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Breadth first search on massive graphs∗

Deepak Ajwani † Roman Dementiev ‡ Ulrich Meyer † Vitaly Osipov †

Abstract

We consider the problem of Breadth First Search (BFS) traversal on massive sparse undi-
rected graphs. Despite the existence of simple linear time algorithms in the RAM model, it
was considered non-viable for massive graphs because of the I/O cost it incurs. Munagala and
Ranade [29] and later Mehlhorn and Meyer [27] gave efficient algorithms (refered to as MR BFS
and MM BFS, respectively) for computing BFS level decompositions in an external memory
model. Ajwani et al. [3] implemented MR BFS and the randomized variant of MM BFS using
the external memory library STXXL and gave a comparative study of the two algorithms on vari-
ous graph classes. In this paper, we review and extend that result demonstrating the effectiveness
and viability of the BFS implementations on various other synthetic and real world benchmarks.
Furthermore, we present the implementation of the deterministic variant of MM BFS and show
that in most cases, it outperforms the randomized variant.

1 Introduction

Breadth first search is a fundamental graph traversal strategy. It can also be viewed as computing
single source shortest paths on unweighted graphs. It decomposes the input graph G = (V, E) of
n nodes and m edges into at most n levels where level i comprises all nodes that can be reached
from a designated source s via a path of i edges, but cannot be reached using less than i edges.

Large graphs arise naturally in many applications and very often we need to traverse these
graphs for solving the inherent optimization problems. Typical real-world applications of BFS
on large graphs (and some of its generalizations like shortest paths or A∗) include crawling and
analyzing the WWW [30, 32], route planning using small navigation devices with flash memory
cards [22], state space exploration [20], etc. Since most of the large real world graphs are sparse,
we mainly concentrate on the problem of computing a BFS level decomposition for massive sparse
undirected graphs.

1.1 Computational model

Traditionally, the performance of algorithms has been analyzed in the RAM model, where it is
assumed that there is an unbounded amount of memory with unit cost for accessing any location.
Unfortunately, the predicted performance of algorithms on this model significantly deviates from
their actual run-times for large graphs, which do not fit in the main memory and thus, have to be
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stored on hard-disk(s). While modern processor speeds are measured in GHz, average hard disk
latencies are in the range of a few milliseconds [23]. Hence, the cost of accessing a data element (an
I/O) from the hard-disk is around a million times more than the cost of an instruction. Therefore,
it comes as no surprise that the runtimes of even basic graph traversal strategies on these graphs are
I/O dominant. Since the RAM model does not capture the I/O costs, we consider the commonly
accepted external memory model by Aggarwal and Vitter [2]. It assumes a two level memory
hierarchy with a fast internal memory and a slow external memory. We define M (< n + m) to be
the number of vertices/edges that fit into internal memory, and B to be the number of vertices/edges
that fit into a disk block. In an I/O operation, one block of data is transferred between disk and
internal memory. The measure of performance of an algorithm is the number of I/Os it performs.
The number of I/Os needed to read N contiguous items from disk is scan(N) = Θ(N/B). The
number of I/Os required to sort N items is sort(N) = Θ((N/B) logM/B(N/B)). For all realistic
values of N , B, and M , scan(N) < sort(N) ¿ N . Advanced models include parallel disks [36] or
hide the parameters M and B from the algorithms (cache-oblivious model [21]). A comprehensive
list of results for the I/O-model and memory hierarchies have been obtained – for recent surveys
see [15, 28, 35] and the references therein.

