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Abstract. In late 2012 and early 2013 the discrete logarithm problem
(DLP) in finite fields of small characteristic underwent a dramatic se-
ries of breakthroughs, culminating in a heuristic quasi-polynomial time
algorithm, due to Barbulescu, Gaudry, Joux and Thomé. Using these de-
velopments, Adj, Menezes, Oliveira and Rodŕıguez-Henŕıquez analysed
the concrete security of the DLP, as it arises from pairings on (the Jaco-
bians of) various genus one and two supersingular curves in the literature,
which were originally thought to be 128-bit secure. In particular, they
suggested that the new algorithms have no impact on the security of a
genus one curve over F21223 , and reduce the security of a genus two curve
over F2367 to 94.6 bits. In this paper we propose a new field represen-
tation and efficient general descent principles which together make the
new techniques far more practical. Indeed, at the ‘128-bit security level’
our analysis shows that the aforementioned genus one curve has approx-
imately 59 bits of security, and we report a total break of the genus two
curve.

Keywords: Discrete logarithm problem, supersingular binary curves,
pairings, finite fields.

1 Introduction

The role of small characteristic supersingular curves in cryptography has been
a varied and an interesting one. Having been eschewed by the cryptographic
community for succumbing spectacularly to the subexponential MOV attack in
1993 [39], which maps the DLP from an elliptic curve (or more generally, the
Jacobian of a higher genus curve) to the DLP in a small degree extension of
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the base field of the curve, they made a remarkable comeback with the advent
of pairing-based cryptography in 2001 [41,30,9]. In particular, for the latter it
was reasoned that the existence of a subexponential attack on the DLP does not
ipso facto warrant their complete exclusion; rather, provided that the finite field
DLP into which the elliptic curve DLP embeds is sufficiently hard, this state of
affairs would be acceptable.

Neglecting the possible existence of native attacks arising from the super-
singularity of these curves, much research effort has been expended in making
instantiations of the required cryptographic operations on such curves as effi-
cient as possible [6,17,14,27,26,5,29,7,11,18,3,1], to name but a few, with the
associated security levels having been estimated using Coppersmith’s algorithm
from 1984 [12,38]. Alas, a series of dramatic breakthrough results for the DLP in
finite fields of small characteristic have potentially rendered all of these efforts
in vain.

The first of these results was due to Joux, in December 2012, and consisted
of a more efficient method – dubbed ‘pinpointing’ – to obtain relations be-
tween factor base elements [31]. For medium-sized base fields, this technique
has heuristic complexity as low as L(1/3, 21/3) ≈ L(1/3, 1.260)1, where as
usual L(α, c) = LQ(α, c) = exp((c + o(1))(logQ)α(log logQ)1−α), with Q the
cardinality of the field. This improved upon the previous best complexity of
L(1/3, 31/3) ≈ L(1/3, 1.442) due to Joux and Lercier [36]. Using this technique
Joux solved example DLPs in fields of bitlength 1175 and 1425, both with prime
base fields.

Then in February 2013, Göloğlu, Granger, McGuire and Zumbrägel used a
specialisation of the Joux-Lercier doubly-rational function field sieve (FFS) vari-
ant [36], in order to exploit a well-known family of ‘splitting polynomials’, i.e.,
polynomials which split completely over the base field [19]. For fields of the
form Fqkn with k ≥ 3 fixed (k = 2 is even simpler) and n ≈ dq for a fixed
integer d ≥ 1, they showed that for binary (and more generally small char-
acteristic) fields, relation generation for degree one elements runs in heuristic
polynomial time, as does finding the logarithms of degree two elements (if qk

can be written as q′k
′
for k′ ≥ 4), once degree one logarithms are known. For

medium-sized base fields of small characteristic a heuristic complexity as low as
L(1/3, (4/9)1/3) ≈ L(1/3, 0.763) was attained; this approach was demonstrated
via the solution of example DLPs in the fields F21971 [21] and F23164 .

After the initial publication of [19], Joux released a preprint [32] detailing
an algorithm for solving the discrete logarithm problem for fields of the form
Fq2n , with n ≤ q + d for some very small d, which was used to solve a DLP
in F21778 [33] and later in F24080 [34]. For n ≈ q this algorithm has heuristic
complexity L(1/4 + o(1), c) for some undetermined c, and also has a heuristic
polynomial time relation generation method, similar in principle to that in [19].
While the degree two element elimination method in [19] is arguably superior

1 The original paper states a complexity of L(1/3, (8/9)1/3) ≈ L(1/3, 0.961); however,
on foot of recent communications the constant should be as stated.
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– since elements can be eliminated on the fly – for other small degrees Joux’s
elimination method is faster, resulting in the stated complexity.

In April 2013 Göloğlu et al. combined their approach with Joux’s to solve
an example DLP in the field F26120 [22] and later demonstrated that Joux’s
algorithm can be tweaked to have heuristic complexity L(1/4, c) [20], where c can
be as low as (ω/8)1/4 [20], with ω the linear algebra constant, i.e., the exponent
of matrix multiplication. Then in May 2013, Joux announced the solution of a
DLP in the field F26168 [35].

Most recently, in June 2013, Barbulescu, Gaudry, Joux and Thomé announced
a quasi-polynomial time for solving the DLP [4], for fields Fqkn with k ≥ 2 fixed
and n ≤ q + d with d very small, which for n ≈ q has heuristic complexity

(log qkn)O(log log qkn). (1)

Since (1) is smaller than L(α, c) for any α > 0, it is asymptotically the most effi-
cient algorithm known for solving the DLP in finite fields of small characteristic,
which can always be embedded into a field of the required form. Interestingly,
the algorithmic ingredients and analysis of this algorithm are much simpler than
for Joux’s L(1/4 + o(1), c) algorithm.

