
Breaking a Time-and-Space Barrier
in Constructing Full-Text Indices∗

Wing-Kai Hon† Kunihiko Sadakane‡ Wing-Kin Sung§

Abstract

Suffix trees and suffix arrays are the most prominent full-text indices, and their construction algorithms are well
studied. In the literature, the fastest algorithm runs inO(n) time, while it requiresO(n log n)-bit working space,
wheren denotes the length of the text. On the other hand, the most space-efficient algorithm requiresO(n)-bit
working space while it runs inO(n log n) time. It was open whether these indices can be constructed in both
o(n log n) time ando(n log n)-bit working space.

This paper breaks the above time-and-space barrier under the unit-cost word RAM. We give an algorithm
for constructing the suffix array which takesO(n) time andO(n)-bit working space, for texts with constant-size
alphabets. Note that both the time and the space bounds are optimal. For constructing the suffix tree, our algorithm
requiresO(n logε n) time andO(n)-bit working space for any0 < ε < 1. Apart from that, our algorithm can also
be adopted to build other existing full-text indices, such as Compressed Suffix Tree, Compressed Suffix Arrays and
FM-index.

We also study the general case where the size of the alphabetΣ is not constant. Our algorithm can construct a
suffix array and a suffix tree using optimalO(n log |Σ|)-bit working space while running inO(n log log |Σ|) time
andO(n(logε n + log |Σ|)) time, respectively. These are the first algorithms that achieveo(n log n) time with
optimal working space. Moreover, for the special case wherelog |Σ| = O((log log n)1−ε), we can speed up our
suffix array construction algorithm to the optimalO(n).

1 Introduction

Due to the advance in information technology and bio-technology, the amount of text data is increasing exponentially.
To assist users to locate their required information, the role of indexing data structures has become more and more
important. For texts with word boundary such as English, inverted index [7] is used since it enables fast queries and
is space-efficient. However, for texts without word boundary like DNA/protein sequences or Chinese/Japanese texts,
inverted index is not suitable. In this case, we need full-text indices, that is, indexing data structures which make no
assumption on the word boundary. Suffix trees [20] and suffix arrays [19] are two fundamental full-text indices in the

∗Preliminary version appears in theProceedings of the 44th Symposium on Foundations of Computer Science, pages 251–260, 2003.
†Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan. (Email: wkhon@cs.nthu.edu.tw)
‡Department of Computer Science and Communication Engineering, Kyushu University, Japan. (Email: sada@csce.kyushu-u.ac.jp)
§Department of Computer Science, School of Computing, National University of Singapore, Singapore. (Email: ksung@comp.nus.edu.sg)

1

literature, which find numerous applications in areas including data mining [28] and biological research [8]. For the
other full-text indices, almost all of them are originated from these two data structures.

Suffix trees and suffix arrays are very useful since they allow us to perform pattern searching efficiently. Consider
a text withn characters. Given the suffix tree, we can search for a patternP within the text usingO(|P |) time, which
is independent of the text size. For suffix array, the searching time isO(|P |+ log n),1 which is only a bit slower. One
more advantage of suffix array is that even if this indexing structure is placed in external memory, it still can achieve
good I/O performance for searching [3]. In spite of that, suffix trees and suffix arrays cannot be built easily whenn is
large. The construction algorithms for both of them are either too slow, or require too much working space.

For instance, when we optimize the construction time, based on the work from Weiner [30], McCreight [20],
Ukkonen [29], and Farach [4], a suffix tree and a suffix array can be built inO(n) time. However, the working space
required isΩ(n log n) bits.

On the other hand, when we optimize the construction working space, based on the recent work by Lam et al. [18],
we can first build the Compressed Suffix Array (CSA) of [6] and then convert it to the suffix tree and the suffix array.
Although such approach reduces the working space toO(n) bits, the execution time is increased toO(n log n).
Another solution is to rely on external memory [3] to control the working space. However, the time complexity is
even worse, not to mention the increase in I/O burden.

It was open whether the suffix tree and the suffix array can be constructed ino(n log n) time ando(n log n)-
bit working space. The need to break this time-and-space barrier is illustrated in a concrete example that arises in
practice. Suppose we would like to construct a suffix array for human genome (of length approximately 3 billion).
The fastest known algorithm runs in linear time. However, it requires40 Gigabytes working space [17]. Such memory
requirement far exceeds the capacity of ordinary computers. On the other hand, if we apply the most space-efficient
algorithm, the working space required is roughly3 Gigabytes, which is possible to be implemented on a PC nowadays.
The time required, however, is more than20 hours [18], which is a bit slow.

Apart from suffix trees and suffix arrays, we observe that the other full-text indices also suffer from the same
time-and-space barrier during the construction phase. Such barrier may prevent these indices to become useful for
large-scale applications.2 Table 1 summarizes the performance of the best known algorithms for constructing these
full-text indices.

1.1 Our Results

Our results are based on the following model. Firstly, we assume a unit-cost RAM with word size ofO(log U)
bits, wheren ≤ U , in which standard arithmetic and bitwise boolean operations on word-sized operands can be
performed in constant time [1, 9]. Secondly, to compare our work fairly with the other main-memory algorithms, we
add the following assumptions: (1) We restrict our algorithms to be running within the main memory, in which no
I/O operations are involved in the intermediate steps; (2) for counting the working space, we do not include the space
for the output of the full-text indices (This can be justified as output can be written directly to the secondary storage
upon completion without occupying the main memory). Under the above model, this paper proposes the following
construction algorithms for full-text indices, where the input text is assumed to be over a constant-size alphabet:

1We use the notationlogc
b n = (log n/ log b)c to denote thec-th power of the base-b logarithm ofn. Unless specified, we useb = 2.

2Zobel et al. [32] and Crauser and Ferragina [3] both mentioned the importance of construction algorithms to the usefulness of the index.

2

Table 1: Construction times for full-text indices.

index algorithm time space (bits)

opt time [19] O(n) O(n log n)
SA, CSA, or FM opt space [18] O(n log n) O(n)

this paper O(n) O(n)

opt time [4] O(n) O(n log n)
ST or CST opt space [12] O(n log n) O(n)

this paper O(n logε n) O(n)

The acronym ST, SA, CST, CSA, FM represent suffix tree, suffix array, compressed suffix tree, compressed suffix array, and
FM-index, respectively. Also,ε is any fixed real number with0 < ε < 1.

1. An algorithm which constructs the suffix array inO(n) time andO(n)-bit working space;

2. An algorithm which constructs the suffix tree inO(n logε n) time andO(n)-bit working space for0 < ε < 1.

To the best of our knowledge, these are the first known algorithms which run ino(n log n) time ando(n log n)-bit
working space.

Besides, our algorithms can actually be adopted to build other full-text indices, including CSA, Compressed Suffix
Tree (CST) [12], and FM-index [5]. The performance of our algorithms for constructing these indices are summarized
in Table 1. Another application of our algorithm is that, it can act as a time and space efficient algorithm for the block
sorting [2], which is a widely used process in various compression schemes, such asbzip2 [27].

