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Breakdown of gauge invariance in ultrastrong-coupling cavity QED
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We revisit the derivation of Rabi- and Dicke-type models, which are commonly used for the study of
quantum light-matter interactions in cavity and circuit QED. We demonstrate that the validity of the two-
level approximation, which is an essential step in this derivation, depends explicitly on the choice of gauge
once the system enters the ultrastrong-coupling regime. In particular, while in the electric dipole gauge the
two-level approximation can be performed as long as the Rabi frequency remains much smaller than the
energies of all higher-lying levels, it can dramatically fail in the Coulomb gauge, even for systems with an
extremely anharmonic spectrum. We extensively investigate this phenomenon both in the single-dipole (Rabi)
and multidipole (Dicke) case, and consider the specific examples of dipoles confined by double-well and
square-well potentials, and of circuit QED systems with flux qubits coupled to an LC resonator.
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I. INTRODUCTION

In classical electrodynamics, the invariance of Maxwell’s
equations under gauge transformations of the vector potential
�A and the scalar potential �el is often used to simplify calcula-

tions by working in the most convenient gauge [1]. In the for-
mulation of the underlying theory of quantum electrodynam-
ics (QED), the invariance of physical observables under local
U(1) gauge transformations is even taken as the fundamental
ingredient from which QED is derived and the generalization
of this principle to higher-dimensional gauge-field theories
forms the basis for modern particle physics. In atomic physics,
quantum optics, and solid-state physics, we are usually deal-
ing with simplified models of QED to describe interactions
between matter and electromagnetic fields. Although such
models are based on various approximations, gauge invariance
is, in general, still preserved. For example, the equivalence
between the �p · �A interaction (Coulomb gauge) and the �x · �E
interaction (electric dipole gauge) for evaluating resonant
optical transition matrix elements for atoms is a common
derivation found in many textbooks and introductory courses
on quantum optics [2,3].

There are, however, situations where the use of different
gauges in quantum optical models is more subtle. For exam-
ple, as first pointed out by Lamb [4] and discussed further by
others [5–7], working in the Coulomb gauge or in the electric
dipole gauge leads to slightly different predictions for a two-
level atom driven by an off-resonant electric field. Related
issues appear in the evaluation of two-photon transition am-
plitudes where, depending on the choice of gauge, completely
different sets of intermediate states must be considered to
obtain converging results [8]. The choice of gauge has also
led to many controversies in the context of cavity QED,
where the coupling of N two-level atoms to a single radiation
mode is frequently described by the Dicke model [9–11].
This model predicts a superradiant phase transition (SRT)
[12,13], when the collective atom-field coupling reaches the

ultrastrong-coupling (USC) regime [14,15] and becomes com-
parable to the optical and atomic frequencies. It was later
shown—based on general sum-rule arguments—that this tran-
sition does not occur when the “A2 term” in the under-
lying minimal coupling Hamiltonian is properly taken into
account [16]. However, by changing to the electric dipole
gauge, this A2 term can be eliminated [3,17–19] and, when
restricted to a single mode, the original Dicke model—without
any constraints on the coupling strength—can be recovered.
This example shows that approximate models for light-matter
interactions derived in different gauges may even lead to
drastically different predictions, such as the existence or
nonexistence of a phase transition.

In a recent work [20], it was shown that most of the
ambiguities concerning the Dicke model and the superradiant
phase transition can be fully resolved by a careful deriva-
tion and interpretation of the reduced effective cavity QED
Hamiltonian. One of the important conclusions from this
analysis was that the validity of the two-level approximation
(TLA) for the dipoles depends explicitly on the choice of
gauge, once the light-matter coupling becomes nonperturba-
tive. Such conditions have been experimentally achieved in
many solid-state implementations, using either collective ex-
citations in dielectric materials [21–39] or nonlinear elements
in superconducting circuits [40–47]. The rich phenomenology
which has been predicted to become observable in the USC
regime has fueled remarkable research activity in this domain
[48–74]. It is thus fundamental to firmly establish under which
conditions the usually employed TLA is reliable or can be
made such by a proper choice of gauge.

In this work, we provide such an analysis, which in par-
ticular illustrates the influence of the potential shape and the
number of dipoles on the validity of the TLA in the Coulomb
and the electric dipole gauge. Remarkably, different results are
obtained when considering single-dipole Rabi-type models,
relevant for superconducting circuits, or multidipole Dicke
and Hopfield models, which are instead usually employed to
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FIG. 1. (a) Sketch of a generic cavity QED setup, where a dipole
formed by two charges +q and −q is coupled to a single electromag-
netic mode. The dipole is modeled as an effective particle of mass m

moving in a potential V (x ). Two prototype examples of (b) an infinite
square-well potential and (c) a double-well potential. In these plots,
the dashed lines indicate the energies En of the lowest bound states
|ϕn〉 and the solid lines indicate the shape of the corresponding wave
functions.

model dielectric systems. This remains true even for strongly
anharmonic systems in which higher-lying states can reason-
ably be considered out of resonance. In other words, in the
USC regime, effective cavity-QED Hamiltonians, such as the
quantum Rabi- or Dicke-type models, can only be consistently
derived when the full system Hamiltonian is expressed in the
appropriate gauge.

The remainder of the paper is structured as follows. In
Sec. II, we will first review the derivation of the quantum Rabi
model and the resulting no-go and counter-no-go theorems
obtained in different gauges. This apparent contradiction is
resolved in Sec. III, where we explicitly illustrate the invalid-
ity of the TLA in the Coulomb gauge in terms of two specific
examples. In Sec. IV, we then extend these results to cavity
QED systems with multiple dipoles. Finally, in Sec. V, we
discuss the relevance of our findings in the context of circuit
QED and we conclude our work in Sec. VI.

II. THE QUANTUM RABI MODEL AND THE NO-GO
THEOREM

For the following discussion, we consider a generic setting
as shown in Fig. 1, where a single electric dipole is coupled
to a single mode of the electromagnetic field. The field mode
is described by a harmonic oscillator with bare frequency ωc

and annihilation (creation) operator a (a†). Restricted to one
dimension, the dipole can be modeled as an effective particle
of mass m in a potential V (x), where x is the separation
between the charges q and −q. Under these assumptions
and making a dipole approximation, the Hamiltonian for this
system is

HC = (p − qA)2

2m
+ V (x) + h̄ωca

†a, (1)

where A = A0(a + a†) is the vector potential along the x

direction with a zero-point amplitude A0. The form of HC fol-
lows directly from the minimal coupling Hamiltonian, which
is derived from the quantization of the electromagnetic field
in the Coulomb gauge [3]. Hamiltonian (32) holds for any
system interacting with a single electromagnetic mode via a
dipole transition, for example, atoms, molecules, electrons in
a quantum dot [75], etc.

A. The quantum Rabi model in the Coulomb gauge

By expanding the kinetic-energy term, the Hamiltonian (1)
can be divided into three contributions,

HC = Hd + H̃c + HC
int. (2)

The first term Hd represents the bare Hamiltonian of the
dipole, which can be diagonalized and written as

Hd = p2

2m
+ V (x) =

∑
n

h̄ωn|ϕn〉〈ϕn|. (3)

Here, ωn is the eigenfrequency of the nth motional eigenstate
|ϕn〉. The second term in Eq. (2) represents the energy of the
field mode including the A2 term,

H̃c = h̄ωca
†a + q2A2

0

2m
(a + a†)2 = h̄ω̃cc

†c. (4)

In the last step, we have made a Bogoliubov transformation to
express the field Hamiltonian in terms of new bosonic opera-
tors c and c† and a renormalized frequency ω̃c = √

ω2
c + D2,

where D2 = 2q2A2
0ωc/(h̄m). By making use of the relation

(a + a†) = √
ωc/ω̃c(c + c†), the remaining dipole-field inter-

action term can be written as

HC
int = pA

m
= qA0

m

√
ωc

ω̃c

∑
n,k

pnk (c + c†)|ϕn〉〈ϕk|, (5)

where pnk = 〈ϕn|p|ϕk〉 are the matrix elements of the mo-
mentum operator.