Taken all together, one would expect the above developments to have a sub-
stantial impact on the security of small characteristic parameters appearing in
the pairing-based cryptography literature. However, all of the record DLP com-
putations mentioned above used Kummer or twisted Kummer extensions (those
with n dividing qk ∓ 1), which allow for a reduction in the size of the factor
base by a factor of kn and make the descent phase for individual logarithms
relatively easy. While such parameters are preferable for setting records (most
recently in F29234 [25]), none of the parameters featured in the literature are of
this form, and so it is not a priori clear whether the new techniques weaken
existing pairing-based protocol parameters.

A recent paper by Adj, Menezes, Oliveira and Rodŕıguez-Henŕıquez has be-
gun to address this very issue [2]. Using the time required to compute a single
multiplication modulo the cardinality of the relevant prime order subgroup as
their basic unit of time, which we denote by Mr, they showed that the DLP in
the field F36·509 costs at most 273.7 Mr. One can arguably interpret this result
to mean that this field has 73.7 bits of security2. This significantly reduces the
intended security level of 128 bits (or 111 bits as estimated by Shinohara et
al. [42], or 102.7 bits for the Joux-Lercier FFS variant with pinpointing, as esti-
mated in [2]). An interesting feature of their analysis is that during the descent
phase, some elimination steps are performed using the method from the quasi-
polynomial time algorithm of Barbulescu et al., when one might have expected

2 The notion of bit security is quite fuzzy; for the elliptic curve DLP it is usually
intended to mean the logarithm to the base 2 of the expected number of group
operations, however for the finite field DLP different authors have used different
units, perhaps because the cost of various constituent algorithms must be amortised
into a single cost measure. In this work we time everything in seconds, while to
achieve a comparison with [2] we convert to Mr.
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these steps to only come into play at much higher bitlengths, due to the high
arity of the arising descent nodes.

In the context of binary fields, Adj et al. considered in detail the DLP in
the field F212·367 , which arises via a pairing from the DLP on the Jacobian of a
supersingular genus two curve over F2367 , first proposed in [3], with embedding
degree 12. Using all of the available techniques they provided an upper bound of
294.6 Mr for the cost of breaking the DLP in the embedding field, which is some
way below the intended 128-bit security level. In their conclusion Adj et al. also
suggest that a commonly implemented genus one supersingular curve over F21223

with embedding degree 4 [29,7,11,18,1], is not weakened by the new algorithmic
advances, i.e., its security remains very close to 128 bits.

In this work we show that the above security estimates were incredibly opti-
mistic. Our techniques and results are summarised as follows.

– Field representation: We introduce a new field representation that can
have a profound effect on the resulting complexity of the new algorithms.
In particular it permits the use of a smaller q than before, which not only
speeds up the computation of factor base logarithms, but also the descent
(both classical and new).

– Exploit subfield membership: During the descent phase we apply a prin-
ciple of parsimony, by which one should always try to eliminate an element
in the target field, and only when this is not possible should one embed it
into an extension field. So although the very small degree logarithms may
be computed over a larger field, the descent cost is greatly reduced relative
to solving a DLP in the larger field.

– Further descent tricks: The above principle also means that elements
can automatically be rewritten in terms of elements of smaller degree, via
factorisation over a larger field, and that elements can be eliminated via
Joux’s Gröbner basis computation method [32] with k = 1, rather than
k > 1, which increases its degree of applicability.

– ‘128-bit secure’ genus one DLP: We show that the DLP in F24·1223 can
be solved in approximately 240 s, or 259 Mr, with r a 1221-bit prime.

– ‘128-bit secure’ genus two DLP: We report a total break of the DLP in
F212·367 (announced in [24]), which took about 52240 core-hours.

– L(1/4, c) technique only: Interestingly, using our approach the elimination
steps à la Barbulesu et al. [4] were not necessary for the above estimate and
break.

The rest of the paper is organised as follows. In §2 we describe our field rep-
resentation and our target fields. In §3 we present the corresponding polynomial
time relation generation method for degree one elements and degree two ele-
ments (although we do not need the latter for the fields targeted in the present
paper), as well as how to apply Joux’s small degree elimination method [32] with
the new representation. We then apply these and other techniques to F24·1223 in
§4 and to F212·367 in §5 . Finally, we conclude in §6.
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2 Field Representation and Target Fields

In this section we introduce our new field representation and the fields whose
DLP security we will address. This representation, as well as some preliminary
security estimates, were initially presented in [19].

2.1 Field Representation

Although we focus on binary fields in this paper, for the purposes of generality,
in this section we allow for extension fields of arbitrary characteristic. Hence let
q = pl for some prime p, and let K = Fqkn be the field under consideration, with
k ≥ 1.

We choose a positive integer dh such that n ≤ qdh + 1, and then choose
h0, h1 ∈ Fqk [X ] with max{deg(h0), deg(h1)} = dh such that

h1(X
q)X − h0(X

q) ≡ 0 (mod I(X)), (2)

where I(X) is an irreducible degree n polynomial in Fqk [X ]. Then K =
Fqk [X ]/(I(X)). Denoting by x a root of I(X), we introduce the auxiliary vari-
able y = xq, so that one has two isomorphic representations of K, namely Fqk(x)
and Fqk(y), with σ : Fqk(y) → Fqk(x) : y 	→ xq. To establish the inverse
isomorphism, note that by (2) in K we have h1(y)x − h0(y) = 0, and hence
σ−1 : Fqk(x) → Fqk(y) : x 	→ h0(y)/h1(y).

The knowledgeable reader will have observed that our representation is a syn-
thesis of two other useful representations: the one used by Joux [32], in which
one searches for a degree n factor I(X) of h1(X)Xq − h0(X); and the one used
by Göloğlu et al. [19,20], in which one searches for a degree n factor I(X) of
X − h0(X

q). The problem with the former is that it constrains n to be approx-
imately q. The problem with the latter is that the polynomial X − h0(X

q) is
insufficiently general to represent all degrees n up to qdh. By changing the coef-
ficient of X in the latter from 1 to h1(X

q), we greatly increase the probability
of overcoming the second problem, thus combining the higher degree coverage
of Joux’s representation with the higher degree possibilities of [19,20].

