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The independent particle approximation is shown to break down for the photoionization of both inner
and outern, s, . 0d electrons of all atoms, at high enough energy, owing to interchannel interactions
with the nearbyns photoionization channels. The effect is illustrated for Ne2p in the 1 keV photon
energy range through a comparison of theory and experiment. The implications for x-ray photoelectron
spectroscopy of molecules and condensed matter are discussed. [S0031-9007(97)03382-6]

PACS numbers: 32.80.Fb

The response of physical systems to ionizing electro-
magnetic radiation, photoionization, is a basic process of
nature. Because of the weak coupling between incident
photons and target electrons, the electromagnetic radiation
exerts only a small perturbation on the target, thereby
allowing the unambiguous study of target electron prop-
erties, e.g., correlation and many-body aspects of electron
dynamics. In addition, the photoionization process, along
with associated spectroscopies including photoelectron
spectroscopy, is of importance in a variety of applica-
tions [1] including structural determination in crystalline
solids, astrophysical modeling, radiation physics, etc.
Owing to its importance, the field has seen a recent
upsurge of activity, particularly in the x-ray range, due to
the development of third generation synchrotron radiation
sources on the experimental side [2], along with the
dramatic increase in computer power available, on the
theoretical side.

In recent years, a wide variety of studies, both theoretical
and experimental, have shown the importance of correla-
tion in the form of interchannel coupling on the photoion-
ization process in the region of the outer shell thresholds
[3–10]; in some cases, the single-particle viewpoint breaks
down completely. An outstanding example is the thresh-
old behavior of Xe5s which is completely dominated by
interchannel coupling with the5p and 4d channels [5].
In addition, in the vicinity of inner shell thresholds, dra-
matic effects are seen in outer shell cross sections due
to interchannel coupling. Examples of this phenomenon
abound [7], e.g., effects on the outer shell cross sections
of atomic Ba in the vicinity of the4d threshold [11]. It

is generally thought, however, that in the x-ray range (far
from the first ionization potential) away from inner shell
ionization thresholds, the photoionization process can be
well characterized in a single channel [3,7,12,13], or inde-
pendent particle approximation, theory which omits cor-
relation entirely. If this assertion is not true, then doubt
is cast upon the interpretation of a number of studies of
atoms, molecules, and condensed matter involving x-ray
photoabsorption.

In this paper it is shown that this notion isnot
true for the photoionization ofany n, s, . 0d subshell
at high enough energy, but is true forns subshell
photoionization. To understand why this occurs, we first
scrutinize the basic idea of interchannel coupling in some
detail. Consider a simple situation where, within the
framework of an independent particle theory (such as
Hartree-Fock), the ground state of the target system is
characterized byci and there are two final channels with
wave functionsc1,´ and c2,´ with ´ the total energy; all
of these wave functions being eigenfunctions ofH0, an
approximation to the exact Hamiltonian of the system,
H. For simplicity, we shall assume that there is no
intrachannelcoupling, i.e.,

kcj,´jHjcj,´0 l  ´ds´ 2 ´0d , (1)

which is a property of a Hartree-Fock theory [14]. Now,
consider a transition process under the action of transition
operatorT , and define the transition matrix elements

Djs´d  kcijT jcj,´l, j  1, 2 . (2)

The “real” wave functions for the final states, the eigen-
functions ofH, can be constructed as linear combinations
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of the c1,´’s and thec2,´’s. Using first order perturba-
tion theory to approximate the “exact” wave functions, as
modified to deal with the continuum [14], we obtain for
the corrected wave functions

C1,E  c1,E 1 P
Z kc2,´jH 2 H0jc1,El

E 2 ´
c2,´ d´ , (3a)

C2,E  c2,E 1 P
Z kc1,´jH 2 H0c2,El

E 2 ´
c1,´ d´ , (3b)

where P represents the principal value. The perturbed
matrix elements then become

M1sEd  D1sEd 1 P
Z kc2,´jH 2 H0jc1,El

E 2 ´
D2s´d d´ ,

(4a)

M2sEd  D2sEd 1 P
Z kc1,´jH 2 H0jc2,El

E 2 ´
D1s´d d´ .

