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ABSTRACT
Mobile devices cannot rely on a single managed network, but
must exploit a wide variety of connectivity options as they
travel. We argue that such systems must consider the deriva-
tive of connectivity—the changes inherent in movement be-
tween separately managed networks, with widely varying
capabilities. With predictive knowledge of such changes,
devices can more intelligently schedule network usage.

To exploit the derivative of connectivity, we observe that
people are creatures of habit; they take similar paths every
day. Our system, BreadCrumbs, tracks the movement of the
device’s owner, and customizes a predictive mobility model
for that specific user. Combined with past observations of
wireless network capabilities, BreadCrumbs generates con-
nectivity forecasts. We have built a BreadCrumbs proto-
type, and demonstrated its potential with several weeks of
real-world usage. Our results show that these forecasts are
sufficiently accurate, even with as little as one week of train-
ing, to provide improved performance with reduced power
consumption for several applications.

Categories and Subject Descriptors
C.2.5 [Computer-Communication Networks]: Local and
Wide-Area Networks; C.2.1 [Computer-Communication
Networks]: Network Architecture and Design—Wireless
Communication

General Terms
Management, Measurement, Human Factors

Keywords
Connectivity forecast, opportunistic connectivity, derivative
of connectivity, BreadCrumbs
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1. INTRODUCTION
Operating systems manage wireless networks in the mo-

ment, reactively choosing connections only when circum-
stances change. This is a reasonable position to take if most
users are merely nomadic, and the few truly mobile users
rely on homogeneous access points.

Unfortunately, this static and simple world is fast becom-
ing the exception, not the rule. Users demand continuous
functionality while navigating a sea of diverse connection al-
ternatives. In this environment, applications cannot make
reliable assumptions about the quality of connectivity. In-
stead, it fluctuates based on both the path taken through
uncoordinated public deployments and the varied quality of
individual access points.

This setting presents both new challenges as well as oppor-
tunities. Reactive management performs poorly. Instead,
one must consider the derivative of connectivity—how it
changes over time—to properly support mobile, networked
applications.

This paper describes BreadCrumbs, our system that lets
a mobile device exploit this derivative of connectivity as its
owner moves around the world. BreadCrumbs maintains
a personalized mobility model on the user’s device, and a
history of observed networking conditions. Together, these
predict near-term connectivity given a user’s current move-
ment. Because people are creatures of habit, these connec-
tivity forecasts can be accurate with even minimal training
time. Applications, or the operating system itself, can use
these forecasts to defer less time-sensitive or low-priority
work to a time that will improve performance, or reduce
power consumption, or both.

To demonstrate the efficacy of our approach, we used a
BreadCrumbs prototype for several weeks of day-to-day ac-
tivity. During this time, both the quality and the availabil-
ity of publicly-accessible APs were quite uneven. In spite of
this, BreadCrumbs was able to predict the device’s next-step
downstream bandwidth from the Internet within 10 KB/s
for over half of the time, and within 50 KB/s for over 80%
of the time. These results were achieved with only one week
of training.

We further explored how BreadCrumbs’ connectivity fore-
casts could aid three example applications: (1) updating a
handheld map application as the user moves, (2) stream-
ing media content from a remote server, and (3) oppor-
tunistic writeback of created media content. Compared to
prediction-ignorant baselines, BreadCrumbs’ forecasts let all
three applications improve the user experience in domain-
specific ways.
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This work makes the following contributions:

• We introduce the concept of connectivity forecasts for
mobile devices.

• We demonstrate that such forecasts can be accurate
over regular, day-to-day use, without requiring GPS
hardware or extensive centralized infrastructure.

• We illustrate the potential benefits of the system
through three example applications.

2. BACKGROUND

2.1 Determining AP Quality
There is little point to developing a complex system for

forecasting the quality and availability of public wireless con-
nections if they are few and far between, or all access points
have equivalent connection quality. We explored the cur-
rent state of affairs in our prior work [21], which described
Virgil—an AP selection tool that considers the application-
visible quality of access points. In contemporary operating
systems, wireless connection managers typically select the
unencrypted AP with the strongest received signal strength.
Rather than consider such link-layer criteria, Virgil quickly
associates with each candidate AP and runs a battery of
tests designed to estimate the connection quality applica-
tions would enjoy if the device were to choose this access
point.

Virgil connects to reference servers in order to estimate
this connection quality. A reference server is a well-known
Internet destination that runs a simple TCP server process.
Like a honeypot, this process listens on a wide range of TCP
port numbers. To probe the application-visible quality of an
access point, Virgil connects to a reference server via the AP
and runs the following tests:

• Estimate downstream bandwidth by connecting to the
TCP server process on a well-known port and down-
loading random data as fast as possible.

• Determine if the AP is blocking certain services by at-
tempting a TCP connection to common port numbers.

• Estimate latency by pinging the reference server.

We compared the success of selecting APs based on signal
strength with selecting the AP with the best downstream
bandwidth probed by Virgil, in five neighborhoods of varied
density in three different cities in the United States. Use of
Virgil resulted in a 22–100% increase in the percentage of
scans that successfully found an access point with a usable
Internet connection.

Much in the same way, BreadCrumbs uses a reference
server to estimate the connection quality of the access points
encountered by mobile devices. In addition to downstream
bandwidth, BreadCrumbs also estimates upstream band-
width via the AP. Rather than simply pinging the refer-
ence server, we estimate latency by opening a TCP connec-
tion and ping-ponging a integer nonce back and forth. This
was an attempt to more closely mimic how real applications
would utilize a network connection. Finally, BreadCrumbs
omits the port status tests in order shorten the testing pro-
cess. In summary, BreadCrumbs uses the techniques de-
scribed above to estimate the following three values for each

open access point the mobile device encounters: (1) down-
stream TCP bandwidth from an Internet host, (2) upstream
TCP bandwidth to the Internet, and, (3) latency from the
device to remote destinations.

2.2 Estimating Client Location
In order for a device to predict its future mobility, it needs

some way to determine its location. This location could be
descriptive (“at the Union”), relative to known locations,
or absolute. In our case, BreadCrumbs uses latitude and
longitude coordinates as the basic building blocks of each
device’s mobility model. Typically, this can be provided by
GPS. Even for devices without GPS technology, it is pos-
sible to estimate one’s position with reasonable accuracy,
using technologies like Place Lab [16]. This project exploits
the fact that a plethora of fixed-position beacons exist in
the everyday environment—namely, WiFi access points and
GSM mobile phone towers. A nice benefit of Place Lab is
that it works well when GPS does not—indoors and in urban
canyons.