The raison d’être of using this representation rather than Joux’s representa-
tion is that for a given n, by choosing dh > 1, one may use a smaller q. So why is
this useful? Well, since the complexity of the new descent methods is typically a
function of q, then subject to the satisfaction of certain constraints, one may use
a smaller q, thus reducing the complexity of solving the DLP. This observation
was our motivation for choosing field representations of the above form.

Another advantage of having an h1 coefficient (which also applies to Joux’s
representation) is that it increases the chance of there being a suitable (h1, h0)
pair with coefficients defined over a proper subfield of Fqk , which then permits
one to apply the factor base reduction technique of [36], see §4 and §5.

2.2 Target Fields

For i ∈ {0, 1} let Ei/F2p : Y 2 + Y = X3 + X + i. These elliptic curves are
supersingular and can have prime or nearly prime order only for p prime, and
have embedding degree 4 [16,6,17]. We focus on the curve
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E0/F21223 : Y 2 + Y = X3 +X, (3)

which has a prime order subgroup of cardinality r1 = (21223 + 2612 + 1)/5, of
bitlength 1221. This curve was initially proposed for 128-bit secure protocols [29]
and has enjoyed several optimised implementations [7,11,18,1]. Many smaller p
have also been proposed in the literature (see [5,16], for instance), and are clearly
weaker.

For i ∈ {0, 1} let Hi/F2p : Y 2+Y = X5+X3+i. These genus two hyperelliptic
curves are supersingular and can have a nearly prime order Jacobian only for p
prime (note that 13 is always a factor of #JacH0(F2p), since #JacH0(F2) = 13),
and have embedding degree 12 [5,16]. We focus on the curve

H0/F2367 : Y 2 + Y = X5 +X3, (4)

with #JacH(F2367) = 13 · 7170258097 · r2, and r2 = (2734 + 2551 + 2367 + 2184 +
1)/(13 ·7170258097) is a 698-bit prime, since this was proposed for 128-bit secure
protocols [3], and whose security was analysed in depth by Adj et al. in [2].

3 Computing the Logarithms of Small Degree Elements

In this section we adapt the polynomial time relation generation method
from [19] and Joux’s small degree elimination method [32] to the new field rep-
resentation as detailed in §2.1. Note that henceforth, we shall refer to elements
of Fqkn = Fqk [X ]/(I(X)) as field elements or as polynomials, as appropriate,
and thus use x and X (and y and Y ) interchangeably. We therefore freely apply
polynomial ring concepts, such as degree, factorisation and smoothness, to field
elements.

In order to compute discrete logarithms in our target fields we apply the
usual index calculus method. It consists of a precomputation phase in which by
means of (sparse) linear algebra techniques one obtains the logarithms of the
factor base elements, which will consist of the low degree irreducible polyno-
mials. Afterwards, in the individual logarithm phase, one applies procedures to
recursively rewrite each element as a product of elements of smaller degree, in
this way building up a descent tree, which has the target element as its root and
factor base elements as its leaves. This proceeds in several stages, starting with a
continued fraction descent of the target element, followed by a special-Q lattice
descent (referred to as degree-balanced classical descent, see [19]), and finally
using Joux’s Gröbner basis descent [32] for the lower degree elements. Details
of the continued fraction and classical descent steps are given in §4, while in
this section we provide details of how to find the logarithms of elements of small
degree.

We now describe how the logarithms of degree one and two elements (when
needed) are to be computed. We use the relation generation method from [19],
rather than Joux’s method [32], since it automatically avoids duplicate relations.
For k ≥ 2 we first precompute the set Sk, where

Sk = {(a, b, c) ∈ (Fqk)
3 | Xq+1 + aXq + bX + c splits completely over Fqk}.
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For k = 2, this set of triples is parameterised by (a, aq,Fq 
 c �= aq+1), of which
there are precisely q3 − q2 elements. For k ≥ 3, Sk can also be computed very
efficiently, as follows. Assuming c �= ab and b �= aq, the polynomial Xq+1 +
aXq + bX + c may be transformed (up to a scalar factor) into the polynomial

fB(X) = X
q+1

+ BX + B, where B = (b−aq)q+1

(c−ab)q , and X = c−ab
b−aq X − a. The

set L of B ∈ Fqk for which fB splits completely over Fqk can be computed
by simply testing for each such B whether this occurs, and there are precisely
(qk−1 − 1)/(q2 − 1) such B if k is odd, and (qk−1 − q)/(q2 − 1) such B if k is
even [8]. Then for any (a, b) such that b �= aq and for each B ∈ L, we compute

via B = (b−aq)q+1

(c−ab)q the corresponding (unique) c ∈ Fqk , which thus ensures that

(a, b, c) ∈ Sk. Note that in all cases we have |Sk| ≈ q3k−3.

3.1 Degree 1 Logarithms

We define the factor base B1 to be the set of linear elements in x, i.e., B1 =
{x− a | a ∈ Fqk}. Observe that the elements linear in y are each expressible in

B1, since (y − a) = (x− a1/q)q.
As in [36,19,20], the basic idea is to consider elements of the form xy + ay +

bx+ c with (a, b, c) ∈ Sk. The above two field isomorphisms induce the following
equality in K:

xq+1 + axq + bx+ c =
1

h1(y)

(
yh0(y) + ayh1(y) + bh0(y) + ch1(y)

)
. (5)

When the r.h.s. of (5) also splits completely over Fqk , one obtains a relation
between elements of B1 and the logarithm of h1(y). One can either adjoin h1(y)
to the factor base, or simply use an h1(y) which splits completely over Fqk .

