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Abstract. This paper summarizes the first international challenge on
steganalysis called BOSS (an acronym for Break Our Steganographic Sys-

tem). We explain the motivations behind the organization of the contest,
its rules together with reasons for them, and the steganographic algo-
rithm developed for the contest. Since the image databases created for
the contest significantly influenced the development of the contest, they
are described in a great detail. Paper also presents detailed analysis of
results submitted to the challenge. One of the main difficulty the partici-
pants had to deal with was the discrepancy between training and testing
source of images – the so-called cover-source mismatch, which forced
the participants to design steganalyzers robust w.r.t. a specific source
of images. We also point to other practical issues related to designing
steganographic systems and give several suggestions for future contests
in steganalysis.

1 BOSS: Break Our Steganographic System

During the years 2005 and 2007, the data-hiding community supported by the
European Network of Excellence in Cryptology (ECRYPT) launched two water-
marking challenges, BOWS [13] and BOWS-2 [1] (abbreviations of Break Our

Watermarking System). The purpose of participants of both challenges was to
break watermarking systems under different scenarios. The purpose of organizers
was not only to assess the robustness and the security of different watermarking
schemes in the environment similar to real application, but to increase the in-
terest in watermarking and to boost the research progress within the field. Both
watermarking contests showed to be popular (BOWS/BOWS2 played more than
300/150 domains and 10/15 participants respectively were ranked), and novel
approaches towards breaking watermarking systems were derived during them.
This, combined with a thrill associated with organization and participation, in-
spired us to organize the BOSS (Break Our Steganographic System) challenge.

The most important motivation for the contest was to investigate whether
content-adaptive steganography improves steganographic security for empirical



covers. For the purpose of this contest, a new spatial-domain content-adaptive
algorithm called HUGO (Highly Undetectable steGO) was invented [12]. The fact
that in adaptive steganography the selection channel (placement of embedding
changes) is publicly known, albeit in a probabilistic form, could in theory be
exploited by an attacker. Adaptive schemes introduce more embedding changes
than non-adaptive schemes because some pixels are almost forbidden from being
modified, which causes an adaptive scheme to embed with a larger change rate
than a non-adaptive one. On the other hand, the changes are driven to hard-
to-model regions, because the change rate is not an appropriate measure of
statistical detectability as it puts the same weight to all pixels. As compared
by the state-of-the-art available in mid 2010, HUGO was largely resistant to
steganalysis up to 0.4 bits per pixel in 512× 512 grayscale images.

The other incentive for organizing the challenge was a hope to encourage the
development of new approaches toward steganalysis, pointing to important dead-
locks in steganalysis and hopefully finding solutions to them, finding weaknesses
of the proposed steganographic system, and finally raising interest in steganaly-
sis and steganography. While running the contest, we became aware of a similar
contest organized within the computer vision community [7].

This paper serves as an introduction to a series of papers [4,5,6] describing
the attacks on HUGO. Here, we describe the contest, image databases, and the
HUGO algorithm to give the papers uniform notation and background.

1.1 Requirements and rules

In order for BOSS challenge to be attractive and fruitful for the community, we
have obeyed the following conditions and limitations.

– All participants were ranked by a scalar criterion, the accuracy of detection
on a database of 1, 000 512× 512 grayscale images called BOSSRank. Each
image in the BOSSRank database was chosen to contain secret message of
size 104, 857 bits (0.4 bits per pixel) with probability 50% (naturally the list
of stego and cover images was kept secret).

– In order to ensure that all participants start with the same degree of knowl-
edge about the steganographic system used in the contest, we started the
contest with a warm-up phase on June 28, 2010. The very same day the
steganographic algorithm HUGO was presented at the International Hid-
ing Conference 2010. For the warm-up phase, we also released the source
code of the embedding algorithm. To simplify the steganalysis, a training
database of 7, 518 512× 512 grayscale images (the BOSSBase) was released
along with an implementation of the state-of-the-art feature set (the Cross
Domain Features (CDF) [10]) for blind steganalysis. The motivation leading
to supply this material, especially the description and implementation of the
embedding algorithm, came from the Kerckhoffs’ principle.