Place Lab relies on public wardriving databases, which
map beacon MAC addresses to GPS locations. For exam-
ple, wigle.net currently tracks over 11 million distinct ac-
cess points in its database. Place Lab generates a GPS fix by
first scanning for all beacons in the device’s vicinity, then tri-
angulating based on the GPS location of each beacon source.
Their evaluation results (in 2005) found the mean accuracy
of Place Lab’s location estimates to be on the order of 20-
30 meters from the GPS “ground truth” when only WiFi
beacon sources were utilized. As we shall see, such error is
acceptable for our needs.

3. CONNECTIVITY FORECASTING
By leveraging Virgil and either Place Lab or GPS data,

one can determine both the locations a user has previously
visited and the application-level quality of network connec-
tivity at those locations. Our goal is to combine these two
sets of data to yield what we will call connectivity forecasts.
A connectivity forecast is an estimate of the quality of a
given facet of network connectivity at some future time. An
example would be the estimated upstream bandwidth from
the client to a remote host 20 seconds in the future. This
is a function both of the user’s mobility—which APs will
be in range at that time—and of the quality of these APs’
network connections.

A wide variety of applications can exploit such forecasts.
For example, consider a distributed file system client that
needs to re-integrate some data to a remote file server. If
energy consumption is a first-class concern—as it is for hand-
held devices—the best policy for the client would be to trans-
mit data to the file server when the mobile device has the
highest-bandwidth network connection that it will enjoy in
the near future.

This section first discusses how BreadCrumbs maintains
a personalized device mobility model, based on the past se-
quence of GPS locations the user visits. Next, we describe
how BreadCrumbs applies the principles of Virgil [21] to es-
timate the quality of different access points, and combines
this data with the predictions of the mobility model. The
section concludes with a concrete example of how connec-
tivity forecasts are generated.
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State Last GPS Current GPS
1 — (80.275,-80.747)
2 (80.275,-80.747) (80.276,-80.747)
3 (80.276,-80.747) (80.277,-80.746)
4 (80.277,-80.746) (80.277,-80.746)
5 (80.277,-80.746) (80.277,-80.745)

Figure 1: Generating states from mobility history. Each

state in the second-order Markov model encodes the cur-

rent GPS location and the previous location. GPS fixes

are estimated at a set period τ that is the time interval

between state transitions in the model.

3.1 Predicting Future Mobility
Mobility prediction is a well-studied area, particularly in

the domain of mobile phone networks. The majority of ap-
plications of such techniques focus on allowing a central au-
thority to track the movement of devices to pre-provision
network resources [1, 2, 4, 17, 22, 25, 29]. As did Place Lab,
we note that tracking mobility history at a central point
is problematic. When such databases are compromised—
either accidentally, maliciously, or under subpoena—the pre-
cise movements of users are disclosed without consent. Fur-
thermore, mobile devices may need this information the
most at precisely the times when they are disconnected from
the network and cannot query the centralized server.

Synthetic mobility models [27] or aggregate models de-
rived from the movements of many users [14, 28] are useful
when a network provider needs the big picture of how their
network will be utilized. However, such models have little
chance of accurately capturing the very unique paths one
user takes through their environment.

The most compelling reason to maintain the model on the
device itself is that, unlike for a mobile phone network, there
exists no one centralized authority who controls all public
WiFi APs that the user encounters. This limits our choice
of mobility models to those that can reasonably be main-
tained on resource-constrained, handheld devices. Song et
al [26] previously evaluated the accuracy of several common
mobility prediction models, using mobility data collected on
the campus of Dartmouth College during the 2003-2004 aca-
demic year [15]. This dataset tracks the AP association his-
tory of over 7000 users to over 550 WiFi access points of
known location.

Their evaluation found a second-order Markov model, with
fallback to a first-order model when the second-order model
has no prediction, was the most accurate of all techniques
examined. Conveniently, Markov models are ideal for use
on resource constrained devices. Their CPU needs are low

because model querying and maintenance involves merely
reading and writing individual entries in arrays. Since these
arrays are generally sparse, storage requirements are mod-
est.

We chose geographic longitude and latitude coordinates as
the fundamental building block of our model. Since we have
chosen a second-order Markov model, each state consists of
two sets of coordinates: the location where the device was
during the last state, and its current location. Tracking
this second-order state is useful for distinguishing between
different mobility paths that share a common point. For
example, this can disambiguate between the user walking
eastbound and westbound on the same street.

The resolution of our model is bounded both by the ac-
curacy of location sensing and the resource constraints of
mobile devices. To avoid a state space explosion, Bread-
Crumbs rounds all GPS values to three decimal places—one
one-thousandth of a degree. While the size of one degree of
latitude is constant everywhere on the Earth, the distance
between two degrees of longitude shrinks as one moves fur-
ther away from the equator. At our latitude, a 0.001◦×
0.001◦ grid square is 110 m×80 m.

While a higher degree of location precision than 110×80
meters would seem desirable, this was impractical for two
reasons. First, location estimates inherently have some am-
ount of error from the “ground truth”. As we note above,
BreadCrumbs relies on PlaceLab [7] to estimate GPS loca-
tion from observed WiFi beacons. The authors of PlaceLab
found an average error of ±20 or 30 meters for their tech-
nique, as compared to GPS. Second, even if a GPS antenna
is available on a mobile device, we must be mindful of the
state-space explosion in the Markov model that would occur
if a small grid size were chosen. BreadCrumbs is intended for
small devices with limited storage, CPU and battery power,
all of which would be taxed if maintaining a large mobility
model.

The frequency with which BreadCrumbs estimates the de-
vice’s GPS location bounds the resolution of the mobility
model. This model can be thought of as a discrete-time
Markov chain where a state transition fires every τ sec-
onds. Figure 1 illustrates how the model generation process
works. The first state is state 1. This is a special state with
no “Last GPS” component, just the initial location. Then,
τ seconds later BreadCrumbs fixes the device’s location at
(80.276,−80.747), and creates the new state 2. The remain-
ing states in the example are generated in a similar fashion.

