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Breakdown of the adiabatic
Born–Oppenheimer approximation
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The adiabatic Born–Oppenheimer approximation (ABO)
has been the standard ansatz to describe the interaction
between electrons and nuclei since the early days of quantum
mechanics1,2. ABO assumes that the lighter electrons adjust
adiabatically to the motion of the heavier nuclei, remaining
at any time in their instantaneous ground state. ABO is well
justified when the energy gap between ground and excited
electronic states is larger than the energy scale of the nuclear
motion. In metals, the gap is zero and phenomena beyond
ABO (such as phonon-mediated superconductivity or phonon-
induced renormalization of the electronic properties) occur3.
The use of ABO to describe lattice motion in metals is, therefore,
questionable4,5. In spite of this, ABO has proved effective for
the accurate determination of chemical reactions6, molecular
dynamics7,8 and phonon frequencies9–11 in a wide range of
metallic systems. Here, we show that ABO fails in graphene.
Graphene, recently discovered in the free state12,13, is a zero-
bandgap semiconductor14 that becomes a metal if the Fermi
energy is tuned applying a gate voltage13,15, Vg. This induces
a stiffening of the Raman G peak that cannot be described
within ABO.

Graphene samples are prepared by micromechanical cleavage
of bulk graphite at the surface of an oxidized Si wafer with
a 300-nm-thick oxide layer, following the procedures described
in ref. 12. This allows us to obtain graphene monocrystals
exceeding 30 μm in size, Fig. 1a. Using photolithography, we then
make Au/Cr electrical contacts, which allow the application of a
gate voltage, Vg, between the Si wafer and graphene (Fig. 1a,b).
The resulting devices are characterized by electric-field-effect
measurements13,15,16, yielding a charge-carrier mobility, μ, of
5,000–10,000 cm2 V−1 s−1 at 295 K and a zero-bias (Vg = 0)
doping of ∼1012 cm−2. This is reflected in the existence of
a finite gate voltage, Vn, at which the Hall resistance is
zero and the longitudinal resistivity reaches its maximum.
Accordingly, a positive (negative) Vg–Vn induces electron (hole)
doping, having an excess-electron surface concentration of
n = η(Vg − Vn). The coefficient η ≈ 7.2 × 1010 cm−2 V−1 is found
from Hall effect measurements and agrees with the geometry of the
resulting capacitor12,13,15.
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Figure 1 Experimental set-up. a, Optical micrograph of the contacted graphene
sample. b, Schematic diagram of the Raman and transport set-up. The laser spot
size is ∼1μm2.

Unpolarized Raman spectra are measured at 295 and 200 K in
ambient air and in vacuum (<5 × 10−6 mbar), respectively, with
a Renishaw spectrometer at 514 nm using a ×50 long-working-
distance objective, Fig. 1b. The incident power is kept well below
4 mW to avoid sample damage or laser-induced heating17. The
Raman spectra are measured as a function of the applied Vg, Fig. 2a.
Each spectrum is collected for 30 s. The applied gate voltage tends
to move Vn, especially at room temperature. We thus determine
the Vg corresponding to the minimum G-peak position, and use
this to estimate Vn. The G peak upshifts with positive applied
Vg–Vn at room temperature (Fig. 2a,b) and at 200 K (Fig. 2c). A
similar trend, albeit over a smaller voltage range, is observed for
negative Vg–Vn. This upshift for both electron and hole doping is
qualitatively similar to that reported by Yan et al. for electrically
doped graphene measured at 10 K (ref. 18).

The Raman G peak of graphene corresponds to the E2g phonon
at the Brillouin zone centre, �, (refs 17,19). Phonon calculations
for undoped graphene and graphite show the presence of a Kohn
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Figure 2 Raman G peak of doped graphene. a, Measurements at 295 K as a function of Vg. The red spectrum corresponds to the undoped case. b,c, G-peak position as a
function of electron concentration at 295 K (b) and 200 K (c). Black circles: measurements; red dashed line: adiabatic Born–Oppenheimer; blue line: finite-temperature
non-adiabatic calculation from equation (6); black dashed line: simplified non-adiabatic calculation from equation (5). The minimum observed in the calculations at
∼1012 cm−2 occurs when the Fermi energy equals half of the phonon energy. d, FWHM(G) at 200 K as a function of electron concentration. Circles: measures; blue line:
theoretical FWHM of a Voigt profile obtained from a lorentzian component given by equation (7) and a constant gaussian component of ∼8 cm−1.

anomaly in the phonon dispersion of the E2g mode near � (ref. 20).
A Kohn anomaly is the softening of a phonon of wavevector q∼2kF,
where kF is a Fermi-surface wavevector. By doping graphene, the
change in the Fermi surface moves the Kohn anomaly away from
q = 0. Thus, as Raman spectroscopy probes phonons with q = 0,
intuitively we could expect a stiffening of the q = 0 G peak. This
would be in agreement with our experiments. To validate this
picture, we need to compute the frequency of the E2g mode in
doped graphene.

