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Abstract A review of the studies concerning the finite sample breakdown
point (BP) of the trimmed likelihood (TL) and related estimators based on
the d–fullness technique of Vandev [28], and Vandev and Neykov [31] is
made. In particular, the BP of these estimators in the frame of the gener-
alized linear models (GLMs) depends on the trimming proportion and the
quantity N (X) introduced by Müller [17]. A faster iterative algorithm based
on resampling techniques for derivation of the TLE is developed. Examples
of real and artificial data in the context of grouped logistic and log-linear
regression models are used to illustrate the properties of the TLE.

1 Introduction

The Weighted Trimmed Likelihood (WTL) estimators are defined by Hadi
and Luceño [9], and Vandev and Neykov [31] as

WTLk(y1, . . . , yn) := arg min
θ∈Θp

k∑

i=1

wif(yν(i), θ), (1)
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tics, Univ. of Götingen during May-June 1999. The Austrian Ministry of Science
fully supported the participation of N. Neykov at the International Conference on
Robust Statistics, 23-27 July 2001, Vorau, Austria. He acknowledged gratefully
the financial supports.



2 Neyko M. Neykov, Christine H. Müller

where f(yν(i), θ) ≤ f(yν(i+1), θ), f(yi, θ) = −log ϕ(yi, θ), yi ∈ Y ⊂ Rq

for i = 1, . . . , n are iid observations with probability density ϕ(y, θ), which
depends on an unknown parameter θ ∈ Θp ⊂ Rp, ν = (ν(1), . . . , ν(n)) is
the corresponding permutation of the indices, which may depend on θ, k is
the trimming parameter and wi ≥ 0 are known weights such that wk > 0.

The WTL estimators reduce to TLE if wi = 1 for i = 1, . . . , k. In the
case of normal regression and appropriate choice of the weights, the WTLE
reduce to the LMS and LTS estimators of Rousseeuw [24] and Rousseeuw
and Leroy [25]. Similarly, the WTLE coincide with the MVE and MCD
estimators of the multivariate location and scatter considered by Rousseeuw
and Leroy [25] in the multivariate normal case (see Vandev and Neykov [30]).
The Fisher consistency, asymptotic normality and compact differentiability
of the TLE for normal distributions with unknown variance are derived by
Bednarski and Clarke [3].

The BP (i.e. the smallest fraction of contamination that can cause the
estimator to take arbitrary large values) properties of the WTLE were stud-
ied by Vandev and Neykov [31] using the d–fullness technique developed by
Vandev [28]. It was proved that the BP of the WTLE is not less than
(n − k)/n if the set F = {f(yi, θ), i = 1, . . . , n} is d-full, n ≥ 3d and
(n + d)/2 ≤ k ≤ n − d. We remind that, according to Vandev [28], a finite
set F of n functions is called d-full if for each subset of cardinality d of
F , the supremum of this subset is a subcompact function. A real valued
function g (θ) is called subcompact if the sets Lg(θ) (C) = {θ : g (θ) ≤ C}
are compact for any constant C.

Vandev and Neykov [30], and Vandev and Marincheva [29] determined
the value of d for the multivariate normal and general elliptical family of
distributions, respectively. Vandev and Neykov [31] did the same about
some linear and logistic regression models under the restriction that the
observations are in general position. Similarly, the fullness parameters for
the Lognormal, Poisson, Gamma, Geometric and Logarithmic series dis-
tributions were derived by Atanasov[1], and the BPs of the WTLE of the
corresponding GLMs were characterized (see Atanasov and Neykov [2]).

There are approaches on robust and in particular high BP estimators for
logistic regression and other nonlinear models given by Copas [4], Carroll
and Pederson [5], Christmann [6], Christmann and Rousseeuw [7], Hubert
[12], Künsch et al.[13], Markatou et al. [15], Stromberg and Ruppert[27], to
name a few, but these approaches do not concern TLE.

