
Breaking a New Hash Function Design Strategy
Called SMASH�

Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Austria

{Norbert.Pramstaller, Christian.Rechberger,
Vincent.Rijmen}@iaik.tugraz.at

Abstract. We present a collision attack on SMASH. SMASH was pro-
posed as a new hash function design strategy that does not rely on the
structure of the MD4 family. The presented attack method allows us to
produce almost any desired difference in the chaining variables of the
iterated hash function. Due to the absence of a secret key, we are able
to construct differences with probability 1. Furthermore, we get only few
constraints on the colliding messages, which allows us to construct mean-
ingful collisions. The presented collision attack uses negligible resources
and we conjecture that it works for all hash functions built following the
design strategy of SMASH.

Keywords: SMASH, hash functions, cryptanalysis, collision.

1 Introduction

A lot of progress has been made during the last 10 years in the cryptanalysis of
dedicated hash functions such as MD4, MD5, SHA-0, SHA-1 [2, 4, 5, 10, 12]. In
2004 and 2005, Wang et al. announced that they have broken the hash functions
MD4, MD5, RIPEMD, HAVAL-128, SHA-0, and SHA-1 [13, 14]. Due to these
recent developments we will have to work on the design and analysis of new hash
functions in the future.

A proposal for a new design strategy for dedicated hash functions, called
SMASH, has been presented at FSE 2005 by Lars Knudsen [7]. SMASH is a
hash function design-strategy that does not follow the structure of the MD4
family. As an example, two specific instances were presented: SMASH-256 and
SMASH-512. SMASH-256 and SMASH-512 can be seen as alternatives to SHA-
256 and SHA-512 proposed by NIST [9].

We present here a collision attack on SMASH that works independently of the
choice that is made for the compression function in the hash function. The attack
is based on an extension of the forward prediction property already observed in
the design document. Furthermore, we exploit the absence of a secret key to
construct differentials with probability 1. We are able to construct almost any
� The work in this paper has been supported by the Austrian Science Fund (FWF),

project P18138.

B. Preneel and S. Tavares (Eds.): SAC 2005, LNCS 3897, pp. 233–244, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



234 N. Pramstaller, C. Rechberger, and V. Rijmen

difference in the chaining variables and we have only few constraints on the
colliding messages. This fact allows us to produce meaningful collisions.

We present the collision attack on SMASH in three constructive steps with the
goal to break the two specific instances SMASH-256 and SMASH-512. In order
to explain the attack we also define two simple instances of SMASH, referred to
as SMASH-ORD3 and SMASH-ORDy.

Firstly, we apply the attack on a simple instance of SMASH, referred to
as SMASH-ORD3, by choosing the finite field element different than the one
for SMASH-256 and SMASH-512. Secondly, we extend this attack to break all
simple instances of SMASH, referred to as SMASH-ORDy, but show that it is
not successful for SMASH-256 and SMASH-512 due to the maximum message
length. Finally, a further extension of the collision attack leads to a collision for
SMASH-256 and SMASH-512.

This article is structured as follows. We recall the most important aspects of
the SMASH design method in Section 2. In Section 3, we introduce the underly-
ing principles of the attack and apply it to the simple instances SMASH-ORD3
and SMASH-ORDy. We extend the attack to cover SMASH-256 and SMASH-
512 in Section 4. We shortly present the most important aspects of SMASH-256
and give an example of a meaningful collision. Section 5, discusses some ideas
about how to modify the design-strategy SMASH such that it is immune to
the presented attack. We conclude in Section 6. In Appendix A we present the
equations and results to produce a collision for SMASH-512.

2 The SMASH Design Method

We present here an overview of the hash function design strategy presented in
[7]. Basically, we follow the notation of [7], except that we denote finite field
addition by ‘+’, and we stick to the convention of [3] to denote a difference by
h′ = h + h∗.