We also study the general case where the alphabet size is not constant. LetΣ be the alphabet, and|Σ| denote
its size. Our algorithm can construct the suffix array and the suffix tree usingO(n log |Σ|)-bit working space, while
running inO(n log log |Σ|) time andO(n(logε n + log |Σ|)) time, respectively, for any fixedε with 0 < ε < 1.
These are the first algorithms that achieveo(n log n) time with optimal working space. Moreover, for the special case
wherelog |Σ| = O((log log n)1−ε), we can apply Pagh’s data structure for constant-timerank queries [24] to further
improve the running time of the suffix array construction to the optimalO(n).

Remark. Very recently, Na and Park [23] proposed another algorithm for the construction of CSA, FM-index, and
Burrows-Wheeler transform. The running time isO(n) time, which is independent of the alphabet size. The working
space is increased slightly toO(n log |Σ| logα

|Σ| n) bits, whereα = log3 2.

1.2 The Main Techniques

To achieve small working space, we make use of theΨ function [6] of CSA and the Burrows-Wheeler (BW) text [2]
as our tools, where they can act as an implicit representation of any suffix tree generated during the process of
construction. Both theΨ function and the BW text can be stored inO(n)-bit space. Moreover, given them, we can
construct the suffix tree and the suffix array inO(n logε n) time andO(n) time, respectively for0 < ε < 1.

Apart from space concern, another reason for using these two data structures as our tools is that we notice the
strengths they possess complement nicely the weaknesses of the other: For theΨ function, it allows efficient pattern

3

query, while it is difficult to update the function in response to the change in the underlying suffix tree; for the plain
BW text, it can be easily and quickly updated, though it does not support efficient pattern query. In our construction
algorithm, efficient queries and fast updates are frequently required, so that we use both data structures alternately in
order to utilize their strengths.

Another finding that leads to the improvement is related to the backward search algorithm, which is used to find a
pattern within the text based on theΨ function. If we apply a known method [26], given theΨ function for the text,
each step of the algorithm requiresO(log n) time in general. This paper presents a novel auxiliary data structure of
O(n) bits which supports each backward search step inO(log log |Σ|) time instead. As our construction algorithm
executes the backward search frequently, the overall running time is thus sped up because of this improvement.

Finally, our algorithm borrows the framework of Farach’s linear time suffix tree construction algorithm [4] which
first constructs two suffix trees, one for odd-position suffixes and one for even-position suffixes, and then merge the
two trees together. The difference, however, lies in the actual implementation, as we have carefully avoided to store
the suffix pointers explicitly, thus savingO(n log n) bits in total.

The remaining of this paper is organized as follows. Section 2 is a preliminary section which gives the definitions
for the CSA and Burrows-Wheeler text, and discusses the relationship between them. Section 3 shows the improved
result in the backward search algorithm. Section 4 describes the framework for the construction algorithm, while
Sections 5 and 6 detail the main steps of the algorithm. In Section 7, we give details to the improvement we can
achieve when the alphabet size is sufficiently small, precisely, whenlog |Σ| = O((log log n)1−ε). Finally, we give a
conclusion in Section 8.

2 Preliminaries

This section is divided into three parts. The first part gives the basic notation, and introduces the suffix array, theΨ
function, and the Burrows-Wheeler text. In the second part, we describe the representation of theΨ function that is
used throughout the paper. Finally, we discuss the duality between theΨ function and the Burrows-Wheeler text.

2.1 Basic Notation

Firstly, we review some of the basic notation and assumptions. For a textT of lengthn over an alphabetΣ, it is
denoted byT [0...n− 1]. Each character ofΣ is uniquely encoded by an integer in[0, |Σ| − 1] which occupieslog |Σ|
bits. In addition, a characterc is alphabetically larger than a characterc′ if and only if the encoding ofc is larger than
the encoding ofc′. Also, we assume thatT [n− 1] is a special character that does not appear elsewhere in the text.

For anyi = 0, . . . , n − 1, the stringT [i..n − 1] is called a suffix ofT . The suffix arraySA[0..n − 1] of T is
an array of integers such thatT [SA[i]..n − 1] is lexicographically thei-th smallest suffix ofT . TheΨT function, or
simplyΨ, is the main component of the CSA [6]. It is defined as follows:

• Ψ[i] = SA−1[SA[i] + 1] if SA[i] 6= n− 1;

• Ψ[i] = SA−1[0] otherwise.

Immediately, we have the following observation.

4

i W [i] SA[i] Ψ[i] S[SA[i]...n− 1]

0 g 7 2 $
1 c 2 3 a a c c g $
2 $ 0 4 a c a a c c g $
3 a 3 5 a c c g $
4 a 1 1 c a a c c g $
5 a 4 6 c c g $
6 c 5 7 c g $
7 c 6 0 g $

Figure 1: Suffix array, theΨ function, and the Burrows-Wheeler textW of a stringS = acaaccg$.

Observation 1 For the suffix array and theΨ function of the textT ,

• CharactersT [SA[i]] (i = 1, 2, . . . , n) are alphabetically sorted.

• Suppose thatT [SA[i]] = T [SA[j]]. Then,Ψ[i] < Ψ[j] if and only ifi < j.

On the other hand, the Burrows-Wheeler textW [2] is a transformation onT such thatW [i] = T [SA[i] − 1] if
SA[i] > 0, andW [i] = T [n − 1] otherwise. Intuitively,W [i] is the preceding character of thei-th smallest suffix
of T in T . This transformation process is widely used in various compression schemes such asbzip2 [27], and it
constitutes the main part of the construction of the FM-index [5].

See Figure 1 for an example of the suffix array, theΨ function, and the Burrows-Wheeler text of a stringS =
acaaccg$. In the example, we haveΣ = {a, c, g, t} and the last character ofS is $, which is unique among the other
characters inS. We also assume that$ is alphabetically smaller than each character inΣ.

2.2 Representation ofΨ

Observation 1 implies that theΨ function is piece-wise increasing. In addition, eachΨ value is less thann. Therefore,
we can make use of a functionρ(c, x) = enc(c)·n+x and obtain a total increasing functionΨ′[i] = ρ(T [SA[i]],Ψ[i]),
whereenc(c) denotes the encoding of the characterc. Note that value ofΨ′ is less thann|Σ|.

Based on the total increasing property,Ψ′ can be stored as follows. We divide eachΨ′[i], which takeslog n +
log |Σ| bits, into two partsqi andri, whereqi is the first (or most significant)log n bits, andri is the remaininglog |Σ|
bits. We encode the valuesq0, q1 − q0, . . . , qn−1 − qn−2 in a bit-vectorB1 using unary codes. (Recall that the unary
code for an integerx ≥ 0 is encoded asx 0’s followed by a1.) Note that the encoding has exactlyn 1’s where the
(i + 1)-th 1, which corresponds toΨ[i], is at positioni + qi. Also, the total number of0’s is qn−1, which is at mostn.
Thus,B1 uses2n bits. Theri’s are stored explicitly in an arrayB2[0...n − 1] where each entry occupieslog |Σ|
bits. Thus,B2 occupiesn log |Σ| bits. Moreover, an auxiliary data structure ofO(n/ log log n) bits is constructed
in O(n) time to enable constant-timerank andselectqueries, and thus supporting the retrieval of anyqi in constant
time [13, 22]. Then, the total size isn(log |Σ| + 2) + o(n) bits. Sinceqi andri can be retrieved in constant time, so
canΨ′[i] = |Σ|qi + ri. This gives the following lemma.