The BP of the LMS, LTS and related regression estimators were derived
by Rousseeuw [24], Rousseeuw and Leroy [25], and Hössjer [11], assuming
that the observations are in general position. Müller [17], and Mili and Coak-
ley [16] omitted this restriction and showed that then the BP of these estima-
tors is determined by N (X) := max0 6=β∈Rp card

{
i ∈ {1, . . . , n}; x>i β = 0

}
,

where X := (x>i ) is the data matrix of the explanatory variables xi ∈ Rp.
If xi are in general position then N (X) = p−1 whereas in other cases, e.g.,
ANOVA models or designed experiments N (X) is much higher.
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Müller and Neykov [19] relaxed the compactness condition in the above
definition assuming only that the set Lg(θ)(C) is contained in a compact
set. However, the meaning of the term subcompact function is retained
since if the function g (θ) is continuous or has at most countable many
discontinuities then Lg(θ)(C) is a compact set. The following theorem char-
acterizes the BPs of any estimator S defined by S(y) := arg minθ∈Θ s(y, θ),
where s(y, θ) can be estimated by f(yν(k), θ) and satisfies the conditions
α f(yν(k), θ) ≤ s(y, θ) ≤ β f(yν(k), θ) for some constants α 6= 0 and β, and
therefore of the WTLE in particular.

Theorem 1 If {f(yi, θ); i = 1, . . . , n} is d-full, then the BP of the estimator
S is not less than 1

n min{n− k + 1, n− d + 1}.
This theorem is an extension of Theorem 1 of Vandev and Neykov [31] and
provides the lower bound of the BP without additional assumptions on k
and n (see Müller and Neykov [19]).

Thus, if one wants to study the BP of the WTL and related S estimators
for a particular distribution, one has to find the fullness parameter d for the
corresponding set of log likelihoods and then the BP can be exemplified by
the range of values of k by Theorem 1.

An application of this technique is made, by Müller and Neykov [19], for
the general linear exponential families of distributions (known dispersion
parameter) of yi depending on unknown vector parameter β ∈ Rp and
known xi ∈ Rp for i = 1, . . . , n. The log likelihoods of these families are
f(yi, xi, β) = −T (yi)> g(x>i β)− c(x>i β)− h(yi) for suitably defined vectors
and functions. The following theorem holds.

Theorem 2 The set {f(yi, xi, β); i = 1, . . . , n} is N (X) + 1–full if the
function γz(θ) = −T (z)>g(θ)− c(θ)− h(z) is subcompact in θ for all z ∈ Y
and arbitrary xi ∈ Rp .

For the particular cases of normal, logistic and log-linear regression models
Müller and Neykov [19] show that the corresponding γz(θ) are subcompact.
Therefore, according to Theorem 1 and some additional arguments it is
shown that the BP of the WTL estimators is 1

n min{n− k + 1, k−N (X)}.
If k satisfies b(n +N (X) + 1)/2c ≤ k ≤ b(n +N (X) + 2)/2c this BP is
maximized and equal to 1

n b(n−N (X) + 1)/2c, where brc := max{n ∈
N ;n ≤ r}. As a consequence, the results of Müller [17] and [18], Vandev
and Neykov [31], and Atanasov [1] for these models are derived.

In this way, a unifying theory for the BP of the WTL and related esti-
mators is developed.

2 The FAST-TLE algorithm

From the definition of the WTLE it follows that its minima are achieved
over a subsample of size k. The objective function (1) is continuous, but
non differentiable and possesses many local minima. Therefore one need
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nonsmooth and/or combinatorial optimization in general. In the univariate
case Hadi and Luceño [9] developed several algorithms for TL estimation.

Neykov and Neytchev [21] considered an iterative approximate algorithm
for finding the TLE which is based on the resampling technique proposed by
Rousseeuw and Leroy [25]. Many subsets of k different observations out of n
are drawn at random and the MLE is calculated for any one. The estimate
with the lowest TL objective function (1) is retained. There is no guarantee
that the achieved estimate will be the global minimizer of (1) but one can
hope that it would be a close approximation to it.

In this paper we offer a more efficient TLE algorithm called the FAST-
TLE as it reduces to the FAST-LTS algorithm developed by Rousseeuw
and van Driessen [26] in the normal linear regression case. The corner stone
of this algorithm is an analog of the so called C–step procedure proposed
by these authors. We shall follow closely the terminology and exposition of
their paper in order to present the algorithm in a more readable form to
those who are acquainted with it.