2.1 Definition of SMASH

Knudsen [7] proposes a new hash function model with a nonlinear compression
function f based on a bijective n-bit mapping. Let m = m1, m2, . . . , mt be the
message input after MD strengthening [8], where each block mi consists of n
bits. The hash output ht+1 is computed as follows:

h0 = f(iv) + iv (1)
hi = f(hi−1 + mi) + hi−1 + θmi for i = 1, . . . , t (2)

ht+1 = f(ht) + ht . (3)

Different to the design strategy of the MD4 family, SMASH applies the com-
pression function f also to the initial value (1) and to the final hash computation
(3). This is done in order to avoid pseudo-collision attacks, since the attacker
does not have full control over the chaining variable h0. Applying f also to the
final hash computation should make it impossible to predict the final hash value.



Breaking a New Hash Function Design Strategy Called SMASH 235

The multiplication by θ in (2) is defined as an operation in the finite field
GF(2n). Note, that for this section and Section 3, θ is an arbitrary field element
in GF(2n) with the only restriction that θ �= {0, 1} as mentioned in [7].

The structure of SMASH in (2) exhibits a forward prediction property as
already described in [7]. Let hi−1, h

∗
i−1 be two intermediate hash values with

difference h′
i−1 = hi−1 + h∗

i−1. Choose a value for mi and compute m∗
i = mi +

h′
i−1. Then

h′
i = hi + h∗

i = (1 + θ)h′
i−1 . (4)

2.2 Comparing SMASH with a Block Cipher Based Hash Function

The SMASH design can be compared to a block cipher based hash function
operating in the Matyas-Meyer-Oseas mode [11] as shown in Figure 1. In this
mode the intermediate hash value is computed as follows:

hi = Ehi−1(mi) + mi for i = 1, . . . , t . (5)

The underlaying block cipher Ehi−1(mi) in (5) can be replaced by the term
f(hi−1+mi)+hi−1 defined in (2). This is a block cipher following the Even-Mansour
construction [6]—more precisely, an Even-Mansour construction with key K =
K1K2 = hi−1hi−1. The only difference between the SMASH design and a block
cipher based hash function operating in the Matyas-Meyer-Oseasmode is that the
message mi is multiplied by θ prior to the addition to the chaining variable hi.

f

·

E

mi

hi-1

hi hi

mi

hi-1

E

Fig. 1. The Matyas-Meyer-Oseas scheme (left) and the SMASH scheme (right)

3 Observation on the SMASH Design Method

We present here an observation on the design method explained in [7, Section 2].
The observation can be used to break the simple instances SMASH-ORD3 and
SMASH-ORDy, but it does not break SMASH-256 nor SMASH-512. In Section 4,
we explain how to extend this observation in order to break SMASH-256 and
SMASH-512.

3.1 Target

In order to explain our attack, we first consider a simple instance of SMASH.
The instance, referred to as SMASH-ORD3, differs from SMASH in the choice
of the finite field element θ. We assume that we can choose a θ such that (1 + θ)
has order 3, i.e. (1 + θ)3 = 1. Such a choice is not explicitly forbidden in [7].



236 N. Pramstaller, C. Rechberger, and V. Rijmen

3.2 Result

For describing the attack method in Section 3.3 we define the following variables
(see also Figure 2):

x an arbitrary 256-bit value
f1 = f(m1 + h0)
f2 = f(m2 + h1)
f3 = f(m3 + h2)
a = f1 + f(m1 + h0 + x) + θx .

The variable x defines an arbitrary 256-bit difference. f1 . . . f3 are the output
values of f with message mi and intermediate chaining variable hi−1 as input,
i.e. without differences. a defines the difference in h1. Based on these definitions,
the following 4-block messages m = m1m2m3m4 and m∗ = m∗

1m
∗
2m

∗
3m

∗
4 result

in the same hash, for any value of z1, z2, z3, and x. Note that a depends on both
m1 and x. In particular, if x = 0 then a = 0, i.e. m = m∗.