1.2 Algorithms

BFS is well-understood in the RAM model. There exists a simple linear time algorithm [14]
(hereafter refered as IM BFS) for the BFS traversal in a graph. IM BFS keeps a set of appropriate
candidate nodes for the next vertex to be visited in a FIFO queue Q. Furthermore, in order to
find out the unvisited neighbours of a node from its adjacency list, it marks the nodes as either
visited or unvisited. Unfortunately as reported in [3], even when half of the graph fits in the
main memory, the running time of this algorithm deviates significantly from the predicted RAM
performance (hours as compared to minutes) and for massive graphs, such approaches are simply
non-viable. As discussed before, the main cause for the catastrophic performance of this algorithm
on massive graphs is the number of I/Os it incurs. Remembering visited nodes needs Θ(m) I/Os
in the worst case and the unstructured indexed access to adjacency lists may result in Θ(n) I/Os.

The algorithm by Munagala and Ranade [29] (refered as MR BFS) ignores the second problem
but addresses the first by exploiting the fact that the neighbours of a node in BFS level i are all
in BFS levels i + 1, i or i − 1. Thus, the set of nodes in level i + 1 can be computed by removing
all nodes in level i and i − 1 from the neighbours of nodes in level i. The resulting worst-case
I/O-bound is O(n + sort(n + m)).

Mehlhorn and Meyer suggested another approach [27] (MM BFS) which involves a preprocessing
phase to restructure the adjacency lists of the graph representation. It groups the vertices of the
input graph into disjoint clusters of small diameter and stores the adjacency lists of the nodes in
the cluster contiguously on the disk. Thereafter, an appropriately modified version of MR BFS
is run. MM BFS exploits the fact that whenever the first node of a cluster is visited then the
remaining nodes of this cluster will be reached soon after. By spending only one random access
(and possibly, some sequential access depending on cluster size) in order to load the whole cluster
and then keeping the cluster data in some efficiently accessible data structure (pool) until it is all
used up, on sparse graphs the total amount of I/O can be reduced by a factor of up to

√
B. The

neighouring nodes of a BFS level can be computed simply by scanning the pool and not the whole
graph. Though some edges may be scanned more often in the pool, unstructured I/O in order to
fetch adjacency lists is considerably reduced, thereby saving the total number of I/Os.
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The preprocessing of MM BFS comes in two variants: randomized and deterministic (refered
as MM BFS R and MM BFS D, respectively). In the randomized variant, the input graph is
partitioned by choosing master nodes independently and uniformly at random with a probability

1√
B

and running a BFS like routine with joint adjacency list queries from these master nodes “in

parallel”.
The deterministic variant first builds a spanning tree for G and then constructs an Euler tour

T for the tree. Next, each node v is assigned the rank in T of the first occurrence of the node
(by scanning T and a sorting step). We denote this value as r(v). T has length 2V − 1; so
r(v) ∈ [0; 2V − 2]. Note that if for two nodes u and v, the values r(v) and r(u) differ by d, then
d is an upper bound on the distance between their BFS level. Therefore, we chop the Euler tour
into chunks of

√
B nodes and store the adjacency lists of the nodes in the chunk consecutively as

a cluster.
The randomized variant incurs an expected number of O(

√

n · (n + m) · log(n)/B+sort(n+m))
I/Os, while the deterministic variant incurs O(

√

n · (n + m)/B + sort(n + m)) + ST (n + m)) I/Os,
where ST (n + m) is the number of I/Os required for computing a spanning tree of a graph with n
nodes and m edges. Arge et al. [4] show an upper bound of O((1+log log (D · B · n/m))·sort(n+m))
I/Os for computing such a spanning tree.

1.3 Related Work

Brodal et al. [8] gave a cache oblivious algorithm for BFS achieving the same worst case I/O bounds
as MM BFS D. Their preprocessing is similar to that in MM BFS D, except that it produces a
hierarchical clustering using the cache oblivious algorithms for sorting, spanning tree, Euler tour
and list ranking. The BFS phase uses a data-structure that maintains a hierarchy of pools and
provides the set of neighbours of the nodes in a BFS level efficiently.

Other external memory algorithms for BFS are restricted to special graphs classes like trees
[11], grid graphs [5], planar graphs [26], outer-planar graphs [24], and graphs of bounded tree width
[25].