So as to make sure that there always exists a solution to the optimization
problem (1), we assume that the set F is d–full and k ≥ d(see Neykov [20]).
Then the idea behind the FAST-TLE algorithm can be described as follows.

Given Hold = {yj1 , . . . , yjk
} ⊂ {y1, . . . , yn} then:

– take θ̂old to be either arbitrary or compute θ̂old := MLE based on Hold;
– define Qold :=

∑k
i=1 f(yji , θ̂

old);
– sort f(yi, θ̂

old) for i = 1, . . . , n in ascending order, f(yν(i), θ̂
old) ≤

f(yν(i+1), θ̂
old), and get the permutation ν = (ν(1), . . . , ν(n));

– put Hnew := {yν(1), . . . , yν(k)};
– compute θ̂new := MLE based on Hnew;
– define Qnew :=

∑k
i=1 f(yν(i), θ̂

new).

Proposition. On the basis of the above statements Qnew ≤ Qold.
Proof. From the definition of Hnew it follows that

∑k
i=1 f(yν(i), θ̂

old)
≤ ∑k

i=1 f(yji , θ̂
old) = Qold . Since θ̂new is the MLE based on Hnew then

Qnew =
∑k

i=1 f(yν(i), θ̂
new) ≤ ∑k

i=1 f(yν(i), θ̂
old) ≤ Qold.

We call this step in our algorithm C–step just like Rousseeuw and van
Driessen [26] where C is reserved for ’concentration’ since Hnew is more
concentrated (has a lower sum of negative log likelihoods) than Hold.

Clearly, repeating C–step yields an iterative process. When Qnew =
Qold the process terminates; otherwise we need more C–steps. In this way
a nonnegative monotonically decreasing sequence Q1 ≥ Q2 ≥ Q3 ≥ . . .
is defined, which by a classical theorem in analysis is always convergent.
Moreover, the convergence is guaranteed after a finite number of steps since
there are only finitely many k–subsets out of n!/(k!(n− k)!) in all. Finally,
we note that this is only a necessary condition for a global minimum of
the TL objective function. This gives us a hint as to how to implement
an algorithm. Actually, we will be using the suggestion made by Rousseeuw
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and Van Driessen [26] ”Take many initial choices of Hold and apply C–steps
to each until convergence, and keep the solution with lowest value of” (1).

However, this would not be of much use unless we can tell: how to
generate different sets Hold to start the algorithm; the necessary number
of Hold sets; how to avoid duplication of work since several Hold may yield
the same solution; is it possible to reduce the number of C–steps.

Unfortunately, at this stage we cannot provide reasonable answer to all
these issue alike Rousseeuw and Van Driessen [26] as the structure of the
data in GLMs beyond the linear regression case is usually more complicated.
However, it is worth to discuss some of these aspects based on the experience
concerning the grouped binary linear logistic and Poisson regression cases.

First, we consider the possibilities for the sample sizes of Hold. Since
the parameter of fullness of the GLMs is given explicitly by N (X) then
any k within the bounds N (X) + 1 ≤ k ≤ n can be chosen to draw a
random k–subset in order to compute θ̂old. A recommendable choice of k is
b(n+N (X)+1)/2c as the BP of the TLE is maximized. However, following
the same reasoning as Rousseeuw and Van Driessen [26] and because θ̂old can
be arbitrary, one should draw subsamples with a smaller k∗ := N (X) + 1
size as the chance to get at least one outlier free subsample is larger. In
practice, for the case of initial choices of Hold, we draw finitely many random
subsamples of size k∗, calculate ML estimate θ̂old for any one, and keep
those 10 different subsamples of size k whose TL values evaluated at θ̂old

are lowest. In this way the resampling process would guarantee better initial
choice of Hold sets. The recommendable choice of k∗ and k could be used as
defaults in a software implementation. If the expected percentage of outliers
in data is low then a larger value of k can be chosen by the user in order to
increase the efficiency of the TL estimator.