We are now interested in a simplified model for describing
the near-resonant coupling of the dipole and the cavity mode,
i.e., ωc ≈ ω10 = ω1 − ω0, while all higher motional states are
assumed to be far detuned. This can always be achieved for a
sufficiently nonlinear potential. Based on this assumption, we
make a TLA by restricting the sums in (3) and (5) to the lowest
two states |↓〉 ≡ |ϕ0〉 and |↑〉 ≡ −i|ϕ1〉. We then obtain the
quantum Rabi model

HC
Rabi = h̄ω̃cc

†c + h̄gC

2
(c + c†)σx + h̄ω10

2
σz, (6)

where the σk are the usual Pauli operators acting on the
subspace {|↓〉 , |↑〉}, and

gC = 2qA0|p01|
h̄m

√
ωc

ω̃c

(7)

is the coupling strength in the Coulomb gauge.
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B. No-go theorem

In the USC regime, a central quantity of interest is the
dimensionless coupling parameter

ζC = g2
C

ω̃cω10
. (8)

In the corresponding Dicke model for a large number of
N 
 1 dipoles, the value of Nζ

(N )
C = 1 marks the onset of a

ground-state instability, i.e., the transition into a superradiant
phase (see Sec. IV below). However, already for a single
dipole, a value of ζC � 1 results in a qualitative change in the
ground state of the quantum Rabi model [48,57,61], which
is associated with an exponential closing of the energy gap
between the lowest two states and a large occupation of the
photonic mode.

By using the general relation between the matrix elements
of the position and the momentum operator,

pnk = im(ωn − ωk )xnk, (9)

where xnk = 〈ϕn|x|ϕk〉, this coupling parameter can be ex-
pressed as

ζC = D2

ω2
c + D2

f � 1, (10)

where we have introduced the oscillator strength

f = 2mω10

h̄
|x10|2. (11)

For the last inequality in Eq. (10), we have used the Thomas-
Reiche-Kuhn (TRK) sum rule,∑

n

(ωn − ω0)|xn0|2 = h̄

2m
, (12)

to place an upper bound on the value of f � 1. This sum
rule follows directly from [x, [x,Hd ]] = −h̄2/m and is valid
for arbitrary potentials. Therefore, Eq. (10) constrains the
maximal value of the coupling strength in HC

Rabi since, by
increasing the coupling, the renormalized cavity frequency ω̃c

also increases accordingly. A similar calculation for N dipoles
leads to an analogous constraint on the value of Nζ

(N )
C � 1

[16,76,77], which implies that the ground state of a cavity
QED system always remains stable. Therefore, this bound
is often called the “no-go theorem” for superradiant phase
transitions.

C. The quantum Rabi model in the dipole gauge

Let us now repeat the derivation of the quantum Rabi
model in the electric dipole gauge by first performing the
unitary transformation HD = UHCU †, where

U = exp

[
−i

qxA

h̄

]
. (13)

In the dipole gauge, we obtain

HD = p2

2m
+ Ṽ (x) + h̄ωca

†a + iωcqA0(a† − a)x, (14)

where the potential Ṽ (x) = V (x) + mD2x2/2 now includes
an additional correction term from the coupling to the cavity

FIG. 2. The dimensionless coupling parameters ζC and ζD as
defined in Eqs. (8) and (18) are plotted as a function of the bare
coupling strength g0 ∼ q for (a) a square-well potential and (b) a
double-well potential with β ≈ 2.4. For both plots, ωc = ω10 and the
charge q is used as a tunable parameter to vary the coupling strength.
See Sec. III for more details.

field. As above, we diagonalize the Hamiltonian for the dipole,

H̃d = p2

2m
+ Ṽ (x) =

∑
n

h̄ω̃n|ϕ̃n〉〈ϕ̃n|, (15)

and express the position operator in terms of the eigenstates
|ϕ̃n〉, i.e., x = ∑

n,k x̃nk|ϕ̃n〉〈ϕ̃k|, where x̃nk = 〈ϕ̃n|x|ϕ̃k〉. Re-
stricted to the two lowest states |↓〉 ≡ |ϕ̃0〉 and |↑〉 ≡ |ϕ̃1〉 and
introducing for convenience the rotated field operator c = ia,
we end up with the quantum Rabi Hamiltonian,

HD
Rabi = h̄ωcc

†c + h̄gD

2
(c + c†)σx + h̄ω̃10

2
σz, (16)

where

gD = 2ωcqA0|x̃10|
h̄

(17)

is the coupling strength in the dipole gauge. It depends on the
matrix element x̃10 between the two lowest eigenstates of the
modified potential Ṽ (x).

D. Counter-no-go theorem

Although HC
Rabi and HD

Rabi have exactly the same structure,
the parameters that enter in the two models have a different
dependence on the underlying system parameters. Therefore,
it is interesting to also consider the coupling parameter ζD =
g2

D/(ωcω̃10), which after some rearrangements can be ex-
pressed as

ζD = D2

ω̃2
10

f̃ � D2

ω̃2
10

. (18)

In the last step, we have again used the TRK sum rule for
the bound on the oscillator strength, f̃ = 2mω̃10|x̃10|2/h̄ � 1.
For a harmonically confined dipole, i.e., V (x) = mω2

10x
2/2,

we find that ω̃2
10 = ω2

10 + D2 and Eq. (18) reproduces the
same bound as in Eq. (10). However, for an arbitrary potential,
there is a priori no constraint on the ratio D2/ω̃2

10. Therefore,
in the dipole gauge, the coupling parameter can, in principle,
exceed this bound. To illustrate this point, we compare in
Fig. 2 the coupling parameters ζC and ζD for a square-well
and a double-well potential. For this plot, the charge q is con-
sidered as a tunable parameter to vary the coupling strength,
while all other system parameters are held fixed (see Sec. III
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for more details). We see that the two coupling parameters
are indeed different. Most importantly, while in the case of
a square-well potential both parameters remain below the
value of one, in the case of a double-well potential ζD can
considerably exceed this bound.

E. Role of the potential shape

The observed qualitative difference between different types
of nonlinear potentials can be understood by focusing on
the limit q → ∞. In this limit, the correction term ∼q2x2

in the renormalized potential Ṽ (x) dominates and localizes
the eigenstates around x = 0. Therefore, for any symmetric
potential, we can approximate

lim
q→∞ Ṽ (x) � m

2
ω̃2

10x
2, ω̃2

10 = (D2 + �2), (19)

where

�2 = 1

m

∂2V

∂x2

∣∣∣∣
x=0

(20)

is determined by the curvature of the potential at the origin.
Since for a harmonic potential the matrix element |x̃10| is also
maximized, we obtain

lim
q→∞ ζD = D2

(D2 + �2)
. (21)

This shows that for a potential that is anticonfining at the
origin, i.e., �2 < 0, the coupling parameter ζD approaches the
value of one from above (see Appendix A for a slightly more
general derivation). This implies that for such a potential,
a value of ζD > 1 can be achieved for a certain range of
parameters, for which the no-go theorem does not hold. From
a purely classical point of view, the particle can lower its
potential energy by moving from the center to one of the wells,
which can compensate the electrostatic energy that is required
to create a finite polarization.

