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Abstract: In this study, the breakdown behavior of a calibrated depletion mode AlGaN/GaN tran-
sistor with a nitrogen-implanted gate region was simulated and analyzed using Sentaurus TCAD
simulation, with particular emphasis on the metal contact design rule for a GaN-based high-electron-
mobility transistor (HEMT) device with a variety of 2DEG concentrations grown on a silicon substrate.
The breakdown behaviors for different source/drain contact schemes were investigated using Sen-
taurus simulation. The metal contact positions within the source and drain exhibited different
piezoelectric effects and induced additional polarization charges for the 2DEG (two-dimensional elec-
tron gas). Due to the variation of source/drain contact schemes, electron density has changed the way
to increase the electric field distribution, which in turn increased the breakdown voltage. The electric
field distribution and 2DEG profiles were simulated to demonstrate that the piezoelectric effects at
different metal contact positions considerably influence the breakdown voltage at different distances
between drain metal contacts. When the contact position was far away from the AlGaN/GaN, the
breakdown voltage of the nitrogen-implanted gated device decreased by 41% because of the relatively
low electron density and weak induced piezoelectric effect. This reduction is significant for a 20 µm
source-drain length. The minimum critical field used for the breakdown simulation was 4 MV/cm.
The simulated AlGaN/GaN device exhibits different breakdown behaviors at different metal contact
positions in the drain.

Keywords: AlGaN/GaN; TCAD; HEMT; metal; 2DEG

1. Introduction

Gallium nitride (GaN) is a promising material for next-generation power-switching
devices. GaN is a group III–V material which retains the piezoelectric properties and spon-
taneous properties in nature [1]. GaN devices, such as high-electron-mobility transistors
(HEMTs), metal insulator semiconductor HEMTs, and Schottky barrier diodes, have a high
channel charge density (approximately 1 × 1013 cm−2) at the interface between undoped
GaN and AlGaN [2–6]. GaN has a wide bandgap and high mobility, heat capacity, break-
down field, saturation velocity, relative dielectric constant, and thermal conductivity [7–12].
The GaN-on-Si approach reduces the manufacturing cost of GaN power devices, because
silicon substrates are low cost and have a large number of availabilities with high quality
has attracted more and more of the industry’s attention [13]. However, GaN grown on
Si exhibits some drawbacks, such as a high thermal expansion, defect density, and lattice
mismatch. AlGaN/GaN devices have been considerably improved over the last decade,
and the GaN-on-Si technology is currently widely used in industrial applications.

AlGaN/GaN HEMTs can be used in high-power-density and high-voltage operations
because of their high carrier mobility in the two-dimensional electron gas (2DEG) region.
These HEMTs have a high breakdown voltage because of their high critical field [14]. In
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power electronics applications, the breakdown voltage of high-voltage switching operations
is selected with a margin to ensure stable operation. Present-day high-voltage AlGaN/GaN
HEMTs are designed with a large breakdown voltage margin because their breakdown
behaviors are complex on account of their many leakage paths and lack of avalanche
withstanding capability [14]. A suitable breakdown voltage and the appropriate design
rules for highly reliable AlGaN/GaN-on-Si devices have yet to be determined.

Because GaN can conduct heat, GaN devices can operate at high temperatures and in
harsh environments [15–17]. The optimization of these GaN devices is still in its starting
stages and has not discussed for the effect of piezoelectric polarization and spontaneous
effect on the device performance.

To the best of our knowledge, this study is the first to investigate the breakdown
mechanism of an AlGaN/GaN device with a nitrogen-implanted gate on a Si substrate.
In addition, a Sentaurus simulation was conducted to propose a design rule for the metal
contact position within the drain and determine the breakdown characteristics of the
AlGaN/GaN device [18]. We attempted to identify a suitable metal contact position for
ensuring a high breakdown margin and investigated the electric characteristics of the
aforementioned device.

