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2ETH Zürich,Laboratory for Solid State Physics, Zürich 8093, Switzerland
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The control of the electronic properties of materials via the vacuum fields of cavity electromagnetic
resonators is one of the emerging frontiers of condensed matter physics. We show here that
the enhancement of vacuum field fluctuations in subwavelength split-ring resonators dramatically
affects arguably one of the most paradigmatic quantum protectorates, namely the quantum Hall
electron transport in high-mobility 2D electron gases. The observed breakdown of the topological
protection of the integer quantum Hall effect is interpreted in terms of a long-range cavity-mediated
electron hopping where the anti-resonant terms of the light-matter coupling finally result into a
finite resistivity induced by the vacuum fluctuations. The present experimental platform can be
used for any 2D material and provides new ways to manipulate electron phases in matter thanks to
vacuum-field engineering.

One of the most intriguing aspects of quantum field
theories is the description of empty space as permeated
by electromagnetic vacuum fluctuations [1]. Energy
conservation forbids any process that would lead to net
energy extraction from such states, implying in particular
that such vacuum fields cannot be detected by direct
absorption. Nevertheless, there are many experimental
evidences of their existence [2]: spontaneous emission,
Lamb shift, Casimir effect [3, 4] can only be explained
by invoking the role of vacuum fields. More recently,
technological developments of both laser sources and
optical nano-cavities in the strong light-matter coupling
offer a new perspective about vacuum fields, one in
which those fluctuations can be sensed directly [5, 6]
and used to engineer new properties of matter [7–11]
without illumination. Optical excitations in the strong
light-matter coupling regime, the so-called polaritons, are
also used as sensitive probes of many-body states such as
fractional quantum Hall states [12], Wigner Crystals [13]
or of correlated photon phases [14]. Confining the
light on a strongly subwavelength scale is one of the
key elements that enabled the achievement of record
high interaction strengths [15–17] in which the anti-
resonant terms of the Hamiltonian play an important
role [18]. Cavity-controlled superconductivity [19, 20],
long-range ferroelectric order [21, 22], cavity-mediated
superradiance [9] based on cavity-mediated electron
or dipole interactions have been recently investigated.
Experimentally, however, unambiguous identification of
modified equilibrium properties of solid-state quantum
phases of matter through vacuum fields remains an
open challenge. We recently demonstrated the role
of Landau polaritons [23] in controlling the DC bulk
magneto-transport [24] in a semiconductor electronic
gas, even in absence of external illumination. The
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amplitude of the Shubnikov-de Haas oscillations was
substantially modified by the presence of a THz resonator
embedding the Hall bar. However, as a change in the
shape of the oscillations in DC magneto-resistivity is
sensitively linked to variations of scattering processes,
the phenomenology is not universal and every sample is
unique. Instead, we propose to investigate here transport
in the integer quantum Hall regime [25], where the
topological protection of the edge currents results in
a quantized resistance and where the effect of vacuum
fields can be unambiguously evidenced. At low magnetic
fields it is possible to describe transport in the presence
of impurity scattering only as a broadening of the
Landau levels’ density of states. In the high magnetic
fields instead the random impurity potential causes
the localization of electrons. When the Fermi energy
lies around a minimum between consecutive Landau
levels, both the longitudinal magneto-conductivity σxx
and magneto-resistivity ρxx simultaneously vanish. In
order to describe this non trivial effect, is necessary
to consider the role of the states at the sample edge.
The simplest picture that best describes the physics
of this regime is built on the work of Landauer [26]
and Büttiker [27]. The key point is considering the
bulk as insulating, due to the localization of electrons
in a fluctuating spatial potential, while the edges are
conducting. The current flows through a discrete
number of one-dimensional edge channels from one
contact to the following in clockwise direction, each

