Breaking a Time-and-Space Barrier
in Constructing Full-Text Indicés

Wing-Kai Hon' Kunihiko Sadakanke Wing-Kin Sung

Abstract

Suffix trees and suffix arrays are the most prominent full-text indices, and their construction algorithms are well
studied. In the literature, the fastest algorithm run®im) time, while it requiresO(n log n)-bit working space,
wheren denotes the length of the text. On the other hand, the most space-efficient algorithm réxjuirest
working space while it runs i®(nlogn) time. It was open whether these indices can be constructed in both
o(nlogn) time ando(n log n)-bit working space.

This paper breaks the above time-and-space barrier under the unit-cost word RAM. We give an algorithm
for constructing the suffix array which takéxn) time andO(n)-bit working space, for texts with constant-size
alphabets. Note that both the time and the space bounds are optimal. For constructing the suffix tree, our algorithm
requiresO(nlog® n) time andO(n)-bit working space for ang < ¢ < 1. Apart from that, our algorithm can also
be adopted to build other existing full-text indices, such as Compressed Suffix Tree, Compressed Suffix Arrays and
FM-index.

We also study the general case where the size of the alphabetot constant. Our algorithm can construct a
suffix array and a suffix tree using optimaln log | X|)-bit working space while running i®(n loglog |X|) time
and O(n(log®n + log |X|)) time, respectively. These are the first algorithms that achiéuéogn) time with
optimal working space. Moreover, for the special case where:| = O((loglogn)!=¢), we can speed up our
suffix array construction algorithm to the optin@(n).

1 Introduction

Due to the advance in information technology and bio-technology, the amount of text data is increasing exponential
To assist users to locate their required information, the role of indexing data structures has become more and m
important. For texts with word boundary such as English, inverted index [7] is used since it enables fast queries a
is space-efficient. However, for texts without word boundary like DNA/protein sequences or Chinese/Japanese te»
inverted index is not suitable. In this case, we need full-text indices, that is, indexing data structures which make 1
assumption on the word boundary. Suffix trees [20] and suffix arrays [19] are two fundamental full-text indices in th

*Preliminary version appears in tReoceedings of the 44th Symposium on Foundations of Computer Sgiages 251-260, 2003.
fDepartment of Computer Science, National Tsing Hua University, Hsinchu, Taiwan. (Email: wkhon@cs.nthu.edu.tw)

iDepartment of Computer Science and Communication Engineering, Kyushu University, Japan. (Email: sada@csce.kyushu-u.ac.jp)
$Department of Computer Science, School of Computing, National University of Singapore, Singapore. (Email: ksung@comp.nus.edu.s

literature, which find numerous applications in areas including data mining [28] and biological research [8]. For th
other full-text indices, almost all of them are originated from these two data structures.

Suffix trees and suffix arrays are very useful since they allow us to perform pattern searching efficiently. Consid
a text withn characters. Given the suffix tree, we can search for a paitevithin the text using)(|P|) time, which
is independent of the text size. For suffix array, the searching tié|B| 4 logn),* which is only a bit slower. One
more advantage of suffix array is that even if this indexing structure is placed in external memory, it still can achiev
good I/0O performance for searching [3]. In spite of that, suffix trees and suffix arrays cannot be built easityiwhen
large. The construction algorithms for both of them are either too slow, or require too much working space.

For instance, when we optimize the construction time, based on the work from Weiner [30], McCreight [20]
Ukkonen [29], and Farach [4], a suffix tree and a suffix array can be buil(ir) time. However, the working space
required i2(n log n) bits.

On the other hand, when we optimize the construction working space, based on the recent work by Lam et al. [1
we can first build the Compressed Suffix Array (CSA) of [6] and then convert it to the suffix tree and the suffix array
Although such approach reduces the working spac@ () bits, the execution time is increased @in logn).
Another solution is to rely on external memory [3] to control the working space. However, the time complexity is
even worse, not to mention the increase in 1/0 burden.

It was open whether the suffix tree and the suffix array can be constructéd logn) time ando(nlogn)-
bit working space. The need to break this time-and-space barrier is illustrated in a concrete example that arises
practice. Suppose we would like to construct a suffix array for human genome (of length approximately 3 billion)
The fastest known algorithm runs in linear time. However, it requifeSigabytes working space [17]. Such memory
requirement far exceeds the capacity of ordinary computers. On the other hand, if we apply the most space-effici
algorithm, the working space required is rougBi@igabytes, which is possible to be implemented on a PC nowadays.
The time required, however, is more thzhhours [18], which is a bit slow.

Apart from suffix trees and suffix arrays, we observe that the other full-text indices also suffer from the sam
time-and-space barrier during the construction phase. Such barrier may prevent these indices to become useful
large-scale applicatiorfsTable 1 summarizes the performance of the best known algorithms for constructing these
full-text indices.

1.1 Our Results

Our results are based on the following model. Firstly, we assume a unit-cost RAM with word gix@ogfU/)

bits, wheren < U, in which standard arithmetic and bitwise boolean operations on word-sized operands can b
performed in constant time [1, 9]. Secondly, to compare our work fairly with the other main-memory algorithms, we
add the following assumptions: (1) We restrict our algorithms to be running within the main memory, in which nc
I/O operations are involved in the intermediate steps; (2) for counting the working space, we do not include the spa
for the output of the full-text indices (This can be justified as output can be written directly to the secondary storag
upon completion without occupying the main memory). Under the above model, this paper proposes the followir
construction algorithms for full-text indices, where the input text is assumed to be over a constant-size alphabet:

"We use the notatiotogt n = (logn/ log b)° to denote the-th power of the basédogarithm ofn. Unless specified, we use= 2.
27Zobel et al. [32] and Crauser and Ferragina [3] both mentioned the importance of construction algorithms to the usefulness of the inde»

Table 1: Construction times for full-text indices.

| index | algorithm | time [space (bits)|
opt time [19] O(n) O(nlogn)
SA, CSA, or FM | opt space [18]| O(nlogn) O(n)
this paper O(n) O(n)
opt time [4] O(n) O(nlogn)
ST or CST opt space [12]| O(nlogn) O(n)
this paper | O(nlog®n) O(n)

The acronym ST, SA, CST, CSA, FM represent suffix tree, suffix array, compressed suffix tree, compressed suffix array, and
FM-index, respectively. Alsg is any fixed real number with < ¢ < 1.

1. An algorithm which constructs the suffix arraynn) time andO(n)-bit working space;
2. An algorithm which constructs the suffix treed@(n log® n) time andO(n)-bit working space fof) < € < 1.

To the best of our knowledge, these are the first known algorithms which remilvg n) time ando(n log n)-bit
working space.

