system be constant. These incluggynioad, and found similar behavior to emerge in the data
query and file propagation delays, queuing delays and dowyre as well: for smaller cache sizes, the time per download
load time at server. These assumpti_ons are an approximafiRreases when employing our S-BECONS policy. These
of the behavior when the network is not congested. In thesyits, however, rely heavily on the system parametecs) su
future, however, we plan to have our simulation environmegt yropagation and queueing delay. More realistic and-trace

expanded to allow load-dependent delays to be incorpoestedyyiven simulation are required in order to validate thisdeor
well. The values used in the simualtions discussed here ugggeg) systems. This is left for future work.

the parameters displayed in Table II.

Requests are generated at each node in the network withV!- MODEL EXTENSIONS AND CLOSING COMMENTS
the identical exponential distribution. Files being resfed A. Cache replacement policies
were selected at random, using the same distribution at eacly, thjs work we focused primarily on the LRU cache re-
node, for which we chose both uniform and zipf. For evenyjacement policy, and in general on policies in which regenc
sequence of such events, we simulated the behavior of {B€yplicitly considered when determining what file to drop
entire system using different combinations of routing gieé \yhen needed. Other than LRU, policies such as FIFO and LFU
and cache replacement algorithms. We looked at the follgwingre included in this category. Here we refer to the implavasi

o Routing to the source, with LRU. This is the simplesbf our work to systems that employ other types of cache

policy, and the baseline for performance evaluation. replacement policies.

-

Policies that do not explicitly reward recency can be didide 7 DFSP

into two categories: Those that do not consider recencat ¢ 4, | fggg:j“':]p

o
O

and those that prefer less recent items. The latter arelysu;
not used for cache replacement purposes, but rather as
admission control algorithm, determining which files to lvac
in the first place [10]. When such admission control is in us
the first nodes past the interception point might not conta
the file, but past them the same considerations used in t
work should apply.

Static policies that only use other considerations, sudieas
size or type, can be thought of as implicitly rewarding regen
For example, if caches prioritize large files over small one
the routing algorithm can compute the probability of findin
a cached copy downstream based on its size and the trag
characterization of the network. Here too, recently adifies

will tend to remain longer in the cache compared to fiIer, 6 Relat ber of downloads 1 0 BESd tw
. . . ig. 6. Relative number of downloads from sources, using 0
with the same propertie¢e.g. same size). Even when Samglpes of coordinated LRU caching. All values are normalizgdhe number of

property files are selected randomly for dropping, the l@ngeownloads from source experienced when routing to the sowith standard
a file remains in a cache the more random selections it m&8p. The smaller the value, the less load experienced atdhecss.
survive. Thus, border nodes will emerge in many systems with
a variety of cache replacement policies.

source downloads (normalize
e o & 9 o o 0o
N w N 5} [} ~l o<

o
=

=)
NN
NN
N

Cache size

B. Peak node characteristics

We noted earlier that the miss rate of a query is unimodal.
As can be seen from our analysis thus far, the exact location
of this peak rate can be crucial to the behavior of the system
as a whole. Preliminary results seem to indicate that, when t
background traffic is assumed to be uniformly distributée, t
peak miss rate will tend to occur around when= 1/ K (Fig.

7), whereK is the volume of the cache in terms of number
of cachable files. Mo we wmwe w0 we wn ow

This approximation is closer to the mark as the number of
files in the system grows, since then more new files arri¥@. 7. Peak miss rate Values are normalized by/ K. As the number of
that cause file drops. Such behavior can be explained by {5 ' {eh system increases, the miss rate reaches its gzt te incoming

. ratio is in the vicinity of1/K.
fact that once the number of queries takeslyg-th of the
queries, a query will arrive on average within the time neede
to refresh the position of the file in the LRU queue, and thugy; v jinw. Qu, K. LiA Survey of Cache/Proxy for Transparent Data

maintain the file in the cache for a high percentage of time. ReplicationSecond International Conference on Semantics, Knowledge
and Grid, 2006. SKG '06.
REEERENCES [10] I. Ari, Design And Management Of Globally Distributed Network
Caches PhD dissertation 2004, http://www.soe.ucsc.edu/ arRkD-
[1] A. Datta et. al. World Wide Wait: A Study of Internet Scalability and Thesis.pdf
Cache-Based Approaches to Alleviate Management Science Volume [11] S. Bhattacharjee, K. L. Calvert, E.W. ZeguBglf-organizing wide-area

d by cache size

49 , Issue 10, October 2003, pp. 1425 - 1444. network cachesEEE INFOCOM 1998 vol. 2 pp. 600-608.
[2] D. Raychaudhuri, R. Yates, S. Paul, J. Kurose, “The CamfteForward [12] J. Kubiatowicz et. alOceanStore: An Architecture for Global-Scale Per-
Network Architecture for Efficient Mobile Content Delive§ervices in sistent StorageACM SIGARCH Computer Architecture News Volume
the Future Interne t, ITU-T Innovations in NGN,” ITU-T Innations in 28 , Issue 5 December 2000, pp. 190-201.
NG,N May 2008. [13] A. J. Ballardie, P. F. Francis, and J. Crowcroft (Augt893). "Core
[8] Van Jacobson, “A New Way to Look at Networking”, Based Trees”’ACM SIGCOMM Computer Communication Revi@a,
http://video.google.com/videoplay?docid=-697267 888572840 (4): 85 95.
[4] X. Tang, S. T. ChansonCoordinated En-Route Web CachinBEE [14] http://www.akamai.com.
Transactions on Computers, Vol 51 No. 6, 2002 pp. 595-607. [15] http://oceanstore.cs.berkeley.edu/info/overvieml
[5] I. Ari et al ACME: Adaptive Caching Using Multiple Exper8roceed- [16] M. Busari and C. WilliamsonSimulation evaluation of a heteroge-
ings in Informatics, vol. 14, Carleton Scientic, 2002. neous web proxy caching hierarchin IEEE Proceedings of the 9th
[6] H. Che, Z. Wang, and Y. TungAnalysis and Design of Hierarchical International Symposium on Modeling, Analysis, and Sirtiata of
Web Caching SystemEEE INFOCOM 2001 pages 1416-1424. Computer and Telecommunication Systems (MASCOTS 01), gage
[7] A. Chankhunthod et. alA hierarchical Internet object cachén Pro- 379388, Cincinnati, OH, Aug. 2001.
ceedings of the 1996 USENIX Annual Technical Conference,[3aego, [17] A. Dan, D. Towsley,An approximate analysis of the LRU and FIFO
CA, 1996. buffer replacement scheme8roceedings of the 1990 ACM SIGMET-
[8] P. Krishnan, D. Raz, Y. ShavitThe Cache Location Problem RICS conference on Measurement and modeling of computéerags

IEEE/ACM Transactions on Networking (TON) Volume 8 , Issue 5 1990 pp. 143 - 152.
(October 2000) Pages: 568 - 582