of them contributing with e2

h to the conductance and
exhibiting zero longitudinal resistance. This system is a
prototypical topological insulator [28], where the edge
currents are chiral, traveling in opposite directions at
the two opposite edges of the sample. As a result, an
electron in an edge channel cannot back scatter unless it
is scattered on the other edge of the sample. This is true
for potentials which vary slowly over a cyclotron radius
but rapidly over the sample dimensions. The impurity
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FIG. 1. (a) Rendering of a complementary THz split-ring 140GHz resonator embedding a Hall bar with its electrical contacts.
The resonator is defined by the exterior metallic gold layer, while the 2D electron gas is inserted within the region without
metal. Without illumination and in the linear transport regime, only vacuum fields of the confined electromagnetic modes can
affect the electronic transport. (b) The edge conduction channels for the 2D electron gas are also sketched. (c) Schematic
representation of a cavity-mediated electron hopping process in the normally insulating region due to the electromagnetic
resonator vacuum fields. An electron in a disordered eigenstate belonging to the n Landau band can be promoted to the (n+1)
band with the emission of a virtual cavity photon. Such anti-resonant process can occur thanks to the counter-rotating terms
of light-matter interaction in the cavity system that become relevant in the ultra-strong light matter coupling regime. The
reversed process couples the intermediate state to a different final state for the electron. (d) A diagrammatic representation of
the same cavity-mediated hopping process (the electron spin σ is conserved), describing the hopping between state λ in the n
disordered Landau band and the state λ′ in the same n band via the intermediate state λ′′ in the (n+ 1) band.

potential can be strong, but it still does not produce
backscattering when it is short range [27]. For this
reason, the topological protection of the quantum Hall
effect is robust against local perturbations such as a static
disorder. A significant change in the integer quantum
Hall phenomenology can only be explained by invoking
the non-local nature of the cavity vacuum fields, as
the nonlocality is the Achille’s heel of topological order.
Here we report a comprehensive set of experimental data
revealing significant and intriguing modifications of the
integer quantum Hall effect in Hall bars immersed in an
electronic resonator where the vacuum field fluctuations
are enhanced by their confinement into a strongly
subwavelength volume. Fig. 1 shows schematically the
geometry of our experiment [24]. A Hall bar of width
40µm, fabricated on a high-mobility two-dimensional
electron gas (See Supplementary Material for details) is
located in the spatial gap of a complementary metallic
resonator [29, 30] with a resonance at 140 GHz. The

longitudinal and Hall transverse resistance are measured
within the gap of the resonator. The geometry of the
resonator is such that the vacuum field fluctuations
E =

√
~ωcav/2ε0εsVeff = 1V/m are strongly enhanced

as compared to the free space, where the amplitude
would be of the order of E = 65mV/m in that frequency
range, and lead to light-matter collective Rabi frequency
Ω̃R ' 0.3ωcav, where ωcav is the cavity mode angular
frequency, as indeed observed in optical characterization
experiments [24, 31]. As shown in Fig. 1 a), this
vacuum field is fairly homogeneous in the center of the
resonator but increases towards the edges. As displayed
schematically in Fig. 1, the electron transport in the
integer quantum Hall effect proceeds via edge states that
are protected against backscattering by the lifting of
the time-reversal symmetry provided by the magnetic
field. As shown in a recent work [32], in the presence
of disorder a cavity-mediated long-range hopping can be
achieved via the exchange of a virtual cavity photon
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(see Fig. 1). For an electron occupying a disordered

eigenstate |φ(n)
λ 〉 in the n-th Landau band, the coupling to

another disordered eigenstate |φ(n)
λ′ 〉 in the same Landau

band occurs via light-matter coupling to an intermediate

state, consisting of an electron in the state |φ(n+1)
λ′′ 〉 in

the (n + 1)-th band and one cavity photon. At the
lowest order in perturbation theory, the effective coupling
between disordered states λ and λ′ in the same n Landau
band is given by the expression

Γ
(n)
λ,λ′ =

∑
λ′′

g̃
(n,n+1)
λ,λ′′ g̃

(n,n+1)∗
λ′,λ′′

εn,λ − εn+1,λ′′ − ~ω̃cav
(1)

and can be thought as a cavity-mediated hopping.
Importantly, note that this intermediate virtual process
is due to the counter-rotating terms of the light-
matter interaction and is quantified by the single-

electron vacuum Rabi frequency g̃
(n,n+1)
λ,λ′ , which depends

on the vacuum Rabi frequency g without disorder,
the wavefunctions of the disordered eigenstates and is
softened by diamagnetic renormalization, as detailed
in Ref. [32]. The number of intermediate states
is equal to the Landau degeneracy Ndeg = Nel/ν,
where Nel is the number of electrons and ν the filling
factor. The denominator of the expression consists of
the energy penalty associated to the excitation of the
virtual intermediate state described above. Such cavity-
mediated hopping involve all the disordered eigenstates,
affecting both edge and bulk states. For the quantitative
impact of the process, a crucial role is played by the
collective vacuum Rabi frequency Ω̃R = g̃