Besides, our algorithms can actually be adopted to build other full-text indices, including CSA, Compressed Suff
Tree (CST) [12], and FM-index [5]. The performance of our algorithms for constructing these indices are summarize
in Table 1. Another application of our algorithm is that, it can act as a time and space efficient algorithm for the bloc
sorting [2], which is a widely used process in various compression schemes, sap2as[27].

We also study the general case where the alphabet size is not constaht.bedhe alphabet, and| denote
its size. Our algorithm can construct the suffix array and the suffix tree U&indog |>|)-bit working space, while
running in O(nloglog |X|) time andO(n(log®n + log |X|)) time, respectively, for any fixed with 0 < ¢ < 1.
These are the first algorithms that achie{e log n) time with optimal working space. Moreover, for the special case
wherelog |2| = O((loglogn)'~¢), we can apply Pagh'’s data structure for constant-tiami queries [24] to further
improve the running time of the suffix array construction to the optithad).

Remark. Very recently, Na and Park [23] proposed another algorithm for the construction of CSA, FM-index, anc
Burrows-Wheeler transform. The running timeJén) time, which is independent of the alphabet size. The working
space is increased slightly €(n log || logfy, n) bits, wheren = logs 2.

1.2 The Main Techniques

To achieve small working space, we make use ofitHeinction [6] of CSA and the Burrows-Wheeler (BW) text [2]
as our tools, where they can act as an implicit representation of any suffix tree generated during the process
construction. Both th& function and the BW text can be stored@{n)-bit space. Moreover, given them, we can
construct the suffix tree and the suffix array(iin log® n) time andO(n) time, respectively fof < e < 1.

Apart from space concern, another reason for using these two data structures as our tools is that we notice
strengths they possess complement nicely the weaknesses of the other: ¥dutiztion, it allows efficient pattern

query, while it is difficult to update the function in response to the change in the underlying suffix tree; for the plair
BW text, it can be easily and quickly updated, though it does not support efficient pattern query. In our constructic
algorithm, efficient queries and fast updates are frequently required, so that we use both data structures alternatel
order to utilize their strengths.

Another finding that leads to the improvement is related to the backward search algorithm, which is used to find
pattern within the text based on tlefunction. If we apply a known method [26], given thefunction for the text,
each step of the algorithm requir€glog n) time in general. This paper presents a novel auxiliary data structure of
O(n) bits which supports each backward search step(ilog log |X|) time instead. As our construction algorithm
executes the backward search frequently, the overall running time is thus sped up because of this improvement.

Finally, our algorithm borrows the framework of Farach’s linear time suffix tree construction algorithm [4] which
first constructs two suffix trees, one for odd-position suffixes and one for even-position suffixes, and then merge t
two trees together. The difference, however, lies in the actual implementation, as we have carefully avoided to stc
the suffix pointers explicitly, thus savir@(n log n) bits in total.

The remaining of this paper is organized as follows. Section 2 is a preliminary section which gives the definition
for the CSA and Burrows-Wheeler text, and discusses the relationship between them. Section 3 shows the impro
result in the backward search algorithm. Section 4 describes the framework for the construction algorithm, whi
Sections 5 and 6 detail the main steps of the algorithm. In Section 7, we give details to the improvement we c:
achieve when the alphabet size is sufficiently small, precisely, whg| = O((loglogn)!~¢). Finally, we give a
conclusion in Section 8.

2 Preliminaries

This section is divided into three parts. The first part gives the basic notation, and introduces the suffix afray, the
function, and the Burrows-Wheeler text. In the second part, we describe the representatio¥r éfitlston that is
used throughout the paper. Finally, we discuss the duality betweeh filnection and the Burrows-Wheeler text.

2.1 Basic Notation

Firstly, we review some of the basic notation and assumptions. For &'tekiengthn over an alphabek, it is

denoted byr'[0...n — 1]. Each character df is uniquely encoded by an integer]in |X| — 1] which occupiedog |X|

bits. In addition, a characteris alphabetically larger than a characteif and only if the encoding of is larger than

the encoding of’. Also, we assume th&t[n — 1] is a special character that does not appear elsewhere in the text.
For anyi = 0,...,n — 1, the stringT’[i..n — 1] is called a suffix ofl". The suffix arraySA[0..n — 1] of T" is

an array of integers such tha{SA[i]..n — 1] is lexicographically the-th smallest suffix off’. The ¥ function, or

simply ¥, is the main component of the CSA [6]. It is defined as follows:

o U[i] = SATL[SA[i] + 1]if SA[{] #n — 1;
e U[i] = SA~[0] otherwise.

Immediately, we have the following observation.

i | Wil | SA[] | W[i] | S[SA[{]...n — 1]

0 g 7 2 |3

1 c 2 3 aaccgs$

2 $ 0 4 acaaccgs$
3 a 3 5 accgs$

4 a 1 1 caaccg$
5 a 4 6 ccgs$

6 c 5 7 |cg$

7 c 6 0 g$

Figure 1: Suffix array, th& function, and the Burrows-Wheeler taif of a stringS = acaaccg$.

Observation 1 For the suffix array and th& function of the text’,
e CharactersI'[SA[i]] (i = 1,2,...,n) are alphabetically sorted.
e Suppose thdl'[SA[i]] = T[SA[j]]. Then¥[i] < ¥[j] if and only ifi < j.

On the other hand, the Burrows-Wheeler t8Xt[2] is a transformation ofl” such thatV'[i] = T'[SA[i] — 1] if
SA[i] > 0, andW|i] = T[n — 1] otherwise. Intuitively,J¥/[i] is the preceding character of tii¢h smallest suffix
of T"in T. This transformation process is widely used in various compression schemes $fuzih?as[27], and it
constitutes the main part of the construction of the FM-index [5].

See Figure 1 for an example of the suffix array, théunction, and the Burrows-Wheeler text of a strifig=
acaaccg$. In the example, we have = {a, c, g, t} and the last character 6fis $, which is unique among the other
characters irt. We also assume thétis alphabetically smaller than each characteXin

2.2 Representation of¥

Observation 1 implies that thi2 function is piece-wise increasing. In addition, edclialue is less than. Therefore,
we can make use of a functigiic,) = enc(c)-n+z and obtain a total increasing functi@nifi] = p(T[SA7]], ¥[d]),
whereenc(c) denotes the encoding of the characteNote that value off’ is less tham|X:|.

