
Breaking and Fixing the
N e e d h a m - S c h r o e d e r
Public-Key Protocol Using
FDR

Gavin Lowe*

ABSTRACT In this paper we analyse the well known Needham-Schroeder
Public-Key Protocol using FDR, a refinement checker for CSP. We use
FDR to discover an attack upon the protocol, which allows an intruder to
impersonate another agent. We adapt the protocol, and then use FDR to
show that the new protocol is secure, at least for a small system. Finally
we prove a result which tells us that if this small system is secure, then so
is a system of arbitrary size.

1 Introduct ion

In a distributed computer system, it is necessary to have some mechanism
whereby a pair of agents can be assured of each other 's ident i ty- - they
should become sure tha t they really are talking to each other, ra ther than
to an intruder impersonating the other agent. This is the role of an authen-
tication protocol.

In this paper we use the Failures Divergences Refinement Checker (FDR)
[11, 5], a model checker for CSP, to analyse the Needham-Schroeder Public-
Key Authentication Protocol [8]. FDR takes as input two CSP processes, a
specification and an implementation, and tests whether the implementat ion
refines the specification [6]. I t has been used to analyse many sorts of sys-
tems, including communications protocols [10], distributed databases [12],
and puzzles; we show here how it may be used to analyse security protocols.

We model the agents taking par t in the protocol as CSP processes. We
also model the most general intruder who can interact with the protocol:
the intruder can observe and intercept messages, and so learn in format ion- -
such as the values of nonces - -and then use this information to introduce
fake messages into the system. We use FDR to test whether the protocol
correctly achieves authentication, and discover an at tack upon the protocol,

*Oxford University Computing l,aboratory, Wolfson Building, Parks Pmad, Oxford,
OX1 3QD, United Kingdom. e-marl gavin, lotra@comlab, ox. ac. uk.

148

which allows the intruder to imitate an agent A in a run of the protocol
with another agent B. This attack was previously reported in [7].

We then adapt the protocol, and use FDR to show that the new protocol
is secure, at least for a small system with a single initiator and a single
responder. We then prove that this implies that a system of arbitrary size
is secure: we prove that if there were an attack on any system running the
protocol, no matter how large, then there would be an attack on this small
system. This proof is by hand, rather than being fully automatic; however,
we believe that this proof is considerably simpler than a direct proof of the
security of an arbitrarily-sized system.

We believe that security protocols provide an excellent subject for anal-
ysis using process algebra tools. It is obviously important to get these pro-
tocols right, particularly given the increasing commercial and financial use
of the internet. However, many protocols have appeared in the literature
only to be later broken. Often the attacks are somewhat subtle and hard
to spot--the protocol discussed in this paper appeared 17 years before it
was eventually broken. Further, existing formalisms for analysing protocols
have not proved very effective---an incorrect proof of the protocol of this
paper has appeared in [2].

The main contributions of this paper are two-fold: (1) a study of how
errors may be found in security protocols using a tool such as FDR; and
(2) a study of how a protocol, running on a system of arbitrary size, may
be verified by considering just a single, small system.

2 The Needham-Schroeder Public-Key Protocol

The Needham-Schroeder Public-Key Protocol [8] aims to establish mutual
authentication between an initiator A and a responder B. The protocol
uses public key cryptography [4, 9]. Each agent A possesses a public key,
denoted Ks, which any other agent can obtain from a key server. It also
possesses a secret key, K [1 , which is the inverse of K~. We will write {m}k
for message m encrypted with key k. Any agent can encrypt a message m
using A's public key to produce {m}K,; only A can decrypt this message,
so this ensures secrecy.

The protocol also uses nonces: random numbers generated with the pur-
pose of being used in a single run of the protocol. We denote nonces by No
and Nb: the subscripts are intended to denote that the nonces were gener-
ated by A and B, respectively.

The complete Needham-Schroeder Public-Key Protocol involves seven
steps. However, in this paper we consider a reduced version with only three
steps. In the steps we omit, the two agents request and receive each other's
public keys from a key server: omitting these steps is equivalent to assuming
that each agent initially has the other's public key. There is a well known

149

attack upon the full protocol [3], which allows an intruder to replay old,
compromised public keys, because the key delivery messages contain no
proof of freshness; however, this attack is easily prevented. The attack we
consider in this paper is newer, and more subtle.