We assume that for each (a, b, c) ∈ Sk that the r.h.s. of (5) – which has degree
dh + 1 – splits completely over Fqk with probability 1/(dh + 1)!. Hence in order
for there to be sufficiently many relations we require that

q3k−3

(dh + 1)!
> qk, or equivalently q2k−3 > (dh + 1)!. (6)

When this holds, the expected cost of relation generation is (dh + 1)! · qk ·
Sqk(dh + 1, 1), where Sqk(n,m) denotes the cost of testing whether a degree
n polynomial is m-smooth, i.e., has all of its irreducible factors of degree ≤ m.
The cost of solving the resulting linear system using sparse linear algebra tech-
niques is O(q2k+1) arithmetic operations modulo the order r subgroup in which
one is working.

3.2 Degree 2 Logarithms

For degree two logarithms, there are several options. The simplest is to apply
the degree one method over a quadratic extension of Fqk , but in general (without
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any factor base automorphisms) this will cost O(q4k+1) modular arithmetic op-
erations. If k ≥ 4 then subject to a condition on q, k and dh, it is possible to find
the logarithms of irreducible degree two elements on the fly, using the techniques
of [19,20]. In fact, for the DLP in F212·367 we use both of these approaches, but
for different base fields, see §5.

Although not used in the present paper, for completeness we include here the
analogue in our field representation of Joux’s approach [32]. Since this approach
forms the basis of the higher degree elimination steps in the quasi-polynomial
time algorithm of Barbulescu et al., its analogue in our field representation should
be clear.

We define B2,u to be the set of irreducible elements of Fqk [X ] of the form
X2+uX+v. For each u ∈ Fqk one expects there to be about qk/2 such elements3.
As in [32], for each u ∈ Fqk we find the logarithms of all the elements of B2,u

simultaneously. To do so, consider (5) but with x on the l.h.s. replaced with
Q = x2 + ux. Using the field isomorphisms we have that Qq+1 + aQq + bQ + c
is equal to

(y2+uqy)
(
(h0(y)
h1(y)

)2+u(h0(y)
h1(y)

)
)
+ a(y2+uqy) + b

(
(h0(y)
h1(y)

)2+u(h0(y)
h1(y)

)) + c

= 1
h1(y)2

(
(y2+uqy)(h0(y)

2+uh0(y)h1(y)+ah1(y)
2)+b(h0(y)

2+uh0(y)h1(y))+ch1(y)
2
)
.

The degree of the r.h.s. is 2(dh+1), and when it splits completely over Fqk we have
a relation between elements of B2,u and degree one elements, whose logarithms
are presumed known, which we assume occurs with probability 1/(2(dh + 1))!.
Hence in order for there to be sufficiently many relations we require that

q3k−3

(2(dh + 1))!
>

qk

2
, or equivalently q2k−3 > (2(dh + 1))!/2. (7)

Observe that (7) implies (6). When this holds, the expected cost of relation
generation is (2(dh+1))! ·qk ·Sqk(2(dh+1), 1)/2. The cost of solving the resulting
linear system using sparse linear algebra techniques is again O(q2k+1) modular
arithmetic operations, where now both the number of variables and the average
weight is halved relative to the degree one case. Since there are qk such u, the
total expected cost of this stage is O(q3k+1) modular arithmetic operations,
which may of course be parallelised.

3.3 Joux’s Small Degree Elimination with the New Representation

As in [32], let Q be a degree dQ element to be eliminated, let F (X) =
∑dF

i=0 fiX
i,

G(X) =
∑dG

j=0 gjX
j ∈ Fqk [X ] with dF + dG + 2 ≥ dQ, and assume without loss

of generality dF ≥ dG. Consider the following expression:

G(X)
∏

α∈Fq

(F (X)− αG(X)) = F (X)qG(X)− F (X)G(X)q (8)

3 For binary fields there are precisely qk/2 irreducibles, since X2+uX+v is irreducible
if and only if TrF

qk
/F2(v/u

2) = 1.
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The l.h.s. is max(dF , dG)-smooth. The r.h.s. can be expressed modulo h1(X
q)X−

h0(X
q) in terms of Y = Xq as a quotient of polynomials of relatively low degree

by using

F (X)q =

dF∑

i=0

f q
i Y

i, G(X)q =

dG∑

j=0

gqjY
j and X ≡ h0(Y )

h1(Y )
.

Then the numerator of the r.h.s. becomes

( dF∑

i=0

f q
i Y

i
)( dG∑

j=0

gqjh0(Y )jh1(Y )dF−j
)
−
( dF∑

i=0

f q
i h0(Y )ih1(Y )dF−i

)( dG∑

j=0

gqjY
j
)
. (9)

Setting (9) to be 0 modulo Q(Y ) gives a system of dQ equations over Fqk in
the dF + dG + 2 variables f0, . . . , fdF , g0, . . . , gdG. By choosing a basis for Fqk

over Fq and expressing each of the dF + dG +2 variables f0, . . . , fdF , g0, . . . , gdG

in this basis, this system becomes a bilinear quadratic system4 of kdQ equations
in (dF + dG + 2)k variables. To find solutions to this system, one can specialise
(dF + dG + 2 − dQ)k of the variables in order to make the resulting system
generically zero-dimensional while keeping its bilinearity, and then compute the
corresponding Gröbner basis, which may have no solution, or a small number of
solutions. For each solution, one checks whether (9) divided by Q(Y ) is (dQ−1)-
smooth: if so then Q has successfully been rewritten as a product of elements of
smaller degree; if no solutions give a (dQ − 1)-smooth cofactor, then one begins
again with another specialisation.

The degree of the cofactor of Q(Y ) is upper bounded by dF (1 + dh) − dQ,
so assuming that it behaves as a uniformly chosen polynomial of such a degree
one can calculate the probability ρ that it is (dQ − 1)-smooth using standard
combinatorial techniques.