Ajwani et al. [3] gave the first empirical comparison between MR BFS and MM BFS R and
concluded the following:

• Both the external memory BFS algorithms MR BFS and MM BFS R are significantly better
(minutes as compared to hours) than the RAM BFS algorithm, even if half the graph resides
in the internal memory.

• The usage of these algorithms along with disk parallelism and pipelining can alleviate the I/O
bottleneck of BFS on many large sparse graph classes, thereby making the BFS computation
viable for these graphs. As a real world example, the BFS level decomposition of an external
web-crawl based graph [37] of around 130 million nodes and 1.4 billion edges was computed
in less than 4 hours using a single disk and 2.3 hours using four disks.

• MR BFS performs better than MM BFS R on small-diameter random graphs saving a few
hours. However, the better asymptotic worst-case I/O complexity of MM BFS helps it to
outperform MR BFS for large diameter sparse graphs (computing in a few days versus a few
months), where MR BFS incurs close to its worst case of Ω(n) I/Os.

Independently, Frederik Christiani [13] gave a prototypical implementation of MR BFS, MM BFS R
as well as MM BFS D and reached similar conclusions regarding the comparative performance
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between MR BFS and MM BFS R. Some of the subroutines used in their algorithms are cache-
oblivious. Their implementation of MR BFS and MM BFS R is competetive and on some graph
classes even better than [3]. Since their main goal was to design cache oblivious BFS, they used
cache oblivious algorithms for sorting, minimum spanning tree and list ranking even for MM BFS D.
As we discuss later, these algorithms slow down the deterministic preprocessing, even though they
have the same asymptotic complexity as their external memory counterparts.

1.4 Our Contribution

Our new contributions in this paper are the following:

• We improve upon the MR BFS and MM BFS R implementation described in [3] by reducing
the computational overhead associated with each BFS level, thereby improving the results
for large diameter graphs.

• We present the design and implementation of MM BFS D. This involved experimenting with
various external memory connected component, spanning tree and list ranking algorithms
used as a subroutine for the deterministic preprocessing.

• We conduct a comparative study of MM BFS D with other external memory BFS algorithms
and show that for most graph classes, MM BFS D outperforms MM BFS R.

• We compare our BFS implementations with Christiani’s implementations [13], which have
some cache-oblivious subroutines. This gives us some idea of the loss factor that we will have
in the performance of cache-oblivious BFS.

• We propose a heuristic for maintaining the pool in the BFS phase of MM BFS. This heuristic
improves the runtime of MM BFS in practice, while preserving the worst case I/O bounds of
MM BFS.

• The graph generator tools have been extended to generate graphs in the DIMACS shortest
path challenge format and our BFS implementations now support the DIMACS format as
well.

• Putting everything together, we show that BFS traversals can also be done on moderate and
large diameter graphs in a few hours, which would have taken the implementations of [3] and
[13] several days and IM BFS several months. Also, on low diameter graphs, the time taken
by our improved MR BFS is around one-third of that in [3]. Towards the end, we summarize
our results (Table 11) by giving the state of the art implementations of external memory BFS
on different graph classes.

Our implementations can be downloaded from http://www.mpi-sb.mpg.de/∼ajwani/em bfs/.

2 Implementation Design

2.1 Graph generators and BFS decomposition verifier

We designed and implemented I/O efficient graph generators for generating large graphs in the
DIMACS shortest path challenge format. Our generator tool is now a part of the benchmark for
the challenge. The graph classes generated by our tools include:
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• Random graph: On a n node graph, we randomly select m edges with replacement (i.e., m
times selecting a source and a target node such that the source and the target are different
nodes) and remove the duplicate edges to obtain random graphs.

• MR worst graph: This graph consists of B levels, each having n
B nodes, except the level 0

which contains only the source node. The edges are randomly distributed between consecutive
levels, such that these B levels approximate the BFS levels. The initial layout of the nodes
on the disk is random. This graph causes MR BFS to incur its worst case of Ω(n) I/Os.