Based on the total increasing proper/, can be stored as follows. We divide eagHi], which takedogn +
log | ¥ bits, into two partg; andr;, whereg; is the first (or most significantpg n bits, andr; is the remainindog |X|
bits. We encode the values, g1 — qo, ..., 9n—1 — ¢n—2 in & bit-vectorB; using unary codes. (Recall that the unary
code for an integer > 0 is encoded as 0's followed by a1.) Note that the encoding has exactiyt’s where the
(i + 1)-th 1, which corresponds t&[i], is at position + ¢;. Also, the total number df’s is ¢, —1, which is at most..
Thus, B; uses2n bits. Ther;’s are stored explicitly in an arrag,[0...n — 1] where each entry occupiésg |%|
bits. Thus,B; occupiesn log || bits. Moreover, an auxiliary data structure @fn/loglogn) bits is constructed
in O(n) time to enable constant-timmank andselectqueries, and thus supporting the retrieval of anin constant
time [13, 22]. Then, the total size iglog |X| + 2) + o(n) bits. Sincey; andr; can be retrieved in constant time, so
canV'[i] = |X|g; + r;. This gives the following lemma.

Lemma 1 TheV’ function can be encoded (n log |X|) bits, so that eacl¥’[i] can be retrieved in constant time.

Corollary 1 TheV function can be encoded ds in O(n log |X|) bits, so that eacl¥’[i] can be retrieved in constant
time.

Proof: The retrieval time follows sinc&[i] = ¥’[i] mod n. O

2.3 Duality betweenV and W

It is known that¥ and W are one-to-one corresponding. In the section, we show that the transformation betweel
them can be done in linear time anddt{n log | X|)-bit space.
We first give a property relating” andw.

Definition 1 Given an array of characters|0...n — 1], we define thetable sorting ordesf z[i] in x to be the number
of characters inc which is alphabetically smaller than[i], plus the number of characters;] with j < ¢ which is
equal tox[i]. This is in fact the position af[i| after stable sorting.

Lemma 2 ([2]) Letk be the stable sorting order &% [i] in W. ThenW[k] = i.

Proof: LetY; denote the suffiXy,(;—; whenSA[i] > 0, and the suffixI'[n — 1] otherwise. Note that when< j,
if Y; andY; are starting with the same characfgrwill be lexicographically smaller thaki;. The reason is that, by
excluding the first character, the remaining partpfwhich is7s, ;) is lexicographically smaller than the remaining
part ofY; (which isTs,(;). Also, observe that the first charactengfis equal tol¥/[i]. Then, it follows that the stable
sorting order ofi¥/[i] in W is equal to the rank of; among the set of alt;'s, which is the set of all suffixes df.
Thus, we havéd: = SA™![SA[i] — 1] whenSA[i] > 0, andk = SA~'[n — 1] otherwise. In the former case,
SA[k] = SAJi] =1 < n—1, soV[k] = SATSA[k] + 1] = SA™[SA[i]] = i. For the latter case, we have
i = SA~1[0] andSA[k] = n — 1. Thus we havel[k] = SA~![0] = 4. In summary¥[k] = i for all cases, and the
lemma follows. O

The next two lemmas show the linear time conversion betWwgesmd .
Lemma 3 GivenW, we can storel in O(n) time and inO(n log |X]|) bits. The working space 9(n log |X]) bits.

Proof: The conversion is simply based on counting sort. We present the details below for completeness. We constr
U’ in Section 2.2 fromiV as an encoding o¥ (Corollary 1). To construc?’, we create a bit-vectaB; [0...2n — 1]
and initialize all bits ta0. We also create an arrdy; [0...n — 1] where each entry occupi&sg |X| bits.

Now, we show how to compute the stable sorting orddd@f] in W, fori = 0,1,2,.... To do so, we use three
auxiliary arrays. The first array i6; such thatl, [c] stores the number of occurrences of the characiei?”. This
array can be initialized by scannii once. The second arrayis such thatl,[c| stores the number of occurrences
of a character that is smaller thamn 1¥. This array can be initialized by scanniig once. Finally, the third array
is L3 such thatls[c| stores the number of occurrences:aeen so far. Initially, all entries dfs; are initialized ta0.

Now, we proceed to read’[0], IV [1], and so on. Note that during the process, when we read a charaater
maintain the correctness éf by incrementingLs|c| just before the next character is read. Thus, at the beginning of

1. Computel|c] to store the number of occurrences of each..

2. ComputeL,|[c] to store the number of occurrences of a character that is smallee.than
Thatis,La[c] = >, Li[c] forc € X.

3. Let L3 be an array such thdts|c] stores the number of occurrences of the character
seen so far.

4. Initialize all entries of_5 to be 0.

5 Fori=1,2,...,n
Letc = W(i], k = La[c] + L3[(]
Computer = p(c,)
Letq = z div |X], r = z mod |X|
SetBlk + q] = 1 andBy[k] = r
IncrementL3[c] by one

6. Compute th&(n/loglog n)-bit auxiliary data structure foB; .

Figure 2: Computingl from W.

stepi, the countet3 [V [i]] will be storing the number of occurrencesidf[i] in W/0...i — 1], and the stable sorting
order of W[i] can be computed at by, [W[i]] + L3[W[i]].

Let k& be the stable sorting order Bf [i] that is computed at stepn the above algorithm. By Lemma &,[k] = .
Thus, we havel'[k] equalst = p(T[SA[k]], ¥[k]) = p(Wi],). By our schemey is divided into two partg andr,
whereq = x div |X] is the firstlog n bits, andr = = mod |X| is the remaining bits. Fay, a1 is stored at3; [k + q|.
Forr, it is stored atBs[k].

As the stable sorting order of eaéti[:] is different, all possiblel[k] will be computed and stored eventually.
A summary of the overall algorithm is shown in Figure 2. It is easy to see that the overall titie i |X|). For
the space complexity, note thag, L, and L3 each occupies|logn bits, which is at most log |X| bits because
|X| < n. Thus, we us®(n log |X|)-bit working space. 0

Lemma 4 GivenV¥ andT’, we can storéV in O(n) time and inO(n log |X|) bits. The working space 3(n log |X|)
bits.

Proof: Lett = SA~1[0]. Then, we hava[t] = SA~![1]. In general I*[t] = SA~1[k].

Hence, we havéV[U*[t]] = T[k — 1]. To constructi’, we can first compute. Recall thatT[n — 1] is a
unique character ifi". By scannindl’, we compare each character®fwith 7'[n — 1]. Then, we obtain the value
x = SA~![n — 1], which is equal to the number of occurrences of a charac@tiat is smaller thaff'[n — 1]. Then,
by definition, ¥'[z] = SA~1[0], which is equal ta. Thus,¢ can be found irO(n) time. Afterwards, we iteratively
computeV’[t] and setV [¥i[t]] = T[i — 1], fori = 1 ton. As W'[t] corresponds to the rank of a different suffixiof

for differents, all the characters df” will eventually be computed and stored by the above algorithm. The total time
of the algorithm isD(n), and the space fdi/,7", and¥ are allO(n log |X|) bits. The lemma thus follows. 0

3 Improving the Backward Search Algorithm

Let S be a text of lengthm over an alphabef\. In this section, we present an(m + |A|)-bit auxiliary data
structure for the th@ function of S that improves each step in the backward search algorithm €¢iwg) time
to O(log log |A|) time.