III. VALIDITY OF THE TWO-LEVEL APPROXIMATION

The discussion in the previous section shows that the
quantum Rabi model HC

Rabi derived in the Coulomb gauge and
the corresponding model HD

Rabi derived in the dipole gauge do
not agree in general and can lead to qualitatively very different
predictions. Since both models have been derived from the
unitarily equivalent Hamiltonians HC and HD , the TLA—
which is the only approximation we made—must be invalid in
at least one of the two gauges. In the following, we explicitly
illustrate this fact in terms of two concrete examples.

A. Particle in a double-well potential

As a first example, we consider a dipole represented by
a charged particle moving in a double-well potential, as de-
picted in Fig. 1(c). In this case, the Hamiltonian for the dipole
is given by

Hd = − h̄2

2m

∂2

∂x2
− μ

2
x2 + λ

4
x4, (22)

where the two parameters μ, λ > 0 specify the shape of the
double well. For the following discussion, it is convenient to

introduce the energy scale Ed = h̄2/(mx2
0 ) and the rescaled

variable ξ = x/x0, where x0 = 6
√

h̄2/(mλ). In terms of these
quantities, Hamiltonian (22) can be written as

Hd = Ed

(
p2

ξ

2
− β

2
ξ 2 + ξ 4

4

)
, (23)

where β = μmx4
0/h̄2 and pξ = −i∂/∂ξ is the dimensionless

momentum operator. Similarly, the dipole-field interaction in
the Coulomb gauge can be rewritten as

HC
int =

√
h̄D2Ed

2ω̃c

∑
n,k

〈ϕn|pξ |ϕk〉(c + c†)|ϕn〉〈ϕk|. (24)

In the dipole gauge, we obtain

H̃d = Ed

[
p2

ξ

2
+ (γ − β )

2
ξ 2 + ξ 4

4

]
, (25)

where γ = h̄2D2/E2
d accounts for the coupling-induced mod-

ification of the potential, and

HD
int =

√
h̄3D2ωc

2Ed

∑
n,k

〈ϕ̃n|ξ |ϕ̃k〉(c + c†)|ϕ̃n〉〈ϕ̃k| (26)

is the corresponding coupling Hamiltonian. In all numerical
examples below, the value of Ed will be fixed by the condition
ωc = ω1 − ω0, which ensures that the bare cavity frequency is
in resonance with the transition between the two lowest dipole
levels in the limit of vanishing coupling.

In Fig. 3(a), we plot the energies En of the lowest eigen-
states obtained from the reduced models HC

Rabi and HD
Rabi and

compare these results with the exact eigenenergies obtained
by diagonalizing the full Hamiltonian HC . For this plot, D ∝
qA0 is used as a tunable parameter to vary the coupling
strength, while all other system parameters are held fixed. The
resulting energies are then plotted as a function of

g0

ωc

=
√

2h̄D2

Edωc

|〈ϕ0|ξ |ϕ1〉|. (27)

Here, g0 denotes the bare coupling strength in the electric
dipole gauge, i.e., the coupling defined in Eq. (17), but without
taking any modification of the potential into account.

The comparison in Fig. 3(a) shows that for very small
values of the coupling, both models reproduce the expected
vacuum Rabi splitting in the excited states, for example,
(E2 − E1)/h̄ � gD � gC � g0. However, already at moder-
ate coupling strengths, g0/ωc ∼ 0.1, there are significant
deviations in the predicted energies. More strikingly, for a
value of g0/ωc = 1, the Rabi model in the Coulomb gauge
already provides completely wrong predictions. This is very
surprising since for the chosen potential parameters, the fre-
quency of the motional state |ϕ2〉 is still very far detuned,
i.e., �nl = (ω2 − ω0)/(ω1 − ω0) ≈ 100. Therefore, from a
naive estimate of the influence of higher motional states, such
a strong discrepancy is unexpected. For even larger values
of g0/ωc � 10 (depending on the degree of nonlinearity),
the Rabi model HD

Rabi also becomes inaccurate and further
corrections from the higher levels must be taken into account
(see also Sec. V C below).
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FIG. 3. Double-well potential. (a) Comparison of the energy
spectra obtained from the full model HC (solid blue line), the
quantum Rabi model HD

Rabi derived in the dipole gauge (green dashed
line), and the quantum Rabi model HC

Rabi derived in the Coulomb
gauge (red dotted line). For these plots, a double-well potential with
parameters β ≈ 3.7 and ω10 = ωc (which fixes the value of Ed ) has
been assumed. The inset shows a zoom of the predicted Rabi splitting
between the first two excited energy levels. (b) Matrix elements of
the dimensionless position operator ξ and (c) matrix elements of
the dimensionless momentum operator pξ evaluated for the lowest
eigenstates |ϕn〉 of the same double-well potential. For the sake of
clarity, the values of the matrix elements have been normalized by
the largest matrix element in each plot.

B. Origin of the breakdown of the two-level approximation

The observed breakdown of the TLA in the Coulomb gauge
at moderate couplings can be qualitatively understood [20]
from relation (9), which in terms of the normalized operators
ξ and pξ reads

〈ϕn|pξ |ϕk〉 = ih̄
(ωn − ωk )

Ed

〈ϕn|ξ |ϕk〉. (28)

This relation shows that the matrix elements of the momentum
operator scale with the frequency difference between the cou-
pled states. Therefore, transitions to energetically higher states
are not systematically suppressed since the large energy gap
is compensated by a corresponding increase of the coupling
matrix elements.

This important difference between the position and the
momentum operator is illustrated in more detail in Figs. 3(b)
and 3(c), where the magnitudes of the matrix elements
〈ϕn|ξ |ϕk〉 and 〈ϕn|pξ |ϕk〉 are plotted for the lowest states of
the double-well potential. We see that matrix elements of the
position operator are always maximal between neighboring

levels. Therefore, transitions to energetically higher states are
suppressed and, for not too strong couplings, we can restrict
the dynamics of the dipole to the lowest two-level subspace.
In contrast, for the momentum operator, the coupling to
energetically higher states is much bigger than the coupling
within the lowest two-level subspace and, already for modest
coupling strengths, multiple levels must be taken into account
to obtain an accurate description.

This example shows that the difference between the
Coulomb and the dipole gauge is rooted in the asymmetry
between the position and the momentum operator. Such an
asymmetry does not exist for the electromagnetic mode or for
a harmonically bound dipole, where momentum and position
operators are interchangeable. It is thus the nonlinearity of
V (x) which breaks this equivalence and favors the dipole
gauge with an x-type coupling for the purpose of deriving an
effective two-level model.

C. Particle in a square-well potential

As a second example, we consider a particle in an infinite
square-well potential of width Lw [see Fig. 1(b)]. In this
case, we have V (x) = 0 in the region −Lw/2 < x < Lw/2
and V (x) = ∞ everywhere else. This potential mimics, for
example, the transverse confinement of electrons in a semi-
conductor quantum well [14]. For the square-well potential,
we define the characteristic length scale x0 = Lw/2 and the
corresponding energy scale Ed = h̄2/(mx2

0 ). Otherwise, we
proceed as in Sec. III A.