Generally, in order for Q to be eliminable by this method with good probabil-
ity, the number of solutions to the initial bilinear system must be greater than
1/ρ. To estimate the number of solutions, consider the action of Gl2(Fqk) on the
set of pairs (F,G). The subgroups Gl2(Fq) and F

×
qk

(via diagonal embedding)
both act trivially on the set of relations, modulo multiplication by elements in
F
×
qk
. Assuming that the set of (F,G) quotiented out by the action of the com-

positum of these subgroups (which has cardinality ≈ qk+3), generates distinct
relations, one must satisfy the condition

q(dF+dG+1−dQ)k−3 > 1/ρ . (10)

Note that while (10) is preferable for an easy descent, one may yet violate it and
still successfully eliminate elements by using various tactics, as demonstrated
in §5.
4 The bilinearity makes finding solutions to this system easier [44], and is essential for
the complexity analysis in [32] and its variant in [20].
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4 Concrete Security Analysis of F24·1223

In this section we focus on the DLP in the 1221-bit prime order r1 subgroup of
F
×
24·1223 , which arises from the MOV attack applied to the genus one supersingular

curve (3). By embedding F24·1223 into its degree two extension F28·1223 = F29784

we show that, after a precomputation taking approximately 240 s, individual
discrete logarithms can be computed in less than 234 s.

4.1 Setup

We consider the field F28·1223 = Fqn with q = 28 and n = 1223 given by the
irreducible factor of degree n of h1(X

q)X − h0(X
q), with

h0 = X5 + tX4 + tX3 +X2 + tX + t , h1 = X5 +X4 +X3 +X2 +X + t ,

where t is an element of F22 \ F2. Note that the field of definition of this
representation is F22 .

Since the target element is contained in the subfield F24·1223 , we begin the
classical descent over F24 , we switch to Fq = F28 , i.e., k = 1, for the Gröbner
basis descent, and, as explained below, we work over Fqk with either k = 1 or a
few k > 1 to obtain the logarithms of all factor base elements.

4.2 Linear Algebra Cost Estimate

In this precomputation we obtain the logarithms of all elements of degree at
most four over Fq. Since the degree 1223 extension is defined over F22 in our
field representation, by the action of the Galois group Gal(Fq/F22) on the factor
base, the number of irreducible elements of degree j whose logarithms are to be
computed can be reduced to about 28j/(4j) for j ∈ {1, 2, 3, 4}.

One way to obtain the logarithms of these elements is to carry out the degree 1
relation generation method from §3.1, together with the elementary observation
that an irreducible polynomial of degree k over Fq splits completely over Fqk .
First, computing degree one logarithms over Fq3 gives the logarithms of irre-
ducible elements of degrees one and three over Fq. Similarly, computing degree
one logarithms over Fq4 gives the logarithms of irreducible elements of degrees
one, two, and four over Fq. The main computational cost consists in solving the
latter system arising from Fq4 , which has size 228 and an average row weight
of 256.

However, we propose to reduce the cost of finding these logarithms by us-
ing k = 1 only, in the following easy way. Consider §3.3, and observe that for
each polynomial pair (F,G) of degree at most d, one obtains a relation between
elements of degree at most d when the numerator of the r.h.s. is d-smooth (ig-
noring factors of h1). Note that we are not setting the r.h.s. numerator to be zero
modulo Q or computing any Gröbner bases. Up to the action of Gl2(Fq) (which
gives equivalent relations) there are about q2d−2 such polynomial pairs. Hence,
for d ≥ 3 there are more relations than elements if the smoothness probability of
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the r.h.s. is sufficiently high. Notice that k = 1 implies that the r.h.s. is divisible
by h1(Y )Y − h0(Y ), thus increasing its smoothness probability and resulting in
enough relations for d = 3 and for d = 4. After having solved the much smaller
system for d = 3 we know the logarithms of all elements up to degree three, so
that the average row weight for the system for d = 4 can be reduced to about
1
4 ·256 = 64 (irreducible degree four polynomials on the l.h.s.). As above the size
of this system is 228.

The cost for generating the linear systems is negligible compared to the linear
algebra cost. For estimating the latter cost we consider Lanczos’ algorithm to
solve a sparse N ×N , N = 228, linear system with average row weight W = 64.
As noted in [40,20] this algorithm can be implemented such that

N2 (2W ADD + 2SQR+ 3MULMOD) (11)

operations are used. On our benchmark system, an AMD Opteron 6168 processor
at 1.9GHz, using [28] our implementation of these operations took 62 ns, 467 ns
and 1853 ns for an ADD, a SQR and a MULMOD, respectively, resulting in a
linear algebra cost of 240 s.

As in [2], the above estimate ignores communication costs and other possible
slowdowns which may arise in practice. An alternative estimate can be obtained
by considering a problem of a similar size over F2 and extrapolating from [37].
This gives an estimated time of 242 s, or for newer hardware slightly less. Note
that this computation was carried out using the blockWiedemann algorithm [13],
which we recommend in practice because it allows one to distribute the main
part of the computation. For the sake of a fair comparison with [2] we use the
former estimate of 240 s.

4.3 Descent Cost Estimate

We assume that the logarithms of elements up to degree four are known, and
that computing these logarithms with a lookup table is free.

Small Degree Descent. We have implemented the small degree descent of §3.3
in Magma [10] V2.20-1, using Faugere’s F4 algorithm [15]. For each degree from
5 to 15, on the same AMD Opteron 6168 processor we timed the Gröbner basis
computation between 106 and 100 times, depending on the degree. Then using a
bottom-up recursive strategy we estimated the following average running times
in seconds for a full logarithm computation, which we present to two significant
figures:

C[5, . . . , 15] = [ 0.038 , 2.1 , 2.1 , 93 , 95 , 180 , 190 , 3200 , 3500 , 6300 , 11000 ] .

Degree-Balanced Classical Descent. From now on, we make the conserva-
tive assumption that a degree n polynomial which is m-smooth, is a product of
n/m degree m polynomials. In practice the descent cost will be lower than this,
however, the linear algebra cost is dominating, so this issue is inconsequential
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for our security estimate. The algorithms we used for smoothness testing are
detailed in the full version of the paper [23].