We first present a data structure that supportsréast query in Section 3.1, and show that such a data structure
can be constructed efficiently in terms of time and working space. Then, in Section 3.2, we describe the improv
backward search algorithm based on the result of Section 3.1.

3.1 Efficient Data Structure for Fast Rank Query

Let Q be a set of distinct numbers. For any integettherank of z in) is the number of elements i) smaller
thanz. We begin with two supporting lemmas prior to the description of our data structure. The first one is on perfec
hash function, which is obtained by rephrasing the result of Section 4 of [10] as follows.

Lemma 5 Givenzx b-bit numbers, wheré = O(log z), a data structure of siz&(xb) bits supportingO(1)-time
existential query can be constructed(tz log x) time andO(xb)-bit working space.

The second one is derived from a result in [21, 31] based on Lemma 5.

Lemma 6 Givenz w-bit numbers, wherey = O(log z), a data structure of siz&(zw?) bits supporting) (log w)-
timerankqueries can be constructed (2w log(zw)) time andO(zw?)-bit working space.

Proof: It is shown thatrank queries can be solved if(log w) time, if existential query for all prefixes of the
numbers can be answered@®{1) time [21, 31]° The idea is that, givena-bit numberk, its longest common prefix
with the z numbers can be found by binary search (on the length) U3ihgz w) existential queries, and such a prefix
uniquely determines thenk of k.

Notice that onlyO(zw) strings can be a prefix of the numbers and each can be represente® () bits.
Applying Lemma 5 on this set of strings (with= O(zw) andb = O(w)), we have the required data structure. The
lemma thus follows. g

Now, we are ready to describe our new data structure, whose performance is summarized below:

%In the original papers, the results are for another query caliedecessomhich finds the largest element in theumbers that is smaller
than the inputw-bit numberk. However, such a result can be modified easily for rdugk query as follows. For each numbein the z
numbers, it is replaced by the numher+ the rank ofi (so that the number now has+ log z bits), and we construct th@redecessodata
structure for these modified numbers. For the intende# query, we first try to find the predecessor karin the modified numbers, and if no
predecessor is found, the rank/om the z numbers i9). Otherwise, let this predecessorfadt is easy to see that the required result is equal
to (p modz) + 1.

Theorem 1 Let @ be a set o numbers, each of length(log n) bits. Then, a data structure of sizgn logn) bits
supportingO(log log n)-timerankquery in@ can be constructed i®(n) time andO(n log n)-bit working space.

Proof: We construct the following data structure fQr
1. Letky < k1 < --- < k,—1 ben numbers of) stored in ascending order by an array.

2. Partition then numbers intOn/w2 lists, each containings? numbers. Precisely, the lists are in the form
{k‘i, kit1, ... 7ki+w2—1}’ wherei =0 (modw2).

3. Let the smallest element in each list be its representative. Construct a data structarkfquery for these
representatives based on Lemma 6.

The above data structure occupi@$nw) bits, and can be constructed @(n) time andO(nw)-bit working
space. With such a data structure, thek of among the: numbers can be found if(log w) time as follows.

1. Find therank of 2 among then /w? representatives of the lists. Let thishe

2. Then, therank of x among then numbers must now lie ifrw?, (r + 1)w? — 1]. Binary search on the?
elements{k,. 2, kpy2.41; - - -5 Kpg1yw2—1} to find therank of .

Both steps thus tak@(log w) time. This completes the proof of Theorem 1. O

Note that in contrast to the existing data structures forém& query [13, 25], our data structure requires either
less space for storage (when compared with [13]), or less time in the construction (when compared with [25]); tt
drawback is a blow-up in query time. Based on Theorem 1, we can use some extra space to achieve a more genera
result, as shown in the following corollary.

Corollary 2 Let Q' be a set of: values, each of lengttog ¢ + ©(logn) bits for any/. Then, a data structure of
sizeO(nlogn + ¢) bits supportingO(log log n)-time rank query in@’ can be constructed i®(n + ¢) time and
O(nlogn + £)-bit working space.

Proof: The idea is to apply Theorem 1 by transforming the@einto another set such that each value takes only
©(logn) bits. Firstly, we sca®’ and create a bit-vectdB|0.../ — 1] such thatB[i] = 1 if there is some number
in Q" whose firstlog ¢ bits represents a valugand B[i] = 0 otherwise. Afterwards, we construct an auxiliary data
structure forB of sizeo(¥) bits to support constant-tintfank andselectqueries [13, 22].

Now, we transform each number @ as follows: if the firsfiog ¢ bit of the number represents the valy¢hese
bits are replaced by the binary bit-sequence for the rarnikrof3. Note that the rank of is less tham, as there are
only n numbers. Thus, after the transformation, each value t@kés: n) bits, and in addition, the transformation
preserves the ordering among the elementg’in

Let the set of the transformed values@e We create the data structure of Theorem IbnTo perform arank
query forz in Q' (we assume that has the same length as any numbe®i), we first obtain the firstog ¢ bits of .
Suppose that these bits represent the valu&hen there are two cases:

(Case 1) If B[i,] = 1, we replace the firdog ¢ bits of x by thelog n-bits that represents the rank @fin B, and
obtain a new valug. Then, it is easy to see that the rankuah ' is equal to the rank of in Q.

(Case 2) Otherwise, we replace the firkig ¢ bits of z by thelog n-bits that represents the rank @fin B, while
setting the remainin@ (log n) bits to zeroes, and obtain a new valueThen, it is easy to see that the rank of
x in Q' is equal to the rank of in Q).

Finally, for the time and space complexit), and its auxiliary data structures can be create® () time and
stored ind+-o(¢) bits, while the data structure feinkquery inQ) can be created i@ (n) time and stored i@ (n log n)
bits (By Theorem 1). The lemma thus follows. O

3.2 The Improved Backward Search Algorithm

Firstly, abackward search steip defined as follows.

Definition 2 For any patternP, suppose that the rank & among all suffixes o' is known. Abackward search step
then computes the rank e among the suffixes ¢f for any character € A.

Let ¥’ denote the total increasing function such that] = p(S[SA[:]], ¥[:]) and p(c,z) = enc(c) - m + z.
Then, we have the following lemma.

Lemma 7 Letr be the rank ofP among all suffixes af. Then, the rank o P among all suffixes af is equal to
j € [0,m] such thatl'[j — 1] < p(c,r) < ¥'[4]. (As a sentinel, we le¥’'[—1] = —1 and ¥'[m]| = m|A|.)