2. Simulation Device

The simulated AlGaN/GaN device contained a p-type Si <111> substrate. A Si sub-
strate has a higher thermal conductivity than does a GaN substrate and is a suitable material
for cost-effective processes requiring high thermal conductivity. The high thermal conduc-
tivity of a Si substrate allows it to be used to integrate high-power electronics. The GaN
substrate of the simulated device was on a Si substrate with cracks and dislocations on
its surface, which are caused by in-plane lattice constant mismatch [19]. This mismatch
can be decreased using an aluminum nitride (AlN) layer. An epitaxial layer grown on an
AlN nucleation layer reduces the tensile stress induced by a mismatch between Si and GaN
during a cooling process [20,21]. The AlN layer protects the epitaxial layer from wafer
bowing and wafer cracking. The epitaxial layer of the simulated device comprised a
3.9 µm-thick GaN/AlGaN/GaN/AlGaN buffer layer, on which an AlGaN layer and
undoped GaN layer were implanted. The stacked buffer layer was doped uniformly
with a carbon concentration of 1 × 1018 cm−3. This concentration implies that the GaN
buffer can be grown under low-pressure settings at a residual carbon doping concentra-
tion [22]. On the undoped GaN layer, a 27 nm-thick AlGaN barrier layer was deposited,
followed by a silicon nitride (Si3N4) passivation layer. At the interface between the un-
doped GaN layer and the AlGaN layer, a 2DEG (two-dimensional electron gas) channel
region was formed. The 2DEG region shares two charges that are piezoelectrically polar-
ized to induce strain and spontaneously polarized for the formation of bond electroneg-
ativity [23]. An Al mole fraction of approximately 22% was used in the AlGaN barrier
layer to form the 2DEG. Si3N4 was deposited as the gate insulator through ohmic contact
etching and metal deposition. The dimensions of the simulated device were as follows:
gate length = 6 µm, source-to-gate distance = 3.5 µm, field plate length = 4.5 µm and
gate-to-drain distance = 22.5 µm. The source and drain ohmic contact metal were annealed
at 900 ◦C for 25 s. A gate contact was deposited over Si3N4 and followed by oxide as ILD
(interlayer dielectric). On top, the silicon nitride passivation was deposited, and the device
was achieved by nitrogen ion implantation. The schematic of the simulated AlGaN/GaN
device is shown in Figure 1.

The device is 0 to 83 µm in the x-axis and 0 to 7.8 µm in y-axis. The nitrogen ion
implantation profile was obtained by using the TRIM (transport of ions in matter) sim-
ulator [24], which calculates the interaction of matter. By using finite element Synopsys,
Sentaurus software simulations were performed, and the creation of the device structure is
by using the Sentaurus process, which is a process simulator equipped with the physical
models that include default parameters calibrated with data from equipment vendors.
The Sentaurus Process provides a predictive framework for simulating a broad range of
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technologies from nanoscale CMOS to large-scale high-voltage power devices. By using
the Sentaurus device, the electrical characteristics were measured, which can simulates
electrical behavior of a single semiconductor device in isolation or several physical devices
combined in a circuit and supports the modeling of high mobility channel materials and
implements highly efficient methods for modeling. Sentaurus Visual is used to visualize
the output from the simulation.
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Figure 1. Schematic AlGaN/GaN HEMT device structure.

Figure 2 illustrates the structures of the simulated device for different metal contact
positions (marked with dotted lines). Figure 2a shows simulated device for metal contacts
near channel region, Figure 2b shows simulated device for metal contacts in middle of source
and drain regions, Figure 2c shows simulated device for metal contacts far away from channel
region. Simulation physical models were selected from the TCAD simulation software. The
models used for normally off AlGaN/GaN HEMT device simulation are listed in Table 1. The
key parameters for tuning the device are donor-like traps −3 × 1013 cm−2 at the nitride/GaN
interfaces. The control of the positive fixed charges −5 × 1012 cm−2, the acceptor traps
activation energy in the AlGaN layer and buffer regions with 0.59 eV below the conduction
band and the energy of the donor-like traps 1.42 eV below the conduction band were used [25].

A nitrogen ion implantation profile from TRIM simulator was simulated under an
energy value of 300 keV and a dosage of 3 × 1015 cm−2. The 300 keV energy ensured that
the 2DEG did not have a vacancy concentration of greater than 1 × 1018 cm−3. To convert a
normally on device into a normally off device, the 2DEG region must be blocked to reduce
the polarization charges. A nitrogen-implanted gate region with an adjustable dose can
block the 2DEG region to ensure that the 2DEG density is at a suitable level for converting
a normally on device to a normally off device. We found that an energy of 300 keV was
appropriate for ensuring that the 2DEG concentration is less than 1 × 1013 cm−3. The total
nitrogen vacancy concentration was approximately 1.3 × 1017 cm−3 (Figure 3).
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Figure 2. Simulated device structure with three various metal contact positions.

Table 1. Physical models for simulation of normally off AlGaN/GaN HEMT device.

Physical Phenomenon Model

Recombination Shockley-Red-Hall

Mobility

a. High field saturation
b. Doping dependence
c. Poole frankel

Self-heating effect Thermodynamic

Avalanche Van overstraeten

Polarization
a. Piezo-Electric Strain
b. Piezo-Electric Stress

Tunneling Electron Barrier Tunneling
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Figure 3. The depth profile of the nitrogen vacancies created by 300 KeV energy carried out by using
TRIM simulation.

3. Simulation Results and Discussion

Figure 4 displays the 2DEG density profile for metal contacts near the channel in the
nitrogen-implanted gate region, to show the cut profile at 2DEG (interface of AlGaN and
GaN undoped region).
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Figure 4. 2DEG density device cut profile.