• Grid graph (x × y): It consists of a x × y grid, with edges joining the neighouring nodes in
the grid.

• MM BFS worst graph: This graph [7] causes MM BFS R to incur its worst case of Θ(n ·
√

log n
B + sort(n)) I/Os.

• Line graphs: A line graph consists of n nodes and n−1 edges such that there exists two nodes
u and v, with the path from u to v consisting of all the n − 1 edges. We took two different
initial layouts - simple, in which all blocks consists of B consecutively lined nodes and the
random in which the arrangement of nodes on disk is given by a random permutation.

• Web graph: As an instance of a real world graph, we consider an actual crawl of the world
wide web [37], where an edge represents a hyperlink between two sites. This graph has around
130 million nodes and 1.4 billion edges. It has a core which consists of most of its nodes and
behaves like random graph. In our graph generator tool, we include a translator for converting
this graph into the DIMACS format.

For an I/O-efficient random permutation needed in the generation process of many graphs, we
use [31]. The results were verified by an I/O efficient routine. More details for the graph generators,
graph classes and BFS verifier routine can be found in [3].

2.2 Design issues in MR BFS and MM BFS R

STXXL: We use the external memory library STXXL [16, 18] for our implementations. Although
we use some special features of this library, we believe that modulo some constants, the results
should carry over to other external memory libraries as well. The key component of STXXL used
by us is the stream sorter, which runs in two phases - Runs Creator (RC) Phase, in which the
input vector/stream is divided into chunks of M elements and each chunk is sorted within itself,
thereafter written to the disk space and Runs Merger (M) Phase, in which the first blocks of
all the sorted chunks are brought to internal memory and merged there to produce the output
stream which does not necessarily have to be stored on the disk and can be pipelined to the next
algorithmic routine.

Data Structures: The input graph is stored as two vectors containing nodes and edges with
iterators from nodes to the locations in the edge vector marking the beginning of their adjacency
array. Similarly, the output BFS level decomposition is also kept as two vectors containing the BFS
level and the nodes in the level. The partitioned input graph is stored as three vectors containing
the cluster indices, nodes and adjacency arrays, respectively. The iterators between them mark the
beginning of clusters and the beginning of adjacency arrays.
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Although we reduced the amount of information kept with node and edge elements in this data-
structure, our implementation is still generic: it can handle graphs with arbitrary number of nodes
and the graph template is basic and can be used for other graph algorithms as well.

Pipelining: The key idea behind pipelining is to connect a given sequence of algorithms with
an interface so that the data can be passed-through from one algorithm to another without needing
any external memory intermediate storage. Our BFS implementations make extensive use of this
feature. For more details on the usage of pipelining as a tool to save I/Os, refer to [17]. More
details about the data-structures and the usage of pipelining in external memory BFS algorithms
can be found in [3].

2.3 Improvements in the previous implementations of MR BFS and MM BFS R

The computation of each level of MR BFS involves sorting and scanning of neighbours of the
nodes in the previous level. Even if there are very few elements to be sorted, there is a certain
overhead associated with initializing the external sorters. In particular, while the STXXL stream
sorter (with the flag DSTXXL SMALL INPUT PSORT OPT) does not incur an I/O for sorting
less than B elements, it still requires to allocate some memory and does some computation for
initialization. This overhead accumulates over all levels and for large diameter graphs, it dominates
the running time. This problem is also inherited by the BFS phase of MM BFS. Since in the
pipelined implementation of [3], we do not know in advance the exact number of elements to be
sorted, we can’t switch between the external and the internal sorter so easily. In order to get around
this problem, we first buffer the first B elements and initialize the external sorter only when the
buffer is full. Otherwise, we sort it internally.

In addition to this, we make the graph representation for MR BFS more compact. Except the
source and the destination node pair, no other information is stored with the edges.