– We wanted all participants to have an easy access to the score of their predic-
tions, yet prevent them to perform an oracle attack4 on the evaluation sys-
tem. To achieve both requirements, the hosting server http://www.agents.
cz/boss allowed to upload a prediction on BOSSRank once every three days
for every IP address. Moreover, the provided score was computed from a
subset of 900 randomly selected images. If the detection accuracy was above
65%, the participants could enter the the Hall of Fame.

– To impose a deadline for the participants, the challenge was divided into
two phases. The warm-up phase started on June 28, 2010 and ended on
September 9, 2010 by publishing the BOSSRank image database used to
evaluate the participants. This was immediately followed by a four-month-
long period, during which the challenge took its place. The challenge was
originally scheduled to end on December 15, 2010, but it was later extended
to January 10, 2011.

1.2 Source of cover images for BOSS

The BOSS webpage offered two databases of images, the BOSSBase and the
BOSSRank.

BOSSBase was composed of 9, 074 never-compressed cover images coming
from 7 different cameras.5 This database was provided as the source of cover
images used for the development of steganalyzers. All images were created from
full-resolution color images in RAW format (CR2 or DNG). The images were
first resized so that the smaller side was 512 pixels long, then they were cropped
to 512 × 512 pixels, and finally converted to grayscale. The whole process was
published in a script along with the original images in RAW format and their
EXIF headers. Table 1 shows the actual number of images for each camera.

The BOSSRank database was composed of 1, 000 512×512 grayscale images
obtained by the same processing script. 482 of them were randomly chosen to
carry the secret payload of approximately 0.4 bpp while keeping the rest without
any payload. Participants did not know that 847 images were obtained by Leica
M9 in RAW format and 153 images came from Panasonic Lumix DMC-FZ50
captured directly in JPEG6 format.

The fact that images in both databases came from slightly different sources
lead to interesting consequences on steganalyzers trained purely on the BOSS-
Base. Although created unintentionally, this cover source mismatch forced the
participants to deal with the situation, where the exact source of cover images
4 A method to reach 100% accuracy by learning the true classification of BOSSRank

from a very large number of carefully constructed predictions.
5 The BOSSBase was released in three phases. On June 28, 2010, the version 0.90

containing 7518 images was released. When the challenged moved to its second phase,
the version 0.92 was released with 9074 images. Finally, the version 1.0 containing
10000 images was released in May 2011.

6 Initially we wanted to use images only from one of the camera in BOSSBase, but
because of the lack of time we had to use another camera that was not in the training
database.



Camera model # of images # of images

in BOSSBase in BOSSRank

Leica M9 2267 847
Canon EOS DIGITAL REBEL XSi 1607 0

PENTAX K20D 1398 0
Canon EOS 400D DIGITAL 1354 0

Canon EOS 7D 1354 0
NIKON D70 1033 0

Canon EOS 40D 61 0
Panasonic Lumix DMC-FZ50 0 153

Table 1. Camera models and number of images in BOSSBase v0.92 and BOSSRank.

is not fully known, a problem which surely happens in practice when detecting
steganographic communication. Designing steganalyzers which are robust to the
cover-source mismatch was one of the main challenges which the participants
very quickly realized.

2 HUGO, the embedding algorithm for BOSS

The HUGO (Highly Undetectable steGO) algorithm used in the contest hides
messages into least significant bits of grayscale images represented in the spatial
domain. It was designed to follow the minimum-embedding-impact principle,
where we embed a given message while minimizing a distortion calculated be-
tween cover and stego images. This strategy allows to decompose its design into
two parts: the design of image model and the coder. The role of the image model
is to generate a space in which the distance between points leads to a good dis-
tortion function. This function is subsequently used by the coder to determine
the exact cover elements that need to be changed in order to communicate the
message. In addition, the optimal coder minimizes the average distortion calcu-
lated over different messages of the same length. The relationship between the
size of the payload (embedding rate) and the average distortion is often called
the rate–distortion bound. Due to recent development in coding techniques [2,3],
we believe that larger gains (in secure payload for example) can be achieved by
designing distortion functions more adaptively to the image content instead of
by changing the coder. From this reason, when designing HUGO we have focused
on the image model.