Figure 4(a) shows the resulting comparison between
eigenenergies En obtained from the two Rabi models HC

Rabi
and HD

Rabi and the full model HC . Overall we see a very
similar trend as for the double-well potential. The energy
levels obtained from HC

Rabi show significant deviations from
the exact energies for g0/ωc � 1. Also for the square-well
potential, the predictions of HD

Rabi are rather poor for only
slightly higher couplings, g0/ωc � 2. This is related to the
fact that for a square-well potential, the degree of nonlinearity,
�nl = 8/3, is fixed and much smaller than for the double-
well potential considered above. Note that for the square-well
potential, the exact energies do not exhibit an exponentially
suppressed energy gap for large couplings. The spectrum
rather becomes more and more harmonic with a vanishing
frequency for g0/ωc 
 1. This is expected from a model of
two coupled oscillators in the limit where the dipole potential
is dominated by the correction term, i.e., Ṽ (x) ≈ mD2x2/2.

Figures 4(b) and 4(c) again show the matrix elements of
the position and the momentum operator, which are now
evaluated for the lowest states of the square-well potential. We
see that the structure of the matrix elements is more similar
and already closer to that of a harmonic potential. Although
in the dipole gauge the anharmonicity in the energy spectrum
still allows us to identify an isolated two-level subspace for
values of g0/ωc � 1, this is no longer possible for slightly
higher couplings.

D. The Rabi splitting and the oscillator strength

By comparing the Rabi splittings in the insets of Figs. 3(a)
and 4(a) for small and moderate values of g0/ωc � 0.1,
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FIG. 4. Square-well potential. (a) Comparison of the energy
spectra obtained from the full model HC (solid blue line), the
quantum Rabi model HD

Rabi derived in the dipole gauge (green dashed
line), and the quantum Rabi model HC

Rabi derived in the Coulomb
gauge (red dotted line). For these plots, a square-well potential and
ω10 = ωc (which fixes the value of Ed ) has been assumed. The
inset shows a zoom of the predicted Rabi splitting between the first
two excited energy levels. (b) Matrix elements of the dimensionless
position operator ξ and (c) matrix elements of the dimensionless
momentum operator pξ evaluated for the lowest eigenstates |ϕn〉 of
the same square-well potential. For the sake of clarity, the values
of the matrix elements have been normalized by the largest matrix
element in each plot.

we find that the deviation of the spectrum of HC
Rabi is less

significant for the square-well potential than for the double-
well potential. To understand this difference, we calculate the
energies En of HC

Rabi and HD
Rabi up to second order in g0/ωc.

For ωc = ω10, we obtain

�EC
1,2 = EC

1,2 − EC
0 � h̄ωc ∓ h̄g0

2
+ h̄g2

0

4ωc

1

f
, (29)

for the first two excitation energies in the Coulomb gauge, and

�ED
1,2 = ED

1,2 − ED
0 � h̄ωc + h̄ω̃10

2
∓ h̄g0

2
, (30)

in the electric dipole gauge. While up to second order in
g0/ωc the predicted Rabi splitting, (E2 − E1)/h̄ � g0, still
agrees in both gauges, we observe a systematic blueshift of
the energy levels in the Coulomb gauge. For a sufficiently
nonlinear potential where ω̃10 � ω10, this artificial blueshift
reads

�EC
1 − �ED

1 � h̄g2
0

4ωc

1

f
. (31)

This result immediately explains the strong discrepancies
between the energy levels observed in the inset of Fig. 3(a) for
the double-well potential. In this case, fdw � 0.1 and there-
fore an appreciable deviation of the predicted energy levels
already occurs at the onset of the USC regime. Instead, for
the square-well potential, where fsq ≈ 0.96, the differences
between HC

Rabi and HD
Rabi become significant only at larger

couplings.
This comparison shows that apart from the degree of non-

linearity �nl and the curvature of the potential at the origin,
�2, the oscillator strength f of the lowest dipole transition
is a third characteristic parameter, which affects the validity
or nonvalidity of the TLA. In particular, this parameter de-
termines the validity of the TLA in the Coulomb gauge at
moderate interaction strengths. Given the upper bound f � 1,
a value of f ≈ 1 means that the coupling of the ground state
to states |ϕn�2〉 is suppressed by vanishingly small coupling
matrix elements for both the position and the momentum
operator.

IV. MULTIDIPOLE CAVITY QED

The USC coupling regime was observed exploiting col-
lective electronic transitions between the subbands of doped
quantum wells [21], and many-electron dielectric systems
remain today one of the leading platforms for USC physics.
This is due to the large density of dipoles achievable, which
translates into a large collective coupling strength. Moreover,
as already mentioned in Sec. I, the interest in the bound for
the coupling parameter ζC originally emerged from debates
over the existence or nonexistence of the superradiant phase
transition in cavity QED systems with a large number of
dipoles. It is thus of paramount importance to extend the
previous investigation of gauge noninvariance to the case of
multidipole cavity QED.

By assuming, for simplicity, a homogeneous mode func-
tion for the electromagnetic field, we can model a multidipole
system with the minimal coupling Hamiltonian,

HC =
N∑

i=1

[
(pi − qA)2

2m
+ V (xi )

]
+ h̄ωca

†a + Hdd. (32)

Here, the last term Hdd accounts for direct dipole-dipole in-
teractions, which depend in detail on the precise arrangement
of the dipoles and the geometry of the setup. Since the form
of Hdd ∼ xixj is invariant under the gauge transformation
used below, it does not directly affect the following arguments
about the difference between the Coulomb and the dipole
gauge. Therefore, in the remainder of this section, we will
simply omit this term and refer the reader to Ref. [20] for
a more detailed discussion of dipole-dipole interactions in
single-mode cavity QED systems.

A. The Dicke model in the Coulomb gauge

By proceeding the same way as in Sec. II, we perform
a TLA for each of the dipoles and readily obtain the Dicke
model,

HDM = h̄ω̃cc
†c + h̄ω10Sz + h̄gC (c + c†)Sx, (33)
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where Sk = 1/2
∑

i σ
i
k are collective spin operators. In

Eq. (33), all the parameters are the same as in HC
Rabi in Eq. (6),

except that the cavity frequency ω̃c ≡ ω̃c(N ) = √
ω2

c + ND2

is now renormalized by the presence of N dipoles. In the
limit gC → 0, the ground state of HDM is the normal vacuum
state with all dipoles in state |↓〉 and the photon mode in
state |0c〉. For a large number of dipoles, N 
 1, we can then
use a Holstein-Primakoff transformation [78] to evaluate the
frequencies ω± of the two collective polariton modes,

ω2
C± = 1

2

[
ω2

10 + ω̃2
c ±

√(
ω̃2

c − ω2
10

)2 + 4Ng2
Cω̃cω10

]
.

(34)

When Ng2
C > ω̃cω10, the lower polariton mode becomes un-

stable, i.e., ω2
− < 0, and a transition into a superradiant phase

occurs. However, similar to the bound derived in Eq. (10), we
obtain [16,77]

Nζ
(N )
C = Ng2

C

ω̃c(N )ω10
� ND2

ω2
c + ND2

< 1, (35)

which implies that this phase transition point cannot be
reached.