2.4 Designing MM BFS D

There are three main components for the deterministic variant of MM BFS:

• Sorting

• Connected component/ Minimum spanning tree

• List ranking

The MM BFS D implementation of Frederik Christiani in [13] uses the cache-oblivious lazy funnel-
sort algorithm [10] (CO sort). As Table 1 shows, the STXXL stream sort (STXXL sort) proved to
be much faster on external data. This is in line with the observations of Brodal et al. [9], where
it is shown that an external memory sorting algorithm in the library TPIE [6] is better than their
carefully implemented cache-oblivious sorting algorithm, when run on disk.

Regarding connected components and minimum spanning forest, Christiani’s implementations
[13] use the cache oblivious algorithm given in [1] (CO MST). Empirically, we found that the
external memory implementation of [19] (EM MST) performs better than the one in [1].

Christiani uses the algorithm in [12] for list ranking the Euler tour. We adapted the algorithm
in [33] to the STXXL framework. While Christiani’s cache oblivious list ranking implementation
takes around 14.3 hours for ranking a 229 element random list using 3 GB RAM, our tuned external
memory implementation takes less than 40 minutes in the same setting.
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n CO sort STXXL sort

256 × 106 21 8

512 × 106 46 13

1024 × 106 96 25

Table 1: Timing in minutes for sorting n elements using CO sort and with using STXXL sort

Graph class n m Long clusters Random clusters

Grid (214 × 214) 228 229 51 28

Table 2: Time taken (in hours) by the BFS phase of MM BFS D with long and random clustering

To summarize, our STXXL based implementation of MM BFS D uses our adaptation of [33]
for list ranking the Euler tour around the minimum spanning tree computed by EM MST. The
Euler tour is then chopped into sets of

√
B consecutive nodes which after duplicate removal gives

the requisite graph partitioning. The BFS phase remains similar to MM BFS R.

Quality of the spanning tree

The quality of the spanning tree computed can have a significant impact on the clustering and the
disk layout of the adjacency list after the deterministic preprocessing, and consequently on the BFS
phase. For instance, in the case of grid graph, a spanning tree containing a list with elements in
a snake-like row major order produces long and narrow clusters, while a “random” spanning tree
is likely to result in clusters with low diameters. Such a “random” spanning tree can be attained
by assigning random weights to the edges of the graph and then computing a minimum spanning
tree or by randomly permuting the indices of the nodes. The nodes in long and narrow clusters
tend to stay longer in the pool and therefore, their adjacency lists are scanned more often. This
causes the pool to grow external and results in larger I/O volume. On the other hand, low diameter
clusters are evicted from the pool sooner and are scanned less often reducing the I/O volume of
the BFS phase. Consequently as Table 2 shows, the BFS phase of MM BFS D takes only 28 hours
with clusters produced by “random” spanning tree, while it takes 51 hours with long and narrow
clusters.

2.5 A Heuristic for maintaining the pool

As noted in Section 1.2, the asymptotic improvement and the performance gain in MM BFS over
MR BFS is obtained by decomposing the graph into low diameter clusters and maintaining an
efficiently accessible pool of adjacency lists which will be required in the next few levels. Whenever
the first node of a cluster is visited during the BFS, the remaining nodes of this cluster will be
reached soon after and hence, this cluster is loaded into the pool. For computing the neighbours
of the nodes in the current level, we just need to scan the pool and not the entire graph. Efficient
management of this pool is thus, crucial for the performance of MM BFS. In this section, we
propose heuristics for efficient management of the pool, while keeping the worst case I/O bounds
of MM BFS.
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External adjacency lists :
STXXL vector

Pool cache :
STXXL vector-cache

External Pool : stxxl vector
Internal Pool :
multimap

Figure 1: Schema depicting the implementation of our heuristic

For many large diameter graphs, the pool fits into the internal memory most of the time.
However, even if the number of edges in the pool is not so large, scanning all the edges in the pool
for each level can be computationally quite expensive. Hence, we keep a portion of the pool that
fits in the internal memory as a multi-map hash table. Given a node as a key, it returns all the
nodes adjacent to the current node. Thus, to get the neighbours of a set of nodes we just query
the hash function for those nodes and delete them from the hash table. For loading the cluster, we
just insert all the adjacency lists of the cluster in the hash table, unless the hash table has already
O(M) elements.