For each state in the model, BreadCrumbs updates the
Markov transition matrix whenever the model is in the state
and transitions to another. These transitions occur every τ
seconds. Note that if the user remains at one location for
long periods, the model will have a heavy transition proba-
bility towards the self-loop (back to the same state) at that
location. This is an easy way for BreadCrumbs to identify
what others have termed hubs [10]—popular, long-term des-
tinations.

3.2 Forecasting Future Conditions
Section 2.1 above described our prior work on determin-

ing the application-visible quality of WiFi access points. We
use similar techniques here to build an AP quality database.
The purpose of maintaining this database is to estimate the
“quality” of a connection to the Internet, for all the differ-
ent access points a mobile device encounters. As with Vir-
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bbw (state x)

best← 0.00
foreach ap ∈ {APs previously seen at state x}

if ap.bandwidth > best
best← ap.bandwidth

return best

(a) Best bandwidth algorithm

cf (state xi, int steps)

if steps ≤ 1
return

P
∀j{pij · bbw(xj)}

else
return

P
∀j{pij · cf(xj , steps− 1)}

(b) Connectivity forecast algorithm

Figure 2: Pseudocode: best bandwidth at a state and

connectivity forecasts. The best bandwidth algorithm

has been simplified to assume BreadCrumbs tracks one

type of bandwidth, when in fact it differentiates between

upstream and downstream connectivity.

gil, when BreadCrumbs first encounters an unencrypted AP,
it attempts to associate and obtain an IP address through
DHCP. If successful, BreadCrumbs then opens three TCP
connections to a remote reference server, to estimate (1)
downstream bandwidth, (2) upstream bandwidth, and (3)
latency to remote Internet hosts.

Building an AP quality database from scratch is admit-
tedly taxing on mobile devices, given their limited battery
life. In our prior work [21], we discuss how caching results in
a local database hides this expense after an initial training
period. As part of future work, we hope to deploy Bread-
Crumbs on the COPSE mobile device testbed1 to investigate
how sharing of these databases among co-located users can
reduce this scanning overhead further.

If BreadCrumbs were broadly deployed and all users re-
lied on the same reference server, the system would clearly
not scale well. However, different users are free to use ref-
erence servers of their own choosing. BreadCrumbs is not
attempting to quantify the quality of connection to a specific
end host but rather to the more fuzzy notion of an arbitrary
Internet destination.

It is true that one reference server cannot possibly rep-
resent the myriad network destinations that applications
might contact. But note that the first hops—the wireless AP
and its backend connection, e.g. a DSL or cable modem—
are constant no matter what the remote destination of a
connection ultimately is. From there, the path through the
network core depends on the peering agreements between
the AP’s ISP and that of the destination. We argue that
when choosing between two APs, it is far more likely that
the overall quality of an end-to-end link depends on edge ef-
fects rather than core routing issues. This claim is validated
by a recent measurement study [8] that found residential
broadband links are overwhelmingly the bottleneck in end-
to-end Internet paths.

A subtle point is that one access point may be visible from
multiple grid locations, since our chosen grid size (0.001◦×
0.001◦) is only 110m×80m at our latitude. The quality of an
AP may vary at different grid locations, however, because

1http://copse.cs.duke.edu/

of varying distances from the AP, physical interference, et
cetera. BreadCrumbs therefore tags all AP test results with
the GPS coordinates at which they were taken. Multiple
test results for a single AP co-exist in the quality database
if they were probed at different GPS grid locations.

The test database tracks access points both by ESSID
and by MAC address. This is crucial to differentiate be-
tween APs sharing the same ESSID, either intentionally as
part of a coordinated deployment or unintentionally because
the default ESSID (e.g. linksys, netgear) has not been
changed.

This test process incurs a reasonable but non-trivial over-
head in terms of time and energy. BreadCrumbs therefore
caches test results for performance. When an access point is
detected, BreadCrumbs checks if a test results exists in the
database for that AP at the GPS grid location containing
the user’s current position, and does not retest the AP if one
exists. In order to age stale test results out of the database,
however, BreadCrumbs retests such previously-probed APs
probabilistically a small fraction of the time.

BreadCrumbs combines the custom user mobility model
and the AP quality database to provide connectivity fore-
casts. Figure 2 describes a simplified version of this algo-
rithm. This example takes two arguments: a state in the
mobility model, and an integer number of steps in the fu-
ture. In our actual implementation of BreadCrumbs, the al-
gorithm also considers what network quality is to be forecast
(downstream/upstream bandwidth, or latency). To simplify
the pseudocode we assume the algorithm only considers one
network quality metric, bandwidth.

First, consider the limiting case where steps is one. This is
a request for the projected network bandwidth one transition
past the specified state. In other words, for the model tran-
sition period τ , one step is τ seconds in the future. Bread-
Crumbs calculates this forecast as the weighted sum, across
all states in the model, of the best bandwidth previously
seen from an AP at that potential next state. This sum is
weighted by the transition probability that model will tran-
sition from state xi to a state xj . Thus, the best bandwidth
seen at states which are likely successors of the state con-
tributes more to the connectivity forecast than transitions
which are unlikely. In practice, the number of successor
states from any given state will be small as compared to the
whole state space, because states are grounded in geographic
reality.

If steps is greater than one, connectivity forecasts are cal-
culated recursively. At each step up the recursion tree, re-
sults from leaf nodes are weighted-summed in proportion to
the transition probabilities.