Proof: It is easy to check that for all = 0,1,...,5 — 1, the rank: suffix of S must either be starting with a
character smaller than or starting withc but the remaining part is lexicographically smaller thanThus, for all
1=0,1,...,5 — 1, the ranks suffix of S is lexicographically smaller than?. On the other hand, for all> j, the
rank+ suffix of S is lexicographically greater than or equakiB. Thus, the rank of P is j. O

Essentially, a backward search step that computes the rarR iof the above lemma is equivalent to finding the
rank ofp(c, r) in the set of all’ values. Then based on the data structuredok query in Section 3.1 (Corollary 2),
we can obtain the main result of this section as follows.

Lemma 8 Let S be a text of lengthn over an alphabet\. Suppose that thé function ofS is given, which is stored
as U’ using the scheme in Section 2.2. Then, an auxiliary data structure fop fluection ofS can be constructed
in O(m + |A[) time, which supports each backward search stepitoglog|A|) time. The space requirement is
O(m + |A|) bits.

Proof: LetV denote the set of all’ values. To prove the lemma, it suffices to show a data structutgaf+ |A|)
bits that supportsank query for anyz in V' in O(log log |A|) time.

Firstly, recall that in our encoding oF’, each value irl/ is stored in two parts, where the fiisig m bits are
encoded by unary codes in a bit-veci®ry, and the remainindgog |A| bits are encoded in an arrdy, as itis. In
addition, there is an auxiliary data structure supporting constantrimeandselectqueries.

10

Let G; be the set of’ values whose firdbg m bits represent the valie Among the sets af;’s, we are concerned
with those sets whose size is greater thanA|. LetG;,, Gi,, . .., Gy, be such sets, wheig < ip < - < .

Note that the group§;,, G, . . ., G;, each has size betwegsg |A| and|A|. Now, we combine the groups, from
left to right, into super-groups of sizé(|A|). More precisely, we start fror&;,, merge it withG,,, G;, and so on,
until the size exceeds\|. Then, we merge the next unmerged group with its succeeding group and so on, until the
size exceedBA|. The process is repeated until all groups are within a super-group. (To ensure that each super-gro
has sizeO(]A|), we add a dummy grou@,,, = {m|A|,m|A| +1,...,(m + 1)|A| — 1} as a sentinel.)

For each super-grou@, let vy, vq,...,v, be itsO(]A]) elements. Now, we pick everpg |A| elements (i.e.,
V0, Vlog |A]» V21og |A[» - - -), SUbtract each of them hy,, and make them the representatives of this super-group. Then,
we construct the data structure fank query of Corollary 2 over these representatives.

With the above data structun@nk query for anyz in G can be supported as follows. We first check i vg. If
so, therank of x is 0. Otherwise, we find theank of z — vy among the representatives, which tak&3og log |A|)
time. Suppose the rank is Then, the rank of in G must lie betweem log |A| and (r + 1) log |A| — 1, and this
can be found by a binary search in the elemgniS,g (A, - - - V(r41)10g|a|—1} Which takesO(loglog |A]) time. In
summary, the time required 3(log log |A]).

Now, let us complete the whole picture to show how to performrémk query forz in V. Firstly, we extract
the firstlog m bits of z by dividing it with |A|. Leti’ = z div |A| be its value. Next, we determine the size(tf,
which can be done in constant-time usiagk andselectqueries onB;. If the size is0 (i.e., G is empty), the rank
of z in V' can be computed immediately (precisely, the required rank is equal to the nunigiirof3, [0...i" — 1],
which can be computed in constant time usiBgand its auxiliary data structure). If the size is smaller thanA|,
the rank ofz can be found by performing a binary search with the elements.inwhich takesD(log log |A|) time.
Finally, if the size is greater thdng |A|, we locate the super-grogpthat contains the elements @f,, and retrieve
the rankr of its smallest elementy in V. Then, the required rank isplus the rank ofc in G. We now claim that
locating the super-group and retrievakofan be done in constant time (to be proved shortly), so that the total time is
O(loglog |A]).

We prove the above claim as follows. To support finding the smallest element in each super-group, and retrieval
its rank inV/, we use a bit-vectoB] of O(m) bits, obtained fronB3; by keeping only those¢’s whose corresponding
U’ value is a smallest element in some super-group. Also, we aughiewith constant-timeank andselectdata
structures. Then, the smallest value of the- 1)-th super-group, and its rank i, can be found by consulting;
and Bj in constant time. In addition, for any; (with size greater thalvog |A|), the rank of its super-group among
the other super-groups can be found by consulgn constant time.

On the other hand, to support locating tlenk data structure of the super-group, we first analyze the space
requirement of these data structures. For a particular super-gresp{vo, v1,...,v,}, the data structure is built
for p/log A = ©(A/log A) elements, each of which has value[iqv, — v}, so that the space 19(v, — vy +
mg]'ﬁ -log|Al) bits (by Corollary 2), which i) (v, — vg) bits sincep < v, — vg. Thus, the total space requirement
is O(m + |Al) bits{* and we assume that the data structures of the super-groups are stored consecutively accordi
to the rank of its smallest element. Then, we create a bit-veBtowhose length is identical to the above data
structures, which is used to mark the starting position of each data structure. Also, we augment the bit-vector wi

“The additionalD(|A|) bits are due to the dummy grop,,.

11

ano(m + |Al)-bit auxiliary data structure to support constant-tiraek and selectqueries. Thereafter, when we
want to locate a super-group f6f;, we find its rank-r among the other super-groups usiif and then this rank-
super-group can be accessed in constant time u3ing

In summary, our data structure takes a total space(ef + |A|) bits and supports each backward search step in
O(loglog |A|) time. For the construction, it takes at méstm + |A|) time. The lemma thus follows. 0

4 The Framework of Constructing CSA and FM-index

Recall thatT'[0...n — 1] is a text of lengthn over an alphabek, and we assume thdtjn — 1] is a special character
that does not appear elsewherdinThis section describes how to construct¥h&inction and the Burrows-Wheeler
text W of T'in O(nloglog|X]|) time. Our idea is based on Farach’s framework for linear-time construction of the
suffix tree [4], which first constructs the suffix tree for even-position suffixes by recursion, based on which induce
the suffix tree for odd-position suffixes, and then merge the two suffix trees to obtain the required one.

For our case, we first assume that the lengtfi’ o§ a multiple of2/'°81°gi=1 11 (Otherwise, we add enough
and a$’ at the end ofl", where$’ is a character alphabetically smaller than the other charact&isand proceed with
the algorithm. Thel of this modified string can be converted into theof 7" in O(n) time.) Leth be [log log s n].

For0 < k < h, we defineT* to be the string over the aIphabE?k, which is formed by concatenating evez¥
characters iff" to make one character. That®%[i] = T[i- 2% +1..(i + 1) - 2% — 1], for 1 < i < n/2*. By definition,
T° =T.