Second, as the regression models we consider belong to the linear expo-
nential families an iteratively reweighted least squares algorithm discussed
by Green [8] for obtaining the MLE can be used. Therefore any modern
Gauss-Newton nonlinear regression program can be used to carry out the
computations as the iteratively reweighted Gauss-Newton, Fisher scoring
and Newton-Raphson algorithms are identical to these families, see Jen-
nrich and Moore [14]. In all the applications of the MLE handled by such a
program called NLR, see Neytchev at al. [22], convergence to θ̂old discussed
in the previous paragraph is reached in about 6 iterations starting from an
arbitrary value θo := (0, . . . , 0).

Third, each C–step calculates MLE based on k observations, and the
corresponding log likelihoods for all n observations. In practice, we need 4
or 5 C–steps at most to reach convergence starting from θ̂old at the first
C–step, which leads to a faster convergence at the remaining C–steps.

A combination of the above elements yields the basis of our algorithm.
If the data set is large one can apply partitioning and nestings in a

similar way as in FAST-LTS of Rousseeuw and Van Driessen [26], i.e., the
entire data is partitioned in a representative way to several data subsets
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Table 1 Subset of data set 28 of Hand et al.[10]

ti si Area Needle x1i x2i x3i x4i

228 223 1 1 1 -1 -1 -1

221 210 1 2 1 -1 -1 1

230 218 1 1 1 -1 -1 -1

221 181 2 1 1 1 -1 -1

213 158 2 2 1 1 -1 1

200 160 2 1 1 1 -1 -1

223 198 3 1 1 0 2 -1

228 189 3 2 1 0 2 1

216 177 3 1 1 0 2 -1

with smaller size. Applying the above algorithm to any subset the best 10
estimates θ̂old

sub can be calculated. The process continues by making C–steps
over the merged set, which is composed by pooling the subsets. In this way
the best 10 estimates θ̂old

merged can be obtained, and at last to find the best
solution θ̂full.

When the data set is small all possible subsets with the default size k can
be considered for calculation of the TLE skipping the C–steps procedure.

The above algorithm can be implemented easely using the environment
of the software packages such as GLIM, S-PLUS, SAS, etc.

3 Applications

We illustrate our theory and algorithm by three examples. As a first one
we analysed a subset of the data set 28 of Hand et al. [10] concerning the
vaccination successes in three different areas (1=Staffordshire, 2=Cardiff,
3=Sheffield) by using two types of needles (1=fixed, 2=detachable). In the
original data set an additional factor, the vaccine batch, was given. This
factor was dropped since it had no significant influence and reduces the
model’s low degree of freedom once more. So a subset of the data with
design matrix X = (x>i ) with xi ∈ R4 is given in Table 1. The logistic
regression model logit(p/(1 − p)) = x>i β is used. As N (X) = 6 the maxi-
mum BP attained by any TLE with k = 8 is 2

9 . We obtained TL8(y, X) =
(2.05,−0.92,−0.12,−0.21)> and ML(y, X) = (2.01,−0.92,−0.17,−0.15)
for β. The mean absolute difference between these estimates is less than
0.04. It seems that there are no large influential outliers in the sample. To
study the behavior of the estimators in the presence of one outlier we re-
placed s1 and t1 by s1 = 0 and t1 = u, respectively, where u attains several
large values. For a study with two outliers we additionally replaced s9 and
t9 by s9 = 0 and t9 = u. Table 2 provides the mean absolute difference
between the estimators at the original and the contaminated samples.
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Table 2 Mean absolute differences

Estimator u 10 20 50 100 200 500 1000

MLE 1 outlier 0.15 0.23 0.39 0.54 0.71 0.94 1.11

TLE8 1 outlier 0.07 0.07 0.07 0.07 0.07 0.07 0.07

MLE 2 outliers 0.15 0.24 0.41 0.57 0.77 1.06 1.28

TLE8 2 outliers 0.07 0.11 0.19 0.28 0.40 0.55 0.67

These results show clearly that the TLE is stable in the presence of one
outlier and breaks down (explodes) in the presence of two outliers. However,
the explosion of it and the MLE is not linear in u, it is more logarithmical.