3.3 Example
Consider the Markov chain in Figure 3. The value below

each state’s name is the best downstream bandwidth probed
while at that state—for a state xi, this is BBW(xi). The
current state is x0. We want to know the expected down-
stream bandwidth at the next time step. From Figure 2(b)
above, this yields:

cf(x0, 1) =
X

∀j

p0j · bbw(xj) (1)

In other words, the expected downstream network band-
width one step in the future is the sum (over all states in
the Markov chain) of the best bandwidth observed at each
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Figure 3: Example Markov model with best-bandwidth

results.

state, weighted by the probability that the Markov chain
will transition from the current state x0 to each given state
xj . When calculating a connectivity forecast, we need not
actually sum across all the states in the Markov chain, but
only across those with a non-zero transition probability. Re-
turning to our example, we see from Figure 3 that the only
possible transitions out of state x0 are to states x1 and x2,
and a self-loop back to x0. Therefore, Equation 1 above is
simplified to:

cf(x0, 1) = p00 · bbw(x0) + p01 · bbw(x1) + p02 · bbw(x2)

= 0.12 · 174.91 + 0.70 · 45.07 + 0.18 · 0.00

= 52.54 KB/s

For instance, if the time step of the model was ten seconds,
then this would be the estimated downstream network band-
width available to the device ten seconds from the current
time. To calculate connectivity forecasts further into the
future, the connectivity forecast algorithm calls itself recur-
sively as shown in Figure 2(b). The downstream bandwidth
20 seconds ahead (two steps) is therefore the following:

cf(x0, 2) =
X

∀j

p0j · cf(xj , 1)

= p00 · cf(x0, 1) + p01 · cf(x1, 1) + p02 · cf(x2, 1)

4. IMPLEMENTATION
We have implemented a BreadCrumbs prototype on Linux,

as a user-level privileged process. This process consists of
two threads, each of which is described in a subsection be-
low.

4.1 Scanning Thread
One thread periodically scans for access points and fixes

the device’s GPS coordinates by triangulating on the loca-
tions of AP beacons in the Place Lab database. This scan-
ning period is a configurable parameter (τ), set to 10 sec-
onds in our current implementation. The scanning thread
also handles the probing of AP connection quality, as de-
scribed in Section 2.1, whenever an open AP is encountered
that has not been probed at the current GPS grid location.
Test results are then stored in a local database.

After fixing its current GPS location every τ seconds, this
thread then updates the Markov model. This consists of up-
dating the transition probability from the previous state to
the new current state (because of the new location estimate).

The reference server used to estimate AP connection qual-
ity was located on our university campus, connected directly
to the Internet on the wired departmental network with no
firewall. Given that our subsequent evaluation took place
in the same city, one might be skeptical that connecting
to this server from different wireless access points in the
same city would truly approximate the average latency and
bandwidth one would encounter when connecting to arbi-
trary remote destinations. The peering points between the
university’s ISP and the common ISPs seen around town—
overwhelmingly, Comcast and AT&T—are not located in
the city, however. In fact, for a subset of locations we per-
formed a traceroute to the reference server, and in all cases
the shortest path from the wireless AP to the departmental
network detoured several hundred kilometers away, into the
Internet core, before returning to our city. We are there-
fore confident that this configuration reasonably approxi-
mates the latency and bandwidth one would encounter when
contacting typical Internet destinations that require a trip
through the network core.

4.2 Application Interface
The other thread handles application requests for connec-

tivity forecasts. Applications send requests to BreadCrumbs
via a named pipe. These requests consist of two values: (1)
the criterion of interest—downstream bandwidth, upstream
bandwidth, or latency—and (2) an integer number of sec-
onds in the future.

BreadCrumbs converts the value in seconds into the num-
ber of corresponding state transitions in the future of the
model. This depends both on the scanning period τ and
the number of seconds left until the start of the next scan,
because the mobility model is a discrete time Markov chain
where a state transition fires every τ seconds.

First, BreadCrumbs subtracts the time left until the start
of the next scan from the value passed by the application.
Then, it performs integer division of the remaining time by
τ . The result is the number of steps in the future of the
model at which to generate a connectivity forecast.

For example, assume that BreadCrumbs scans for APs
and updates the mobility model every 10 seconds (as in our
implementation), starting at t = 0. At t = 9, an application
queries for the forecasted downstream bandwidth 25 seconds
in the future (at t = 36). This is �(36 − 1)/10� = 3 steps
in the future. BreadCrumbs then generates the connectivity
forecast at that point in the future, for the given criterion,
and returns the value to the calling application through the
named pipe.

5. SAMPLE APPLICATIONS
In evaluating the usefulness of BreadCrumbs,we designed

several simple applications that one might commonly find on
mobile devices. We then examined how well BreadCrumbs
can improve the user experience for these applications, as
compared the best effort one could make without any con-
nectivity forecast information.

The error bars in all subsequent figures in this section
represent the standard error of the mean: SE = σ/

√
n.
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Figure 4: Visited grid locations and commute ground

truth. Small squares are all GPS grid locations fixes

from two weeks of user mobility traces collected. The

black line is the “ground truth” path through the map

taken by the user on his daily commute between home

and work.

5.1 Methodology
Rather than rely on existing mobility traces or synthetic

models, we installed BreadCrumbs on an iPAQ h5555 hand-
held, with an integrated 802.11b WiFi card, running Famil-
iar Linux (a distribution targeted for handheld devices [12]).
One of the authors carried the handheld with him contin-
uously for two weeks during daytime hours (before seven
pm).

Clearly, most users are relatively stationary for large por-
tions of their day—sitting at their desks at work, or moving
around their home. Predicting connectivity in such situ-
ations is trivial. We were more concerned with how well
BreadCrumbs predicts the derivative of connectivity when
users are in motion. We therefore edited the collected logs
by hand to remove portions of time when the user was sta-
tionary for more than five minutes.

BreadCrumbs ran continuously in the background, scan-
ning for new access points every ten seconds. After each
scan, BreadCrumbs estimated the device’s current GPS co-
ordinates by cross-referencing the MAC addresses of de-
tected APs with the Place Lab database (as described in
Section 2.2). The GPS coordinates and MAC addresses were
then logged, along with a timestamp. For each AP in the
scan set that had not been previously probed at those coor-
dinates, BreadCrumbs attempted to associate and probe AP
quality as described in Section 2.1. The probe results (up-
stream bandwidth, downstream bandwidth, latency) were
then appended to a test results database.

Recall from Section 3.1 that BreadCrumbs divides the
world into grid locations, where each grid box is 0.001◦ of
latitude by 0.001◦ of longitude. At our latitude, this is 110
m×80 m. All GPS fixes that fall within the same box are
considered to be the same position. The small squares in
Figure 4 are all the unique grid locations visited during the
two weeks of user traces. The solid black line represents
the ground truth path of the user’s daily commute between
home and work. This trip is a mix of walking and bus rid-
ing, and is responsible for the vast majority of motion during

mean σ max min n
APs per scan 10.23 7.73 32 0 5227

unique APs 1621
open APs 282 (17.40%)

encrypted APs 1339 (82.60%)
grid locations visited 110

locations with usable AP 61 (55.45%)

Table 1: Access point statistics. Locations with usable AP

are those grid locations where at least one access point

had a probed downstream bandwidth greater than zero.

mean σ max min n
down BW 68.38 114.41 385.54 0.00 110

down non-zero 123.30 129.74 385.54 0.29 61
up BW 33.98 49.85 241.66 0.00 110

up non-zero 64.44 52.44 241.66 4.10 58

Table 2: Bandwidth at grid locations. Values in KB/s.