√
Nel, where

the tilde indicates the diamagnetic renormalization [32].
Note that, given the anti-resonant nature of the process,
additional electromagnetic modes with higher frequencies
can contribute in the same qualitative way and re-inforce
quantitatively the effective cavity-mediated hopping.
In addition, the strong electromagnetic field gradients
present at the edge of the metal resonator, as apparent
in Fig. 1(a) will play the same role impurity disorder in
enabling cavity-mediated hopping [32]. The transverse
and longitudinal magnetoresistances of a reference
sample and of a Hall bar coupled to a cavity are
compared in Fig. 2. The sample exhibits a mobility
of 16 × 106cm2/Vs and a density 2 × 1011cm−2 and is
kept in the dark in a dilution fridge at the nominal
temperature of 10mK, while the electron temperature
is estimated to be close to 50 mK. Both samples are
measured in the same cooling run and are physically
located onto the same chip. While for the reference
sample (no cavity), all the integer quantum Hall plateaus
are well developed, showing zero longitudinal resistance
down to ν = 11, the sample with cavity displays a
strong deviation from the integer quantization for all
the odd plateaus. At the same time, as is apparent
in the inset of Fig. 2, the resistance at zero magnetic
field is essentially unchanged and the transport features
associated with the fractional quantum Hall regime are
only weakly affected. This is important because it shows

that the mobility and overall quality of the sample are
unchanged by the complementary resonator (indeed, the
metallic gold layer defining the resonator is deposited
around the electronic sample and well separated from
it) and also remarkable because the fractional quantum
Hall features are usually the most fragile with respect
to perturbations [33]. Note also that, as shown in the
inset of Fig. 2, at low magnetic fields (B < 0.3T)
the cavity sample displays a reduction of the amplitude
of Shubnikov-de Haas oscillations with respect to the
reference sample, as already evidenced and discussed in
our previous study [24]. The experiments shown in Fig. 2
were repeated for a number of temperatures up to 1 K,
allowing us to extract the activation energies of these
transport features. The results are reported in Fig. 3
and confirm the picture seen so far: while the activation
energy of the reference sample is of the order of the
Zeeman splitting, the one in presence of the cavity is
dramatically reduced. The very same activation energy
analysis performed on the fractional Hall states shows
that the presence of the cavity has only a very weak effect
on the activation energy and therefore on the transport
gap. This is consistent with the fact that fractional
Hall states couple extremely weakly to electromagnetic
fields [34], which is essentially a consequence of Kohn’s
theorem [35]. Cavity-mediated hopping is expected to
conserve the electron spin. Moreover, for edge states
the cavity-mediated hopping vanishes when the difference
between the edge state energy and the bulk is much larger
than the bandwidth of the disordered Landau band [32].
However, due to the fact that in GaAs the Zeeman
spin splitting is significantly smaller than the cyclotron
splitting between Landau levels, the odd integer filling
factor plateaus are more fragile, since they are protected
by the smaller spin-splitting gap [36]. Indeed, in the
absence of a cavity, the relevant energy gap for even
integer quantum Hall states is the cyclotron energy
Ecyc = ~ eB⊥