For a classical descent step with degree balancing we consider polynomials
P (X2a , Y ) ∈ Fq[X,Y ] for a suitably chosen integer 0 ≤ a ≤ 8. It is advantageous
to choose P such that its degree in one variable is one; let d be the degree in
the other variable. In the case degX2a (P ) = 1, i.e., P = v1(Y )X2a + v0(Y ),
deg vi ≤ d, this gives rise to the relation

L2a

v =
( Rv

h1(X)2a

)28

where
Lv = ṽ1(X

28−a

)X + ṽ0(X
28−a

) ,
Rv = v1(X)h0(X)2

a

+ v0(X)h1(X)2
a

in Fq[X ]/(h1(X
q)X − h0(X

q)) with degLv ≤ 28−ad + 1, degRv ≤ d + 5 · 2a,
and ṽi being vi with its coefficients powered by 28−a, for i = 0, 1. Similarly, in
the case degY (P ) = 1, i.e., P = w1(X

2a)Y + w0(X
2a), degwi ≤ d, we have the

relation

L2a

w =
( Rw

h1(X)2ad

)28

where
Lw = w̃1(X)X28−a

+ w̃0(X) ,

Rw = h1(X)2
ad
(
w1

(
(h0(X)
h1(X) )

2a
)
X + w0

(
(h0(X)
h1(X) )

2a
))

with degLw ≤ d + 28−a, degRw ≤ 5 · 2ad + 1 and again w̃i being wi with its
coefficients powered by 28−a, for i = 0, 1.

The polynomials vi (respectively wi) are chosen in such a way that either
the l.h.s. or the r.h.s. is divisible by a polynomial Q(X) of degree dQ. Gaussian
reduction provides a lattice basis (u0, u1), (u

′
0, u

′
1) such that the polynomial pairs

satisfying the divisibility condition above are given by rui+su′
i for i = 0, 1, where

r, s ∈ Fq[X ]. For nearly all polynomials Q it is possible to choose a lattice basis
of polynomials with degree ≈ dQ/2 which we will assume for all Q appearing
in the analysis; extreme cases can be avoided by look-ahead or backtracking
techniques. Notice that a polynomial Q over F24 ⊂ Fq can be rewritten as a
product of polynomials which are also over F24 , by choosing the basis as well as
r and s to be over F24 . This will be done in all steps of the classical descent. The
polynomials r and s are chosen to be of degree four, resulting in 236 possible
pairs (multiplying both by a common non-zero constant gives the same relation).

In the final step of the classical eliminations (from degree 26 to 15) we relax
the criterion that the l.h.s. and r.h.s. are 15-smooth, allowing also irreducibles
of even degree up to degree 30, since these can each be split over Fq into two
polynomials of half the degree, thereby increasing the smoothness probabilities.
Admittedly, if we follow our worst-case analysis stipulation that all polynomials
at this step have degree 26, then one could immediately split each of them into
two degree 13 polynomials. However, in practice one will encounter polynomials
of all degrees ≤ 26 and we therefore carry out the analysis without using the
splitting shortcut, which will still provide an overestimate of the cost of this step.

In the following we will state the logarithmic cost (in seconds) of a classical
descent step as cl+cr+cs, where 2

cl and 2cr denote the number of trials to get the
left hand side and the right hand side m-smooth, and 2cs s is the time required
for the corresponding smoothness test. Our smoothness tests were benchmarked
on the AMD Opteron 6168 processor.
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– dQ = 26 to m = 15: We choose degX2a P = 1, a = 5, Q on the right, giving
d = 17 and (deg(Lv), deg(Rv)) = (137, 151). On average the smoothness
test S28(137, 30) takes 1.9 ms, giving a logarithmic cost of 13.4+ 15.6− 9.0,
hence 220.0 s. The expected number of factors is 19.2, so the subsequent cost
will be less than 217.7 s. Note that, as explained above, we use the splitting
shortcut for irreducibles of even degree up to 30, resulting in the higher than
expected smoothness probabilities.

– dQ = 36 to m = 26: We choose degX2a P = 1, a = 5, Q on the right, giving
d = 22 and (deg(Lv), deg(Rv)) = (177, 146). On average the smoothness test
S28(146, 26) takes 1.9 ms, giving a logarithmic cost 18.7 + 13.6− 9.0, hence
223.3 s. The expected number of factors is 12.4, so the subsequent cost will
be less than 223.9 s.

– dQ = 94 to m = 36: We choose degY P = 1, a = 0, Q on the left, giving
d = 51 and (deg(Lw), deg(Rw)) = (213, 256). On average the smoothness
test S28(213, 36) takes 5.1 ms, giving a logarithmic cost 15.0 + 20.3 − 7.5,
hence 227.8 s. The expected number of factors is 13.0, so the subsequent cost
will be less than 228.4 s.

Continued Fraction Descent. For the continued fraction descent we multiply
the target element by random powers of the generator and express the product
as a ratio of two polynomials of degree at most 611. For each such expression
we test if both the numerator and the denominator are 94-smooth. On average
the smoothness test S28(611, 94) takes 94 ms, giving a logarithmic cost of 17.7+
17.7−3.4, hence 232.0 s. The expected number of degree 94 factors on both sides
will be 13, so the subsequent cost will be less than 232.8 s.

Total Descent Cost. The cost for computing an individual logarithm is there-
fore upper-bounded by 232.0 s + 232.8 s < 234 s.

4.4 Summary

The main cost in our analysis is the linear algebra computation which takes
about 240 s, with the individual logarithm stage being considerably faster. In
order to compare with the estimate in [2], we write the main cost in terms of Mr

which gives 259 Mr, and thus an improvement by a factor of 269. Nevertheless,
solving a system of cardinality 228 is still a formidable challenge, but perhaps not
so much for a well-funded adversary. For completeness we note that if one wants
to avoid a linear algebra step of this size, then one can work over different fields,
e.g., with q = 210 and k = 2, or q = 212 and k = 1. However, while this allows a
partitioning of the linear algebra into smaller steps as described in §3.2 but at
a slightly higher cost, the resulting descent cost is expected to be significantly
higher.
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5 Solving the DLP in F212·367

In this section we present the details of our solution of a DLP in the 698-bit
prime order r2 subgroup of F×

212·367 = F
×
24404 , which arises from the MOV attack

applied to the Jacobian of the genus two supersingular curve (4). Note that the
prime order elliptic curve E1/F2367 : Y 2 + Y = X3 + X + 1 with embedding
degree 4 also embeds into F24404 , so that logarithms on this curve could have
easily been computed as well.