Recall that after the deterministic preprocessing, the elements are stored on the disk in the
order in which they appear on the Euler tour around a spanning tree of the input graph. The Euler
tour is then chopped into clusters with

√
B elements (before the duplicate removal) ensuring that

the maximum distance between any two nodes in the cluster is at most
√

B − 1. However, the fact
that the contiguous elements on the disk are also closer in terms of BFS levels is not restricted to
intra-cluster adjacency lists. The adjacency lists that come alongside the requisite cluster will also
be required soon and by caching these other adjacency lists, we can save I/Os in the future. This
caching is particularly beneficial when the pool fits in internal memory. Note that we still load
the

√
B node clusters in the pool, but keep the remaining elements of the block in the pool-cache.

For the line graphs, this means that we load the
√

B nodes in the internal pool, while keeping the
remaining O(B) adjacency lists which we get in the same block, in the pool-cache, thereby reducing
the I/O complexity for the BFS traversal on line graphs to the computation of a spanning tree.

We represent the adjacency lists of nodes in the graph as a STXXL vector. STXXL already
provides a fully associative vector-cache with every vector. Before doing an I/O for loading a block
of elements from the vector, it first checks if the block is already there in the vector-cache. If so,
it avoids the I/O loading the elements from the cache instead. Increasing the vector-cache size of
the adjacency list vector with a layout computed by the deterministic preprocessing and choosing
the replacement policy to be LRU provides us with an implementation of the pool-cache. Figure 1
depicts the implementation of our heuristic.

3 Experiments

Configuration

We have implemented the algorithms in C++ using the g++ 4.02 compiler (optimization level -O3)
on the GNU/Linux distribution with a 2.6 kernel and the external memory library STXXL version
0.77. Our experimental platform has two 2.0 GHz Opteron processors (we use only one), 3 GB of
RAM, 1 MB cache and 250 GB Seagate Baracuda hard-disks [34]. These hard-disks have 8 MB
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buffer cache. The average seek time for read and write is 8.0 and 9.0 msec, respectively, while the
sustained data transfer rate for outer zone (maximum) is 65 MByte/s. This means that for graphs
with 228 nodes, n random read and write I/Os will take around 600 and 675 hours, respectively. In
order to compare better with the results of [3], we restrict the available memory to 1 GB for our
experiments and use only one processor and one disk.

Note that some of the results shown in this section have been interpolated using the symmetry
in the graph structure.

Comparing MM BFS R

Graph class n m MM BFS R of [3] Improved MM BFS R
Phase 1 Phase 2 Phase 1 Phase 2

Random 228 230 5.1 4.5 5.2 3.8
MM worst ∼ 4.3 · 107 ∼ 4.3 · 107 6.7 26 5.2 18
MR worst 228 230 5.1 45 4.3 40

Grid (214 × 214) 228 229 7.3 47 4.4 26
Simple Line 228 228 − 1 85 191 55 2.9

Random Line 228 228 − 1 81 203 64 25
Webgraph ∼ 1.4 · 108 ∼ 1.2 · 109 6.2 3.2 5.8 2.8

Table 3: Timing in hours taken for BFS by the two MM BFS R implementations

Graph class n m MM BFS R of [3] Improved MM BFS R
I/O wait Total I/O wait Total

MM worst ∼ 4.3 · 107 ∼ 4.3 · 107 13 26 16 18
Grid (214 × 214) 228 229 46 47 24 26

Simple Line 228 228 − 1 0.5 191 0.05 2.9
Random Line 228 228 − 1 21 203 21 25

Table 4: I/O wait time and the total time in hours for the BFS phase of the two MM BFS R
implementations on moderate to large diameter graphs