The image model was largely inspired by the Subtractive Pixel Adjacency
Matrix (SPAM) steganalytic features [11], but steps have been taken to avoid
over-fitting to a particular feature set [9]. The original publication [12] describes
and analyzes several different versions of the algorithm. Here, the most powerful
version used in the BOSS competition is described.



2.1 HUGO’s image model

For the purpose of embedding, each image X = (xi,j) ∈ X � {0, . . . , 255}n1×n2 of
size n1×n2 pixels is represented by a feature vector computed from eight three-
dimensional co-occurrence matrices obtained from differences of horizontally,
vertically, and diagonally neighboring pairs of pixels. The (d1, d2, d3)th entry of
the empirical horizontal co-occurrence matrix calculated from X is defined as

CX,→
d1,d2,d3

=
1

n1(n2 − 2)

��{(i, j)|D→i,j = d1 ∧D→i,j+1 = d2 ∧D→i,j+2 = d3}
�� , (1)

where d1, d2, d3 ∈ [−T,−T +1, . . . , T ], D→i,j = xi,j −xi,j+1 when |xi,j −xi,j+1| ≤
T. Differences greater that T, |xi,j−xi,j+1| > T, are not considered in the model.
Co-occurrence matrices for other directions, k ∈ {←, ↑, ↓,�,�,�,�} are de-
fined analogically. The feature vector defining the image model is (FX,GX

) ∈
R2(2T+1)3 with

FX
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=
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�
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d1,d2,d3
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The embedding distortion between cover X and stego image Y, D(X,Y), is
a weighted L1-norm between their feature vectors:

D(X,Y) =

T�

d1,d2,d3=−T

�
w(d1, d2, d3)

��FX
d1,d2,d3

− FY
d1,d2,d3

�� +
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��GX

d1,d2,d3
−GY

d1,d2,d3

��
�
, (3)

where the weights w(d1, d2, d3) quantify the detectability of an embedding change
in the (d1, d2, d3)th element of F and G. The weights were heuristically chosen
as

w(d1, d2, d3) =

��
d2
1 + d2

2 + d2
3 + σ

�−γ

, (4)

where σ and γ are scalar parameters. For the BOSS challenge, the parameters
were set to σ = 1, γ = 1, and T = 90.

2.2 Embedding

The practical implementation of HUGO embeds the message in pixel’s LSBs
by using Syndrome-Trellis Code (STC), which were shown [3] to achieve near
optimal rate–distortion performance. For the purpose of the challenge, only a
simulator of HUGO with the STC coder replaced by a simulated optimal coder
operating at the rate–distortion bound was released. This coder modifies ith
pixel xi to yi = arg minz∈{xi−1,xi+1} D(X, zX∼i) with probability

pi = Pr(Yi = yi) =
1

Z
e−λD(X,yiX∼i), (5)



where Z is a normalization factor and yiX∼i denotes the cover image whose ith
pixel has been modified to Yi = yi and all other pixels were kept unchanged.
The constant λ ≥ 0 is determined by the condition

m = −
�

i

pi log2 pi + (1− pi) log2(1− pi), (6)

which quantifies the desire the communicate m bit long message.
During embedding, whenever a pixel’s LSB needs to be changed, the sender

has a freedom to choose between a change by +1 or −1 (with the exception of
boundaries of the dynamic range). The sender first chooses the direction that
leads to a smaller distortion (3), embeds the message and then perform the
embedding changes. Moreover, in strategy S2 (the most secure version of the
algorithm), the embedding changes are performed sequentially and the sender
recomputes the distortion at each pixel that is to be modified because some of the
neighboring pixels might have already been changed. This step does not change
the communicated message and enables HUGO to consider mutual interaction
of embedding changes and thus further minimize the statistical detectability.