In addition, we introduce the following definitions associating with a string. For any s#itg.m — 1] with
even number of characters, denSteandS, to be the strings of lengtin /2 formed bymergingevery 2 characters in
S10...m—1] andS[1...m —1]S][0], respectively; more precisely. [i] = S[2:]S[2i+1] andS,[i] = S[2i+1]S[2i+2],
where we se5[m] = S[0]. Intuitively, the suffixes ofS. and.S, corresponds to the even-position and odd-position
suffixes ofS, respectively. We have the following observation.

Observation 2 7! = T+

Also, note that the last charactersifandT; are unique among the corresponding string. This makes the results
in Sections 2 and 3 applicable for both texts.

Our basic framework is to use a bottom-up approach to constredtT™, or ¥, fori = [log logy; n| down
to 0, thereby obtainingl of 7" in the end. Precisely,

e For Stepi = [log logx; n], W is constructed by first building the suffix tree féf using Farach’s algo-
rithm [4], and then converting it back to thiefunction.

e For the remaining steps, we construct the; based on thel 7.+, the latter of which is in factV; by Ob-
servation 2. We first obtai¥;; based o and¥r.. Afterwards, we mergd,: and¥; to give Wr.. The
complete algorithm is shown in Figure 3.

Sections 5 and 6 describe in details how to obtji from ¥ and7", and how to merg& ; and V¥ to obtain
Vi, respectively. This gives the main theorem of this section.

12

1. Fori = [loglog s n|

(a) Construct suffix tree fdr®.
(b) ConstructV,: from the suffix tree.

2. Fori = [loglogjs;n] —1t00

(@) Constructlr; based onl'zi. (Note: Uy = Writa.)
(b) Construct¥: based on th&;; andW .

Figure 3: The construction algorithm @f function of T".

Theorem 2 The ¥ function and the Burrows-Wheeler tékt of 7' can be constructed i (n loglog |X|) time and
O(nlog|X|)-bit working space.

Proof: We refer to the algorithm in Figure 3, which has two phases. For Phase 1, we-ha\eg log s, n|. We first

construct the suffix tree faF! whose size is,/2/°¢ %8121 < 1, 10g 22|/ log n. This requires) (n log |£|/ log n) time
andO(n log |X]|)-bit space by using Farach’s suffix tree construction algorithm [4]. Tirgn,can be constructed in
O(nlog |X|/logn) time andO(n log |2|)-bit working space. Thus, Phase 1 in total takés) time andO(n log |X|)-
bit space.

For every Step in Phase 2, we construdt;. Let A; be the alphabet ¢f*. Then, Part (a) take®@(|T%| + |A;|)
time (Lemma 12), and Part (b) také(|T7"|loglog |A;| + |A;]) time (Lemma 14). For the space, both require
O(|T? log |A;| + |A;]) bits. Note that|T?| = n/2" and |A;] < |X|* < n, so the space used by Steps
O(|T?| log | Ai|+]|A;i]) = O(nlog %) bits, and the time i©(|T?| loglog |Ai|+|A;|) = O((n/2%)- (i+loglog |S|)+
|X[2"). In total, the space for Phase 20§n log |X|) bits and the time is:

[loglogs; n]—1

Z O(%(i+loglog|2|)+|$]2i)
i=1

= O(nloglog|X]).

The whole algorithm for constructing of 7" therefore take® (n log log |X|) time andO(n log ||)-bit space. Finally,
the Burrows-Wheeler text’ can be constructed fronr using Lemma 4 irO(n) time andO(n log |3|)-bit space.
This completes the proof. O

Once the Burrows-Wheeler transformation is completed, FM-index can be created by encoding the transform
text W using Move-to-Front encoding and Run-Length encoding [5]. When the alphabet size is small, precisel
when|X|log |X| = O(logn), Move-to-Front encoding and Run-Length encoding can be dodqir) time based
on a pre-computed table ofn) bits. In summary, this encoding procedure takés) time usingo(n)-bit space in
addition to the output index. Thus, we have the following result.

13

X
i | yli] [il [Se[SAc[i]..m/2 = 1] T S[0] i |y—C, | x— sorteds
0| $a | c |aa cc g$ a 0 cg $
1]cg | $ |ac aa cc g$ a 1 ca a
2| ca| a |ccg$ a 2 $a c
3| ac c | g% a 3 ac c

(a) (b)

Figure 4: Considef = acaaccg$. (a) The relationship betweerii|, y[i] and X;. Note thatX; corresponds to a
suffix of S,. (b) After stable sorting on the array the arrayy becomeg’,.

Theorem 3 The FM-index ofI’ can be constructed i®(n loglog |X|) time andO(nlog |3|)-bit working space,
when|X|log |2] = O(logn).

4.1 Further Discussion

The compressed suffix tree (CST) [12] is a compact representation of the suffix tree(@akiig; |X|) bits of space.
The core of the CST consists of (1) CSA of the input text, (2) parentheses encoding of the tree structure of the suf
tree, and (3) amdgt array that enables efficient computation of the longest common prefix (LCP) query. It is shown
in [11, 12] that once the CSA of the input text is computed, the CST can be construat¥a Ing® n) time and
O(nlog |3])-bit working space, for any fixedwith 0 < e < 1.

Once the CST is constructed, we can simulate a pre-order traversal of the original suffix tree(iog® n +
log |X])) time [11, 12], thereby constructing the original suffix tree along the traversal. Summarizing, we have the
following result:

Theorem 4 The CST and suffix tree @f can be constructed i®(n log® n) time andO(n(log® n + log |X])) time,
respectively, for any fixedwith 0 < e < 1. Both construction algorithms requi@(n log |X|)-bit working space.

5 Constructing Ug,

Given S[0...m — 1] and ¥ g_, this section describes how to constrict,. Our approach is indirect, as prior to
obtainingV g, , we need to construct the Burrows-Wheeler @©xbof S,

Let A be the alphabet of. Definex[0..m/2 — 1] to be an array of characters such thét = S[25A.[i] — 1]
where2SA.[i] — 1 is computed in moduler arithmetic. LetX; be the stringe[i]S.[S Ac[i]..m /2 — 1]S]0].

Observation 3 X is a suffix ofS, if SA.[i] # 0. Otherwise, the first character of; is S[m — 1], which is unique
among other characters if.

Let X be the se{ X;|0 < k < m/2 — 1}. Intuitively, X is the same as the set of suffixesf See Figure 4(a)
for an example ofX;.

14

Lemma 9 The stable sorting order aff:] in = equals the rank ok in X.

Proof: By omitting the first characters of evely;’s, they are of the forn.[S A.[i]..m/2—1]S[0], which are already
sorted. Thus, the rank of; is equal to the stable sorting orderagf] in x. 0

Lemma 10 Given¥g, and.S, we can construaf’, in O(m + |A]) time andO(m log |A| + |A|)-bit space.