(4b)

These equations embody the notion of interchannel cou-
pling, i.e., the transition matrix element of each channel
being modified owing to the fact that the real wave func-
tions of the system involve a mixture of channels. For
example, for electric dipole photoionization of Xe5s, let
channel 1 be5s ! kp and channel 2,5p ! kd. Equa-
tion (4a) then becomes

M5s!kpsEd  D5s!kpsEd

1 P
Z kc5p!k0djH 2 H0jc5s!kpl

E 2 ´

3 D5p!k0ds´d d´ . (5)

Because these channels are degenerate, the denominator,
E 2 ´, can vanish. Further, the interaction matrix ele-
ment in the numerator of Eq. (5), essentially a matrix ele-
ment ofe2yrij , is not small. Thus, sinceD5p!kd is much
larger thanD5s!kp, the integral term in Eq. (5) dominates
the matrix element over a broad range above the5s ion-
ization threshold. Significant effects attributable to this
behavior are confirmed by experiment [5].

Similarly, in the photoionization of Ba6s around the
4d threshold, the dipole matrix element becomes

M6s!kpsEd  D6s!kpsEd

1 P
Z kc4d!k0f jH 2 H0jc6s!kpl

E 2 ´

3 D4d!k0f s´d d´ (6)

and the second term dominates, just like Xe5s, because
D4d!kf is much larger thanD6s!kp. There is, however,
a difference in the two cases. In the latter case, the
second term dominates only in a limited range around
the 4d threshold. For energies below the threshold,
the second term falls off rapidly due to the energy
denominator. Above the threshold, it falls off because
the interaction matrix element decreases with increasing

energy as a result of the destructive interference between
the continuum waves of the two channels which have
rather different energy for a givenhy. Only near the
4d threshold, where thekf wave function is not very
oscillatory, is the interaction matrix element large. In
the Xe5s case, by contrast, because the5s and5p have
roughly the same binding energy, the continuum waves
remain roughly “in phase” at all energies so that the
interaction matrix element falls off only very slowly with
energy and the interchannel coupling effects persist over
a large energy range.

Now, consider the photoionization of annp electron,
inner or outer, from any atom, molecule, or solid. Not
far above thenp ionization threshold will always be an
ns threshold. Thus, a bit above thenp threshold, there
will always be anns cross section degenerate with the
np cross section. However, no matter what the relative
values of these cross sections are near the thresholds,
at energies far above threshold thens cross section will
alwaysdominate thenp. This is because, at high energy,
the electric dipole photoionization cross section for ann,
subshell falls off with energy asE2s7y21,d [3,7]. Thus,
using Eqs. (4),

Mnp!kdssdsEd  Dnp!kdssdsEd

1 P
Z kcns!k0pjH 2 H0jcnp!kdssdl

E 2 ´

3 Dns!k0ps´d d´ . (7)

Because the energies of the photoelectrons from thenp
and ns channels are similar, the interaction matrix ele-
ment falls off only very slowly and remains large with
increasing energy, much like the Xe5s case. Thus, for
both np ! kd andnp ! ks, the second term in Eq. (7)
becomes a larger and large contribution to the matrix
element, with increasing energy. This is in sharp con-
tradistinction to the notion that the single-particle char-
acteristics of the electric dipole photoionization process
dominate at high energy.

As a prototypical example, consider the photoionization
of atomic Ne in the 1 keV photon energy range. Calcu-
lations were performed within the framework of the rela-
tivistic random-phase approximation (RRPA) [15,16] for
the cross section,s, and photoelectron angular distribu-
tion asymmetry parameter,b, of the 2p subshell. Four
levels of approximation were considered: (i) coupling of
all of the relativistic single excitation channels arising
from 2p, 2s, and1s; (ii) from 2p and2s only; (iii) from
2p and1s only; and (iv) from2p alone and2s alone.

The results for the2p partial cross section of Ne are
shown in Figs. 1 and 2. From these results, it is seen that
the calculation predicts that all four levels of calculation
agree rather well at the lowest energies considered. This
is because the2p cross section dominates the2s cross
section in this energy range by a factor of about 6, so
that interchannel coupling does not appreciably affect
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FIG. 1. Photoionization cross section for Ne2p between 200
and 800 eV. The curves are RRPA results with the single
excitation channels arising from2p, 2s, and1s coupled (solid
curve); 2p and 2s (dashed curve);2p and 1s (dash-dotted
curve); and2p alone (dotted curve).