B. The extended Dicke model in the dipole gauge

We can repeat the same derivation in the dipole gauge,
starting from the Hamiltonian HD = UHCU †, where U =
exp(−iqA

∑
i xi/h̄). After this transformation, we obtain

HD =
∑

i

[
p2

i

2m
+ Ṽ (xi )

]
+ mD2

2

∑
i �=j

xixj

+ h̄ωca
†a + iωcqA0(a† − a)

∑
i

xi . (36)

We see that apart from the corrections to the confining po-
tential, Ṽ (xi ) = V (xi ) + mD2x2

i /2, already encountered for
a single dipole, Hamiltonian HD now contains additional
interactions ∼xixj between the dipoles. Therefore, after per-
forming the TLA and setting c = ia, we obtain the extended
Dicke model [20,66],

HEDM = h̄ωcc
†c + h̄ω̃10Sz + h̄gD (c + c†)Sx + h̄g2

D

ωc

S2
x ,

(37)

which is no longer of the same form as Hamiltonian HDM

derived in the Coulomb gauge. It contains an additional all-
to-all interaction term, which corresponds to the so-called P 2

term in the electric dipole gauge Hamiltonian [3,22,79,80].
Similar to the case of the Dicke model, we can analyze

the stability of the ground state of HEDM by using a Holstein-
Primakoff transformation in the limit N → ∞, but keeping√

Ng0 finite. For the resulting polariton frequencies, we ob-
tain

ω2
D± = 1

2

[
�2

10 + ω2
c ±

√(
�2

10 − ω2
c

)2 + 4Ng2
Dω̃10ωc

]
,

(38)

where �10 =
√

ω̃10(ω̃10 + Ng2
D/ωc ). The condition for an un-

stable mode is now given by Ng2
D > �2

10(ωc/ω̃10). However,

FIG. 5. The frequencies ω± of the two lowest polariton modes
are plotted in the limit N 
 1 as a function of the collective coupling
strength G0 = g0

√
N and for ω10 = ωc. The case of (a) a square-

well potential (fsq ≈ 0.96) and (b) a double-well potential with β ≈
2.3, and fdw ≈ 0.71 is considered. The different lines represent the
results obtained from the Dicke model HDM derived in the Coulomb
gauge (ωC±, red solid-dotted line), the extended Dicke model HEDM

derived in the electric dipole gauge (ωD±, green squares), and the
two lowest branches of the full spectrum (blue solid line). In both
plots, the horizontal dashed line represents the fake depolarization
shift in the Coulomb gauge, as given in Eq. (43). (c) Sketch of the
relevant energy levels of the full multidipole Hamiltonian HC in the
weak-excitation regime. In this limit, most dipoles occupy the lowest
potential state with energy E0 and cavity-induced transitions between
pairs of higher states can be neglected.

after expressing g2
D = (2ωcm|x̃10|2/h̄)D2 and using the TRK

sum rule, we obtain the bound

Ng2
D

�2
10(ωc/ω̃10)

� ND2

ω̃2
10 + ND2

< 1, (39)

showing that also in the dipole gauge, no instability oc-
curs [66,79]. Although in this case the single-dipole coupling
is not constrained by any bound, the inclusion of the S2

x

term stabilizes the system for N 
 1. We emphasize that
this no-go theorem holds for Hdd = 0, where the dipoles
are only coupled to a single-cavity mode, but not directly
among each other. If direct dipole-dipole interactions are
included, there can be additional ferroelectric instabilities (in
both gauges) [17,19], which, however, occur only for very
specific geometries [20].

C. Polariton spectra and fake depolarization shifts

Although for N 
 1 there is a qualitative agreement on
the stability of the system, it is important to keep in mind
that the spectra given in Eqs. (34) and (38) are, in general,
not identical. This is illustrated in Figs. 5(a) and 5(b), where
we compare the polariton frequencies ωC± and ωD± for the
two cases of a square-well and a double-well potential. In the
dilute regime, in which the number of excitations is much
smaller than the number of dipoles N , the full Hamiltonian
HC in Eq. (32) can also be solved by bosonizing the matter
excitations using the Holstein-Primakoff transformation or
another essentially equivalent techniques [14,78,81]. These

053819-7



DE BERNARDIS, PILAR, JAAKO, DE LIBERATO, AND RABL PHYSICAL REVIEW A 98, 053819 (2018)

transform HC in a quadratic, bosonic Hamiltonian, which can
be easily diagonalized (see Appendix B). In Figs. 5(a) and
5(b), the solid lines represent the resulting exact polariton
frequencies.

Note that physically the bosonization of a collection of
dipoles is justified by the fact that the probability of a photon
to be absorbed by a single dipole scales as 1/N , and saturation
effects vanish [see Fig. 5(c)]. Ladder transitions, which would
couple, for example, the first excited state |ϕ1〉 to higher-lying
states |ϕn>1〉, are negligible for N 
 1. We can thus expect
the TLA, which neglects all transitions between the first two
states and the higher excites ones, to be a better approximation
in the multidipole case. In particular, it has to become exact for
a harmonic confinement potential, as in this case f = 1 and
also all transition matrix elements between the ground state
|ϕ0〉 and all the excited states |ϕn>1〉 vanish according to the
TRK sum rule.

Figure 5 also shows that in the collective, weak-excitation
regime, the agreement between the predictions from the Dicke
model and the extended Dicke model depend on the shape of
the dipole potential. To see this dependence more explicitly,
we write g2

D � g2
0 = (ωc/ω10)f D2 and g2

C = (ω10/ω̃c )f D2,
where we have assumed ω̃10 � ω10 and x̃10 � x10. This ap-
proximation is justified for N 
 1, where g0 ∼ 1/

√
N is

small and corrections to the potential of a single dipole can
be neglected. After some rearrangements, we obtain

ω2
C± = 1

2

[
ω2

10 + ω2
c + ND2

±
√(

ω2
10+ω2

c+ND2
)2−4ω2

cω
2
10−4N (1 − f )D2ω2

10

]
,

(40)

in the Coulomb gauge, and

ω2
D± = 1

2

[
ω2

10 + ω2
c + f ND2

±
√(

ω2
10 + ω2

c + f ND2
)2 − 4ω2

cω
2
10

]
, (41)

in the dipole gauge.
As expected from the general argument above, for har-

monically confined dipoles, the TLA spectra obtained in the
Coulomb gauge and in the dipole gauge are identical to
the exact one. But also for a square-well potential (fsq ≈
0.96) as relevant for intersubband polaritons [14], there is
no significant difference. However, for general potentials,
the oscillator strength f can be much smaller than one and
a notable discrepancy between the spectra can occur. This
is illustrated in Fig. 5(b) for the example of a double-well
potential with f ≈ 0.7. Specifically, on resonance, ω10 = ωc,
and up to lowest order in the collective coupling G0 = g0

√
N ,

we find

ωC± − ωD± � G2
0

4ωc

(
1

f
− 1

)
. (42)

Therefore, similar to the result obtained for a single dipole
in Eq. (31), the difference disappears in the case of harmonic
dipoles or for potentials with an almost saturated oscillator
strength. However, for all other potentials, the excitation spec-
tra obtained for effective Hamiltonians in different gauges can
exhibit significant deviations once the collective USC regime,
G0 ∼ ωc, is reached.

In general, the Dicke model derived in the Coulomb gauge
predicts a blueshift of the spectrum and a finite frequency at
large couplings,

lim
G0→∞

ωC− = ω10

√
1 − f > 0. (43)

Such a depolarization shift of the spectrum is, in principle, ex-
pected from the additional effect of dipole-dipole interactions,
∼Hdd, which are, however, explicitly omitted in the present
analysis. Therefore, this apparent depolarization shift is a pure
artifact of the TLA and disappears when more and more levels
are included. In contrast, in the dipole gauge, including the
lowest two levels is already a very good approximation, up to
very large values of the collective coupling G0.