m?
, where B⊥ is the projection of the magnetic

field perpendicular to the plane of the 2DEG. On the
other hand, the energy gap protecting the odd states is
the Zeeman energy EZe = g?µBBtot, where Btot is the
total magnetic field applied to the sample, µB is the Bohr
magneton and g? is the effective electron g-factor. Due
to electron-electron interaction, g? can become bigger
than 2, namely the value for a free electron, and the
Zeeman energy can become a significant fraction of the
cyclotron energy (∼0.2 in the samples investigated at
normal magnetic field incidence) [37]. It is possible to
tune the ratio of Zeeman and cyclotron energy, simply
because the first depends on the total magnetic field
applied to the sample, while the second only depends on
the perpendicular component, as shown in Fig. 4 a). The
perpendicular component of the magnetic field is equal to
B⊥ = Btot cos(θ), where θ is the angle between the total
applied magnetic field and the normal to the plane of the
quantum well. In the considered experiment, we were
able to vary θ from 0 to 50◦ by rotating the sample during
the measurement run, so the ratio can be enhanced by a
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FIG. 2. Longitudinal and transverse resistance for a reference Hall bar (black lines) and for a cavity embedded hall bar (blue
lines). The region from 0 to 0.5 T is also shown in the inset for better visibility, in particular showing that both the longitudinal
and transverse resistance with and without cavity converge to the same values in the limit of zero magnetic field.
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longitudinal resistance at integer odd filling factors for the reference Hall bar (no cavity, black) and for the cavity sample
(blue). The cavity produces a dramatic decrease of the activation energy. Fractional filling factors appear to be largely immune
from the presence of the cavity. Indeed, fractional quantum Hall states couple very weakly to the electromagnetic field despite
being typically more fragile to the effects of disorder and a finite temperature. (Inset) Longitudinal resistance as a function of
temperature, in the range 50 mK-1K for magnetic field close to the ν = 3 plateau for the reference (top) and cavity Hall bar
(bottom).

factor 1.5 with respect to the θ = 0 value. In Fig. 4 b) and
c), the transverse resistance from filling factors ν = 20 to
ν = 24 is reported for a second sample (D170209B) that
exhibits a larger electron density (ns = 4 × 1011cm−2

and a similarly high mobility). The colormap from
dark to bright shows the evolution of the curves for
different values of the tilting angle. It is evident that
there is a larger change in the cavity traces compared
to the reference Hall bar Fig. 4 d), we report the
deviation from the integer quantized value as a function
of the ratio between total and perpendicular magnetic
field. This deviation decreases when the ratio increases,
confirming that increasing the energy gap indeed weakens
the cavity-induced scattering. The experiments show
that vacuum fluctuations, strongly enhanced in the gap
of a metallic resonator, generate a long-range hopping
that breaks the quantization of the resistance. The
quantitative characterization of this phenomenon can be
conveniently performed adopting the formalism based on
the Landauer-Büttiker edge state picture [38]. As shown

schematically in Fig. 1, in this theoretical framework,
the deviation from quantization is interpreted by a finite
transmission ti of the highest populated edge state of
section i of the conductor due to scattering of a fraction
(1− ti) to the other edge. The strength of the scattering
for the edge state ν is related to length Li and the width
wi of the conductor to a resistivity ρνxx by the relation
ti = 1/(1 + ρνxxLi/wi). This model was successfully
used to explain how the longitudinal resistance in the
region between quantized plateaus depended on the
geometry of the voltage probes [39]. In our case, we
will interpret ρνxx as the ”resistivity” originating from
the vacuum fluctuations which will concern only the
fraction of the conductor exposed to this field. Such
an interpretation, however, requires that the rest of the
conductor is in the quantum Hall regime and as a result
this analysis will only be performed in the middle of a
quantum Hall plateau. This model was implemented
and solved for a standard Hall bar with 6 contacts, as
detailed in the supplementary material section. The
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FIG. 4. Transverse resistance as a function of magnetic field for different values of the finite tilting angle θ that allows us to tune
the ratio between the Zeeman and cyclotron energy splitting, as depicted in panel (a). Panel (b) and (c) report respectively
the transverse resistance without and with cavity as a function of the magnetic field component B⊥ (keeping Btot constant).
Panel (d) displays the deviation of the transverse resistance from the quantized integer value as a function of ratio Btot/B⊥
for the two odd integer filling factors.