According to Place Lab estimates, during the evalua-

tion period the mobile device visited 110 unique grid

locations (0.001◦ latitude by 0.001◦ longitude). Non-zero

refers to omitting those locations where no encountered

AP had a probed bandwidth greater than zero.

the two week period. The spread of visited grid locations is
not strictly limited to the commute path, however. This is
a result both of Place Lab GPS error and noise introduced
by other, non-commuting trips. For example, the trace set
includes instances of the user walking from home to vari-
ous downtown destinations, and driving to several different
locations.

Tables 1 and 2 summarize the frequency and quality of
network connectivity that BreadCrumbs encountered dur-
ing the course of our evaluation. As Table 1 shows, Bread-
Crumbs saw a widely-varying number of APs each time it
scanned. While only 17% of all access points encountered
were unencrypted, BreadCrumbs was able to discover a us-
able AP at over half of all visited grid locations. We define
usable to mean there existed an AP at that location whose
probed downstream bandwidth was greater than zero.

As Table 2 shows, we found that the quality of publicly-
available access points varies significantly. For each of the
110 grid locations visited during the two weeks of trace col-
lection, we calculated the best upstream and downstream
bandwidth available. Even when those locations where no
AP had a non-zero bandwidth are omitted, the variance is
quite large. This bolsters our claim that network connectiv-
ity fluctuates significantly as users move around the world.

5.2 Forecast Accuracy
We first wanted to quantify how accurate connectivity

forecasts are, given the two weeks of traces we collected. As a
reminder, BreadCrumbs estimates its GPS coordinates at a
fixed frequency. For our evaluation we set this period to ten
seconds. Thus, the traces are a series of scan sets—listing
all AP beacons detected, plus current GPS coordinates and
a timestamp—separated by ten seconds of real time.

We used the first week of traces as the training set that
built BreadCrumbs’ mobility model. The second week of
traces was then the evaluation set. For each step (scan set)
in the evaluation set of traces, we compared the grid location
where BreadCrumbs predicted the device would be in the
next step with where it actually did move. We repeated this,
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Figure 5: Mobility model prediction accuracy. k indi-

cates the number of steps into the future BreadCrumbs

forecasts.

varying the number of steps BreadCrumbs looked ahead (k)
from one through six. The white bars in Figure 5 indicate
the percentage of steps across all two weeks of traces where
BreadCrumbs’ predicted grid location was correct, for 1 ≤
k ≤ 6. The accuracy is over 70% for k = 1 but quickly
degrades as BreadCrumbs must extrapolate further into the
future.

The crucial insight, however, is that we are not really
concerned with predicting the user’s mobility perfectly. If
BreadCrumbs predicts the user will move to one location,
and they in fact move to another, as long as the quality of
network connectivity available at the two locations is com-
parable this “mistake” is unimportant. The gray bars in Fig-
ure 5 represent the percentage of steps where BreadCrumbs’
prediction and the actual next location matched with regard
to binary connectivity. A given location is considered con-
nected if at least one AP seen at that location had a probed
downstream bandwidth greater than zero. BreadCrumbs
was over 90% accurate in predicting binary connectivity one
step ahead. This accuracy remained high when looking fur-
ther into the future—nearly 80% accurate six steps ahead.

Next, we examined how the bandwidth predicted by con-
nectivity forecasts matched the bandwidth actually encoun-
tered. Figure 6 charts the gap between predicted and actual
bandwidth as a cumulative distribution function (CDF). Even
six steps in the future, BreadCrumbs’ bandwidth forecasts
were within 10 KB/s of the actual value for over 50% of the
trace period, and within 50 KB/s for over 80%.

It is important to note that these results were achieved
with a training set of only one week duration. As users
run BreadCrumbs for increasingly-long periods, the device-
centric mobility model can only benefit from increased ex-
posure to the user’s patterns.

5.3 Sample Applications
The primary aim of BreadCrumbs is to improve the appli-

cation-level and (most importantly) user-visible experience
for mobile devices. To truly evaluate our system, then, we
need to examine how both the operating system and dif-
ferent mobile applications could benefit from connectivity
forecasts.
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Figure 6: CDF: bandwidth prediction error. k indicates

the number of steps into the future BreadCrumbs fore-

casts.

We evaluate the performance of different applications us-
ing the traces we collected, rather than executing the appli-
cations “live” on a mobile device. This allows us to directly
compare the performance of prediction-unaware algorithms
and BreadCrumbs on identical sequences of user motion and
APs seen, to ensure an accurate comparison.

The subsections that follow investigate three such sce-
narios. Clearly, connectivity forecasts are most useful for
background or opportunistic tasks, where an application has
some flexibility in when a network operation must occur.

As in Section 5.2, the first week of traces was the train-
ing set that built the mobility model, and the second week
the evaluation set. For each scenario we devised three al-
gorithms that accomplished the same objective—one that
was ignorant of any future predictions, another that utilized
BreadCrumbs’ connectivity forecasts, and a third that used
a random walk mobility model. For each trace in the evalu-
ation set, we ran all three algorithms, recorded the results,
and subsequently averaged across all the runs. A “step” in
each trace corresponds to 10 seconds of real time.

At each step in the trace, for all algorithms, the simula-
tion declared the device associated to the AP with the best
downstream bandwidth among all APs present that that lo-
cation. This corresponds to the device using the aforemen-
tioned Virgil AP selection system [21] to choose the current
AP, rather than simply selecting based on signal strength.
The No Prediction algorithm therefore represents the best
one could do making no predictions of future connectivity,
but using the best AP available a the current location for
each step.