m1 = z1
m2 = z2
m3 = z3
m4 = z1 + f1 + f2 + f3 + θ(m1 + m2 + m3)
m∗

1 = z1 + x
m∗

2 = z2 + a
m∗

3 = z3 + (1 + θ)a
m∗

4 = z1 + f1 + f2 + f3 + θ(m1 + m2 + m3) + (1 + θ)2a + x

(6)

3.3 Description of the Attack Method

We describe here why we have a collision between the two 4-block messages m
and m∗ defined in (6). The attack is illustrated in Figure 2.

f

·

f

·

f

·

f

·

f

iv

m1

h0 h1

m2

h2

m3

h3

f1 f2 f3

m4

h0

x (1+ )2a

x

(1+ )aa

a a(1+(1+ )3)(1+ )2a(1+ )a

iteration 1 iteration 2 iteration 3 iteration 4

h1 h2 h3 h4

f4

Fig. 2. The attack on SMASH-ORD3. The dashed rectangles denote differences.



Breaking a New Hash Function Design Strategy Called SMASH 237

The attack is an extension of the forward prediction property observed in [7].
It can be verified that the value a is the difference in h1. We cannot predict
the value of a, but we can of course easily compute it once we have chosen an
arbitrary z1 and x.

The basic idea of the attack is to control the propagation of the difference such
that the input differences to the function f after the first iteration and prior to
the last iteration (iteration 2 and iteration 3 in Figure 2) equal zero. In this case
the nonlinearity of f does not have any impact on the difference propagation. For
the last message block (iteration 4 ) we ensure that the difference m′

4 = m4 +m∗
4

equals the difference m′
1 = m1 + m∗

1 and that f ′
1 = f ′

4. This can be achieved
as follows. By choosing the difference in the second message block equal to a,
we make sure that the input difference to f equals zero (differences cancel out).
Hence, we ensure that the difference in h2 equals (1+ θ)a. Similarly, by choosing
the difference in the third message block equal to (1 + θ)a, we ensure that the
difference in h3 equals (1 + θ)2a. This was already observed in [7].

Now we have to determine the last message block in each of the messages. We
choose the last message block of the first message, m4, in such a way that the
input of f in the last iteration equals the input of f in the first iteration.

m4 = m1 + h0 + h3

= m1 + h0 + f3 + h2 + θm3

= m1 + h0 + f3 + f2 + f1 + h0 + θ(m3 + m2 + m1)
= m1 + f3 + f2 + f1 + θ(m3 + m2 + m1)

The last block of the second message, m∗
4, is selected in such a way that the

difference in the last message block equals (1+θ)2a+x. This choice ensures that
the two inputs of f in the last iteration (iteration 4 ) equal the inputs in the first
iteration (iteration 1 ). Consequently, the outputs of f will be the same as in the
first iteration, hence they will have the same difference as in the first iteration:
a + θx. Working out the equations, we see that the difference in h4 becomes:

h′
4 = (f(m1 + h0) + h3 + θm4) + (f(m1 + h0 + x) + h3

+ (1 + θ)2a + θ(m4 + (1 + θ)2a + x))

= a + θx + (1 + θ)3a + θx

= a(1 + (1 + θ)3) .

(7)

Since we assumed a θ such that (1 + θ) has order 3, the difference in (7),
h′

4 = a(1 + (1 + θ)3), equals zero and we have produced a collision for our simple
SMASH instance SMASH-ORD3. Due to the collision after the last iteration
(h′

4 = 0), the final hash computation (3) has no impact on the result.
The attack on SMASH-ORD3 can be generalized to break the simple SMASH

instances, referred to as SMASH-ORDy. The instances SMASH-ORDy are de-
fined by choosing a θ such that ord(1+θ) = y, where y is an arbitrary value. For
a successful attack we then need at least y + 1 message blocks without counting
in the last message block that results from the MD strengthening. For instance,



238 N. Pramstaller, C. Rechberger, and V. Rijmen

for SMASH-ORD3 we have y = 3 and we have a collision in iteration y + 1 = 4.
We will see in the next section that for the specific instances SMASH-256 and
SMASH-512 this attack strategy does not work anymore. This is due to the
number of maximum message blocks that can be hashed with SMASH-256 and
SMASH-512.