The reduced protocol can be described as:

Message 1. A --~ B : A.B.{Na.A}pI~(B)
Message 2. B --4 A : B.A.{Na.Nb}pK(A)
Message 3. A -4 B : A.B.{Nb}PK(B) �9

Here A is an initiator who seeks to establish a session with responder B.
A selects a nonce Na, and sends it along with its identity to B (message 1),
encrypted using B's public key. When B receives this message, it decrypts
the message to obtain the nonce Na. It then returns the nonce Na, along
with a new nonce Nb, to A, encrypted with A's key (message 2). When A
receives this message it would seem that he should be assured that he is
talking to B, since only B should be able to decrypt message 1 to obtain Na.
A then returns the nonce Nb to B, encrypted with B's key. It would seem
that B should be assured that he is talking to A, since only A should be
able to decrypt message 2 to obtain Nb.

3 Using FDR to find an at tack on the
Needham-Schroeder Public-Key Protocol

In this section we model the protocol using CSP. We assume that the reader
is familiar with CSP, as described in [6]. We model the protocol by defining
CSP processes corresponding to each of the two agents. We also give a CSP
description of the most general intruder who can interact with the protocol.
We then use the FDR refinement checker to test whether the intruder can
successfully attack the protocol.

We assume the existence of the sets Initiator of initiators, Responder
of responders, Key of public keys, and Nonce of nonces. We will represent
a protocol message of the form:

Message 1. A --~ B : A.B.{Na.A}~ch

by the CSP event comm.Msgl.A.B.Encrypt.Kb.Na.A, etc. We are mod-
elling a protocol message with an encrypted component of the form {m}k
by a CSP event containing fields of the form Encrypt.k.m. We define the
sets of communications events corresponding to the three steps in the pro-
tocol:

MSG1 { M sgl.a.b.Encrypt.k.na.a* I
a E Initiator, a ~ E Initiator, b E Responder,
k E Key, na E Nonce},

150

MSG2 9- {Msg2.b.a.Encrypt.k.na.nb l
a E Initiator, b E Responder,
k E Key, ha E Nonce, rib E Nonce},

MSG3 9- {Msg3.a.b.Encrypt.k.nb l
a E Initiator, b E Responder, k 6 Key, nb 6 Nonce},

M S G 9- MSG1 U MSG2 U MSG3.

Standard communications in the system will be modelled by the chan-
nel comm. We also want to model the fact tha t the intruder can fake or
intercept messages, and so we introduce extra channels fake and intercept.
We declare these channels:

channel comm, fake , intercept : MSG.

We will ensure that the receiver of a faked message is not aware that it is
a fake, and that the sender of an intercepted message is not aware that it
is intercepted.

We introduce two extra channels, defining the external interface of the
protocol. We represent a request from a user for initiator a to connect with
responder b by the event user.a.b; we represent the resulting session by the
event session.a.b. We also add channels to represent the state of the agents:
these will be useful in the subsequent analysis of the system. We represent
the initiator a thinking it is taking part in a run of the protocol with b
by the event I_running.a.b, and represent the responder b thinking it is
taking part in a run of the protocol with a by the event R_running.a.b; we
represent the initiator committing to the session by the event I_comrnit.a.b,
and represent the responder committing to the session by 19_commit.a.b.
We declare these channels by:

channel user, session, I_running, B_running, I_commit , B_.commit :
Ini tiator.Responder.

We will represent a responder with identity a, who has a single nonce ha,
by the CSP process I N I T I A T O R (a , na). If we want to consider a respom
der with more than one nonce, then we can compose several such processes,
either sequentially or interleaved. Ignoring, for the moment, the possibility
of intruder action, the process can be defined by:

I N I T I A T O R (a , no) 9_
user.a?b -~ I_.running.a.b --~
comm ! M s g l.a.b.Encrypt.key(b) .na.a -+
comm.M s g2.b.a.Encrypt.key(a) ?n'.nb --~

I if na = na
then comm!Msg3.a.b.Encrypt.key(b).nb -+

I_commit.a.b -~ session.a.b -~ Skip
else Stop.

151

The init iator receives a request from the user to connect with responder b,
and so starts what he believes is a run of the protocol with b. He sends
a message 1, containing the nonce na, encrypted with b's public key. He
receives a message 2 back, and checks the value of the first nonce. He then
sends back the corresponding message 3, commits to the session, and carries
out the session.

We now introduce the possibility of enemy action by applying a renaming
to the above process. Our renaming should ensure tha t message ls and
message 3s sent by the initiator can be intercepted, and message 2s can be
faked. We define an initiator with identity A and nonce Na by: 1

INITIATOR1 ~-
INITIATOR(A, Na)

[[comm.Msgl ~-- comm.Msgl , comm.Msgl +- intercept.Msgl,
comm.Ms92 +- comm.Ms92, comm.Msg2 +-- f ake.Msg2,
comm.Msg3 +- comm.Msg3, comm.Msg3 6- intercept.Msg3]].