Lemma 1 TheΨ′ function can be encoded inO(n log |Σ|) bits, so that eachΨ′[i] can be retrieved in constant time.

5

Corollary 1 TheΨ function can be encoded asΨ′ in O(n log |Σ|) bits, so that eachΨ[i] can be retrieved in constant
time.

Proof: The retrieval time follows sinceΨ[i] = Ψ′[i] mod n. ut

2.3 Duality betweenΨ and W

It is known thatΨ andW are one-to-one corresponding. In the section, we show that the transformation between
them can be done in linear time and inO(n log |Σ|)-bit space.

We first give a property relatingW andΨ.

Definition 1 Given an array of charactersx[0...n−1], we define thestable sorting orderof x[i] in x to be the number
of characters inx which is alphabetically smaller thanx[i], plus the number of charactersx[j] with j < i which is
equal tox[i]. This is in fact the position ofx[i] after stable sorting.

Lemma 2 ([2]) Letk be the stable sorting order ofW [i] in W . Then,Ψ[k] = i.

Proof: Let Yi denote the suffixTSA[i]−1 whenSA[i] > 0, and the suffixT [n − 1] otherwise. Note that wheni < j,
if Yi andYj are starting with the same character,Yi will be lexicographically smaller thanYj . The reason is that, by
excluding the first character, the remaining part ofYi (which isTSA[i]) is lexicographically smaller than the remaining
part ofYj (which isTSA[j]). Also, observe that the first character ofYi is equal toW [i]. Then, it follows that the stable
sorting order ofW [i] in W is equal to the rank ofYi among the set of allYi’s, which is the set of all suffixes ofT .

Thus, we havek = SA−1[SA[i] − 1] whenSA[i] > 0, andk = SA−1[n − 1] otherwise. In the former case,
SA[k] = SA[i] − 1 < n − 1, so Ψ[k] = SA−1[SA[k] + 1] = SA−1[SA[i]] = i. For the latter case, we have
i = SA−1[0] andSA[k] = n − 1. Thus we haveΨ[k] = SA−1[0] = i. In summary,Ψ[k] = i for all cases, and the
lemma follows. ut

The next two lemmas show the linear time conversion betweenW andΨ.

Lemma 3 GivenW , we can storeΨ in O(n) time and inO(n log |Σ|) bits. The working space isO(n log |Σ|) bits.

Proof: The conversion is simply based on counting sort. We present the details below for completeness. We construct
Ψ′ in Section 2.2 fromW as an encoding ofΨ (Corollary 1). To constructΨ′, we create a bit-vectorB1[0...2n − 1]
and initialize all bits to0. We also create an arrayB2[0...n− 1] where each entry occupieslog |Σ| bits.

Now, we show how to compute the stable sorting order ofW [i] in W , for i = 0, 1, 2, To do so, we use three
auxiliary arrays. The first array isL1 such thatL1[c] stores the number of occurrences of the characterc in W . This
array can be initialized by scanningW once. The second array isL2 such thatL2[c] stores the number of occurrences
of a character that is smaller thanc in W . This array can be initialized by scanningL1 once. Finally, the third array
is L3 such thatL3[c] stores the number of occurrences ofc seen so far. Initially, all entries ofL3 are initialized to0.

Now, we proceed to readW [0], W [1], and so on. Note that during the process, when we read a characterc, we
maintain the correctness ofL3 by incrementingL3[c] just before the next character is read. Thus, at the beginning of

6

1. ComputeL1[c] to store the number of occurrences of eachc ∈ Σ.

2. ComputeL2[c] to store the number of occurrences of a character that is smaller thanc.
That is,L2[c] =

∑
d<c L1[c] for c ∈ Σ.

3. LetL3 be an array such thatL3[c] stores the number of occurrences of the characterc
seen so far.

4. Initialize all entries ofL3 to be 0.

5. Fori = 1, 2, . . . , n
Let c = W [i], k = L2[c] + L3[c]
Computex = ρ(c, i)
Let q = x div |Σ|, r = x mod |Σ|
SetB1[k + q] = 1 andB2[k] = r
IncrementL3[c] by one

6. Compute theO(n/ log log n)-bit auxiliary data structure forB1.

Figure 2: ComputingΨ from W .

stepi, the counterL3[W [i]] will be storing the number of occurrences ofW [i] in W [0...i− 1], and the stable sorting
order ofW [i] can be computed at byL2[W [i]] + L3[W [i]].

Let k be the stable sorting order ofW [i] that is computed at stepi in the above algorithm. By Lemma 2,Ψ[k] = i.
Thus, we haveΨ′[k] equalsx = ρ(T [SA[k]],Ψ[k]) = ρ(W [i], i). By our scheme,x is divided into two partsq andr,
whereq = x div |Σ| is the firstlog n bits, andr = x mod |Σ| is the remaining bits. Forq, a1 is stored atB1[k + q].
For r, it is stored atB2[k].

As the stable sorting order of eachW [i] is different, all possibleΨ[k] will be computed and stored eventually.
A summary of the overall algorithm is shown in Figure 2. It is easy to see that the overall time isO(n + |Σ|). For
the space complexity, note thatL1, L2 andL3 each occupies|Σ| log n bits, which is at mostn log |Σ| bits because
|Σ| ≤ n. Thus, we useO(n log |Σ|)-bit working space. ut

Lemma 4 GivenΨ andT , we can storeW in O(n) time and inO(n log |Σ|) bits. The working space isO(n log |Σ|)
bits.

Proof: Let t = SA−1[0]. Then, we haveΨ[t] = SA−1[1]. In general,Ψk[t] = SA−1[k].
Hence, we haveW [Ψk[t]] = T [k − 1]. To constructW , we can first computet. Recall thatT [n − 1] is a

unique character inT . By scanningT , we compare each character ofT with T [n − 1]. Then, we obtain the value
x = SA−1[n−1], which is equal to the number of occurrences of a character inT that is smaller thanT [n−1]. Then,
by definition,Ψ[x] = SA−1[0], which is equal tot. Thus,t can be found inO(n) time. Afterwards, we iteratively
computeΨi[t] and setW [Ψi[t]] = T [i− 1], for i = 1 to n. As Ψi[t] corresponds to the rank of a different suffix ofT

7

for differenti, all the characters ofW will eventually be computed and stored by the above algorithm. The total time
of the algorithm isO(n), and the space forW ,T , andΨ are allO(n log |Σ|) bits. The lemma thus follows. ut

3 Improving the Backward Search Algorithm

Let S be a text of lengthm over an alphabet∆. In this section, we present anO(m + |∆|)-bit auxiliary data
structure for the theΨ function ofS that improves each step in the backward search algorithm fromO(log m) time
to O(log log |∆|) time.