5.1 Setup

To compute the target logarithm, as stated in §1 we applied a principle of parsi-
mony, namely, we tried to solve all intermediate logarithms in F212·367 , considered
as a degree 367 extension of F212 , and only when this was not possible did we
embed elements into the extension field F224·367 (by extending the base field to
F224) and solve them there.

All of the classical descent down to degree 8 was carried out over F212·367 ,
which we formed as the compositum of the following two extension fields. We
defined F212 using the irreducible polynomial U12 +U3 +1 over F2, and defined
F2367 over F2 using the degree 367 irreducible factor of h1(X

64)X − h0(X
64),

where h1 = X5 + X3 + X + 1, and h0 = X6 + X4 + X2 + X + 1. Let u and
x be roots of the extension defining polynomials in U and X respectively, and
let c = (24404 − 1)/r2. Then g = x + u7 is a generator of F×

24404 and ḡ = gc is a
generator of the subgroup of order r2. As usual, our target element was chosen
to be x̄π = xc

π where

xπ =

4403∑

i=0

(π · 2i+1� mod 2) · u11−(i mod 12) · x�i/12�.

The remaining logarithms were computed using a combination of tactics, over
F212 when possible, and over F224 when not. These fields were constructed as de-
gree 2 and 4 extensions of F26 , respectively. To define F26 we used the irreducible
polynomial T 6 + T + 1. We then defined F212 using the irreducible polynomial
V 2+tV +1 over F26 , and F224 using the irreducible polynomialW 4+W 3+W 2+t3

over F26 .

5.2 Degree 1 Logarithms

It was not possible to find enough relations for degree 1 elements over F212 , so
in accordance with our stated principle, we extended the base field to F224 to
compute the logarithms of all 224 degree 1 elements. We used the polynomial time
relation generation from §3.1, which took 47 hours. This relative sluggishness
was due to the r.h.s. having degree dh + 1 = 7, which must split over F224 .
However, this was faster by a factor of 24 than it would have been otherwise,
thanks to h0 and h1 being defined over F2. This allowed us to use the technique
from [36] to reduce the size of the factor base via the automorphism (x + a) 	→
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(x + a)2
367

, which fixes x but has order 24 on all non-subfield elements of F224 ,
since 367 ≡ 7 mod 24 and gcd(7, 24) = 1. This reduced the factor base size to
699252 elements, which was solved in 4896 core hours on a 24 core cluster using
Lanczos’ algorithm, approximately 242 times faster than if we had not used the
automorphisms.

5.3 Individual Logarithm

We performed the standard continued fraction initial split followed by degree-
balanced classical descent as in §4.3, using Magma [10] and NTL [43], to reduce
the target element to an 8-smooth product in 641 and 38224 core hours re-
spectively. The most interesting part of the descent was the elimination of the
elements of degree up to 8 over F212 into elements of degree one over F224 , which
we detail below. This phase was completed using Magma and took a further 8432
core hours. However, we think that the combined time of the classical and non-
classical parts could be reduced significantly via a backwards-induction analysis
of the elimination times of each degree.

Small Degree Elimination. As stated above we used several tactics to achieve
these eliminations. The first was the splitting of an element of even degree over
F212 into two elements of half the degree (which had the same logarithm modulo
r2) over the larger field. This automatically provided the logarithms of all degree
2 elements over F212 . Similarly elements of degree 4 and 8 over F212 were rewritten
as elements of degree 2 and 4 over F224 , while we found that degree 6 elements
were eliminable more efficiently by initially continuing the descent over F212 , as
with degree 5 and 7 elements.

The second tactic was the application of Joux’s Gröbner basis elimination
method from §3.3 to elements over F212 , as well as elements over F224 . However,
in many cases condition (10) was violated, in which case we had to employ various
recursive strategies in order to eliminate elements. In particular, elements of the
same degree were allowed on the r.h.s. of relations, and we then attempted to
eliminate these using the same (recursive) strategy. For degree 3 elements over
F212 , we even allowed degree 4 elements to feature on the r.h.s. of relations, since
these were eliminable via the factorisation into degree 2 elements over F224 .

In Figure 1 we provide a flow chart for the elimination of elements of degree
up to 8 over F212 , and for the supporting elimination of elements of degree up
to 4 over F224 . Nearly all of the arrows in Figure 1 were necessary for these
field parameters (the exceptions being that for degrees 4 and 8 over F212 we
could have initially continued the descent along the bottom row, but this would
have been slower). The reason this ‘non-linear’ descent arises is due to q being
so small, and dH being relatively large, which increases the degree of the r.h.s.
cofactors, thus decreasing the smoothness probability. Indeed these tactics were
only borderline applicable for these parameters; if h0 or h1 had degree any larger
than 6 then not only would most of the descent have been much harder, but it
seems that one would be forced to compute the logarithms of degree 2 elements
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1 2 3 4

1 2 3 4 5 6 7 8

F224

F212

ι ιs
s

s

Fig. 1. This diagram depicts the set of strategies employed to eliminate elements over
F212 of degree up to 8. The encircled numbers represent the degrees of elements over
F212 on the bottom row, and over F224 on the top row. The arrows indicate how an
element of a given degree is rewritten as a product of elements of other degrees, possibly
over the larger field. Unadorned solid arrows indicate the maximum degree of elements
obtained on the l.h.s. of the Gröbner basis elimination method; likewise dashed arrows
indicate the degrees of elements obtained on the r.h.s. of the Gröbner basis elimination
method, when these are greater than those obtained on the l.h.s. Dotted arrows indicate
a fall-back strategy when the initial strategy fails. An s indicates that the element is
to be split over the larger field into two elements of half the degree. An ι indicates that
an element is promoted to the larger field. Finally, a loop indicates that one must use
a recursive strategy in which further instances of the elimination in question must be
solved in order to eliminate the element in question.

over F224 using Joux’s linear system method from §3.2, greatly increasing the
required number of core hours. As it was, we were able to eliminate degree 2
elements over F224 on the fly, as we describe explicitly below.