We can define a CSP process representing the responder, similarly.

3.1 The intruder

We want to model the intruder as a process that can perform any at tack
tha t we would expect a real-world intruder to be able to perform. Thus the
intruder should be able to:

�9 Overhear and /o r intercept any messages being passed in the system;

�9 Decrypt messages that are encrypted with his own public key, so as
to learn new nonces;

�9 Introduce new messages into the system, using nonces he knows;

�9 Replay any message he has seen (possibly changing plain-text parts) ,
even if he does not understand the contents of the encrypted part .

We assume tha t the intruder is a user of the computer network, and so can
take par t in normal runs of the protocol, and other agents may initiate runs
of the protocol with him. We will define the most general (i.e. the most non-
deterministic) intruder who can act as above. We consider an intruder with
identity I , with public key Ki, who initially knows a nonce Ni. All of our
refinement tests are in the traces model, set--for reasons of efficiency--we
define the intruder using external choices, where nondeterministic choices
might seem more natural .

1 This is the process that can perform either a comm.Msgl or intercept.Msgl event
whenever INITIATOR(A, Na) can perform a corresponding comm.Msgl, etc.

152

At any instant, the state of the intruder can be parameterized by the
knowledge it has acquired. More precisely, our model of the intruder will
be parameterized by the sets mls , m2s and m3s of message ls, message 2s
and message 3s that it has been unable to decrypt, and the set ns of nonces
that it knows.

The intruder can observe messages being passed in the system, possibly
intercepting them. If the messages are encrypted with its own key K~, then
it can learn new nonces; otherwise it remembers the encrypted component.
I t can introduce fake messages into the system using nonces that it knows,
or by replaying encrypted components that it has been unable to decrypt.
This is captured by the following (rather long, but reasonably uniform)
CSP definition 2.

I (mls , m2s, m3s, ns)
cornm.M s g l ? a.b.Encrypt.k.n.a I -~

if k = Ki then I (mls ,m2s , m3s,ns U {n})
else I (m l s U { Encrypt.k:n.at}, m2s, m3s, ns)

[] inter eept.M s g l ? a.b.Encrypt.k.n.a ~ -+
if k = Ki then I (mls ,m2s , m3s,ns U {n})
else I (m ls U { Encrypt.k.n.a'}, m2s, m3s, ns)

[] camm.M sg2?b.a.Encrypt.k.n.n ~ -~
if k = Ki then I (mls , m2s, m3s, ns U {n, n'})
else I (m ls, m2s U { Encrypt.k,n.n~}, m3s, ns)

[] intercept.M sg2?b.a.Encrypt.k.n.n ~ --~
if k = Ki then I (mls ,m2s , m3s,ns U {n,n'})
else I (m ls, m2s U { Encrypt.k.n.n~}, m3s, ns)

[] comm.M s g3? a.b.Encrypt.k.n --~
if k = Ki then I (mls ,m2s , m3s, ns U {n})
else I (m ls, m2s, rn3s U { Encrypt.k.n} , ns)

[] inter cept.M s g3? a.b.Encrypt.k.n -~
if k = Ki then I (mls , m2s, m3s, ns U {n})
else I(mlz , m2s, m3s U { Encrypt.k.n}, ns)

[] f ake.Msgl?a.b?m : m l s --~ I(m ls, m2s, m3s, ns)
D fake.Msg2?a.b?m :m2s --~ I(mls , m2s, m3s, ns)
[] fake.Msg3?a.b?m :m3s -~ I(mls, m2s, m3s, ns)
[] f ake.Msgl?a.blEncrypt?k?n :ns?a ~ -~ I (mls , m2s, m3s, ns)
[] f ake.Msg2?b.a!Encrypt?k?n :ns?n' :ns ~ I (mls , m2s, m3s, ns)
[] fake.Msg3?a.b!Encrypt?k?n :ns --~ I (mls , m2s, m3s, ns).

We consider an intruder who initially knows the nonce Ni:

I N T R U D E R -~ I({}, {}, {}, {Ni}).

21n practice, it is more efficient to define the intruder slightly differently, as the
interleaving of four components.

153

3.2 Analyz ing the sys tem

We may now define a system with an intruder: 3

A G E N T S ~-
I N I T I A T O R 1 I[~comm, session.A.B~]1RESPONDER1,

S Y S T E M ~ A G E N T S I[~ fake, comm, intercept~]1 INTRUDER.

We can use FDR to test whether the protocol correctly authenticates
the two agents. FDR takes as two inputs, a specification and an implemen-
tation, and test whether the implementation refines the specification. In
this paper we are working in the traces model of CSP [6], so checking for
refinement amounts to testing whether each trace of the implementation is
also a trace of the specification.