5.3.1 Map Viewer
Our first sample application is a map viewer, commonly

found on mobile devices like the Nokia N800. This appli-
cation displays a map of the user’s current location, and is
typically linked to a GPS receiver so as the user moves, the
currently-displayed map tile is updated to reflect this move-
ment. Beyond simple street maps, these map tiles can con-
tain rich contextual information—such as menus and reviews
of nearby restaurants—or detailed geographic information,
such as provided by Google Earth.
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Figure 7: Map Viewer. Current Tile Blank are steps

in the trace where the tile corresponding to the cur-

rent GPS location is not present in the device’s cache,

and insufficient network bandwidth exists to download it

synchronously. Tiles Fetched is the total number of map

tiles fetched over the course of each trace. All values

are normalized to those of an Oracle algorithm that uses

perfect knowledge of future mobility to minimize Current

Tile Blank. The BreadCrumbs algorithm avoids unneces-

sary network traffic by not pre-fetching neighboring tiles

when upcoming network conditions are predicted to be

good, while incurring a slightly higher rate of missing

tiles.

When the user moves out of one map tile and into another,
the tile’s information must either be fetched synchronously
or already be present in a cache. Otherwise the user experi-
ence degrades as blank tiles appear in the map. A policy of
always pre-fetching all neighboring map tiles provides good
coverage, but at the cost of wasted network operations if
those tiles are never visited or displayed.

We investigated if BreadCrumbs’ forecasts could be used
to “roll the dice” and avoid wasteful pre-fetching in cases
where BreadCrumbs predicted that the device will have suf-
ficient network bandwidth available to synchronously fetch
a new map tile as soon as the user moves to that location.
We therefore designed four algorithms for comparison.

First, No Prediction simply ensures that the user’s cur-
rent map tile, and all eight surrounding tiles, are present
in the cache whenever sufficient network bandwidth exists
to do so. Second, at each step in each trace, the Bread-
Crumbs algorithm generates a connectivity forecast one step
in the future. If the forecast indicates that the mobile de-
vice will have enough bandwidth available to synchronously
download its new map tile, the BreadCrumbs algorithm does
not pre-fetch neighboring blocks. If the predicted next-step
bandwidth is low, however, it pre-fetches neighboring blocks
just as No Prediction. Third, the Random algorithm is iden-
tical to BreadCrumbs, but instead of using BreadCrumbs’
connectivity forecasts, this algorithm chooses a random suc-
cessor state to the current state, and takes the best band-
width observed at that state as the bandwidth the device
will have at the next step in the trace.

Finally, the Oracle algorithm uses perfect knowledge of
future mobility to achieve the minimum possible number of
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Figure 8: Streaming Media. Gaps in Playback is the

trace duration where the stream was not playing on the

device because the buffer was empty and inadequate net-

work connectivity existed at that location. Radio Active

is the trace duration that the WiFi radio was actively

downloading data. All values are normalized to those of

an Oracle algorithm that minimizes Gaps in Playback by

downloading the entire stream as fast as possible with an

infinite buffer size. The BreadCrumbs algorithm avoids

pre-filling the buffer if forecasts indicate that upcom-

ing network bandwidth will be sufficient to service the

stream. This conserves energy while not significantly in-

creasing playback gaps.

blank tiles per trace. Note that minimizing one criterion
(Current Tile Blank) does not necessarily optimize for the
other (Tiles Fetched). In fact, we will see that the Bread-
Crumbs algorithm fetches fewer tiles than the Oracle be-
cause it risks blank tiles in order to fetch as few tiles as
possible from the remote server.

Tiles correspond to the 110×80 meter tiles of our model,
and each tile is assumed to be 100 KB in size. The results
in Figure 7 are all normalized to those of the Oracle algo-
rithm. One sees that by not pre-fetching neighboring tiles
when upcoming connectivity is predicted to be good, the
BreadCrumbs algorithm avoids wasting energy by fetching
tiles that will never be displayed. At the same time, this
gamble results in only a three percent higher rate of missing
map tiles than the No Prediction algorithm.

5.3.2 Streaming Media
Next, we considered issues raised when streaming media

content from a remote server onto a handheld device while
the user is in motion. A media stream has a well-defined
quality-of-service metric—specifically, the encoded bit rate
of the stream. When mobile in public, however, the user’s
device moves from connection to connection at different lo-
cations. Some locations may have sufficient bandwidth to
service the stream, some may not, and some locations may
be devoid of network connectivity altogether.

One option is to define a buffer size and fetch the stream as
fast as possible at every given moment, up to the point where
the buffer is filled. This is the strategy commonly employed
today by streaming media applications, corresponding to the
No Prediction algorithm for this application. This algorithm
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Figure 9: Opportunistic writeback. Writeback Com-

pleted is the total elapsed trace time until all data was

safe on the remote server. Radio Active is the total

trace time that the WiFi radio was actively transmitting

data. All values normalized against an Oracle algorithm

that uses perfect knowledge of future mobility to mini-

mize Radio Active. By utilizing BreadCrumbs’ connectiv-

ity forecasts, the prediction-aware algorithm delays data

writeback briefly to selectively use high-bandwidth ac-

cess points. As a result, the total time until data is safe

on the remote server is comparable, but BreadCrumbs

activates the WiFi radio 30% less often than with no

prediction, translating into significant energy savings.

downloads the stream as fast as possible at each step in the
trace, given the available network connectivity, up until the
point that a two-minute buffer has been filled.

Second, at each step the BreadCrumbs algorithm gener-
ates connectivity forecasts for each of the next six steps—
up to one minute in the future. If the future connectivity
is predicted to be sufficient to service the media stream,
the algorithm does not pre-fetch data into the buffer. The
Random algorithm is identical, except that instead of using
connectivity forecasts to predict future network conditions,
it generates a random walk from the current location into
the future.

Finally, the Oracle algorithm downloads the entire stream
as fast as possible, without a buffer size cap. This is less of
an“oracle”than a bound on how quickly any algorithm could
fetch the data comprising the stream for the trace duration.
Note that while this minimizes Gaps in Playback it results
in the radio being active for longer than any of the other
algorithms.

We simulated a 64 KB/s video stream. Figure 8 shows
that all three algorithms (No Prediction, BreadCrumbs, and
Random) result in comparable gaps in playback. The Bread-
Crumbs algorithm, however, activates the WiFi radio 30%
less often than the prediction-unaware algorithm. By em-
ploying BreadCrumbs’ connectivity forecasts, that algorithm
is able to provide the same playback experience to the user
while using significantly less of the mobile device’s battery
as compared to a prediction-ignorant algorithm.