4 Attacking SMASH-256 and SMASH-512

In this section we explain how the attack can be extended to break the pro-
posed SMASH hash functions. After a description of the general attack strategy,
we present some equations and solutions for the specific instance SMASH-256.
Furthermore, we present an example for a meaningful collision. Equations and
solutions for SMASH-512 are given in Appendix A.

4.1 SMASH-256

The hash function SMASH-256 is a specific instance of the design method
SMASH. SMASH-256 is specified by setting n = 256, by defining the finite
field GF(2256) via the irreducible polynomial q(θ),

q(θ) = θ256 + θ16 + θ3 + θ + 1, (8)

and by defining the compression function f . Due to the chosen padding method,
SMASH-256 can process messages with a bit length less than 2128.

Even if the properties of f are not relevant for our attack, we shortly repeat
them to give a basic understanding of the SMASH design strategy. The compres-
sion function f is composed of several rounds, called H-rounds and L-rounds:

f = H1 ◦ H3 ◦ H2 ◦ L ◦ H1 ◦ H2 ◦ H3 ◦ L ◦ H2 ◦ H1 ◦ H3 ◦ L ◦ H3 ◦ H2 ◦ H1 .

Both the H-rounds and the L-rounds take as input a 256-bit value and produce
a 256-bit output. The underlaying operations are S-Boxes, some linear diffusion
layers and variable rotations. The S-Boxes are based on the S-Boxes used for the
block cipher Serpent [1]. An exact definition of the H-rounds and L-rounds can
be found in [7].

4.2 Brief Description of the Attack

For the attacks on SMASH-ORD3 and SMASH-ORDy we assumed that we
can choose a certain finite field element θ. This is not possible for the specific
instances of SMASH. For SMASH-256 the finite field element θ is defined as a
root of the irreducible polynomial q(θ) = θ256 + θ16 + θ3 + θ + 1, i.e. q(θ) = 0.
The irreducible polynomial for SMASH-512 is given in Appendix A. In order to
show whether the previously described attacks on SMASH-ORD3 and SMASH-
ORDy can be applied to SMASH-256 and SMASH-512, we have to compute
the order of (1 + θ) for the specified θ. For SMASH-256, the order of (1 + θ) is
((2256−1)/5) and for SMASH-512 the order of (1+θ) is (2512−1). Therefore, the



Breaking a New Hash Function Design Strategy Called SMASH 239

attack requires at least (((2256 − 1)/5) + 1) message blocks for SMASH-256 and
(2512) message blocks for SMASH-512, respectively. As specified in [7], SMASH-
256 can be used to hash messages of bit length less than 2128. This corresponds
to (2120 − 1) message blocks of 256 bits. SMASH-512 is specified for (2247 − 1)
message blocks of 512 bits. Hence, the order of (1+ θ) is for both hash functions
larger than the maximum number of message blocks. This means, that we can
still produce colliding messages but these messages are no longer valid inputs
according to the SMASH-256 and SMASH-512 specification.

However, the attack technique can be generalized further. Previously, we ex-
tended the forward prediction property by considering message pairs that intro-
duce a non-zero input difference x into f twice: once at the beginning and once
at the end of the message. We can extend the property further by considering
message pairs that introduce the difference x three or more times. Every time
the input difference to f is non-zero, we make sure that the absolute values of the
two message blocks equal the values in the first message blocks. Consequently,
the output difference of f will be every time the same, namely (a + θx). In
this way, we can produce almost any desired difference in the chaining variable
ht. In order to find a collision, we want to construct a difference of the form
h′

t = a · q(θ) = a · 0 = 0 (mod q(θ)).