the 2p matrix elements. With increasing photon energy,
however, the2p matrix elements fall off more rapidly
than the2s, so that by the 500 eV range, the2s cross
section is larger than the2p3y2 by a factor of 2 and
larger than the2p1y2 by a factor of more than 3. This
translates into two groups of results in this energy range
as seen in Fig. 1. The two calculations with2p and 2s
coupled agree with each other, and the other two agree
with each other but disagree with the first group. This
clearly points to the interchannel coupling between2p
and 2s channels being responsible for this difference.
With increasing energy, this behavior is interrupted as
we approach 870 eV where the1s channels open and
coupling with them becomes crucial, as seen in Figs. 1
and 2. Above 1000 eV, however, we are back to the
same two groups of curves, just as in the 500 eV region,
indicating that in this region as well, it is the coupling of
the 2p with the 2s channels that matters. The coupling
produces a2p cross section more than 30% above the
uncoupled result, as seen in Fig. 2.

FIG. 2. Photoionization cross section for Ne2p between 800
and 1500 eV. The curves are RRPA results with the single
excitation channels arising from2p, 2s, and1s coupled (solid
curve); 2p and 2s (dashed curve);2p and 1s (dash-dotted
curve); and2p alone (dotted curve).

New measurements have been made for the ratio of
the 2s to the 2p cross section, which take into account
the nondipole contribution to the photoelectron angular
distribution [17], and they are shown in Fig. 3, along
with our theoretical results. These measurements confirm
the accuracy by the excellence of the agreement. But
the most important result demonstrated by Fig. 3 is the
divergence between the fully coupled and the uncoupled
calculations at the highest energies; and the fact that it is
the coupling with2s that is important as evidenced by the
agreement between the fulls2p 1 2s 1 1sd calculation
and the2p 1 2s calculation. In addition, a central field
calculation [3,12,13] was performed using a Hartree-
Slater potential [18] and the results (not shown) are
virtually identical to the uncoupled2p RRPA result of
Fig. 3, as expected. Thus, it is clear that the single-
particle result does not agree with experiment at the higher
energies, while the coupled result does, in contrast to the
conventional wisdom [3,7,12,13].

Looking at the photoelectron angular distribution pa-
rameter,b, the experimental results [17] along with the
various levels of calculated results, are shown in Fig. 4;
all levels of calculation agree reasonably well at the low-
est energies, the separation into the same two groups oc-
curs with increasing energy is seen, and the agreement of
the experimental results with the full RRPA calculation is
clear. Our single-particle result forb (not shown) also
is virtually indistinguishable from the2p alone calcula-
tion. At the highest energies considered, we see about
a 30% shift in b from the single-particle calculation,
reiterating the point that even out at 1.5 keV, approxi-
mately 100 times the threshold energy, interchannel cou-
pling does matter.

This interchannel coupling effect should also be in evi-
dence fornd andnf subshells as well, by the arguments

FIG. 3. Ratio of the2s to 2p cross section for Ne. The
calculations employed the RRPA formalism with the single
excitation channels arising from2p, 2s, and1s coupled (solid
curve); 2p and 2s coupled (dashed curve); and2p and 2s
uncoupled to each other (dotted curve). The experimental
points were measured in the manner discussed in Ref. [17].
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FIG. 4. Photoelectron angular distribution asymmetry param-
eter,b, for Ne 2p calculated using the RRPA formalism with
the single excitation channels arising from2p, 2s, and 1s
coupled (solid curve);2p and 2s (dashed curve);2p and 1s
(dash-dotted curve); and2p alone (dotted curve). The ex-
perimental points are from Ref. [17] augmented by some new
points reported here using the methodology of Ref. [17].

presented. In addition, although the detailed example
was for an atom, the arguments are exactly the same
for molecular and condensed matter targets. Onecaveat
should be mentioned, however. At extremely high ener-
gies (tens of keV or higher), where relativistic interactions
take over [19–21], the photoionization cross sections no
longer behave asE2s7y21,d and these arguments no longer
apply. But for a very significant energy region below that,
they do.

In conclusion, we have shown that the high-energy
photoionization of alln, s, . 0d subshells will exhibit
a breakdown of the independent particle approximation
owing to the effect of interchannel coupling with the
nearbyns channels, and this effect has been demonstrated
for Ne 2p employing both theory and experiment. It is
predicted that the same effect applies equally to molecules
and condensed matter, as well as atoms.

This work was supported by the National Science Foun-
dation, NASA, the Department of Energy, the Research
Corporation, and the Petroleum Research Fund. The au-
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