5.3.3 Opportunistic Writeback
Our final scenario considers a user who has generated

some content on his handheld device while away from home.
These files are digital photos taken by the camera on his
smartphone. The user previously configured a distributed
file system client to ensure all content he generates will be
safely reintegrated to his remote file server. This file server
could be a dedicated machine at his home or work, or a web
service such as Flickr. We assume the only network connec-
tivity available to the smartphone is whatever open WiFi is
available.

For evaluation purposes, we set the number of photos that
our hypothetical user took at eight, each with a filesize ran-
domly uniform between 1 MB and 5 MB. The set of eight
random filesizes was generated once and then the same set
used across the entire evaluation for consistency.

The No Prediction algorithm simply tried to transmit the
eight image files as quickly as possible, at each step using
the AP with the best upstream bandwidth available at that
location. The algorithm that utilized BreadCrumbs sought
to reduce the amount of time the WiFi radio was active,
while not delaying data writeback unreasonably. Our simple
prediction-aware algorithm worked as follows. At each step
of trace playback:

1. Determine which AP has the best upstream bandwidth
at the current location.

2. Query BreadCrumbs for its connectivity forecast of up-
stream bandwidth 10, 20, and 30 seconds in the future.
If any of those three future points are predicted to have
better upstream bandwidth, do nothing at this time.
Else, transmit data to the remote server as fast as pos-
sible during this step.

This algorithm is admittedly somewhat näıve. This was
intentional as we sought to evaluate how useful BreadCrumbs’
connectivity forecasts could be for applications that have
made very minimal modifications. A third algorithm, Ran-
dom, operated the same as the BreadCrumbs algorithm but
instead of using connectivity forecasts to predict future net-
work conditions, Random simply generated a random walk
through the geographic neighbors of a given state in order
to “predict” future mobility and connectivity.

Finally, a fourth algorithm, Oracle, is our baseline. This
algorithm uses perfect knowledge of the future to generate
the minimal radio active time possible, by only transmitting
data at the states of each trace with the highest available
AP bandwidth.

We ran all four algorithms once for each of the traces in the
evaluation set. Our evaluation metrics were (1) total elapsed
time until the all data was safely on the remote server, and
(2) total time the WiFi radio was actively transmitting. Fig-
ure 9 illustrates the results. On average, the BreadCrumbs
algorithm completes writeback only slightly slower than the
aggressive, prediction-ignorant algorithm. In fact the differ-
ence is nearly within the error bounds of the mean for both
algorithms.

On the other hand, utilizing BreadCrumbs’ connectivity
forecasts lets the prediction-aware algorithm activate the
WiFi radio 30% less often. By attempting to only transmit
data at high-bandwidth locations, the prediction-aware al-
gorithm makes more efficient use of the wireless radio. While
small for desktops or even laptops, this is significant for mo-
bile devices where wireless NIC usage is a large fraction of
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# states in model 652
model size 27984 bytes (42.92 B/state)

# test results 1335
test DB size 92132 bytes (69.01 B/entry)

Table 3: Overhead: space requirements. The test
database is currently stored in unoptimized, ASCII
format.
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Figure 10: Connectivity forecast overhead. Results on

a Compaq iPAQ handheld (400 MHz CPU), 128 MB

RAM.

total energy expenditure. For example, Anand et al [3] found
that, for an iPAQ handheld, the power required to actively
transmit data over the WiFi interface (even in power-save
mode) was nearly equal to the measured quiescent power
consumption of the entire device when the radio was inac-
tive.

5.4 Overhead
Table 3 shows the storage required on the iPAQ to store

the mobility model and test database generated in the course
of our evaluation. With 652 different states in the model, the
total model size is approximately 27.3 KB, or 43 bytes per
state on average. Recall that, because ours is a second-order
Markov model, each state represents the current GPS grid
location of the user and their previous location. From Ta-
ble 1, we know that BreadCrumbs visited 110 different grid
locations during the evaluation period. If every combination
of current location and previous location were generated as a
state, the model would have 110×110 = 12100 states. Even
a model of such complexity would only require 508 KB of
space on the mobile device. Given the sparseness of these
models in practice, a model of that size would be most likely
be sufficient to cover an entire metropolitan area.

Likewise, the overhead imposed to store the test database
is reasonable—69 bytes per test entry on average. For con-
venience, the database was implemented as an ASCII flat
file, unoptimized. Even so, the records for the 1335 test re-
sults generated by our evaluation require 90 KB of storage
space, but only 7.04 KB when in compressed form.

Figure 10 examines the CPU overhead imposed when gen-
erating connectivity forecasts. The parameter k is the num-
ber of steps in the future of the model, given a current
state, that we requested a connectivity forecast of down-
stream bandwidth from BreadCrumbs. This graph repre-

sents only the instrumented CPU time required for the cal-
culation, not any communications overhead between Bread-
Crumbs and the application requesting the forecast. All re-
sults were measured on a Compaq iPAQ h5555, with a 400
MHz ARM processor and 128 MB of system RAM.

We requested a connectivity forecast for each of the 652
states in the model our evaluation generated, varying the
size of k from 1 to 10. Because this is a recursive algorithm
(see Figure 2) we expect the overhead to grow exponentially.
Up to six steps ahead, the overhead is less than 2.5 ms. Even
the mean overhead of 75 ms at k = 9 is not prohibitive for
applications that perform such intensive operations rarely.
Note that we did not implement caching of calculated fore-
casts or other possible optimizations in our implementation.

6. RELATED WORK
Rahmati and Zhong [23] investigated the problem of choos-

ing between WiFi and cellular data networks, given that a
large number of mobile devices now feature both radios (e.g.
the Apple iPhone). Rather than build and maintain a mobil-
ity model as BreadCrumbs does, they use the set of cellular
tower IDs currently seen and some time-of-day heuristics to
estimate the expected quality of WiFi connectivity at the
current location. Their system does not predict future con-
ditions, as BreadCrumbs does. Rather, it decides whether at
a given time and place, it is more advantageous to power on
the WiFi interface or to use the lower-bandwidth, but ubiq-
uitious, cellular connection. Also, identifying location solely
by cell tower signals is necessarily more coarse-grained than
our approach that leverages WiFi beacons or GPS. Cellular
signals reach at least several kilometers, and tens of kilome-
ters under good conditions. WiFi signals have a far shorter
range, typically several hundred meters at best.