We first present a data structure that supports fastrank query in Section 3.1, and show that such a data structure
can be constructed efficiently in terms of time and working space. Then, in Section 3.2, we describe the improved
backward search algorithm based on the result of Section 3.1.

3.1 Efficient Data Structure for Fast Rank Query

Let Q be a set of distinct numbers. For any integerx, the rank of x in Q is the number of elements inQ smaller
thanx. We begin with two supporting lemmas prior to the description of our data structure. The first one is on perfect
hash function, which is obtained by rephrasing the result of Section 4 of [10] as follows.

Lemma 5 Givenx b-bit numbers, whereb = Θ(log x), a data structure of sizeO(xb) bits supportingO(1)-time
existential query can be constructed inO(x log x) time andO(xb)-bit working space.

The second one is derived from a result in [21, 31] based on Lemma 5.

Lemma 6 Givenz w-bit numbers, wherew = Θ(log z), a data structure of sizeO(zw2) bits supportingO(log w)-
timerankqueries can be constructed inO(zw log(zw)) time andO(zw2)-bit working space.

Proof: It is shown thatrank queries can be solved inO(log w) time, if existential query for all prefixes of thez
numbers can be answered inO(1) time [21, 31].3 The idea is that, given aw-bit numberk, its longest common prefix
with thez numbers can be found by binary search (on the length) usingO(log w) existential queries, and such a prefix
uniquely determines therankof k.

Notice that onlyO(zw) strings can be a prefix of thez numbers and each can be represented inΘ(w) bits.
Applying Lemma 5 on this set of strings (withx = O(zw) andb = Θ(w)), we have the required data structure. The
lemma thus follows. ut

Now, we are ready to describe our new data structure, whose performance is summarized below:

3In the original papers, the results are for another query calledpredecessor, which finds the largest element in thez numbers that is smaller
than the inputw-bit numberk. However, such a result can be modified easily for therank query as follows. For each numberi in the z
numbers, it is replaced by the numberiz + the rank ofi (so that the number now hasw + log z bits), and we construct thepredecessordata
structure for these modified numbers. For the intendedrankquery, we first try to find the predecessor forkz in the modified numbers, and if no
predecessor is found, the rank ofk in thez numbers is0. Otherwise, let this predecessor bep. It is easy to see that the required result is equal
to (p modz) + 1.

8

Theorem 1 LetQ be a set ofn numbers, each of lengthΘ(log n) bits. Then, a data structure of sizeO(n log n) bits
supportingO(log log n)-timerankquery inQ can be constructed inO(n) time andO(n log n)-bit working space.

Proof: We construct the following data structure forQ:

1. Let k0 < k1 < · · · < kn−1 ben numbers ofQ stored in ascending order by an array.

2. Partition then numbers inton/w2 lists, each containingw2 numbers. Precisely, the lists are in the form
{ki, ki+1, . . . , ki+w2−1}, wherei ≡ 0 (modw2).

3. Let the smallest element in each list be its representative. Construct a data structure forrank query for these
representatives based on Lemma 6.

The above data structure occupiesO(nw) bits, and can be constructed inO(n) time andO(nw)-bit working
space. With such a data structure, therankof x among then numbers can be found inO(log w) time as follows.

1. Find therankof x among then/w2 representatives of the lists. Let this ber.

2. Then, therank of x among then numbers must now lie in[rw2, (r + 1)w2 − 1]. Binary search on thew2

elements{krw2 , krw2+1, . . . , k(r+1)w2−1} to find therankof x.

Both steps thus takeO(log w) time. This completes the proof of Theorem 1. ut
Note that in contrast to the existing data structures for therank query [13, 25], our data structure requires either

less space for storage (when compared with [13]), or less time in the construction (when compared with [25]); the
drawback is a blow-up in query time. Based on Theorem 1, we can use some extra space to achieve a more generalized
result, as shown in the following corollary.

Corollary 2 Let Q′ be a set ofn values, each of lengthlog ` + Θ(log n) bits for any`. Then, a data structure of
sizeO(n log n + `) bits supportingO(log log n)-time rank query inQ′ can be constructed inO(n + `) time and
O(n log n + `)-bit working space.

Proof: The idea is to apply Theorem 1 by transforming the setQ′ into another set such that each value takes only
Θ(log n) bits. Firstly, we scanQ′ and create a bit-vectorB[0...` − 1] such thatB[i] = 1 if there is some number
in Q′ whose firstlog ` bits represents a valuei, andB[i] = 0 otherwise. Afterwards, we construct an auxiliary data
structure forB of sizeo(`) bits to support constant-timerankandselectqueries [13, 22].

Now, we transform each number inQ′ as follows: if the firstlog ` bit of the number represents the valuei, these
bits are replaced by the binary bit-sequence for the rank ofi in B. Note that the rank ofi is less thann, as there are
only n numbers. Thus, after the transformation, each value takesΘ(log n) bits, and in addition, the transformation
preserves the ordering among the elements inQ′.

Let the set of the transformed values beQ. We create the data structure of Theorem 1 onQ. To perform arank
query forx in Q′ (we assume thatx has the same length as any number inQ′), we first obtain the firstlog ` bits ofx.
Suppose that these bits represent the valueix. Then there are two cases:

9

(Case 1) If B[ix] = 1, we replace the firstlog ` bits of x by thelog n-bits that represents the rank ofix in B, and
obtain a new valuey. Then, it is easy to see that the rank ofx in Q′ is equal to the rank ofy in Q.

(Case 2) Otherwise, we replace the firstlog ` bits of x by the log n-bits that represents the rank ofix in B, while
setting the remainingΘ(log n) bits to zeroes, and obtain a new valuez. Then, it is easy to see that the rank of
x in Q′ is equal to the rank ofz in Q.

Finally, for the time and space complexity,B and its auxiliary data structures can be created inO(`) time and
stored iǹ +o(`) bits, while the data structure forrankquery inQ can be created inO(n) time and stored inO(n log n)
bits (By Theorem 1). The lemma thus follows. ut

3.2 The Improved Backward Search Algorithm

Firstly, abackward search stepis defined as follows.

Definition 2 For any patternP , suppose that the rank ofP among all suffixes ofS is known. Abackward search step
then computes the rank ofcP among the suffixes ofS for any characterc ∈ ∆.

Let Ψ′ denote the total increasing function such thatΨ′[i] = ρ(S[SA[i]], Ψ[i]) andρ(c, x) = enc(c) · m + x.
Then, we have the following lemma.

Lemma 7 Let r be the rank ofP among all suffixes ofS. Then, the rank ofcP among all suffixes ofS is equal to
j ∈ [0,m] such thatΨ′[j − 1] < ρ(c, r) ≤ Ψ′[j]. (As a sentinel, we letΨ′[−1] = −1 andΨ′[m] = m|∆|.)

Proof: It is easy to check that for alli = 0, 1, . . . , j − 1, the rank-i suffix of S must either be starting with a
character smaller thanc, or starting withc but the remaining part is lexicographically smaller thanP . Thus, for all
i = 0, 1, . . . , j − 1, the rank-i suffix of S is lexicographically smaller thancP . On the other hand, for alli ≥ j, the
rank-i suffix of S is lexicographically greater than or equal tocP . Thus, the rank ofcP is j. ut

Essentially, a backward search step that computes the rank ofcP in the above lemma is equivalent to finding the
rank ofρ(c, r) in the set of allΨ′ values. Then based on the data structure forrankquery in Section 3.1 (Corollary 2),
we can obtain the main result of this section as follows.