4.3 Equations

In this section, we introduce some notations and list the equations that need
to be solved in order to construct pairs of messages that result in a specific
difference in ht. Without loss of generality, we will always work with messages
that differ already in the first block, i.e. m′

1 �= 0.
We define the following notation. Let d be a function defined for two input

values only: d(0) = 0, and d(x) = 1. Let m′
i denote the difference in message

block i. Let δ1 = 1 and let δi with 1 < i ≤ t, be defined as follows:

δi = d(m′
i +

i−1∑

j=1

(1 + θ)i−j−1aδj) . (9)

Then it is possible to construct two t-block messages with the differences defined
by (9), such that the difference in ht has the following value

h′
t = a

t∑

i=1

(1 + θ)t−iδi . (10)

The absolute values mi can be determined as follows. The first block, m1, can
always be selected arbitrarily. If δi = 0, then mi can be selected arbitrarily. If
δi = 1 and i > 1, then mi has to be equal to hi−1 + m1 + h0.

4.4 Solutions for SMASH-256

The field polynomial q(θ) can be written as follows:

θ256 + θ16 + θ3 + θ + 1 = 1 + (1 + θ)2 + (1 + θ)3 + (1 + θ)16 + (1 + θ)256 . (11)



240 N. Pramstaller, C. Rechberger, and V. Rijmen

Hence, the solution of (10) is given by δi = 1 for i = 1, 241, 254, 255, 257 and
δi = 0 for all other i ≤ t = 257. Given the δi, (9) can be solved for the differences
m′

i. This gives:

m′
1 = x

m′
i = (1 + θ)i−2a, 1 < i ≤ 240

m′
241 = x + (1 + θ)239a
m′

i = (1 + θ)i−2a + (1 + θ)i−242a, 241 < i < 254
m′

254 = x + (1 + θ)252a + (1 + θ)12a
m′

255 = x + (1 + θ)253a + (1 + θ)13a + a

m′
256 = (1 + θ)254a + (1 + θ)14a + (1 + θ)a + a

m′
257 = x + (1 + θ)255a + (1 + θ)15a + (1 + θ)2a + (1 + θ)a .

Here, x is an arbitrary 256-bit difference. All other differences are defined by the
attack method. As explained above, 253 of the message blocks mi can be chosen
arbitrarily, while the remaining 4 are determined by the attack.

The above-defined differences produce the following difference in the chaining
variable h257:

h′
257 = (1 + θ)256a + (1 + θ)16a + (1 + θ)3a + (1 + θ)2a + a .

It is clear that h′
257 = a · q(θ) = a · 0 = 0, and hence we have a collision after

iteration 257.

4.5 SMASH-256: Example of Colliding Messages m and m∗

In this section we give an example of two messages1, m and m∗ = m + m′, that
collide after 257 iterations.

Figure 3 shows the two colliding ASCII coded strings. Each message consists
of 258 message blocks. Even if we have already a collision after iteration 257
(see also Table 1), we added an additional message block, m258 = m∗

258, con-
taining the character ‘>’ (3ehex). We have chosen the two messages in this way,
because the message blocks m2 . . .m258 and m∗

2 . . . m∗
258 are inside the end tag

(< / m2 . . .m258 >) and hence are not displayed in a standard HTML viewer or
web browser (e.g. Mozilla Firefox 1.0.3). Therefore, at first sight, only the two
message blocks m1 and m∗

1 are visible.
Using hex notation, Table 1 shows the input message blocks mi and m∗

i for
i = 1, 241, 254, 255, 257, 258, the initial chaining variables h0 = h∗

0 = f(iv) + iv,
the chaining variables h257, h∗

257, h258, and h∗
258, and the colliding outputs h259

and h∗
259.

As described in Section 4.4, the messages m2 . . .m240, m242 . . .m253, and m256
can be chosen arbitrarily. In this simple example each of these message blocks
contains only space characters (20hex).