D. Discussion: Cavity QED

In solid-state cavity QED, the two platforms in which
USC with the largest couplings has been observed are Lan-
dau polaritons and intersubband polaritons. Landau polari-
tons have, to the best of our knowledge, been theoretically
investigated using only the Coulomb gauge [82–84]. They
presently hold the absolute world record for the observed
normalized coupling, with a measured value of G/ωc ≈ 2.86
[37]. Notwithstanding such large values, our analysis shows
that the two gauges are still equivalent in this system because
the electrons are confined by the perfectly harmonic potential
due to the magnetic field.

Instead, in the case of intersubband polaritons, both the-
ories based on the Coulomb [14,85] and on the electric
dipole [22,79,86] gauges have been used. The two approaches
led to slightly different predictions, which, however, cannot be
trivially interpreted in light of the present results due to their
more microscopic nature, which includes the intrinsically
multimode nature of the photonic cavity and a different treat-
ment of dipole-dipole interactions. Experimentally, all inves-
tigations of intersubband polaritons in the USC regime have
been performed using either rectangular [21,32] or parabolic
[25] quantum wells. Considering that the record normalized
coupling achieved in intersubband polaritons is G/ωc ≈ 0.9
[39], we would thus expect that theories based on both gauges
provide a quantitatively correct fit of the existing data. The
use of intersubband polaritons in asymmetric quantum wells
has been proposed to achieve terahertz interpolariton emis-
sion, with the possibility to engineer the values of dipoles
between different states [87]. The previous results show that
an extension of such proposals to the USC regime, required
for describing emission in the midinfrared range, would work
only in the dipolar gauge or without performing the TLA and
considering instead the full set of electronic states.

V. FEW-DIPOLE USC AND GAUGE NONINVARIANCE
IN CIRCUIT QED

The stability of the ground state predicted by Eqs. (34)
and (38) for both gauges seems to contradict the findings
from Secs. II and III, where, in the dipole gauge even for a
single dipole, an exponential closing of the energy gap, i.e., a
precursor of a phase transition, was found. Here it is important
to keep in mind that the results in Eqs. (34) and (38) have
been derived in the limit N → ∞. By keeping the resulting
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collective coupling G0 = g0

√
N finite, taking this limit also

implies g0 → 0. To complete our comparison of the two
gauges, it is thus necessary to also consider the intermediate
regime, where N > 1 and g0/ωc ∼ 1, and nonlinear, few-
body, and USC effects play a role. As can be seen from
Eqs. (33) and (37), these effects are described in the Coulomb
gauge and in the electric dipole gauge by two different effec-
tive models.

Although dielectric platforms are progressively approach-
ing the regime of few-electron USC [80,88], for the moment
the condition g0/ωc ∼ 1 is accessible only in circuit QED,
where superconducting qubits can be coupled very strongly
to microwave resonators. Therefore, in this section, we will
explicitly focus on a circuit QED setup with flux qubits,
where the USC regime with individual qubits has already
been demonstrated [40–45]. A priori, it might not be obvi-
ous that the effective models describing such macroscopic
circuits should be directly related to the microscopic QED
Hamiltonians discussed in the previous sections. In particular,
for flux-based qubits, both the dynamical variables and the
physical coupling mechanism are very different from the
scenario investigated above. However, as we will now show
for a specific example, the structure of the Hamiltonians that
appear in the description of circuits is often very similar to
regular cavity QED, meaning that the choice of gauge also
becomes a relevant issue.

A. Circuit QED

Figure 6 shows a prototype circuit QED setup [66,70] with
N = 2 superconducting flux qubits coupled in series to a
lumped-element LC resonator with inductance Lr and capaci-
tance Cr . Following the standard quantization procedure [89],
we introduce a set of generalized flux variables,

�η(t ) =
∫ t

−∞
ds Vη(s), η ∈ {r, 1, 2}, (44)

where Vη is the voltage at the respective node. The classical
equations of motion for the �η can be derived from the
Lagrangian L = T − Vtot, where

T = Cr�̇
2
r

2
+

N∑
i=1

Cq (��̇i )2

2
(45)

is the capacitive energy, while the total inductive energy,
equivalent to potential energy, is given by

Vtot = (�r − �2)2

2Lr

+
N∑

i=1

[
(��i )2

2Lq

− EJ cos

(
��i + �ext

�0

)]
. (46)

Here we have introduced the variables ��1 ≡ �1 and ��2 =
�2 − �1, which represent the phase jumps across each of the
qubits. In Eq. (46), �0 = h̄/(2e) is the reduced flux quantum
and �ext is the external flux through each of the qubit loops. In
the following, we set �ext/�0 = π , such that for a Josephson
energy EJ > �2

0/Lq , we obtain a double-well potential for
the fluxes ��i , similar to the potential considered in Sec. III.

FIG. 6. Circuit QED with flux qubits. (a) Sketch of a multiqubit
circuit QED system, where two flux qubits are coupled to a lumped-
element LC resonator with inductance Lr and capacitance Cr . In
the simplest case, each flux qubit is realized by a radio-frequency
superconducting quantum interference device (rf-SQUID) circuit and
can be modeled as an effective particle with a dimensionless coordi-
nate φ = ��/�0 moving in an effective potential V (φ). (b) Typical
shape of the potential V (φ) for a generic flux qubit where the two
lowest tunnel-coupled states form an isolated two-level subspace.
(c) Shape of the potential V (φ) and the lowest eigenstates |ϕn〉 for
a specific flux qubit with parameters ELq

/h = 7, ECq
/h = 12, and

EJ /h = 50 GHz.

From the Lagrangian, we obtain the conjugate node
charges, Qr = ∂L/∂�̇r = Cr�̇r and Qi = ∂L/∂��̇i =
Cq��̇i , which simply correspond to the charges on the in-
dividual capacitors. By introducing the dimensionless vari-
ables φr = �r/�0, φi = ��i/�0, and Qη = Qη/(2e) and
promoting these variables to operators obeying [φη,Qη′ ] =
iδη,η′ , we obtain the circuit Hamiltonian,

H� = 4ECr
Q2

r + ELr

2

(
φr −

N∑
i=1

φi

)2

+
N∑

i=1

[
4ECq

Q2
i + EJ cos (φi ) + ELq

2
φ2

i

]
. (47)

Here we have defined the inductive energies ELr,q
= �2

0/Lr,q

and, following the usual convention, the capacitive energies
ECr,q

= e2/(2Cr,q ). By expressing φr = 4
√

2ECr
/ELr

(a† + a)
and Qr = i 4

√
ELr

/(32ECr
)(a† − a) in terms of annihilation

and creation operators and by identifying φi and Qi with the
coordinate and momentum of an effective particle moving in
a potential V (φi ) = EJ cos (φi ) + ELq

φ2
i /2, Hamiltonian H�

is identical to Hamiltonian HD in the dipole gauge. Therefore,
when we perform a TLA, we obtain the extended Dicke model
(37), with ωc = √

8ECr
ELr

/h̄ and a coupling

gD = ωc

(
ELr

2ECr

) 1
4

|〈ϕ̃0|φ|ϕ̃1〉|. (48)
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The dipole frequency ω̃10 and the eigenstates |ϕ̃n〉 are obtained
from the eigenstates of the modified qubit Hamiltonian,
H̃q = 4ECq

Q2 + V (φ) + ELr
φ2/2. Note that for this circuit

configuration, there appear no direct qubit-qubit interactions
in the Lagrangian or the corresponding equations of motion,
which therefore corresponds to the case Hdd = 0 considered
in Sec. IV.