Table 3 shows the improvement that we achieved in MM BFS R. As Table 4 shows, these
improvements are achieved by reducing the computation time per level in the BFS phase. On
I/O bound random graphs, the improvement is just around 15%, while on computation bound line
graphs with random disk layout, we improve the running time of the BFS phase from around 200
hours to 25 hours. Our implementation of the randomized preprocessing in the case of the simple
line graphs additionally benefits from the way clusters are laid out on the disk as this layout reflects
the order in which the nodes are visited by the BFS. This reduces the total running time for the
BFS phase of MM BFS R on simple line graphs from 191 hours to 2.9 hours. The effects of caching
are also seen in the I/O bound BFS phase on the grid graphs, where the I/O wait time decreases
from 46 hours to 24 hours.

9



Comparing MR BFS

Graph class n m MR BFS of [3] Improved MR BFS
I/O wait Total I/O wait Total

Random 228 230 2.4 3.4 1.2 1.4
Webgraph ∼ 1.4 · 108 ∼ 1.2 · 109 3.7 4.0 2.5 2.6
MM worst ∼ 4.3 · 107 ∼ 4.3 · 107 25 25 13 13
Simple line 228 228 − 1 0.6 10.2 0.06 0.4

Table 5: Timing in hours taken for BFS by the two MR BFS implementations

Improvements in MR BFS are shown in the Table 5. On random graphs where MR BFS per-
forms better than the other algorithms, we improve the runtime from 3.4 hours to 1.4 hours.
Similarly for the web-crawl based graph, the running time reduces from 4.0 hours to 2.6 hours. The
other graph class where MR BFS outperforms MM BFS R is the MM worst graph and here again,
we improve the performance from around 25 hours to 13 hours.

Penalty for cache obliviousness

We compared the performance of our implementation of MM BFS D with Christiani’s implemen-
tation [13] based on cache-oblivious subroutines. Table 6 show the results of the comparison on
the two extreme graph classes for the preprocessing and the BFS phase respectively. We observed
that on both graph classes, the preprocessing time required by our implementation is significantly
less than the one by Christiani.

We suspect that these performance losses are inherent in cache-oblivious algorithms to a certain
extent and will be carried over to the cache-oblivious BFS implementation.

Graph class Christiani’s Our
implementation implementation

Random graph 107 5.2

Line graph with
random layout on disk 47 3.3

Table 6: Timing in hours for computing the deterministic preprocessing of MM BFS by the two
implementations of MM BFS D

Comparing MM BFS D with other external memory BFS algorithm implemen-

tations

Table 7 shows the performances of our implementations of different external memory BFS algo-
rithms. While MR BFS performs better than the other two on random graphs saving a few hours,
MM BFS D outperforms MR BFS and MM BFS R on line graphs with random layout on disk
saving a few months and a few days, respectively. On the later graph class, the speed up factor

10



Graph class MR BFS MM BFS R MM BFS D

Random graph 1.4 8.9 8.7

Line graph with
random layout on disk 4756 89 3.6

Table 7: Timing in hours taken by our implementations of different external memory BFS algo-
rithms.

Graph class Randomized Deterministic

Random graph 500 630

Line graph with
random layout on disk 10500 480

Table 8: I/O volume (in GB) of the two preprocessing variants of MM BFS.

has been improved from around 50 between MR BFS and MM BFS R to around 1300 between
MR BFS and MM BFS D. Line graphs with random disk layouts are an example of a tough input
for external memory BFS as they not only have a large diameter (more number of BFS levels), but
also their layout on the disk makes the random accesses to adjacency lists very costly. MM BFS D
also performs better on graphs with moderate diameter.