Proof: Lety[0..m/2 — 1] be an array such thafi| stores the two characters that immediately preagden S (i.e.,
S[25A.[i] — 3]S[2SA.[i] — 2]). In fact, y[i] is the preceding character &f; in S,. Using similar approach as in
Lemma 4,z andy can be computed i®(m) time, and both arrays occugy(m log |A|) bits.

To constructC,, we perform a stable sort anas in Lemma 3, and iteratively compute the stable sorting order
k of z[:], which is equal to the rank oX; by Lemma 9. During the process, we §&fik] = y[i]. The total time is
O(m + |A|) and the total space 8(mlog |A| + |A]) bits. See Figure 4 for an example. 0

Lemma 11 ¥g, can be constructed frofi, in O(m + |A|) time andO(m log |A| + |A|)-bit space.

Proof: The proofis similar to Lemma 3. O

Thus, we conclude this section with the following lemma.

Lemma 12 Given¥ g, andS, we can construct g, in O(m + |A|) time andO(m log |A| + |Al)-bit space.

6 Merging Vs, and Vg

In this section, we construdtg from ¥s, and¥g_ . The idea is to determine the rank of any suffixs5ofmong all
suffixes ofS, and based on this information, we construct the Burrows-Wheele€textS. Finally, we convert' to
Vg by Lemma 3.

Let s be any suffix ofS. Observe that the rank efamong the suffixes of, is equivalent to the sum of the rank
of s among the odd-position suffixes and that among the even-position suffixesBiHsed on this observation, we
can construct th€’ array (the Burrows-Wheeler transformation®fas follows.

Firstly, we construct the auxiliary data structures of Lemma 8fgr and for¥ s, . Next, we perform backward
searches folS. on ¥g, and Vg, simultaneously by Lemma 7, so that at stepve obtain the ranks of,[m/2 —
i...m/2 — 1] among the odd-position suffixes and even-position suffixe$, séspectively. By summing these two
ranks, we get the rankof S.[m/2 —i...m/2 — 1] among all suffixes of of. Then, we se€’[k] to beS[m — 2i — 1],
which is the preceding character of the suffifn — 2i...m — 1] = Sc[m/2 —i..m/2 —1].

Similarly, we perform a simultaneous backward searchtfoon Vs, andW¥ s, to complete the remaining entries
of C. Thus, we obtair®' by O(m) backward search steps. The algorithm is depictdd BRGECSA in Figure 5.

The following lemma shows the correctness of our algorithm.

Lemma 13 The algorithmMERGECSA in Figure 5 correctly construct€’[0...m — 1].

15

MERGECSA
1. Construct the auxiliary data structures fog, and for¥ g, to support efficient backward search.
2. Backward search fas, on g, andVUg, simultaneously, and

(a) at Step, we obtain the rank of.[m/2 — i...m/2 — 1] among the odd-position suffixes and
that among the even-position suffixes%fLet the sum of the ranks be

(b) SetC[k] = S[m — 2i — 1].

3. Backward search fa§, on ¥, and¥ g, simultaneously, and fill i'[k] accordingly.

Figure 5: Mergingl g, andW¥g. .

Proof: Recall that for every suffi[i..m — 1], C[SA~'[i]] equals the preceding charactersjf...m — 1. For every
even-position suffixS|[i...m — 1] = Sc[i/2...m/2 — 1], Step 2 computes its rarikkamong all odd-position and even-
position suffixes. By definitions = SA~![i]. Therefore, Step 2 correctly assigfig] to be the preceding character
of S[i..m — 1]. By the same argument, Step 3 handles the odd-position suffixes and correctly 6§§igns [i]] to
be the preceding character $fi..m — 1].

Therefore, after Steps 2 andMERGECSA completely construct§’[0..m — 1]. The lemma thus follows. O

By Lemma 8, the auxiliary data structures can be constructéd(in + |A|) time andO(m + |Al)-bit space,
and then each backward search step is don@(ibg log |A|) time. On the other hand, th& functions occupies
O(mlog|A|)-bit space. Thus, we have the following lemma.

Lemma 14 GivenWg, and ¥g,, we can construc¥ g in O(mloglog |A| + |A|) time andO(mlog |A| + |A])-bit
space.

7 Improvement whenlog || = O((loglogn)! ™)

In case the alphabet size is small, precisely, weny:| = O((loglogn)!~¢), we can improve the construction time
of CSA and FM-index ta@)(n), which is optimal. The improvement is based on the following data structure of Pagh
for supporting constant-timmank queries [24].

Theorem 5 [24] Givenn distinct numbers if0, m — 1] such thatm = nlogo(l) n, a data structure of sizé& +
O(%Oﬁn)z) bits supporting constant-timeank queries can be constructed i0i(n) time andO(B)-bit space
whereB = [log ()] = nlog + O(n).

We apply the same algorithm as in Section 4 for the construction of CSA, but we make changes only in th
encodings ofl 4, for i < logloglog|X|. For those values of we have|T?| = n/2' and the alphabet size Gf

16

is |22, Whenlog 2| = O((loglogn)'~), we have|s|? = log®! |T%|5 Thus, the total increasing sequence
of suchW’.;’s can be encoded by Theorem 5, and each backward search step of¥ thesetions can be done in
constant time. This gives the following theorem.

Theorem 6 If log |~| = O((loglogn)'~¢), the CSA, FM-index and the Burrows-Wheeler féxof T’ can be con-
structed inO(n) time andO(n log |X|)-bit working space.

Proof: We refer to the algorithm in Figure 3. After the change in the encodings;offor i < logloglog ||, the
time required by each phase is as follows.
e Phase 1 take®(n) time;
e Fori > logloglog ||, Stepi in Phase 2 take®((n/2') - (i 4 loglog |S|) + |Z[?') time;
, Stepi in Phase 2 take®(n /2! + |%|?') time.
It follows that the total time required 9(n). For the space complexity, it remai@¥n log |X|) bits. Thus, the CSA

and the Burrows-Wheeler teXt’ of T' can be constructed in the stated time and space, while the FM-index can be
constructed irO(n) time andO(n log |X|)-bit space oncél” is obtained. This completes the proof. 0

e Fori < logloglog |2

8 Concluding Remarks

We have shown that suffix trees, suffix arrays, and other full-text indices can be construeteddgn) time and
o(nlogn)-bit space, giving a positive answer to an open problem.

Very recently linear-time algorithms for constructing suffix arrays have been proposed [14-16]. Though usin
interesting techniques, their algorithms requirg: log n)-bit working space, and they will imply onlg(n log® n)
time algorithms for constructing suffix arrays if the working space is limite@ o log |X|) bit. Thus, the algorithm
proposed in this paper is best-suited for suffix array construction under practical consideration, where the input text
very long but alphabet size is small.