1 For this simple example we omitted padding.



Breaking a New Hash Function Design Strategy Called SMASH 241

<html>You owe me 1000.0€     </ >………………..

m1 m2…..m257 m258

<html>You owe me 100000€     </ >………………..

m*1 m*2…..m*257 m*258

Fig. 3. ASCII coded strings m and m∗

Table 1. Colliding messages m and m∗

h0= 55214e9e | 237290c2 | 3ff782f7 | c2073a8c | 2105c5f1 | 6ccb0855 | 9c71b7c1 | e7ecceac
h∗
0= 55214e9e | 237290c2 | 3ff782f7 | c2073a8c | 2105c5f1 | 6ccb0855 | 9c71b7c1 | e7ecceac

m1= 3c68746d | 6c3e596f | 75206f77 | 65206d65 | 20313030 | 302e3030 | 80202020 | 20203c2f
m∗

1= 3c68746d | 6c3e596f | 75206f77 | 65206d65 | 20313030 | 30303030 | 80202020 | 20203c2f
. . . . . .

m241= 346a6100 | 4e3cbc5b | f472d355 | b41311b2 | 4b7df46d | e6b4028f | 6aaf9c4d | 97a6f169
m∗

241= 4afe2771 | dd8507d9 | a25082bc | dac25578 | f34abb1c | 5501e05e | d9874798 | 6aa679d3
. . . . . .

m254= 60358467 | cfde2276 | 534a4038 | d3555d7e | 576415d4 | 5c151dbb | 7664ed09 | f97bb393
m∗

254= de2cdecd | 6e323f7e | de8e653b | 7d887168 | f94cebb5 | 7370fc51 | 0e2e0226 | 8f1e25ba
m255= 40088790 | 06da5567 | eb2a1d6e | 2869d96f | 02fb791a | dc8799ca | 0df2d9de | 9dec9799
m∗

255= f81b73fc | db0f8afe | 28947e42 | 699822e0 | 6de2b3b5 | 0b5536fe | c3d1ebb0 | 7744d316
. . . . . .

m257= cc4a7c9c | 9b4a99e1 | 8d275de9 | 3a44a2e7 | 4640484b | 3cb2abb4 | f1af679f | 4e6e142f
m∗

257= 1a5d75eb | 71ea319e | be76a60e | abc9278b | 329ff04f | 5e932f4d | cc04996a | 9e6c4183
h257= ddc0b465 | b42b5072 | c34ad69d | b47c8e2c | 30a36a7b | 218a7bbe | 99ffd185 | 831e8ddf
h∗
257= ddc0b465 | b42b5072 | c34ad69d | b47c8e2c | 30a36a7b | 218a7bbe | 99ffd185 | 831e8ddf

m258= 20202020 | 20202020 | 20202020 | 20202020 | 20202020 | 20202020 | 20202020 | 2020203e
m∗

258= 20202020 | 20202020 | 20202020 | 20202020 | 20202020 | 20202020 | 20202020 | 2020203e
h258= da7c8fa1 | 4389e3c5 | 7299afdd | ad027de9 | 4c595315 | c981c2f8 | 95390053 | 37c2fa00
h∗
258= da7c8fa1 | 4389e3c5 | 7299afdd | ad027de9 | 4c595315 | c981c2f8 | 95390053 | 37c2fa00

h259= 2ffeac86 | 08bc1142 | a3ddf493 | 6455bcd8 | 673dea34 | c6365ec3 | 92b1bc79 | 15c1487e
h∗
259= 2ffeac86 | 08bc1142 | a3ddf493 | 6455bcd8 | 673dea34 | c6365ec3 | 92b1bc79 | 15c1487e

5 Discussion

In this section we discuss some observations on SMASH. Firstly, we propose a
way how to change the SMASH design strategy such that it is not vulnerable to
the presented attack. Secondly, we give some comments on block cipher based
hash functions relaying on the SMASH design strategy.

5.1 Using Different Functions f

If a different f is used in each iteration, the attack described in this article seems
not to work anymore. This is due to the fact that we expect the difference in
the chaining variable hi in iteration i, where δi = 1, to be (a + θx). If different
functions are used for each iteration this cannot be ensured anymore and hence
the presented attack is not successful. A simple method to modify SMASH could
for instance be the addition of a counter value in each iteration. However, we did
not further investigate these modifications and hence it should not be seen as a
solution for this hash function design strategy. Another idea to modify SMASH
such that it is immune against the presented attack is given in [7].