experimental inputs are the three length-to-width ratios
describing the interaction of the vacuum field with the
current, voltage probes as well as the main part of the
Hall bar (designed by G1,G2 and G3, respectively in
Fig. 1). As shown in Fig. 5, using these parameters,
the measured values of the longitudinal resistances for
the cavity sample are used to fit the relevant value
of ρνxx, while the computed value of the corresponding
Rxy is displayed along with the experimental data in
Fig. 5. The magnetic field values are chosen in the
middle of the plateau measured on the reference sample.
The excellent agreement between theory and experiment
for the Hall resistance is an indication that this model
represents well the experimental results. The value of
ρνxx is displayed as a function of ν in Fig. 5 (b) (blue
dots) for values of the magnetic field corresponding to the
center of the plateau of the reference sample. As already
discussed, the effect of the vacuum field fluctuations
is stronger on odd plateau that are protected by the
smaller Zeeman gap. Correspondingly, the value of ρνxx
for ν = 3..5 is about an order of magnitude larger
than for ν = 4..6. The general increase of ρνxx with ν
is easily understood by the dependence of the gaps in
the magnetic field. As ρνxx becomes larger than 1 for
ν = 7 means that most of the edge state is scattered
in the transverse resistance, implying that the transverse
resistance has approximately the value corresponding to
ν = 6. To illustrate the consistency of the results,
we report another set of data taken from a different
resonator on the same heterostructure material, having
the same shape but with different voltage leads geometry
(light blue dots). The results, although not identical,
still exhibit the same behaviour both qualitatively and
quantitatively. Finally, on the same graph are also
reported the values for an identical resonator fabricated
on a third high-mobility 2D gas (EV2124) with the

same electron density but grown in a different MBE
reactor and exhibiting a mobility reduced by a factor
8. There, again, similar values are obtained showing
that the scattering mechanism has a weak dependence
on the disorder. The scattering mechanism arising from
the coupling to the vacuum fluctuations in the cavity
is expected to increase strongly with the normalized
light-matter coupling strength Ω̃R/ωcav. As shown in
Fig. 6 a), we investigated this dependence by designing a
series of three cavities with the fundamental mode having
the same frequency, but exhibiting different coupling
strengths Ω̃R/ωcav = 0.17, 0.2 and 0.22. As discussed
in the supplementary material section, the coupling
strength was computed by finite-element simulations,
and confirmed by experimental measurements on a
separate sample. The heterostructure used (F150817A)
exhibited similar densities and mobilities as compared to
the first one used for the measurements shown in Fig. 2,
and as expected (see the supplementary material), the
longitudinal and transverse Hall measurements displayed
similar loss of quantization on the odd Hall plateau as
the one reported in Fig. 2. A slight residual parallel
conduction present in the sample however reduced the
range of values of ρνxx that could be extracted to
values larger than ρνxx ≈ 10−2RK . In Fig 6, we
show the values of ρνxx for ν = 7, 9, 11, 13, 15. As
expected, a strong increase of the resistance is observed
as a function of the light-matter coupling strength ΩR,
further demonstrating that the scattering originates from
the vacuum field. As mentioned already, by only
considering the fundamental resonance of the resonators
we are neglecting the contribution of the higher-lying
resonances. Our experimental evidence show that
while these couplings should be taken into account for
a more accurate quantitative estimate of the effect,
the measured coupling strengths of the resonators are



7

0.5 1 1.5 2 2.5 3
Magnetic Field (T)

0

500

1000

R
xx

 (
)

0.1

0.15

0.2

0.25

0.3

R
xy

[h
/e

2 ]
34567891115

Filling Factor 
a)

no cavity
cavity (Ωres/ωcav=30%) 
calculated Rxy

5 10 15
Filling Factor 

10-4

10-2

100

xx

b)

mobility =16 106 cm2/ V s - 10 contacts
mobility =16 106 cm2/ V s - 6 contacts
mobility =2 106 cm2 / V s - 10 contacts

~

FIG. 5. (a) Interpreting the effect of vacuum field by a resistivity ρνxx at integer filling factors, we have calculated the transverse
resistance (red points, upper panel) from the measured longitudinal resistance. The prediction is consistent with the measured
transverse resistance (blue curves). Note that for the reference sample with no cavity, the longitudinal resistance is negligible.
(b) The extracted resistivity ρνxx as a function of filling factor for three different samples having very similar densities.