The 2DEG density profiles for different metal contact positions are illustrated in
Figure 5. The 2DEG region is defined from the quantum well with the thickness around
0.06 um to 0.09 µm. Piezoelectric properties affect the concentration and transport char-
acteristics of 2DEG confined in the potential well at the GaN layers and the AlGaN layer
interface and might lead to accumulation or depletion regions at the interfaces, depend-
ing on the polarity of the top surface. An increase in the 2DEG density caused by the
piezoelectric effects is sometimes referred to as piezoelectric doping.
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Figure 5 shows the piezoelectric effect of drain applied voltage (10 V, 30 V, 50 V . . .
. . . at breakdown point) which increased 2DEG charges. Figure 5a shows 2DEG density vs
applied voltage for contacts near channel device, Figure 5b shows 2DEG density vs applied
voltage for contacts at center, Figure 5c shows 2DEG density vs applied voltage for contacts
far from channel device. An applied electric field at drain contact might influence the total
piezoelectric effect. A piezoelectric AlGaN/GaN crystal is essentially an electromechanical
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transducer that changes strain into electrical potential and vice versa. Therefore, applying
an external electrical field will cause some mechanical deformation, which may affect the
total piezoelectric effect results in 2DEG density changes. The internal piezoelectric effect
induced from the internal strain is caused by lattice mismatch between GaN layers and
AlGaN layer.

Figure 6 depicts the simulated electric field distribution and 2DEG density of the
AlGaN/GaN device. The dashed lines are drawn horizontally along the x-axis. The
simulation results indicate that a stronger electric field corresponds to a higher 2DEG
density induced by the piezoelectric effect caused by the voltage applied at a drain contact.
The peak of 2DEG density and electrical field distribution increase respectively to the
contact distance from the channel, indicating that more and more electrons are populated
on the well. Combined with the property of high mobility, high-concentration electron gas
in a potential well leads to 2DEG being the superior electrical conductivity. Based on this
principle, 2DEG is widely used in field effect transistors. This ultrahigh switching ratio
is attributed to the piezoelectric field which is perpendicular to the flowing direction of
charge carriers and directly controls the opening and closure of the conducting channels in
2DEG, giving rise to excellent switching behavior [26].
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Figure 6. Simulation profile of 2DEG density and Electrical field distribution in AlGaN/GaN device.

Figure 7 shows the simulation results of electric field distribution and impact ionization
under various metal contact conditions using the TCAD (technology computer-aided
design) method. We found the electric field and impact ionization strengths are metal
contact location dependent, and its magnitude decreases as the distance from the channel
increases. The higher electric field strength results in higher breakdown voltage. We
have also found from simulation that the higher electric field strength is caused by higher
2DEG density which is induced by the piezoelectric effect of applied voltage on the drain
terminal. Both breakdown curves and the impact ionization hotspot map confirm that the
breakdown mechanism is caused by impact ionization, but not surface breakdown. The
minimum critical field used in simulation is 4 MV/cm. From previous studies, we know
the temperature dependence coefficient of breakdown should be a positive value.
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Figure 7. Impact ionization and electrical field profiles at breakdown for different metal contact
positions.

The depletion regions of GaN device structures with different metal contact positions
are illustrated in Figure 8. The area which is in grey is depleted. The electric breakdown
occurred at the drain side, and the marked region shows that for contacts near the channel,
the device was completely depleted vertically along the y-axis at the drain side which
shows in Figure 8a. Figure 8b contacts in the center device and Figure 8c contacts far
from the channel device, sufficient space existed for depleting the device. This size of the
depletion region was decreased by increasing the distance of the metal contact position
from the channel.
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The transistor breakdown voltage was measured through TCAD device simulation.
Figure 9 presents the variations in the transistor breakdown voltage with respect to the
contact-channel separation. The transistor breakdown voltage was higher for metal contacts
closer to the channel. As displayed in Figure 9, the simulated device had breakdown
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voltages of 75, 82.8, and 127.4 V when the metal contact was located far away from the
channel, in the metal center and near the channel, respectively. The breakdown voltage
increased by 41% for contacts near the channel device.
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Figure 10 presents a plot of breakdown voltage against 2DEG density. We identified
the metal contact position near the channel for achieving the maximum breakdown voltage
for an uncapped AlGaN/GaN HEMT.
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4. Conclusions

In this study, the breakdown behavior of high-voltage AlGaN/GaN HEMT with a
nitrogen-implanted gate was analyzed by piezoelectric effects and two-dimensional device
simulation using Sentaurus TCAD [27]. Impact ionization in the channel, which was
triggered by electrons injected from the gate to the channel at a large reversed bias, was
responsible for the breakdown [28]. The 2DEG density is found to increase for metal
contacts in the drain region. The near-channel metal contact position increases more
polarization charges induced by the piezoelectric effect than that of those away from
the channel contact position. The distancing between metal contact and channel can
affect the piezoelectric effect on 2DEG density by applied voltage at drain. Therefore, the
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piezoelectric-effect-induced polarization charges decrease as the distance of the contact
from the channel increases. Consequently, the electric field and impact ionization should be
suppressed to achieve a high breakdown voltage. The breakdown voltages for two contact
positions within a 20 µm drain region under an operating voltage of 100 V can differ by as
much as 41%. In conclusion, we formulated a new design rule governing the breakdown
voltage of GaN HEMTs in this study.
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