Lemma 8 LetS be a text of lengthm over an alphabet∆. Suppose that theΨ function ofS is given, which is stored
asΨ′ using the scheme in Section 2.2. Then, an auxiliary data structure for theΨ function ofS can be constructed
in O(m + |∆|) time, which supports each backward search step inO(log log |∆|) time. The space requirement is
O(m + |∆|) bits.

Proof: Let V denote the set of allΨ′ values. To prove the lemma, it suffices to show a data structure ofO(m + |∆|)
bits that supportsrankquery for anyx in V in O(log log |∆|) time.

Firstly, recall that in our encoding ofΨ′, each value inV is stored in two parts, where the firstlog m bits are
encoded by unary codes in a bit-vectorB1, and the remaininglog |∆| bits are encoded in an arrayB2 as it is. In
addition, there is an auxiliary data structure supporting constant-timerankandselectqueries.

10

LetGi be the set ofΨ′ values whose firstlog m bits represent the valuei. Among the sets ofGi’s, we are concerned
with those sets whose size is greater thanlog |∆|. Let Gi1 , Gi2 , . . . , Gik be such sets, wherei1 < i2 < · · · < ik.

Note that the groupsGi1 , Gi2 , . . . , Gik each has size betweenlog |∆| and|∆|. Now, we combine the groups, from
left to right, into super-groups of sizeΘ(|∆|). More precisely, we start fromGi1 , merge it withGi2 , Gi3 and so on,
until the size exceeds|∆|. Then, we merge the next unmerged group with its succeeding group and so on, until the
size exceeds|∆|. The process is repeated until all groups are within a super-group. (To ensure that each super-group
has sizeΘ(|∆|), we add a dummy groupGm = {m|∆|, m|∆|+ 1, . . . , (m + 1)|∆| − 1} as a sentinel.)

For each super-groupG, let v0, v1, . . . , vp be itsΘ(|∆|) elements. Now, we pick everylog |∆| elements (i.e.,
v0, vlog |∆|, v2 log |∆|, . . .), subtract each of them byv0, and make them the representatives of this super-group. Then,
we construct the data structure forrankquery of Corollary 2 over these representatives.

With the above data structure,rankquery for anyx in G can be supported as follows. We first check ifx ≤ v0. If
so, therank of x is 0. Otherwise, we find therank of x − v0 among the representatives, which takesO(log log |∆|)
time. Suppose the rank isr. Then, the rank ofx in G must lie betweenr log |∆| and(r + 1) log |∆| − 1, and this
can be found by a binary search in the elements{vr log |∆|, . . . , v(r+1) log |∆|−1} which takesO(log log |∆|) time. In
summary, the time required isO(log log |∆|).

Now, let us complete the whole picture to show how to perform therank query forx in V . Firstly, we extract
the firstlog m bits of x by dividing it with |∆|. Let i′ = x div |∆| be its value. Next, we determine the size ofGi′ ,
which can be done in constant-time usingrank andselectqueries onB1. If the size is0 (i.e.,Gi′ is empty), the rank
of x in V can be computed immediately (precisely, the required rank is equal to the number of1’s in B1[0...i′ − 1],
which can be computed in constant time usingB1 and its auxiliary data structure). If the size is smaller thanlog |∆|,
the rank ofx can be found by performing a binary search with the elements inGi′ , which takesO(log log |∆|) time.
Finally, if the size is greater thanlog |∆|, we locate the super-groupG that contains the elements ofGi′ , and retrieve
the rankr of its smallest elementv0 in V . Then, the required rank isr plus the rank ofx in G. We now claim that
locating the super-group and retrieval ofr can be done in constant time (to be proved shortly), so that the total time is
O(log log |∆|).

We prove the above claim as follows. To support finding the smallest element in each super-group, and retrieval of
its rank inV , we use a bit-vectorB′

1 of O(m) bits, obtained fromB1 by keeping only those1’s whose corresponding
Ψ′ value is a smallest element in some super-group. Also, we augmentB′

1 with constant-timerank andselectdata
structures. Then, the smallest value of the(i + 1)-th super-group, and its rank inV , can be found by consultingB1

andB′
1 in constant time. In addition, for anyGi (with size greater thanlog |∆|), the rank of its super-group among

the other super-groups can be found by consultingB′
1 in constant time.

On the other hand, to support locating therank data structure of the super-group, we first analyze the space
requirement of these data structures. For a particular super-groupG = {v0, v1, . . . , vp}, the data structure is built
for p/ log ∆ = Θ(∆/ log ∆) elements, each of which has value in[0, vp − v0], so that the space isO(vp − v0 +

p
log |∆| · log |∆|) bits (by Corollary 2), which isO(vp − v0) bits sincep ≤ vp − v0. Thus, the total space requirement

is O(m + |∆|) bits,4 and we assume that the data structures of the super-groups are stored consecutively according
to the rank of its smallest element. Then, we create a bit-vectorB3 whose length is identical to the above data
structures, which is used to mark the starting position of each data structure. Also, we augment the bit-vector with

4The additionalO(|∆|) bits are due to the dummy groupGm.

11

an o(m + |∆|)-bit auxiliary data structure to support constant-timerank andselectqueries. Thereafter, when we
want to locate a super-group forGi, we find its rankr among the other super-groups usingB′

1, and then this rank-r
super-group can be accessed in constant time usingB3.

In summary, our data structure takes a total space ofO(m + |∆|) bits and supports each backward search step in
O(log log |∆|) time. For the construction, it takes at mostO(m + |∆|) time. The lemma thus follows. ut

4 The Framework of Constructing CSA and FM-index

Recall thatT [0...n − 1] is a text of lengthn over an alphabetΣ, and we assume thatT [n − 1] is a special character
that does not appear elsewhere inT . This section describes how to construct theΨ function and the Burrows-Wheeler
text W of T in O(n log log |Σ|) time. Our idea is based on Farach’s framework for linear-time construction of the
suffix tree [4], which first constructs the suffix tree for even-position suffixes by recursion, based on which induces
the suffix tree for odd-position suffixes, and then merge the two suffix trees to obtain the required one.

For our case, we first assume that the length ofT is a multiple of2dlog log|Σ| ne+1. (Otherwise, we add enough$
and a$′ at the end ofT , where$′ is a character alphabetically smaller than the other characters inT , and proceed with
the algorithm. TheΨ of this modified string can be converted into theΨ of T in O(n) time.) Leth bedlog log|Σ| ne.
For 0 ≤ k ≤ h, we defineT k to be the string over the alphabetΣ2k

, which is formed by concatenating every2k

characters inT to make one character. That is,T k[i] = T [i · 2k +1..(i+1) ·2k−1], for 1 ≤ i ≤ n/2k. By definition,
T 0 = T .