Ωres/ωcav

a)

0.15 0.2 0.25

10-2

10-1

ν xx

=7

=9

=11
=13

=15

b)

~
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decreasing for higher frequency modes. In addition,
the very similar geometry of the resonators that are
compared imply that the respective contributions of the
higher frequency modes will follow the same trend as the
one of the fundamental mode. In conclusion, we have

shown that the vacuum field in a deeply subwavelength
electromagnetic resonator produces a break-down of the
topological protection of the integer quantum Hall effect.
The strong effect reported here on the quantum Hall
plateaus and longitudinal resistance is such that one can
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legitimately wonder whether the much weaker vacuum
fluctuations in free space might be what ultimately
limits the extreme metrological precision of quantum Hall
resistance standards. Indeed, in free space we expect
vacuum fields about 15 times smaller than in the present
split-ring resonators. Given that the vacuum-induced
scattering scales as the square of the cavity-mediated
hopping matrix element in (1), then the effect should
be re-scaled by a factor (1/16)4 ' 10−5. Comparing
this number with the accuracy achieved metrologically
(∼ 10−10) is challenging since those measurements are
performed on much wider Hall bars and larger magnetic
fields [40]. The role of vacuum fields might be also
explored in the context of other topological systems such
as Majorana fermions in semiconducting quantum wires.
There, in contrast, finger gates [41] with submicron gaps
that play the role of antennas and enhance vacuum
fields are an essential component of these devices and
may set strong limit to the topological protection offered
to the quantum bits. From a broader perspective,
the results of the present work provide strong evidence
that vacuum fluctuations can be engineered to create
and/or control new electronic states of matter. The
complementary split-ring resonator platform explored
here for the quantum Hall regime in GaAs is very

general and can be applied to any two-dimensional
conductor, such as for example 2D van der Waals
materials and their heterostructures. Our approach can
be used to investigate for example monolayer and twisted
bilayer graphene. Vacuum fields could be judiciously
exploited to modify electronic localization properties,
control superconductivity or other prominent condensed
matter quantum phases.
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SUPPLEMENTARY MATERIAL

Details of the heterostructures used in the experiments

The experiments were performed on samples processed from four different GaAs-based heterostructures. The
densities and mobilities are summarized in Table S1.

Name ns(cm
−2) µ(cm2)/V · s F igures

D170608A 2.0× 1011 16× 106 2,3,5
D170209B 4.2× 1011 18× 106 4
F150817A 1.9× 1011 12× 106 6
EV2124 1.9× 1011 2× 106 5(b)

TABLE S1. Values of the relevant parameters of the four heterostructures

The four heterostructures, grown in three different MBE reactors (as the prefix D,F,EV indicates) have the following
properties:

• D170608A is a double side doped, 27 nm wide GaAs/AlGaAs quantum well, with a 110/120 nm spacer.

• D170209B is a double side doped, 27 nm wide GaAs/AlGaAs quantum well with a 60nm spacer.

• F150817A is a double side doped, 27 nm wide GaAs/AlGaAs quantum well with a 120 nm spacer.

• EV2124 is a triangular well 90 nm deep, with a Si δ-doping layer 50 nm below the surface.

Note that the values of mobilities and densities have been measured on the reference Hall bar at the temperature of
approximately 50 mK without external illumination.

Modeling the effect of the vacuum field on the resistance quantization

As discussed in the main text, the Vacuum fluctuations induce a cavity-assisted long range hopping between states
that break the topological protection of the quantum Hall effect. To estimate the effect of these fluctuations onto
the quantum Hall transport, we adapted a model of transport initially developed to compute the transport in the
magnetic field region in-between quantum Hall plateaux [38, 39]. The key point of this model is to assume that
backscattering is dominated by the innermost edge channel which is considered to be completely decoupled from the
other channels that still flow in a dissipationless manner. As shown schematically in Fig. S1, in this model each
section of the conductor j is assumed to transmit only a fraction tj of the inner most edge state N , the fraction 1− tj
being reflected. Applying the Büttiker multiprobe formula [27] to the contact yields for the current Ij in each lead j

Ij =
( e
h

) [
(N − 1)(µj − µj−1)− µ(in)

j + µ
(out)
j

]
(2)

where the chemical potential µin
j and µout

j represent the chemical potential of a fictitious probe that would be attached
to the inner most channel only. Current conservation at the barrier, furthermore, requires

µout
j = µjtj + µin

j (1− tj). (3)

The geometry of our sample has been assumed to be well described by the 6 contacts Hall bar described schematically
in Fig. S1. As a result, for each pair of contacts an additional equation will link the ”outgoing” chemical potential of
the inner edge state of contact µout

j with the incoming potential µin
j .