In graphene, the electronic bands near the high-symmetry K
points are well described by a Dirac dispersion14 ε(k,π∗) = h̄vFk

and ε(k,π) = −h̄vFk, where k+K is the momentum of the Dirac
Fermions, vF is the Fermi velocity and h̄vF = 5.52 eV Å, from
density functional theory (DFT)20 (Fig. 3a). The Dirac point is
defined by the crossing of these conic bands and coincides with
K, Fig. 3a. Thus, at zero temperature, the doping-induced shift of
the Fermi level from the Dirac point is εF = sgn(n)

√
nπh̄vF, where

sgn(x) is the sign of x.
The E2g phonon in graphene consists of an in-plane

displacement of the carbon atoms by a vector ±u/
√

2 as shown
in Fig. 3d. In the presence of such atomic displacements, the bands
are still described by a cone (that is, a gap does not open) with the
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Figure 3 Schematic π band structure of doped graphene near the
high-symmetry K point of the Brillouin zone. The filled electronic states are
shown in green. a, Bands of the perfect crystal. The Dirac point is at K, the
electronic states are filled up to the Fermi energy εF and the Fermi surface is a circle
centred at K. b, Bands in the presence of an E2g lattice distortion. The Dirac points
are displaced from K by ±s. Within ABO, the electrons remain in the instantaneous
ground state: the bands are filled up to εF and the Fermi surface follows the
Dirac-point displacement. The total electron energy does not depend on s. c, Bands
in the presence of an E2g lattice distortion. In the non-adiabatic case, the electrons
do not have time to relax their momenta (through impurity, electron–electron and
electron–phonon scattering) to follow the instantaneous ground state. In the
absence of scattering, the electron momentum is conserved and a state with
momentum k is occupied if the state with the same k is occupied in the unperturbed
case. As a consequence, the Fermi surface is the same as in the unperturbed case
and does not follow the Dirac-cone displacement. The total electron energy
increases with s2, resulting in the observed E2g-phonon stiffening. d, Atomic pattern
of the E2g phonon. The atoms are displaced from the equilibrium positions by
±u/

√
2. Note that the displacement pattern of the Dirac points (in reciprocal space)

is identical to the displacement pattern of the carbon atoms (in real space).

Dirac point shifted from K by a vector s (Fig. 3b,c)21. In practice, the
atomic pattern of the E2g vibrations is mirrored into an identical
pattern of Dirac-point vibrations in the reciprocal space. The
dependence of the electronic bands on u can be obtained from the
DFT electron–phonon coupling matrix elements (see equation (6)
and note 24 of ref. 20 and Supplementary Information):

ε(k,π∗/π,u) = ±h̄vF|k−s(u)| (1)

where s ·u = 0, s = u
√

2〈D2
�〉F/(h̄vF) and 〈D2

�〉F = 45.6 eV2 Å
−2

is the deformation potential of the E2g mode22. Equation (1) well
reproduces the modification of the DFT band structure of graphene
owing to a static displacement (frozen phonon) of the atoms
according to the G phonon pattern.

The knowledge of the electronic bands (in the presence of a
phonon) allows the determination of the phonon energy h̄ωεF as
a function of εF. In particular,

h̄�ω = h̄ωεF − h̄ω0 = h̄

2Mω0

d2�E

(du)2
, (2)

where M is the carbon mass, ω0 is the frequency in the undoped

case, �ω � ω0 and �E is the variation of the electronic energy
with εF.

Within ABO, �E(u) is computed assuming a static atomic
displacement. Under this hypothesis, for any given displacement u,
the electrons are supposed to be in the ground state, that is, the
bands are filled up to εF (Fig. 3b). Thus, the adiabatic �E is

�E(u) = 4A

(2π2)

∫
ε(k,π∗ ,u)<εF

ε(k,π∗,u) d2k, (3)

where we consider εF > 0, A = 5.24 Å
2

is the unit-cell area and a
factor of 4 accounts for spin and K-point degeneracy. Combining
equations (1) and (3), we find that �E does not depend on u
and h̄�ω = 0. Thus, within ABO, the Raman G-peak position is
independent of εF, in contrast with experiments, Fig. 2b,c.

This failure of the frozen-phonon calculation urges us to
re-examine the assumptions underlying ABO. The E2g phonon
is a dynamical perturbation described by a time-dependent
lattice displacement ũ(t) = u cos(ω0t) oscillating at the G-peak
frequency. Within ABO, it is assumed that, at any given time t ,
the electrons are in the adiabatic ground state of the instantaneous
band structure ε(k,π∗,ũ(t)). However, the inverse of the G-
peak pulsation is ∼3 fs, which is much smaller than the typical
electron-momentum relaxation times τm (owing to impurity,
electron–electron and electron–phonon scattering with non-zero
momentum phonons). Indeed, a τm of a few hundred femtoseconds
is deduced from the electron mobility in graphene23 and from
ultrafast spectroscopy in graphite24,25. As a consequence, the
electrons do not have time to relax their momenta to reach the
instantaneous adiabatic ground state, as assumed in ABO. The
departure from the adiabatic ground state can be accounted for in
the calculation of �E, by filling the perturbed bands, ε(k,π∗,u)
with the occupations of the unperturbed bands ε(k,π∗,0), as
in Fig. 3c:

�E(u) = 4A

(2π2)

∫
ε(k,π∗ ,0)<εF

ε(k,π∗,u) d2k+O(u3). (4)

This equation is valid in the limit εF 	 h̄ω0/2, and can be
rigorously derived using time-dependent perturbation theory,
as shown in the Supplementary Information. In this case,
the non-adiabatic energy, �E, depends on u. Combining
equations (1), (4) and (2) and carrying out the integral we get:

h̄�ω = h̄A〈D2
�〉F

πMω0(h̄vF)2
|εF| = α′|εF|, (5)

where α′ = 4.39×10−3.
The result of equation (5) can be extended to any εF and finite

temperature T by computing the real part of the phonon self-
energy3 with the DFT electron–phonon coupling matrix elements
(equation (6) and note 24 of ref. 20) to obtain:

h̄�ω = α′P
∫ ∞

−∞

[f (ε− εF)− f (ε)]ε2sgn(ε)

ε2 − (h̄ω0)2/4
dε, (6)

where P is the principal part and f is the Fermi–Dirac distribution
at T (refs 26–28). Figure 2b,c show the excellent agreement of
our non-adiabatic finite T calculation (equation (6)) with the
experiments. The measured trends are also well captured by the
simplified model, equation (5). By comparing the adiabatic and
non-adiabatic calculations, we conclude that the stiffening of
the E2g mode with |εF| is due to the departure of the electron
population from the adiabatic ground state.

200 nature materials VOL 6 MARCH 2007 www.nature.com/naturematerials

Untitled-3   3 9/2/07, 7:58:40 pm



LETTERS

A pictorial interpretation of this phenomenon (valid for
εF 	 h̄ω0/2) can be obtained by considering what happens to
a filled glass when shaken horizontally. The liquid gravitational
energy and its level mimic the electronic energy �E and εF,
respectively. The shaking frequency mimics the phonon frequency
and the relaxation time of the liquid surface mimics the electron
relaxation time. If the motion of the glass is slow, the liquid surface
remains flat and its gravitational energy is independent of the glass
horizontal position, as in equation (3) and in Fig. 3b. If the motion
of the glass is rapid, the liquid surface profile is not flat and its
gravitational energy increases with the displacement of the glass,
as in equation (4) and Fig. 3c. To push the analogy even further,
a non-cylindrical glass should be used, where the liquid surface
increases with the liquid level. In this case, the higher the liquid
level, the larger the difference between the gravitational energies in
the fast- and slow-shaken glasses. Indeed, in graphene, the higher
the Fermi level, the larger the difference between the non-adiabatic
�E and the adiabatic �E. This causes the observed stiffening of the
phonon frequency with εF.

The validity of our model is further confirmed by the analysis of
the G-peak linewidth. The phonon decaying into an electron–hole
pair gives the most important contribution to the homogeneous
broadening of the E2g phonon. The full-width at half-maximum
(FWHM), γ , can be computed extending to finite T and εF �= 0 the
results of ref. 22:

γ = π
2ω0α

′

c

[
f

(
− h̄ω0

2
− εF

)
− f

(
h̄ω0

2
− εF

)]
, (7)

where c is the speed of light. At T = 0, γ = 11 cm−1 for εF = 0
and γ drops to zero for εF > h̄ω0/2 because the scattering process
is forbidden by the Pauli exclusion principle22. Figure 2d shows a
good agreement between the experimental and theoretical γ , once a
constant inhomogeneous gaussian broadening of ∼8 cm−1 is added
to the electron–phonon contribution of equation (7).

In summary, graphene is a remarkable example of ABO
violation. Within ABO, the energy of a zone-centre phonon is
determined by two contributions: the distortion of the electronic
bands, associated with the phonon displacement, and the adiabatic
rearrangement of the Fermi surface. In graphene, these two
contributions cancel out exactly because of the peculiar rigid
motion of the Dirac cones, associated with the E2g phonon.
In general, a correct phonon treatment should not include
the adiabatic rearrangement of the Fermi surface whenever the
electron-momentum relaxation time is longer than the inverse
of the phonon pulsation, as occurs in graphene and in several
metals (see, for example, Table 1.3 of ref. 29). Note that the
stronger the electron–phonon coupling with q = 0 phonons, the
larger the difference between ABO and non-ABO frequencies.
However, the lattice dynamics is well described by ABO if the
electron–phonon coupling with q �= 0 phonons is so strong that
the electron-momentum relaxation is faster than the lattice motion.
We anticipate that the ABO breakdown described here will
affect the vibrational properties of carbon nanotubes30 and

phonon-mediated superconductors. Furthermore, the resulting
variation of the Raman active peaks in graphene and nanotubes can
allow determination of the effective doping by Raman spectroscopy,
with important consequences for basic and applied research.
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