Of course, the Hamiltonian (47) is not unique and we
can perform as well the unitary gauge transformation HQ =
UH�U †, where U = e−iQr

∑
i φi . In this new representation,

we obtain

HQ = 4ECr
Q2

r + ELr

2
φ2

r

+
∑

i

[
4ECq

(Qi − Qr )2 + V (φi )
]
, (49)

and it can be readily seen that this Hamiltonian is equivalent to
the minimal coupling Hamiltonian (32) in the Coulomb gauge.
After performing a TLA, we obtain the Dicke model HDM

with frequency ω̃c = √
8(ECr

+ NECq
)ELr

/h̄ and a coupling

gC = 8ECq

h̄

√
ωc

ω̃c

(
ELr

2ECr

) 1
4

|〈ϕ0|Q|ϕ1〉|. (50)

The transition frequency ω10 and the eigenstates |ϕn〉 are
obtained from diagonalizing the bare qubit Hamiltonian,
Hq = 4ECq

Q2 + V (φ). Thus, we obtain a complete analogy
between the fundamental models for electric dipoles coupled
to a cavity field expressed in different gauges and a circuit
QED system with flux qubits expressed in terms of different
circuit variables.

B. Few-qubit circuit QED

At first sight, it might seem more favorable to use Hamil-
tonian HQ as a starting point for a further simplification of
this circuit. The qubit energies and eigenstates are the same
as for the bare qubit and can be calculated independently
of the coupling. The correction term ∼4ECq

Q2
r can be eas-

ily absorbed into a modified resonator capacitance and the
variable φr = LrIr is now directly related to the current Ir

through the inductor, which is a physically measurable quan-
tity. However, from our analysis above, we expect that due to
the “momentum”-type coupling, HQ might not permit us to
make a TLA, which, in contrast, should be possible for H�.

To confirm this intuition, we plot in Fig. 7(a) the predicted
energy levels En obtained from the reduced models HDM

and HEDM together with the exact results for the case of
N = 2 qubits. For this plot, the values for EJ , ELq

, and
ECq

have been chosen such that the frequency ω10 ≈ 3 GHz
and nonlinearity parameter �nl ≈ 15 are consistent with ac-
tual experimental values [90]. The spectrum is plotted as a
function of g0 ∼ 4

√
1/Lr , which corresponds to the coupling

given in Eq. (48), but evaluated for the bare qubit states
|ϕn〉. To obtain a direct comparison with the previous results,
we use Lr as a tuning parameter for the coupling, but also
adjust the capacitance Cr to keep the resonance condition
ωc = ω10 fixed. We see again very clearly the invalidity of
the TLA for the charge-coupled Hamiltonian HQ, while a
good agreement between HEDM and the full model is found.

FIG. 7. Two-qubit circuit QED. (a) Comparison of the energy
spectra obtained from the full model H� (solid blue line), the
extended Dicke model HEDM derived from H� (green dashed line),
and the Dicke model HDM derived from Hamiltonian HQ (red dotted
line) for N = 2 flux qubits. The inset shows a zoom of the first
three excitation energies for small couplings. (b) Dependence of the
ground-state photon number 〈a†a〉 and the single-qubit entanglement
entropy S1 = −Tr{ρ1 log2(ρ1)} on the coupling strength g0. Here,
ρ1 is the reduced density matrix for a single qubit obtained from
the density matrix of the ground state ρ = |GS〉〈GS| evaluated for
the full model H� and for the corresponding effective model HEDM.
(c) The lowest eigenenergies (dashed orange lines) of the extended
Dicke model without the x2 correction, H

(bare)
EDM , are compared with

the corresponding energies of the full model (solid lines). For all
the plots, the value of Lr has been used as a tuning parameter and
Cr has been adjusted to keep the resonance condition ω10 = ωc =√

8ECr
ELr

/h̄ fixed. The parameters for the flux qubits are the same
as in Fig. 6(c).

Note that compared to the example presented in Fig. 3, the
nonlinearity is now considerably smaller and therefore the
discrepancy between the full Hamiltonian and HEDM becomes
visible already at g0/ωc � 3. Nevertheless, up to these values,
the effective two-level model still reproduces very well the
expected separation of the spectrum into 2N -fold degenerate
manifolds [66], which is not at all captured by the spectrum
of the Dicke model. Figure 7(b) shows that even beyond this
regime, characteristic USC effects, such as the formation of
entangled subradiant ground states and the decoupling of the
cavity mode [20,66], are accurately captured by the reduced
cavity QED Hamiltonian, if derived in the correct gauge.

C. The x2 correction

From Fig. 7(a), we see that even for very nonlinear flux
qubits, the spectrum of HEDM starts to deviate significantly
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from the exact energies already for g0/ωc ≈ 3. A closer
inspection shows that this deviation arises mainly from the
“x2 correction,” i.e., the additional term ∼ELr

φ2/2 in the
effective qubit potential Ṽ (φ). For large couplings, this term
induces a substantial modification of the qubit potential and
thereby affects the coupling gD and, even more strongly, the
qubit frequency ω̃10. While the full inclusion of this strong
modification into the qubit Hamiltonian might seem to be
the most accurate approach to derive a reduced two-level
Hamiltonian, Fig. 7(c) illustrates that this is, in general, not
the case. In this plot, we have evaluated the spectrum of
the extended Dicke model H

(bare)
EDM , which is derived from the

unperturbed states |ϕn〉 and eigenfrequencies ωn of the bare
potential V (φ), i.e., omitting the x2 correction completely. We
see that the upward bending of the energy levels disappears
and that apart from a gradual decrease of the photon frequency
in the full model, H (bare)

EDM reproduces the qualitative features of
the spectrum much more accurately.

To understand this somewhat counterintuitive result, one
has to keep in mind that the full interaction between the qubits
and the resonator is in total given by the sum of the following
three terms:

Hint = −ELr
φr

∑
i

φi + ELr

2

∑
i �=j

φiφj + ELr

2

∑
i

φ2
i . (51)

By including only the last term, i.e., the local x2 correction
exactly, but projecting the first two contributions onto the
two-level subspace, one treats these three contributions on
an unequal footing. This asymmetry can introduce unphysical
artifacts in the resulting effective Hamiltonians, once the cou-
pling to energetically higher-energy levels becomes relevant.

From our numerical studies, we find that also for other
nonlinear potentials, the omission of the x2 correction in the
derivation of the Rabi and the extended Dicke model leads to
much better qualitative predictions in the regime g0/ωc > 1.
We emphasize that this is not a general result and must be ver-
ified case by case. For example, for harmoniclike potentials,
the inclusion of the x2 term is essential and, for finite-range
molecular potentials, the omission of this term can even lead
to unbounded ground-state energies [91]. Nevertheless, the
results in Fig. 7(c) show that in particular in circuit QED,
effective two-level models can be more accurate than expected
from standard derivations. Importantly, even in regimes where
the TLA no longer provides accurate quantitative predictions,
the discrepancies arise mainly from the effective parameters
gD, ω̃10 and ωc that enter the extended Dicke model, but not
so much from the structure of the model itself. In particular,
the observed ordering of the exact and approximate energy
levels in Fig. 7(c) is still the same and very different from the
ladder of twofold-degenerate energy levels predicted by the
Dicke model under the same conditions.

D. Discussion: Circuit QED

In circuit QED, USC conditions have been demonstrated
with single flux qubits that are coupled inductively to single-
or multimode microwave resonators [40–45]. For the quanti-
zation of such circuits, one usually follows the standard ap-
proach outlined above, which results in circuit Hamiltonians

similar to H� given in Eq. (47). Therefore, for flux-coupled
circuits, one naturally obtains a “position-type” interaction
∼φ, which permits a TLA for a sufficiently anharmonic
spectrum. Note, however, that when modeling such circuits,
the usual approach of including the φ2 correction from the
coupling into a renormalization of the qubit potential Ṽ (φ)
may lead to erroneous results in the regime g0/ωc > 1.