242 N. Pramstaller, C. Rechberger, and V. Rijmen

5.2 Block Cipher Based Hash Functions

In Section 2.2 we compared the SMASH design strategy with a block cipher
based hash function. We have shown that the Matyas-Meyer-Oseas operation
mode with a block cipher following the Even-Mansour construction is not secure.

6 Conclusion

We described a collision attack on SMASH-256 and SMASH-512. The attack
works independently of the choice of the nonlinear compression function f and
requires negligible computation power. We are able to construct meaningful colli-
sions due to the fact that we have only few restrictions on the colliding messages.
The attack is based on two observations. Firstly, the property of forward predic-
tion which was described in [7]. Secondly, a differential attack on a hash function
is easier than on a block cipher, because the attacker has control over the input
values. If the attacker ensures that the two inputs to two different instantia-
tions of the compression function are equal, then the two outputs (and hence
the output difference) will also be equal in both instantiations.

If the compression function f would be different in every iteration, then it
would not be possible to produce the same output difference twice.

Acknowledgements

We would like to thank Lars Knudsen for valuable conversations and for provid-
ing a reference implementation of SMASH-256.

References

1. Eli Biham, Ross J. Anderson, and Lars R. Knudsen. Serpent: A New Block Cipher
Proposal. In Serge Vaudenay, editor, Fast Software Encryption, 5th International
Workshop, FSE 1998, Paris, France, March 23-25, 1998, Proceedings, volume 1372
of LNCS, pages 222–238. Springer, 1998.

2. Eli Biham and Rafi Chen. Near-Collisions of SHA-0. In Matthew K. Franklin, edi-
tor, Advances in Cryptology - CRYPTO 2004, 24th Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 15-19, 2004, Proceedings,
volume 3152 of LNCS, pages 290–305. Springer, 2004.

3. Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosystems.
Journal of Cryptology, 4(1):3–72, 1991.

4. Florent Chabaud and Antoine Joux. Differential Collisions in SHA-0. In Hugo
Krawczyk, editor, Advances in Cryptology - CRYPTO ’98, 18th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 23-27,
1998, Proceedings, volume 1462, pages 56–71. Springer, 1998.

5. Hans Dobbertin. Cryptanalysis of MD4. In Bart Preneel, editor, Fast Software
Encryption, Third International Workshop, Cambridge, UK, February 21-23, 1996,
Proceedings, volume 1039 of LNCS, pages 53–69. Springer, 1996.



Breaking a New Hash Function Design Strategy Called SMASH 243

6. Shimon Even and Yishay Mansour. A Construction of a Cipher From a Single
Pseudorandom Permutation. In Hideki Imai, Ronald L. Rivest, and Tsutomu Mat-
sumoto, editors, Advances in Cryptology - ASIACRYPT ’91, International Confer-
ence on the Theory and Applications of Cryptology, Fujiyoshida, Japan, November
11-14, 1991, Proceedings, volume 739 of LNCS, pages 210–224. Springer, 1991.

7. Lars R. Knudsen. SMASH - A Cryptographic Hash Function. In Henri Gilbert and
Helena Handschuh, editors, Fast Software Encryption: 12th International Work-
shop, FSE 2005, Paris, France, February 21-23, 2005, Proceedings, volume 3557
of LNCS, pages 228–242. Springer, 2005.

8. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1997. Available online at http://www.cacr.
math.uwaterloo.ca/hac/.

9. National Institute of Standards and Technology (NIST). FIPS-180-2: Secure
Hash Standard, August 2002. Available online at http://www.itl.nist.gov/
fipspubs/.

10. Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Exploiting Cod-
ing Theory for Collision Attacks on SHA-1. In Cryptography and Coding, 10th IMA
International Conference, Cirencester, UK, December 19-21, 2005, Proceedings to
appear, LNCS. Springer, 2005.