The scattering induced by the vacuum fluctuations is represented by the transmission coefficients tj and is assumed
to be the same and equal to t1 for the two current probes (j = 1, 4) and for all the voltage probes j = 2, 3, 5, 6. The
center section of the conductor is assumed to have a transmission t3. These transmissions are assumed to be related
to a vacuum-induced resistivity ρνxx of the innermost edge state N = ν by

tj =
1

1 + ρνxxGj
, (4)
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FIG. S1. Schematic representation of the setting used to derive the values of the resistances

where Gj is the geometrical aspect ratio Lj/wj corresponding to the relevant probe describing the interaction with
the vacuum field.

The above equations can be cast in a 18× 18 matrix M̄ relating the vector of currents Ī to the vector of chemical
potentials µ̄. Assuming all currents are zero except for the current incoming at contact 1 and exiting at contact 4,
the system

Ī = M̄ · µ̄ (5)

can be solved. The geometrical factors are reported in Table S2.

Resonator G1 G2 G3
140GHz (Fig. 1) 1 0.2 4

cavity 1 180GHz (Fig.6) 1 0.2 3.25
cavity 2 180GHz (Fig.6) 1 0.65 3.25
cavity 3 180GHz (Fig.6) 1 2 3.25

TABLE S2. Geometrical parameters used for the different resonators

The system of equations (5) can be solved by setting the chemical potential of one probe to zero. The value of
ρνxx is then the result of matching the computed and experimental values of Rxx. The correct solution is found by
minimizing the error on the computed value of Rxy, which is then treated as a measurement of the quality of the fit.

Sample D170608A-Temperature study

As discussed in the main text, the measurements of the transverse resistivity were repeated varying the temperature.
By applying heat to the mK plate of the dilution refrigerator and controlling the measured temperature through a
PID loop back feeding the readings of a resistor bridge temperature sensor, we were able to stabilize the temperature
and vary it in the range from 12 to 700 mK.
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FIG. S2. (a): temperature sweep of longitudinal resistance as a function of magnetic field for the complementary split ring
resonator with frequency 140 GHz. (b) temperature sweep of the longitudinal resistance as a function of magnetic field for the
reference Hall bar. (c): Arrhenius plot corresponding to (a). (d): Arrhenius plot corresponding to (b).

The temperature study allows us to determine the electronic temperature, which for our system is estimated to be
approximately 50mK. Furthermore we can exploit the temperature dependence of the transport features to determine
the activation energies. The procedure is the following: the values of the minima of ρxx for different temperatures
are extracted. These values are plotted in log scale as a function of the inverse temperature. From the resulting plot,
also known as Arrhenius plot, a linear fit is performed from the region where the thermally activated resistivities vary
linearly in log scale. The slope of this fit provides the activation energy of the considered transport feature. In Fig.S2,
we show the data set used to derive the values of the activation energies shown in Fig. 3 of the main text.
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Complementary split-ring resonator design

As discussed in the main text, we designed three cavities with fundamental mode frequency around 180 GHz so
that they would be as similar as possible in terms of outer dimensions (the length of the three cavities), but with
different normalized coupling strength. The normalized coupling strength depends on the effective cavity volume and

on the number of coupled electrons as ΩR

ωcav
∝
√

N2DEG

Vcav
[23]. Considering that the Hall bar has the same length and

width for all the resonators, and hence the same number of electrons N2DEG, scaling the capacitive gap will modulate
the coupling strength of the resonator, by changing the fraction of electrons filling the area where the electric field
is localized and, in second order by changing the effective transverse length of the electric field. All the simulations
of Fig. S3 are performed using CST Microwave Studio. The resonator is modeled using the standard lossy metal
gold from the material library. The substrate is a block of GaAs. The 2DEG stripe is modeled using a gyrotropic
material, with bias in the direction perpendicular to the surface. An effective layer thickness was used in order to
reduce computational cost.