To illustrate the adaptivity of the algorithm, Figure 1 shows the average
probability of changing each pixel in the Lena image7 estimated by embedding
500 different messages of the same length using the simulated coding algorithm.

0
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0.5

 

 

(a) 0.25 bpp (b) 0.5 bpp

Fig. 1. Probabilities of pixel being changed during embedding in the Lena image.
Probabilities were estimated by embedding 500 different pseudo-random messages with
sizes 0.25/0.5 bits per pixel (bpp).

7 Obtained from http://en.wikipedia.org/wiki/File:Lenna.png.



3 Final results and analysis of the submissions

From a large number of received submissions, only 3 participant teams have
entered the Hall of Fame, namely A. Westfeld, the team of J. Fridrich called
Hugobreakers and finaly the team of G. Gül & F. Kurugollu. Final competition
results and scores: (1) Hugobreakers 80.3%, (2) Gül & Kurugollu 76.8%, and (3)
A. Westfeld 67%. As can be seen from the number of unique IP addresses from
which the BOSSRank image database was downloaded, many other researchers
tried to play BOSS. Figure 2 shows the distribution of 142 unique IP addresses
among different countries.
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Fig. 2. Number of unique IP addresses from which the BOSSRank image database was
downloaded during the contest. Total 142 IP addresses were recorded.

3.1 Cover-source mismatch

The cover-source-mismatch problem refers to a scenario, where images used for
training the steganalyzer do not come from the same source as images w.r.t.
which the steganalyzer is tested. If the source of images is very different and
the steganalyzer is not robust with respect to this discrepancy, this can lead to
decrease of the detection accuracy. By accident, the addition of pictures coming
from a camera which was not used in BOSSBase has caused the cover-source
mismatch problem.. Figure 3 shows the accuracy of submissions entered to the
hall of fame according to the camera model. It can clearly be seen that all
submissions are more accurate on images coming from the Leica M9 than on
images captured by the Panasonic DMC-FZ50. The cover-source mismatch can
be used to partly explain this phenomenon, the other reason might be that
images coming from the DMC-FZ50 are more difficult the classify because of
their contents.

The loss of accuracy is higher for steganalyzers developed by Hugobreakers
than by other groups. It is also interesting to observe that on the beginning of
the challenge, the accuracy of the first submission of Hugobreakers was nearly
random on images coming from the Panasonic camera. From this analysis, it
also appears that Gül & Kurugollu’s steganalyzers were more immune to the
problem of model mismatch than the classifier proposed by Hugobreakers.
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Fig. 3. Scores for each cameras for the different submissions in the Hall of Fame.

To learn from this analysis more, it would be interesting to know the design
of Hugobreakers’ steganalyzers which scored at 71% and 75%, because between
these two submissions, the cover-source mismatch was significantly reduced. Did
this improvement come from training on a more diverse set of images, or it is
due to different features or machine learning algorithm? Moreover, it should be
also investigated, why steganalyzers of A. Westfeld and Gül & Kurugollu were
more robust. Answers to these questions are important for building more robust
and thus practically usable steganalyzers.

3.2 False positives, False negatives

We now extend the analysis from the previous subsection to false positive and
false negative rates defined here as probability of cover image classified as stego
and stego image classified as cover, respectively. Figure 4 shows these rates on
BOSSRank together with rates on each camera separately for two best submis-
sions of Hugobreakers and Gül & Kurugollu. We have noticed that Hugobreakers’
steganalyzer suffered from very high false positive rate on images captured by
the Panasonic camera. Their best submission had an almost 47% false positive
rate, but only 8% false negative rate. Surprisingly, the final steganalyzer of Gül &
Kurugollu did not exhibit such an imbalance between the false positive and false
negative rates. Although the score used during the challenge evaluated overall
accuracy of the steganalyzers, for the practical application, it is very impor-
tant to limit the false positive rate. According to the results, the cover-source
mismatch can make these errors even worse.