The second example is about a toxicological experiment conducted at
the University of Waterloo, Canada, and discussed in O’Hara Hines and
Carter [23] with n = 48 observations. A logistic regression model is fitted
to the data with covariates for water hardening (WH), and for a linear and
quadratic term in log concentration (C) of toxicant

logit(p/(1− p)) = β1 + β2 ∗WH + β3 ∗ log10(C) + β4 ∗ log10(C
2), (2)

where β1, β2, β3, and β4 are unknown parameters.
Based on all observations the MLE is (10.28, 0.03,−11.4, 2.50)>. O’ Hara

Hines and Carter [23] pinpoint the observations 38, 39 and 26 as possible
outliers. They also reported that Pregibon’s influence diagnostics indicated
the observations 38 and 39 as potential outliers. The MLE without the cases
38 and 39 is (15.40, 0.27,−15.53, 3.26)> whereas without the cases 26, 38
and 39 is (14.04, 0.32,−14.64, 3.11)>.

Markatou et al. [15] analyzed the same data. They identified the obser-
vations 38 and 39 as potential outliers, whilst their methods gave a weight
nearly 1 to observations 26 by means of the negative exponential RAF
(Residual Adjustment Function) downweight function. When the Hellinger
RAF was used for the construction of the weights, observations 13, 32, 40,
43 and 44 received a weight of 0. They reported that examination of those
observations revealed that observations 32 and 40 had a 0 response, while
observations 43 and 44 had the lowest mortality at concentration levels 720
and 1440, respectively, at the same water-hardening level. The MLE without
the observations 13, 32, 40, 43 and 44 is (6.49,−0.23,−8.42, 1.97)>.

We dropped the observations 32 and 40 in TLE analysis as subcomact-
ness can not be prooved because of zero response according to Müller and
Neykov [19], and Vandev and Neykov [31]. Since 24 observations satisfy
WH=1, we have N (X) = 24. Hence, the maximum breakdown point is
11/46 and is attained by any TL estimator with k = 35 or k = 36. Using
the TLE algorithm we obtained TL36 = (7.36,−0.12,−9.29, 2.16)>. The
trimmed observations are 13, 14, 20, 21, 38, 39, 41, 42, 43, 44. The Pearson
residuals diagnostic calculated by the TL36 estimate indicate these obser-
vations as potential outliers (see Fig. 1). As a bench-mark, the value of 3
is considered. Hence there is some coincidence with the results of Markatou
et al. [15] with respect to the estimate and the trimmed observations.
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Fig. 1 O’ Hara Hines and Carter [23] data: Index plot associated with Pearson
residuals and log likelihood values based on TLE.

Table 3 Data set 340 of Hand et al. [10]

i 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17

ti 376 347 322 104 103 98 96 85 82

63 44 40 5 5 0 0 0

yi 8 5 8 4 6 4 8 6 4

2 7 4 3 2 4 3 2

Next example is about the data set 340 of Hand et al. [10], given in
Table 3, concerning the amount of newspaper and TV publicity ti following
i = 17 murder-suicides through deliberate crashing of private aircraft and
the number yi of fatal crashes during the week immediately following.

Since fatal crashes are rare events a log-linear model can be assumed
where the amount ti of publicity is the explanatory variable. For simplicity
we assume a linear influence of ti, i.e., xi = (1, ti)>. Then the maximum
BP is 7/17 is attained by any TLE with k = 10 or k = 11 as N (X) = 3. We
obtained TL11(y, X) = (1.086, 0.002)> and ML(y,X) = (1.310, 0.002)> for
β = (β1, β2)>. Both estimators provides a very small estimate of the slope
of the regression line but they differ with respect to the estimated intercept.
This difference is caused by the fact that the TLE trims the highest numbers
of crashes at i=1, 3, 5, 7, 8, 11. A scatter plot of this two-dimentional data
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Fig. 2 Scateplot of 340 data set of Hand et al. [10] with MLE (dashed) and TLE
(solid) curves.

set is given in Fig. 2, along with the MLE (squares) and TLE (triangles)
fits.
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