FIG. S3. Left: Color plot of the simulated transmission as a function of magnetic field and frequency exhibiting polaritonic
dispersions due to strong light-matter coupling for the three cavities. Right: field enhancement for the three cavities. The
boundaries of the complementary resonators are highlighted by white lines.

This method tends to overestimate the coupling strength, but offers a reliable verification of the expected trend for
the resonators, which are then measured optically using our THz spectroscopy set-up described below.
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THz-TDS Transmission measurements

In Fig.S4 we present the results of the optical characterization of the resonators described in the previous section.

We show two sets of data. The first one (Fig.S4, right) is a set of samples fabricated as arrays. The fits are
performed minimizing the RMS considering an Hopfield model where the material part coupled to the cavity mode
is a magnetoplasmonic excitation[31]. All the measurements are performed at 3K in a wet cryostat using a Terahertz
Time Domain Spectrometer (THz-TDS). The fabrication of this set of sample was performed on a sample with a
triangular well with electronic density under illumination of about 4× 1011cm−2. It is crucial to notice this, since it
is a factor 2 higher than the one of the sample measured in transport. The expected correction is a factor ∼ 1√

2
in

the normalized coupling strength.

The second set of data (Fig.S4, left) is an optical characterization of single resonators [42] This resonators are
fabricated on a triangular quantum well with density 2 × 1011cm−2, same as in the transport measurements. The
technique we adopted to measure the single resonator makes use of two Si immersion lenses. As shown in the reference,
the presence of the lenses does not affect the coupling strength significantly, but produces a red-shift of the measured
frequencies, due to the change of the effective refractive index of the cavities.

SINGLE RESONATOR 
on QW with ns=2∙1011 cm-2

ARRAY OF RESONATORS 
on QW with ns=4∙1011 cm-2

FIG. S4. Color plot of the experimentally measured transmission as a function of magnetic field and frequency for the four
different samples.
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Fitting the resulting polaritonic dispersions, we get values of normalized coupling strength of Ω̃res/ωcav =0.22, 0.2
and 0.17 for the three cavities.

Sample F150817A

We report here the full set of data from the sample used for the coupling strength dependence shown in Fig. 6 of the
main text. In Fig. S5 of this Supplementary Material, we show the measured longitudinal and transverse resistances
for the three cavities of the scaling study and the reference Hall bar. In the inset of Fig.S5 a), the zoom at filling
factor ν = 3 show trend with coupling consistent with the features described in the main text.
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FIG. S5. a)transverse resistance measured for the 3 cavities. The inset shows a zoom around filling factor ν=3 b)Longitudinal
resistance measured for the 3 cavities. The inset shows a zoom on the minima at low fields.
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The inset of Fig.S5 b) is a zoom at high filling factors to highlight the deviation from the zero resistance states of
the well quantized reference hall bar. The dependence on the coupling strength is evident. These set of data are used
for the extraction of the resistivity ρνxx of Fig.6 of the main text.
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FIG. S6. Activation energies (divided by the Boltzman constant) as a function of magnetic field/filling factor for four different
samples.
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In Fig.S6, we show the thermal dependence study of this sample. This shows an high degree of consistency with
what we discussed for the sample D170608A. In particular, from the inset is noticeable that the activation for the
fractional states around ν = 3

2 behave very similarly for the cavities and the reference hall bar, while a bigger difference
is observed for integer odd states.

The quantitative verification of this statement is provided by the extraction of the activation energies, using the
method described in previous sections. The results are shown in Fig.S6.

Sample D170209B

As a complement of the data shown in Fig. 4 of the main text, we present in Fig.S8 a larger range of magnetic
fields, where the effect on the odd plateaus is still visible, even though it is weaker in magnitude.
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FIG. S8. Transverse resistance as a function of the magnetic field component B⊥ for sample without(a) and with cavity (b).

The limitation to this range of filling factors is mostly given by technical constrains of the magnet used for the
study and the density of the measured sample.

Sample EV2124

The longitudinal Rxx and transverse Rxy resistances for the sample EV2124 are shown in Fig.S9. The overall
behaviour and features are consistent with what is observed in samples fabricated on different quantum wells.
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