Finally, we note that our descent strategy is considerably faster than the
alternative of embedding the DLP into F224·367 and performing a full descent in
this field, even with the elimination on the fly of degree 2 elements over F224 ,
since much of the resulting computation would constitute superfluous effort for
the task in hand.

Degree 2 Elimination over F224. Let Q(Y ) be a degree two element which is
to be eliminated, i.e., written as a product of degree one elements. As in [19,20]
we first precompute the set of 64 elements B ∈ F224 such that the polynomial
fB(X) = X65 + BX + B splits completely over F224 (in fact these B’s happen
to be in F212 , but this is not relevant to the method). We then find a Gaussian-
reduced basis of the lattice LQ(Y ) defined by

LQ(Y )={(w0(Y ), w1(Y )) ∈ F224 [Y ]2: w0(Y )h0(Y )+w1(Y )h1(Y ) ≡ 0 (mod Q(Y ))}.

Such a basis has the form (u0, Y + u1), (Y + v0, v1), with ui, vi ∈ F224 , ex-
cept in rare cases, see Remark 1. For s ∈ F224 we obtain lattice elements
(w0(Y ), w1(Y )) = (Y + v0 + su0, sY + v1 + su1).

Using the transformation detailed in §3, for each B ∈ F224 such that fB splits
completely over F224 we perform a Gröbner basis computation to find the set of
s ∈ F224 that satisfy
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B =
(s64 + u0s+ v0)

65

(u0s2 + (u1 + v0)s+ v1)64
,

by first expressing s in a F224/F26 basis, which results in a quadratic system in 4
variables. This ensures that the l.h.s. splits completely over F224 . For each such
s we check whether the r.h.s. cofactor of Q(Y ), which has degree 5, is 1-smooth.
If this occurs, we have successfully eliminated Q(Y ).

However, one expects on average just one s per B, and so the probability of
Q(Y ) being eliminated in this way is 1− (1− 1/5!)64 ≈ 0.415, which was borne
out in practice to two decimal places. Hence, we adopted a recursive strategy in
which we stored all of the r.h.s. cofactors whose factorisation degrees had the
form (1, 1, 1, 2) (denoted type 1), or (1, 2, 2) (denoted type 2). Then for each type
1 cofactor we checked to see if the degree 2 factor was eliminable by the above
method. If none were eliminable we stored every type 1 cofactor of each degree 2
irreducible occurring in the list of type 1 cofactors of Q(Y ). If none of these were
eliminable (which occurred with probability just 0.003), then we reverted to the
type 2 cofactors, and adopted the same strategy just specified for each of the
degree 2 irreducible factors. Overall, we expected our strategy to fail about once
in every 6 · 106 such Q(Y ). This happened just once during our descent, and so
we multiplied this Q(Y ) by a random linear polynomial over F224 and performed
a degree 3 elimination, which necessitates an estimated 32 degree 2 polynomials
being simultaneously eliminable by the above method, which thanks to the high
probability of elimination, will very likely be successful for any linear multiplier.

5.4 Summary

Finally, after a total of approximately 52240 core hours (or 248 Mr2), we found
that x̄π = ḡlog, with (see [24] for a Magma verification script) log =

40932089202142351640934477339007025637256140979451423541922853874473604

39015351684721408233687689563902511062230980145272871017382542826764695

59843114767895545475795766475848754227211594761182312814017076893242 .

Remark 1. During the descent, we encountered several polynomials Q(Y ) that
were apparently not eliminable via the Gröbner basis method. We discovered
that they were all factors of h1(Y ) · c + h0(Y ) for c ∈ F212 or F224 , and hence
h0(Y )/h1(Y ) ≡ c (mod Q(Y )). This implies that (9) is equal to F (c)G(q)(Y ) +
F (q)(Y )G(c) modulo Q(Y ), where G(q) denotes the Frobenius twisted G and
similarly for F (q). This cannot become 0 modulo Q(Y ) if the degrees of F and G
are smaller than the degree of Q, unless F and G are both constants. However,
thanks to the field representation, finding the logarithm of these Q(Y ) turns
out to be easy. In particular, if h1(Y ) · c + h0(Y ) = Q(Y ) · R(Y ) then Q(Y ) =
h1(Y )((h0/h1)(Y ) + c)/R(Y ) = h1(Y )(X + c)/R(Y ), and thus modulo r2 we
have log(Q(y)) ≡ log(x + c) − log(R(y)), since log(h1(y)) ≡ 0. Since (x + c) is
in the factor base, if we are able to compute the logarithm of R(y), then we
are done. In all the cases we encountered, the cofactor R(y) was solvable by the
above methods.
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6 Conclusion

We have introduced a new field representation and efficient descent principles
which together make the recent DLP advances far more practical. As example
demonstrations, we have applied these techniques to two binary fields of central
interest to pairing-based cryptography, namely F24·1223 and F212·367 , which arise
as the embedding fields of (the Jacobians of) a genus one and a genus two super-
singular curve, respectively. When initially proposed, these fields were believed
to be 128-bit secure, and even in light of the recent DLP advances, were believed
to be 128-bit and 94.6-bit secure. On the contrary, our analysis indicates that
the former field has approximately 59 bits of security and we have implemented
a total break of the latter.
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computation on supersingular abelian varieties. Des. Codes Cryptography 42(3),
239–271 (2007)

6. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-
based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp.
354–369. Springer, Heidelberg (2002)
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