One of the open problem remains is that, whether we can construct suffix tree in optimatime for texts
with general alphabet, while using optin@(n log |3|)-bit working space. Another direction of research is to further
reduce the working space for constructing full-text indices, ftotm log |X|) bits to an input-dependent(nH) bits
whereH is the entropy of the input text.

Acknowledgment

The authors would like to thank Roberto Grossi, Tak-Wah Lam, Takeshi Tokuyama, and the anonymous reviewe
for helpful comments, and Ankur Gupta for sending us his paper. The work of the first author is supported in part k
the Hong Kong RGC Grant HKU-7024/01E while studying at the University of Hong Kong. The work of the second
author is supported in part by the Grant-in-Aid of the Ministry of Education, Science, Sports and Culture of Japat
The work of the third author is supported in part by the NUS Academic Research Grant R-252-000-119-112.

5This can be seen by considering the boundary case-ofog log log ||, so that|T"| becomes smallest while the alphabet size becomes
largest.

17

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

P. Beame and F. E. Fich. Optimal Bounds for the Predecessor Problem and Related Praldemal of
Computer and System Sciend®s(1):38—72, 2002. Preliminary version appears in STOC 1999.

M. Burrows and D. J. Wheeler. A Block-Sorting Lossless Data Compression Algorithm. Technical Report 124
Digital Equipment Corporation, Paolo Alto, CA, USA, 1994,

A. Crauser and P. Ferragina. A Theoretical and Experimental Study on the Construction of Suffix Arrays i
External Memory Algorithmicg 32:1-35, 2002.

M. Farach. Optimal Suffix Tree Construction with Large AlphabetsPioceedings of IEEE Symposium on
Foundations of Computer Sciengmges 137-143, 1997.

P. Ferragina and G. Manzini. Indexing Compressed Texirnal of the ACM52(4):552-581, 2005. Preliminary
version appears in FOCS 2000.

R. Grossi and J. S. Vitter. Compressed Suffix Arrays and Suffix Trees with Applications to Text Indexing anc
String Matching. SIAM Journal on Computing35(2):378-407, 2005. Preliminary version appears in STOC
2000.

D. A. Grossman and O. Frieddnformation Retrieval: Algorithms and HeuristicKluwer Academic Publish-
ers, Boston, MA, USA, 1998.

D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and Computational. Biolog
Cambridge University Press, New York, NY, USA, 1997.

T. Hagerup. Sorting and Searching on the Word RAM.Phoceedings of Symposium on Theory Aspects of
Computer Scien¢ggages 366—398, 1998.

[10] T. Hagerup, P. B. Miltersen, and R. Pagh. Deterministic Dictionarisirnal on Algorithms41(1):69-85,

2001.

[11] W. K. Hon. On the Construction and Application of Compressed Text Ind€eb. Thesis, University of Hong

Kong, 2004.

[12] W. K. Hon and K. Sadakane. Space-Economical Algorithms for Finding Maximal Unique MatcHa®cked-

ings of Symposium on Combinatorial Pattern Matchipgges 144-152, 2002.

[13] G. Jacobson. Space-Efficient Static Trees and GraphBroceedings of Symposium on Foundations of Com-

puter Sciencgpages 549-554, 1989.

[14] J. Karkkainen, P. Sanders, and S. Burkhardt. Linear Work Suffix Array Constructioarnal of the ACM

53(6):918-936, 2006. Preliminary version appears in ICALP 2003.

18

[15] D.Kim, J. Sim, H. Park, and K. Park. Constructing Suffix Arrays in Linear Tidogrnal of Discrete Algorithms
3(2—4):126-142, 2005. Preliminary version appears in CPM 2003.

[16] P. Ko and S. Aluru. Space Efficient Linear Time Construction of Suffix Arrdgsirnal of Discrete Algorithms
3(2—4):143-156, 2005. Preliminary version appears in CPM 2003.

[17] S. Kurtz. Reducing the Space Requirement of Suffix Tr&edtware Practice and Experienc&9:1149-1171,
1999.

[18] T. W. Lam, K. Sadakane, W. K. Sung, and S. M. Yiu. A Space and Time Efficient Algorithm for Constructing
Compressed Suffix Arrays. Proceedings of International Conference on Computing and Combinatpages
401-410, 2002.

[19] U. Manber and G. Myers. Suffix Arrays: A New Method for On-Line String SearcH&#\M Journal on
Computing 22(5):935-948, 1993.

[20] E. M. McCreight. A Space-economical Suffix Tree Construction Algoritliournal of the ACM23(2):262—
272, 1976.

[21] K. Mehlhorn.Data Structures and Algorithms 1: Sorting and SearchBgringer-Verlag, Heidelberg, Germany,
1984.

[22] J. I. Munro. Tables. IrProceedings of Conference on Foundations of Software Technology and Theoretical
Computer Sciencpages 37-42, 1996.

[23] J. C. Na and K. Park. Alphabet-Independent Linear-Time Construction of Compressed Suffix Arrays Usin
o(nlogn)-bit Working Space. Theoretical Computer Scienc885(1-3):127-136, 2007. Preliminary version
appears in CPM 2005.

[24] R. Pagh. Low Redundancy in Static Dictionaries with Constant Query Ti8&M Journal on Computing
31(2):353-363, 2001.

[25] R. Raman, V. Raman, and S. S. Rao. Succinct Indexable Dictionaries with Applications to Encadingrees
and Multisets. IrProceedings of ACM-SIAM Symposium on Discrete Algoritrages 233-242, 2002.

[26] K. Sadakane. New text indexing functionalities of the compressed suffix arrdgarnal of Algorithms
48(2):294-313, 2003. Preliminary version appears in ISAAC 2000.

[27] J. Seward. Thézip2 andlibbzip2 official home page, 1996ttp://www.bzip.org/

[28] S. Shimozono, H. Arimura, and S. Arikawa. Efficient Discovery of Optimal Word Association Patterns in Large
Text DatabasedNew Generation Computing8:49-60, 2000.

[29] E. Ukkonen. On-line Construction of Suffix Treeslgorithmicg 14(3):249-260, 1995.

19

[30] P. Weiner. Linear Pattern Matching Algorithms. Pmoceedings of Symposium on Switching and Automata
Theory pages 1-11, 1973.

[31] D. E. Willard. Log-Logarithmic Worst-Case Range Queries are Possible in $d¢g Information Processing
Letters 17(2):81-84, 1983.

[32] J. Zobel, A. Moffat, and K. Ramamohanarao. Guidelines for Presentation and Comparison of Indexing Tect
niques.SIGMOD Recorgd25(3):10-15, 1996.

20