11. Bart Preneel. Analysis and design of cryptographic hash functions. PhD thesis,
Katholieke Universiteit Leuven, 1993.

12. Vincent Rijmen and Elisabeth Oswald. Update on SHA-1. In Alfred Menezes, ed-
itor, Topics in Cryptology - CT-RSA 2005, The Cryptographers’ Track at the RSA
Conference 2005, San Francisco, CA, USA, February 14-18, 2005, Proceedings,
volume 3376 of LNCS, pages 58–71. Springer, 2005.

13. Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Xiuyuan Yu. Collisions for Hash
Functions MD4, MD5, HAVAL-128 and RIPEMD, August 2004. Preprint, available
at http://eprint.iacr.org/2004/199.

14. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full
SHA-1. In Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005, 25th
Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 14-18, 2005, Proceedings, volume 3621 of LNCS, pages 17–36. Springer, 2005.

A SMASH-512: Equations and Solutions

To determine the differences m′
i that produce a collision for SMASH-512 we use

the same definitions and equations as presented in Section 4.3.
SMASH-512 is specified by setting n = 512 and by defining the finite field

GF(2512) vie the irreducible polynomial q(θ)

q(θ) = θ512 + θ8 + θ5 + θ2 + 1 . (12)

The polynomial q(θ) can be written as follows:

q(θ) = 1 + (1 + θ) + (1 + θ)2 + (1 + θ)4 + (1 + θ)5 + (1 + θ)8 + (1 + θ)512 . (13)

The solution of (10) is given by δi = 1 for i = 1, 505, 508, 509, 511, 512, 513
and δi = 0 for all other i ≤ t = 513. Given the δi, (9) can be solved for the
differences m′

i. This gives:

http://www.cacr.
math.uwaterloo.ca/hac/
http://www.itl.nist.gov/
fipspubs/
http://eprint.iacr.org/2004/199


244 N. Pramstaller, C. Rechberger, and V. Rijmen

m′
1 = x

m′
i = (1 + θ)i−2a, 1 < i ≤ 504

m′
505 = x + (1 + θ)503a
m′

i = (1 + θ)i−2a + (1 + θ)i−506a, 505 < i < 508
m′

508 = x + (1 + θ)506a + (1 + θ)2a
m′

509 = x + (1 + θ)507a + (1 + θ)3a + a

m′
510 = (1 + θ)508a + (1 + θ)4a + (1 + θ)a + a

m′
511 = x + (1 + θ)509a + (1 + θ)5a + (1 + θ)2a + (1 + θ)a

m′
512 = x + (1 + θ)510a + (1 + θ)6a + (1 + θ)3a + (1 + θ)2a + a

m′
513 = x + (1 + θ)511a + (1 + θ)7a + (1 + θ)4a + (1 + θ)3a + (1 + θ)a + a .

Here x is an arbitrary 512-bit difference. All other differences are defined by the
attack method. For SMASH-512, 507 of the message blocks mi can be chosen
arbitrarily, while the remaining 6 are determined by the attack.

The above-defined differences produce the following difference in the chaining
variable h513:

h′
513 = (1 + θ)512a + (1 + θ)8a + (1 + θ)5a

+ (1 + θ)4a + (1 + θ)2a + (1 + θ)a + a .

It is clear that h′
513 = a · q(θ) = a · 0 = 0, and hence we have a collision for

SMASH-512 after iteration 513.


	Introduction
	The SMASH Design Method
	Definition of SMASH
	Comparing SMASH with a Block Cipher Based Hash Function

	Observation on the SMASH Design Method
	Target
	Result
	Description of the Attack Method

	Attacking SMASH-256 and SMASH-512
	SMASH-256
	Brief Description of the Attack
	Equations
	Solutions for SMASH-256
	SMASH-256: Example of Colliding Messages m and m*

	Discussion
	Using Different Functions f
	Block Cipher Based Hash Functions

	Conclusion
	SMASH-512: Equations and Solutions