In addition, we introduce the following definitions associating with a string. For any stringS[0...m − 1] with
even number of characters, denoteSe andSo to be the strings of lengthm/2 formed bymergingevery 2 characters in
S[0...m−1] andS[1...m−1]S[0], respectively; more precisely,Se[i] = S[2i]S[2i+1] andSo[i] = S[2i+1]S[2i+2],
where we setS[m] = S[0]. Intuitively, the suffixes ofSe andSo corresponds to the even-position and odd-position
suffixes ofS, respectively. We have the following observation.

Observation 2 T i
e = T i+1.

Also, note that the last characters ofT i
o andT i

e are unique among the corresponding string. This makes the results
in Sections 2 and 3 applicable for both texts.

Our basic framework is to use a bottom-up approach to constructΨ of T i, or ΨT i , for i = dlog log|Σ| ne down
to 0, thereby obtainingΨ of T in the end. Precisely,

• For Stepi = dlog log|Σ| ne, ΨT i is constructed by first building the suffix tree forT i using Farach’s algo-
rithm [4], and then converting it back to theΨ function.

• For the remaining steps, we construct theΨT i based on theΨT i+1 , the latter of which is in factΨT i
e

by Ob-
servation 2. We first obtainΨT i

o
based onT i andΨT i

e
. Afterwards, we mergeΨT i

o
andΨT i

e
to giveΨT i . The

complete algorithm is shown in Figure 3.

Sections 5 and 6 describe in details how to obtainΨT i
o

from ΨT i
e

andT i, and how to mergeΨT i
o

andΨT i
e

to obtain
ΨT i , respectively. This gives the main theorem of this section.

12

1. Fori = dlog log|Σ| ne

(a) Construct suffix tree forT i.

(b) ConstructΨT i from the suffix tree.

2. Fori = dlog log|Σ| ne − 1 to 0

(a) ConstructΨT i
o

based onΨT i
e
. (Note:ΨT i

e
= ΨT i+1 .)

(b) ConstructΨT i based on theΨT i
o

andΨT i
e
.

Figure 3: The construction algorithm ofΨ function ofT .

Theorem 2 TheΨ function and the Burrows-Wheeler textW of T can be constructed inO(n log log |Σ|) time and
O(n log |Σ|)-bit working space.

Proof: We refer to the algorithm in Figure 3, which has two phases. For Phase 1, we havei = dlog log|Σ| ne. We first

construct the suffix tree forT i whose size isn/2dlog log|Σ| ne ≤ n log |Σ|/ log n. This requiresO(n log |Σ|/ log n) time
andO(n log |Σ|)-bit space by using Farach’s suffix tree construction algorithm [4]. Then,ΨT i can be constructed in
O(n log |Σ|/ log n) time andO(n log |Σ|)-bit working space. Thus, Phase 1 in total takesO(n) time andO(n log |Σ|)-
bit space.

For every Stepi in Phase 2, we constructΨT i . Let ∆i be the alphabet ofT i. Then, Part (a) takesO(|T i|+ |∆i|)
time (Lemma 12), and Part (b) takesO(|T i| log log |∆i| + |∆i|) time (Lemma 14). For the space, both require
O(|T i| log |∆i| + |∆i|) bits. Note that|T i| = n/2i and |∆i| ≤ |Σ|2i ≤ n, so the space used by Stepi is
O(|T i| log |∆i|+|∆i|) = O(n log |Σ|) bits, and the time isO(|T i| log log |∆i|+|∆i|) = O((n/2i)·(i+log log |Σ|)+
|Σ|2i

). In total, the space for Phase 2 isO(n log |Σ|) bits and the time is:

dlog log|Σ| ne−1∑

i=1

O
(n

2i
(i + log log |Σ|) + |Σ|2i

)

= O(n log log |Σ|).

The whole algorithm for constructingΨ of T therefore takesO(n log log |Σ|) time andO(n log |Σ|)-bit space. Finally,
the Burrows-Wheeler textW can be constructed fromΨ using Lemma 4 inO(n) time andO(n log |Σ|)-bit space.
This completes the proof. ut

Once the Burrows-Wheeler transformation is completed, FM-index can be created by encoding the transformed
text W using Move-to-Front encoding and Run-Length encoding [5]. When the alphabet size is small, precisely,
when |Σ| log |Σ| = O(log n), Move-to-Front encoding and Run-Length encoding can be done inO(n) time based
on a pre-computed table ofo(n) bits. In summary, this encoding procedure takesO(n) time usingo(n)-bit space in
addition to the output index. Thus, we have the following result.

13

Xi

i y[i] x[i] Se[SAe[i]...m/2− 1] S[0]
0 $a c aa cc g$ a
1 cg $ ac aa cc g$ a
2 ca a cc g$ a
3 ac c g$ a

(a)

i y → Co x → sortedx
0 cg $
1 ca a
2 $a c
3 ac c

(b)

Figure 4: ConsiderS = acaaccg$. (a) The relationship betweenx[i], y[i] andXi. Note thatXi corresponds to a
suffix of So. (b) After stable sorting on the arrayx, the arrayy becomesCo.

Theorem 3 The FM-index ofT can be constructed inO(n log log |Σ|) time andO(n log |Σ|)-bit working space,
when|Σ| log |Σ| = O(log n).

4.1 Further Discussion

The compressed suffix tree (CST) [12] is a compact representation of the suffix tree takingO(n log |Σ|) bits of space.
The core of the CST consists of (1) CSA of the input text, (2) parentheses encoding of the tree structure of the suffix
tree, and (3) anHgt array that enables efficient computation of the longest common prefix (LCP) query. It is shown
in [11, 12] that once the CSA of the input text is computed, the CST can be constructed inO(n logε n) time and
O(n log |Σ|)-bit working space, for any fixedε with 0 < ε < 1.

Once the CST is constructed, we can simulate a pre-order traversal of the original suffix tree inO(n(logε n +
log |Σ|)) time [11, 12], thereby constructing the original suffix tree along the traversal. Summarizing, we have the
following result:

Theorem 4 The CST and suffix tree ofT can be constructed inO(n logε n) time andO(n(logε n + log |Σ|)) time,
respectively, for any fixedε with 0 < ε < 1. Both construction algorithms requireO(n log |Σ|)-bit working space.

5 Constructing ΨSo

Given S[0...m − 1] and ΨSe , this section describes how to constructΨSo . Our approach is indirect, as prior to
obtainingΨSo , we need to construct the Burrows-Wheeler textCo of So.

Let ∆ be the alphabet ofS. Definex[0..m/2 − 1] to be an array of characters such thatx[i] = S[2SAe[i] − 1]
where2SAe[i]− 1 is computed in modulo-m arithmetic. LetXi be the stringx[i]Se[SAe[i]..m/2− 1]S[0].

Observation 3 Xi is a suffix ofSo if SAe[i] 6= 0. Otherwise, the first character ofXi is S[m − 1], which is unique
among other characters inS.

Let X be the set{Xk|0 ≤ k ≤ m/2− 1}. Intuitively, X is the same as the set of suffixes ofSo. See Figure 4(a)
for an example ofXi.

14

Lemma 9 The stable sorting order ofx[i] in x equals the rank ofXi in X.