MobiSteer [20] focuses on improving wireless network con-
nectivity in one specific usage setting—while in motion in a
motor vehicle. Their system uses a directional antenna to
maximize the duration and quality of connectivity between
a moving vehicle and stationary access points in the commu-
nity. This goal is complementary to that of BreadCrumbs,
because MobiSteer performs well in situations where Bread-
Crumbs does not. While portions of the evaluation traces
collected in our paper track the user riding on a city bus,
during this period the user only has reliable connectivity
while stopped at intersections. As explored in detail by By-
chkovsky et al [5], this reduced performance was due to the
brief time the client has to associate with the AP, obtain
a DHCP address, and do useful work. On the other hand,
BreadCrumbs does not require any specialized hardware and
works with whatever users already carry in their pocket.
MobiSteer’s cached mode operation is also reminiscent of
the way BreadCrumbs and Virgil [21] optimize future re-
source discovery by caching historical access point quality
information.

Song et al [25] applied different mobility prediction meth-
ods to the problem of improving bandwidth provisioning
and handoff for VoIP telephony. They use real client traces
to evaluate the success of a concrete application that is
prediction-aware, and assume the existence of a centralized
authority that collects mobility information, makes predic-
tions, and disseminates instructions to various wireless ac-
cess points. We are focused on applications that are still
useful when the device keeps its mobility history, and this
information need not be disclosed to any other party.
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Ghosh et al [10] predict the probability that users visit
popular locations, known as hubs. Their focus is on extrap-
olating sociological orbits from the client mobility data by
identifying the frequency with which users encounter one
another at these hubs. The authors do not evaluate how ac-
curately their Bayesian techniques predicted explicit client
paths (rather than just the hubs they visit). We therefore
were unable to compare the accuracy of their technique with
that of our second-order Markov model.

Yoon [28] concentrated, as did Kim et al [14], on deriving
realistic mobility models from actual user mobility traces.
The idea is to take many different client traces and build a
probabilistic model that can be used to generate arbitrary
client tracks. These traces, while still artificial, more closely
model the real movements of users than do synthetic mod-
els like Random Waypoint [27]. In this paper, we consider
only the situation where devices maintain their actual mo-
bility history themselves, and predict their future behavior
“on-the-fly” rather than base predictions on mobility models
derived from multiple users’ behavior.

Marmasse [19] argues, as we do, in favor of a user-centric
mobility model. Her comMotion system is concerned chiefly
with tracking users’ movement through various semantically
meaningful locations, such as “home” or “work”. We, on the
other hand, focus on lower-level waypoints—namely, GPS
grid locations. The semantic concept of user-defined loca-
tions could easily be layered atop such low-level information,
however.

Haggle [13] is a framework for disseminating data between
mobile users based on the fleeting occasions when they come
into physical contact with each other. In these situations
infrastructure such as WiFi networks need not be used, be-
cause users are within range of low-power, point-to-point
link technologies like Bluetooth or ZigBee. Their system is
clearly dependent on user-centric mobility information, but
seeks to predict when pairs of users will come into contact
with each other. Our work, on the other hand, is focused
more on leveraging information about wireless access points
the user will soon encounter.

Most applications of location prediction have been in mo-
bile phone networks. Typically, a central network operator
seeks to know the sequence of network towers with which a
handset will associate. Given this information, the network
operator can reserve resources, such as bandwidth, at the up-
coming nodes, so handoff proceeds as smoothly as possible.
Bhattacharya and Das [4] use a variant of the LZ predictor
described above to predict the next cell users will associate
with. Yu and Leung [29] extend this idea to predict not
only where a mobile device will hand off but also when this
will occur. Liang and Haas [17] use a Gauss-Markov model
in a similar way. Others use Robust Extended Kalman Fil-
tering (REKF) [22], integrate individual path information
with system-wide aggregate data [1], or estimate future lo-
cations through trajectory analysis [2]. Liu et al [18] use
a similar hybrid approach for mobility prediction in wire-
less ATM networks, rather than for mobile telephony. They
combine system-wide information with local mobility history
and path trajectories to reduce system resource consumption
while maintaining user QoS.

All of these location predictors are enabled by accurate es-
timates of a mobile device’s location. In some cases, all that
is needed is information on which access point or mobile
phone tower the device is associated with. For predictors

and applications requiring more fine grained location infor-
mation, there are a wide variety of solutions. Place Lab
leverages public war-driving databases of WiFi AP GPS co-
ordinates to triangulate one’s location based on the APs seen
at a given location and their signal strengths [16]. The same
idea has recently been extended to use GSM phone towers
rather than WiFi APs [6]. Fox et al [9] showed the benefit of
Bayesian filtering to coalesce results from multiple location
sensors and smooth transient uncertainty in location esti-
mates. Other work focuses on indoor localization at very
small scales, either by deploying custom hardware [24] or
mapping existing WiFi beacon sources [11].

7. CONCLUSION
Operating systems currently focus on immediate condi-

tions when managing wireless network connections. But to-
day, users are more mobile than ever, utilizing a patchwork
of public access points of varying capabilities and uneven
geographic distribution. Applications would like to use this
public connectivity opportunistically to perform background
or low-priority work, but cannot make reliable assumptions
about connection quality at any given moment in the future.

We argue that the increased mobility of users demands a
focus on how connectivity changes over time—its derivative.
This paper described BreadCrumbs, our system that let a
mobile device track this trend of connectivity quality as its
owner moves around the world. BreadCrumbs maintains a
personalized mobility history on the device, and tracks the
APs encountered at different locations. BreadCrumbs also
probes the application-level quality—bandwidth and latency
to the Internet—of the open connections the device encoun-
ters.

Together, the predictions of the mobility model and the
AP quality database yield connectivity forecasts. These fore-
casts let applications take domain-specific action in response
to upcoming network conditions. We evaluated the efficacy
of these forecasts with several weeks of real-world usage.
BreadCrumbs was able to predict downstream bandwidth
at the next step of the model within 10 KB/s for over 50%
of the evaluation period, and within 50 KB/s for over 80%
of the time, with only one week of training data to build
the model and AP quality database. We also evaluated how
three example applications, with minimal modification, can
utilize connectivity forecasts. Our results found that with as
little as one week training time, BreadCrumbs can provide
improved performance while reducing power consumption,
a critical concern for resource-constrained mobile devices.
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