Recently, very large couplings of about g0/ωc ≈ 0.4 have
also been realized with transmon qubits that are coupled
capacitively to a transmission-line resonator [46], in which
case one obtains a momentum-type interaction ∼Q. There-
fore, apart from various multimode corrections that have
already been analyzed for this setup [60,92–95], the TLA must
also be questioned. For conventional transmon qubits, where
EJ /EC 
 1, the potential V (φ) is only weakly anharmonic
and the oscillator strength for the lowest transition is almost
saturated (f ≈ 0.99 for EJ /EC = 20). Therefore, the error
introduced by making a TLA should still remain small as long
as only weak excitations and moderately strong couplings
are considered. However, in this transmon limit, the coupling
parameter is bounded by ζ < 1 [46,66], which restricts the use
of this qubit design for exploring USC physics.

In the other limit of a Cooper pair box [96], where EC 

EJ , the electrostatic energy is the dominant energy scale and
states |Q = m〉 with a different number of m = 0,±1,±2, . . .

Cooper pairs become energetically well separated. In this
regime, a two-level subspace can be isolated by biasing the
superconducting island to a charge-degeneracy point where,
for example, the states |Q = 0〉 and |Q = 1〉 have the same
electrostatic energy. These two states are then mixed by
Josephson tunneling, resulting in the qubit states |↓,↑〉 =
(|Q = 0〉 ± |Q = 1〉)/

√
2. Therefore, although dealing with a

momentum-type capacitive coupling to a microwave resonator
∼Q, this interaction does not couple the qubit subspace to
energetically higher-lying charge states and a TLA is again
well justified [66,97]. Note that due to the discreteness of the
charge states and the presence of a bias voltage, the energy
levels in a Cooper pair box can no longer be directly compared
with a regular particle moving in a potential well. In particular,
for this system, the TRK sum rule and the relation between
matrix elements of Q and φ similar to Eq. (9) no longer apply.
In this parameter regime, the strict analogy between circuit
QED and cavity QED with regular dipoles fails.

VI. CONCLUSIONS

In summary, we have discussed the crucial role of the
choice of gauge in the derivation of effective models for
light-matter interactions in the USC regime. Specifically, we
have shown that in the Coulomb gauge, the couplings to
higher excited states of the dipole potential are in general
not energetically suppressed and, even for very anharmonic
potentials, performing the TLA can give completely wrong
results. While for harmonic dipoles or potentials where the os-
cillator strength is almost saturated, i.e., f ≈ 1, the Coulomb
gauge and the dipole gauge still give very similar results in
the collective USC regime, significant deviations are found
for potentials with f < 1 and, more generally, in the single-
dipole USC regime. Under such conditions, not only the
effective parameters, but also the structure of the effective
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cavity QED models depend on the chosen gauge. Thus the
findings of this work have an immediate relevance for vari-
ous USC cavity-QED experiments, for example, intersubband
polaritons in asymmetric wells or circuit-QED devices.

We emphasize that in the current work, we have focused
on the multilevel structure of the matter system, assuming
the coupling to a single electromagnetic resonance. This
is justified in essentially single-mode photonic cavities, as
lumped-element resonators in the microwave domain [66]. In
the case of generic resonators though, other photonic modes
are present and neglecting them can lead to unphysical predic-
tions, such as superluminal signal propagation [95], when the
light-matter coupling becomes nonperturbative.

Note added. Recently, a related study about the TLA in
different gauges has appeared [98].
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APPENDIX A: COUNTER-NO-GO THEOREM

In this appendix, we provide a more general derivation
of the counter-no-go theorem for the coupling parameter ζD

discussed in Sec. II D. We first remark that from the TRK
sum rule, we obtain both a lower and an upper bound on the
coupling parameter,

|x̃10|4
x4

D

� ζD � D2

ω̃2
10

, (A1)

where xD = √
h̄/(2mD) is the harmonic-oscillator length in

the limit D ∼ g0 → ∞. For finite, but large D, the lowest
eigenstates of the total potential, Ṽ (x) = V (x) + mD2x2/2,
are localized around x ≈ 0 and we can expand the bare
potential as

V (x) � c2n

(2n)!
x2n. (A2)

Here we have assumed that the potential is symmetric and
that c2n is the lowest nonvanishing coefficient in the Taylor
series of V (x). By considering V (x) as a small correction to
mD2x2/2, we can use perturbation theory and obtain

ω̃10 � D + c2n

h̄

N0

2n!
x2n

D (A3)

and

x̃10 � xD −
(

c2n

2h̄D

N0

2n!

)
x2n+1

D , (A4)

where N0 = 〈1|[(a + a†)2n]|1〉 − 〈0|[(a + a†)2n]|0〉 is a pos-
itive normalization constant. We see that for any symmetric
potential that is anticonfining at the origin, i.e., c2n < 0, there

is a certain value of the coupling g0 beyond which x̃10 > xD

and, therefore, ζD > 1. For a confining potential, where c2n >

0, we find ζD < 1 in the large-coupling limit, but there might
still be intermediate-coupling regimes where the value of ζD

exceeds the value of one.

APPENDIX B: EXACT DIAGONALIZATION OF
HC IN THE LIMIT N → ∞

In the dilute regime, where the number of dipoles N is
much larger than the average number of excitations, we can
use a multilevel Holstein-Primakoff approximation to calcu-
late the excitation energies of the full Hamiltonian HC given
in Eq. (32). Under this approximation, we obtain [77,99]

HC � ω̃ca
†a +

∑
n

ωnb
†
nbn

− GC

2
(a + a†)

∑
n

νn(bn + b†n), (B1)

where ω̃c = √
ω2

c + ND2, D2 = h̄g2
0/(2mx2

10ωc ), and
GC = √

NgC = G0ω10/
√

ωcω̃c. Here the operators
b
†
n = 1/

√
N

∑N
i=1 |ni〉〈0i | create a collective excitation

in the nth energy level of the bare dipole Hamiltonian and
νn = (xn0/x10)(ωn0/ω10). In the low-excitation limit, we can
neglect double occupancies of states other than the ground
state and treat the bn as bosonic operators with commutation
relations [bn, b

†
m] � δnm. The eigenfrequencies ω of this

system are then given by the solutions of the equation

ω2 + G2
0

∑
n

ν2
nω

2
10/(ωn0ωc )

1 − ω2/ω2
n0

= ω2
c + ND2. (B2)

This equation can be solved numerically and the lowest two
eigenfrequencies denoted by ω± are plotted as solid lines in
Figs. 5(a) and 5(b). Since all levels of the dipole potential
are included, the spectrum obtained from this equation is
gauge invariant, which can be verified by repeating the same
calculation in the electric dipole gauge, starting from Hamil-
tonian (36).

By looking only at the lowest solution of Eq. (B2), we can
assume that ω− � ωn0 and obtain the approximate result

ω2
− � ω2

c + ND2
(
1 − 2m

h̄

∑
n x2

n0ωn0
)

1 + G2
0

∑
n

ν2
nω2

10

ω3
n0ωc

. (B3)

From the TRK sum rule, it follows that the term in the
parentheses is zero and

lim
G0→∞

ω− = 0. (B4)

Therefore, the lower polariton frequency approaches zero for
large enough coupling. This finding contradicts the finite
value of ω− in Eq. (43), as obtained from the Dicke model
in the Coulomb gauge.
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