Proof: By omitting the first characters of everyXi’s, they are of the formSe[SAe[i]..m/2−1]S[0], which are already
sorted. Thus, the rank ofXi is equal to the stable sorting order ofx[i] in x. ut

Lemma 10 GivenΨSe andS, we can constructCo in O(m + |∆|) time andO(m log |∆|+ |∆|)-bit space.

Proof: Let y[0..m/2− 1] be an array such thaty[i] stores the two characters that immediately precedex[i] in S (i.e.,
S[2SAe[i] − 3]S[2SAe[i] − 2]). In fact, y[i] is the preceding character ofXi in So. Using similar approach as in
Lemma 4,x andy can be computed inO(m) time, and both arrays occupyO(m log |∆|) bits.

To constructCo, we perform a stable sort onx as in Lemma 3, and iteratively compute the stable sorting order
k of x[i], which is equal to the rank ofXi by Lemma 9. During the process, we setCo[k] = y[i]. The total time is
O(m + |∆|) and the total space isO(m log |∆|+ |∆|) bits. See Figure 4 for an example. ut

Lemma 11 ΨSo can be constructed fromCo in O(m + |∆|) time andO(m log |∆|+ |∆|)-bit space.

Proof: The proof is similar to Lemma 3. ut
Thus, we conclude this section with the following lemma.

Lemma 12 GivenΨSe andS, we can constructΨSo in O(m + |∆|) time andO(m log |∆|+ |∆|)-bit space.

6 Merging ΨSo
and ΨSe

In this section, we constructΨS from ΨSo andΨSe . The idea is to determine the rank of any suffix ofS among all
suffixes ofS, and based on this information, we construct the Burrows-Wheeler textC of S. Finally, we convertC to
ΨS by Lemma 3.

Let s be any suffix ofS. Observe that the rank ofs among the suffixes ofS, is equivalent to the sum of the rank
of s among the odd-position suffixes and that among the even-position suffixes ofS. Based on this observation, we
can construct theC array (the Burrows-Wheeler transformation ofS) as follows.

Firstly, we construct the auxiliary data structures of Lemma 8 forΨSo and forΨSe . Next, we perform backward
searches forSe on ΨSo andΨSe simultaneously by Lemma 7, so that at stepi, we obtain the ranks ofSe[m/2 −
i...m/2 − 1] among the odd-position suffixes and even-position suffixes ofS, respectively. By summing these two
ranks, we get the rankk of Se[m/2− i...m/2− 1] among all suffixes of ofS. Then, we setC[k] to beS[m− 2i− 1],
which is the preceding character of the suffixS[m− 2i...m− 1] = Se[m/2− i...m/2− 1].

Similarly, we perform a simultaneous backward search forSo onΨSo andΨSe to complete the remaining entries
of C. Thus, we obtainC by O(m) backward search steps. The algorithm is depicted asMERGECSA in Figure 5.

The following lemma shows the correctness of our algorithm.

Lemma 13 The algorithmMERGECSA in Figure 5 correctly constructsC[0...m− 1].

15

MERGECSA

1. Construct the auxiliary data structures forΨSo and forΨSe to support efficient backward search.

2. Backward search forSe onΨSo andΨSe simultaneously, and

(a) at Stepi, we obtain the rank ofSe[m/2 − i...m/2 − 1] among the odd-position suffixes and
that among the even-position suffixes ofS. Let the sum of the ranks bek.

(b) SetC[k] = S[m− 2i− 1].

3. Backward search forSo onΨSo andΨSe simultaneously, and fill inC[k] accordingly.

Figure 5: MergingΨSo andΨSe .

Proof: Recall that for every suffixS[i..m− 1], C[SA−1[i]] equals the preceding character ofS[i...m− 1]. For every
even-position suffixS[i...m− 1] = Se[i/2...m/2− 1], Step 2 computes its rankk among all odd-position and even-
position suffixes. By definition,k = SA−1[i]. Therefore, Step 2 correctly assignsC[k] to be the preceding character
of S[i..m − 1]. By the same argument, Step 3 handles the odd-position suffixes and correctly assignsC[SA−1[i]] to
be the preceding character ofS[i..m− 1].

Therefore, after Steps 2 and 3,MERGECSA completely constructsC[0..m− 1]. The lemma thus follows. ut
By Lemma 8, the auxiliary data structures can be constructed inO(m + |∆|) time andO(m + |∆|)-bit space,

and then each backward search step is done inO(log log |∆|) time. On the other hand, theΨ functions occupies
O(m log |∆|)-bit space. Thus, we have the following lemma.

Lemma 14 GivenΨSo andΨSe , we can constructΨS in O(m log log |∆| + |∆|) time andO(m log |∆| + |∆|)-bit
space.

7 Improvement whenlog |Σ| = O((log log n)1−ε)

In case the alphabet size is small, precisely, whenlog |Σ| = O((log log n)1−ε), we can improve the construction time
of CSA and FM-index toO(n), which is optimal. The improvement is based on the following data structure of Pagh
for supporting constant-timerankqueries [24].

Theorem 5 [24] Givenn distinct numbers in[0,m − 1] such thatm = n logO(1) n, a data structure of sizeB +
O(n(log log n)2

log n) bits supporting constant-timerank queries can be constructed inO(n) time andO(B)-bit space

whereB = dlog
(
m
n

)e = n log m
n + O(n).

We apply the same algorithm as in Section 4 for the construction of CSA, but we make changes only in the
encodings ofΨT i , for i < log log log |Σ|. For those values ofi, we have|T i| = n/2i and the alphabet size ofT i

16

is |Σ|2i
. When log |Σ| = O((log log n)1−ε), we have|Σ|2i

= logO(1) |T i|.5 Thus, the total increasing sequence
of suchΨ′

T i ’s can be encoded by Theorem 5, and each backward search step on theseΨ functions can be done in
constant time. This gives the following theorem.

Theorem 6 If log |Σ| = O((log log n)1−ε), the CSA, FM-index and the Burrows-Wheeler textW of T can be con-
structed inO(n) time andO(n log |Σ|)-bit working space.

Proof: We refer to the algorithm in Figure 3. After the change in the encodings ofΨT i for i < log log log |Σ|, the
time required by each phase is as follows.

• Phase 1 takesO(n) time;

• For i ≥ log log log |Σ|, Stepi in Phase 2 takesO((n/2i) · (i + log log |Σ|) + |Σ|2i
) time;

• For i < log log log |Σ|, Stepi in Phase 2 takesO(n/2i + |Σ|2i
) time.

It follows that the total time required isO(n). For the space complexity, it remainsO(n log |Σ|) bits. Thus, the CSA
and the Burrows-Wheeler textW of T can be constructed in the stated time and space, while the FM-index can be
constructed inO(n) time andO(n log |Σ|)-bit space onceW is obtained. This completes the proof. ut

8 Concluding Remarks

We have shown that suffix trees, suffix arrays, and other full-text indices can be constructed ino(n log n) time and
o(n log n)-bit space, giving a positive answer to an open problem.