On large diameter sparse graphs such as line graphs, the randomized preprocessing scans the
graph Ω(

√
B) times, incurring an expected number of O(

√

n · (n + m) · log(n)/B) I/Os. On the
other hand, the I/O complexity of the deterministic preprocessing is O((1 + log log D · B · n/m) ·
sort(n + m)), dominated by the spanning tree computation. Note that the Euler tour computation
followed by list ranking only requires sort(m) I/Os. This asymptotic difference shows in the I/O
volume of the two preprocessing variants (Table 8), thereby explaining the better performance
of the deterministic preprocessing over the randomized one (Table 9). On low diameter random
graphs, the diameter of the clusters is also small and consequently, the randomized variant scans
the graph fewer times leading to less I/O volume.

As compared to MM BFS R, MM BFS D provides dual advantages: First, the preprocessing
itself is faster and second, for most graph classes, the partitioning is also more robust, thus lead-
ing to better worst-case runtimes in the BFS phase. The later is because the clusters generated
by the deterministic preprocessing are of diameter at most

√
B, while the ones by randomized

preprocessing can have a larger diameter.

Graph class Randomized Deterministic

Random graph 5.2 5.2

Line graph with
random layout on disk 64 3.2

Table 9: Time (in hours) required for the two preprocessing variants.
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Graph class n m MM BFS D
Phase1 Phase2

Random 228 230 5.2 3.4
Webgraph ∼ 1.4 · 108 ∼ 1.2 · 109 3.3 2.4

Grid (221 × 27) 228 ∼ 229 3.6 0.4
Grid (227 × 2) 228 ∼ 228 + 227 3.2 0.6
Simple Line 228 228 − 1 2.6 0.4

Random Line 228 228 − 1 3.2 0.5

Table 10: Time taken (in hours) by the two phases of MM BFS D with our heuristic

Graph class n m Current best results
Total time Implementation

Random 228 230 1.4 Improved MR BFS
Webgraph ∼ 1.4 · 108 ∼ 1.2 · 109 2.6 Improved MR BFS

Grid (214 × 214) 228 229 21 MM BFS D w/ heuristic
Grid (221 × 27) 228 ∼ 229 4.0 MM BFS D w/ heuristic
Grid (227 × 2) 228 ∼ 228 + 227 3.8 MM BFS D w/ heuristic
Simple Line 228 228 − 1 0.4 Improved MR BFS

Random Line 228 228 − 1 3.6 MM BFS D w/ heuristic

Table 11: The best total running time (in hours) for BFS traversal on different graphs with the
best external memory BFS implementations

Results with heuristic

Table 10 shows the results of MM BFS D with our heuristic on different graph classes. On moderate
diameter grid graphs as well as large diameter random line graphs, MM BFS D with our heuristic
provides the fastest implementation of BFS in the external memory.

Summary

The current state of the art implementations of external memory BFS on different graph classes
are shown in Table 11.

Our improved MR BFS implementation outperforms the other external memory BFS imple-
mentations on low diameter graphs or when the nodes of a graph are arranged on the disk in the
order required for BFS traversal. For random graphs with 256 million nodes and a billion edges,
our improved MR BFS performs BFS in just 1.4 hours. Similarly, improved MR BFS takes only
2.6 hours on webgraphs (whose runtime is dominated by the short diameter core) and 0.4 hours on
line graph with contigous layout on disk. On moderate diameter square grid graphs, the total time
for BFS is brought down from 54.3 hours for MM BFS R implementation in [3] to 21 hours for
our implementation of MM BFS D with heuristics, an improvement of more than 60%. For large
diameter graphs like random line graphs, MM BFS D along with our heuristic computes the BFS
in just about 3.6 hours, which would have taken the MM BFS R implementation in [3] around 12

12



days and MR BFS and IM BFS a few months, an improvement by a factor of more than 75 and
1300, respectively.

4 Conclusion

We implemented the deterministic variant of MM BFS and showed its comparative analysis with
other external memory BFS algorithms. We propose a heuristic that improves upon the results of
MM BFS D. Together with our earlier implementations of MR BFS and MM BFS R, it provides
viable BFS traversal on different classes of massive sparse graphs.
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