3.3 Clustering analysis

Clustering analysis provides an interesting insight, how diverse were participants’
submissions and how they evolved in time. Figure 5 shows an MDS plot of Ham-
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Fig. 4. False positive and false negative rates according to the camera for the four best
submissions.

ming distances between submission vectors from the Hall of fame [8]8. The MDS
plot reveals that the initial detector of Hugobreakers (H 68%) was similar to the
detector of A. Westfeld. Later, as the challenge progressed, Hugobreakers im-
proved their detector and departed from the initial solution. Towards the end of
the contest, Hugobreakers were merely tuning their detector, but no significant
change has been introduced. This can be recognized by many submissions form-
ing a tiny cluster. On the other hand, the detector developed by Gül & Kurugollu
was from the very beginning different from detectors of other participants, as
their submissions form a small compact cluster within the space.

It is interesting to see that Hugobreakers and Gül & Kurugollu have devel-
oped detectors with similar accuracy but independent errors. This is supported
by the fact that only two images out of 1000 were always incorrectly classified
(both images, image no. 174 and image no. 353, were false positives). In other
words for 99.8% of the images there has been at least one submission in which
the image was classified correctly. These suggest that the accuracy can be im-
proved by fusing the classifiers developed in the contest as is shown in the next
section.

8 Multi-Dimensional Scaling (MDS) plot tries to map points from high-dimensional
space to low-dimensional space such that distances between individual points are
preserved.
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score as calculated on 900 random images measured at the time of submission. Final
solutions are labeled by the score calculated w.r.t. the whole BOSSRank database.

4 Mixing strategies

From the informed analysis done in the previous section, we noticed that the
submission h = (h1, . . . , h1000) ∈ {0, 1}1000 9 of Hugobreakers scoring 79% is
more immune to cover-source mismatch and false positive errors than their final
submission h� = (h�1, . . . , h

�
1000) ∈ {0, 1}1000 scoring 80.3%. In order to decrease

the false positive errors of the final solution we fuse the two submissions and
define new vector c = (c1, . . . , c1000) ∈ {0, 1}1000 as:

ci =

�
1 if hi = 1 and h�i = 1 (both submissions call ith image stego)
0 otherwise.

9 Element 0 (1) in the of the submission vector corresponds to cover (stego) prediction.
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Fig. 6. Comparisons between the results of the collusion and the winner of the chal-
lenge.

Figure 6 compares the performances of the collusion vector c with the best
submissions of BOSS. This vector c achieves 81.3%, which is 1% more than the
final score of Hugobreakers. The fused vector is also less sensitive to false positive
errors and cover-source mismatch. Note however that this is an a posteriori
submission using results from the test set and consequently it should be evaluated
on other test sets in order to consider the comparison fair.

5 Conclusion and perspectives

As can be seen from [4,5,6], BOSS challenge has stimulated research and forced
the participants to deal with many challenging problems in steganalysis. The
accuracy of detection of the HUGO algorithm, developed for the challenge, has
increased from 65% to 81% for an embedding capacity of 0.4bpp and further
improvement is to be expected. Moreover, according to the clustering analysis
presented in this report, at least two different steganalyzers with similar perfor-
mance have been developed which can lead to better results after the players
exchange their ideas.

In possible extensions of HUGO, authors should consider avoiding the payload-
limited sender regime, where the same amount of payload is embedded in every
image. Instead, the stegosystem should try to embed different amount of pay-
load based on the image content and possibly spread the payload among multiple
cover objects, i.e., use batch steganography.

Besides that, BOSS challenge pointed out that cover-source mismatch is a
significant problem for practical applications of steganalyzers based on a com-
bination of steganalytic features and machine learning algorithms. We believe
that the future research should focus to mitigate the cover source mismatch to-



gether with a problem of excessively high false positive rates. These findings also
underline the need to develop a met

hodology to compare steganalyzers in a fair manner.
One of the incentives to organize BOSS was to investigate if steganalysis

can exploit the knowledge of probability of pixel changes. For adaptive schemes,
which represent current state-of-the-art in steganography, this probability is not
uniform and can be well estimated from the stego image. Whether this fact
presents any weakness has not been proved yet, but according to our knowledge,
none of the successful participants of BOSS contest was able to utilize such
information.
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