Very recently linear-time algorithms for constructing suffix arrays have been proposed [14–16]. Though using
interesting techniques, their algorithms requireO(n log n)-bit working space, and they will imply onlyO(n logε n)
time algorithms for constructing suffix arrays if the working space is limited toO(n log |Σ|) bit. Thus, the algorithm
proposed in this paper is best-suited for suffix array construction under practical consideration, where the input text is
very long but alphabet size is small.

One of the open problem remains is that, whether we can construct suffix tree in optimalO(n) time for texts
with general alphabet, while using optimalO(n log |Σ|)-bit working space. Another direction of research is to further
reduce the working space for constructing full-text indices, fromO(n log |Σ|) bits to an input-dependentO(nH) bits
whereH is the entropy of the input text.

Acknowledgment

The authors would like to thank Roberto Grossi, Tak-Wah Lam, Takeshi Tokuyama, and the anonymous reviewers
for helpful comments, and Ankur Gupta for sending us his paper. The work of the first author is supported in part by
the Hong Kong RGC Grant HKU-7024/01E while studying at the University of Hong Kong. The work of the second
author is supported in part by the Grant-in-Aid of the Ministry of Education, Science, Sports and Culture of Japan.
The work of the third author is supported in part by the NUS Academic Research Grant R-252-000-119-112.

5This can be seen by considering the boundary case ofi = log log log |Σ|, so that|T i| becomes smallest while the alphabet size becomes
largest.

17

References

[1] P. Beame and F. E. Fich. Optimal Bounds for the Predecessor Problem and Related Problems.Journal of
Computer and System Sciences, 65(1):38–72, 2002. Preliminary version appears in STOC 1999.

[2] M. Burrows and D. J. Wheeler. A Block-Sorting Lossless Data Compression Algorithm. Technical Report 124,
Digital Equipment Corporation, Paolo Alto, CA, USA, 1994.

[3] A. Crauser and P. Ferragina. A Theoretical and Experimental Study on the Construction of Suffix Arrays in
External Memory.Algorithmica, 32:1–35, 2002.

[4] M. Farach. Optimal Suffix Tree Construction with Large Alphabets. InProceedings of IEEE Symposium on
Foundations of Computer Science, pages 137–143, 1997.

[5] P. Ferragina and G. Manzini. Indexing Compressed Text.Journal of the ACM, 52(4):552–581, 2005. Preliminary
version appears in FOCS 2000.

[6] R. Grossi and J. S. Vitter. Compressed Suffix Arrays and Suffix Trees with Applications to Text Indexing and
String Matching. SIAM Journal on Computing, 35(2):378–407, 2005. Preliminary version appears in STOC
2000.

[7] D. A. Grossman and O. Frieder.Information Retrieval: Algorithms and Heuristics. Kluwer Academic Publish-
ers, Boston, MA, USA, 1998.

[8] D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology.
Cambridge University Press, New York, NY, USA, 1997.

[9] T. Hagerup. Sorting and Searching on the Word RAM. InProceedings of Symposium on Theory Aspects of
Computer Science, pages 366–398, 1998.

[10] T. Hagerup, P. B. Miltersen, and R. Pagh. Deterministic Dictionaries.Journal on Algorithms, 41(1):69–85,
2001.

[11] W. K. Hon. On the Construction and Application of Compressed Text Indexes, Ph.D. Thesis, University of Hong
Kong, 2004.

[12] W. K. Hon and K. Sadakane. Space-Economical Algorithms for Finding Maximal Unique Matches. InProceed-
ings of Symposium on Combinatorial Pattern Matching, pages 144–152, 2002.

[13] G. Jacobson. Space-Efficient Static Trees and Graphs. InProceedings of Symposium on Foundations of Com-
puter Science, pages 549–554, 1989.

[14] J. Kärkkäinen, P. Sanders, and S. Burkhardt. Linear Work Suffix Array Construction.Journal of the ACM,
53(6):918–936, 2006. Preliminary version appears in ICALP 2003.

18

[15] D. Kim, J. Sim, H. Park, and K. Park. Constructing Suffix Arrays in Linear Time.Journal of Discrete Algorithms,
3(2–4):126–142, 2005. Preliminary version appears in CPM 2003.

[16] P. Ko and S. Aluru. Space Efficient Linear Time Construction of Suffix Arrays.Journal of Discrete Algorithms,
3(2–4):143–156, 2005. Preliminary version appears in CPM 2003.

[17] S. Kurtz. Reducing the Space Requirement of Suffix Trees.Software Practice and Experiences, 29:1149–1171,
1999.

[18] T. W. Lam, K. Sadakane, W. K. Sung, and S. M. Yiu. A Space and Time Efficient Algorithm for Constructing
Compressed Suffix Arrays. InProceedings of International Conference on Computing and Combinatorics, pages
401–410, 2002.

[19] U. Manber and G. Myers. Suffix Arrays: A New Method for On-Line String Searches.SIAM Journal on
Computing, 22(5):935–948, 1993.

[20] E. M. McCreight. A Space-economical Suffix Tree Construction Algorithm.Journal of the ACM, 23(2):262–
272, 1976.

[21] K. Mehlhorn.Data Structures and Algorithms 1: Sorting and Searching. Springer-Verlag, Heidelberg, Germany,
1984.

[22] J. I. Munro. Tables. InProceedings of Conference on Foundations of Software Technology and Theoretical
Computer Science, pages 37–42, 1996.

[23] J. C. Na and K. Park. Alphabet-Independent Linear-Time Construction of Compressed Suffix Arrays Using
o(n log n)-bit Working Space.Theoretical Computer Science, 385(1–3):127–136, 2007. Preliminary version
appears in CPM 2005.

[24] R. Pagh. Low Redundancy in Static Dictionaries with Constant Query Time.SIAM Journal on Computing,
31(2):353–363, 2001.

[25] R. Raman, V. Raman, and S. S. Rao. Succinct Indexable Dictionaries with Applications to Encodingk-ary Trees
and Multisets. InProceedings of ACM-SIAM Symposium on Discrete Algorithms, pages 233–242, 2002.

[26] K. Sadakane. New text indexing functionalities of the compressed suffix arrays.Journal of Algorithms,
48(2):294–313, 2003. Preliminary version appears in ISAAC 2000.

[27] J. Seward. Thebzip2 andlibbzip2 official home page, 1996.http://www.bzip.org/ .

[28] S. Shimozono, H. Arimura, and S. Arikawa. Efficient Discovery of Optimal Word Association Patterns in Large
Text Databases.New Generation Computing, 18:49–60, 2000.

[29] E. Ukkonen. On-line Construction of Suffix Trees.Algorithmica, 14(3):249–260, 1995.

19

[30] P. Weiner. Linear Pattern Matching Algorithms. InProceedings of Symposium on Switching and Automata
Theory, pages 1–11, 1973.

[31] D. E. Willard. Log-Logarithmic Worst-Case Range Queries are Possible in SpaceΘ(N). Information Processing
Letters, 17(2):81–84, 1983.

[32] J. Zobel, A. Moffat, and K. Ramamohanarao. Guidelines for Presentation and Comparison of Indexing Tech-
niques.SIGMOD Record, 25(3):10–15, 1996.

20