To test whether the protocol correctly authenticates the responder, we
need to find a specification that allows only those traces where the initia-
tor A commits to a session with B only if B has indeed taken part in the
protocol run. The initiator committing to a session is represented by an
I_commit.A.B event; the responder taking part in a run of the protocol
with A is represented by R_running.A.B. Thus the authenticity of the
responder can be tested using the specification AR:

AR~ ~- R_running.A.B -+ I_commit.A.B --~ AR~,

A1 ~- ~R_running.A.B , I_commit.A.B~ ,

AR ~- ARo III RUN(Z \ A1).

ARv expresses that an I_commit.A.B event should only occur after
an R_running.A.B event; interleaving this specification with RU N (E \ A1)
(where Z is the set of all events) allows all other events to occur in an ar-
bi trary order.

FDR can be used to verify that S Y S T E M refines AR, and so the pro-
tocol does indeed correctly authenticate the responder 4.

We now consider authentication of the initiator. The protocol should
ensure that the responder B commits to a session with initiator A only if
A took part in the protocol run. Formally, an R_commit.A.B event should
occur only if there has been a corresponding I_running.A.B event. This
requirement is captured by the specification AI:

AIo ~ I_running.A.B -~ R_commit.A.B -+ AIo,
A2 ~ ~L-running.A.B,R_commit.A.B~,

AI ~ AIo III RUN(E \ A2).

a O u r no t a t i on differs a l i t t le f rom [6]: we write P][A][Q for the paral lel compos i t ion
of P and Q, synchron iz ing on the set o f events A; we write ~ c l , . . . , CnD for the set of
all c o m m u n i c a t i o n s over channe l s cl , . . �9 en.

4The F D R inpu t files used for th is case s t u d y can be obta ined f rom U R L http:
//~n~. comlab, ox. ac. uk/oucl/user a/gavin, lowe/SecuritylNSPKP/index .html.

154

FDR can be used to discover that S Y S T E M does not refine AI. It finds
that after the trace:

(user.A.I , I_running.A.I ,
inter cept.M sg l .A.I.Encrypt.Ki.Na.A ,
f ake.M sgl.A.B.Encrypt.Kb.Na.A ,
intercept.M sg2.B.A.Encrypt.Ka.Na.Nb ,
f ake.M sg2.I.A.Encrypt.Ka.Na.Nb ,
intercept.M sg3.A.I.Encrypt.Ki.Nb ,
f ake.M sg3.A.B.Encrypt.Kb.Nb)

the system can perform R_cennmit.A.B. Thus the responder B commits to
a session with A even though A is not trying to establish a session with B
(there has been no corresponding I_.running.A.B event).

We can rewrite this at tack as follows. The attack consists of the inter-
leaving of two runs, which we write as a and ;3. (We use the term run for a
particular instance of the protocol; we use the term attack, for any sequence
of events leading to a breach of security.) In run c~, A tries to establish a
session with l , while in run ;3, the intruder impersonates A to establish a
false session with B. We write, for example,/3.2 to represent message 2 of
run ;3; we write I(A) to represent the intruder imitating A.

Message a.1. A -~ I : A.I.{N~.A}pK(1)
Message ;3.1. [(A) -~ B : A.B.{Na.A}pK(B)
Message ;3.2. B -~ I(A) : B.A.{Na.Nb}PK(A)
Message a.2. I -~ A : I.A.{Na.Nb}PK(A)
Message a.3. A -~ I : A.I.{Nb}pK(1)
Message ;3.3. I(A) -~ B : A.B.{Nb}p~(B).

In message a.1, A tries to establish a session with I, sending the none Na
encrypted with I ' s key. In message ;3.1, the intruder imitates A to start
a run of the protocol with B, sending the same nonce Na. B responds by
choosing a new nonce Nb, and returning it in message/3.2. The intruder
cannot decrypt this message to obtain Nb, but instead uses A as an oracle,
by replaying this message in message a.2; note that this message is of
the form expected by A in run ~. A decrypts the message to obtain Nb,
and returns this to I in message a.3. I can then decrypt this message to
obtain Nb, which he returns to B in message/3.3, thus completing run ;3 of
the protocol. Hence B believes that he has correctly carried out a run of
the protocol with A.

4 A corrected protocol

It is easy to adapt the protocol to prevent the attack found above; we
simply include the identity of the responder within the encrypted part of

155

message 2:

Message 1. A --~ B : A.B.{Na.A}pK(B)
Message 2. B --~ A : B.A.{Na.Nb.B}pK(A)
Message 3. A -~ B : A.B.{Nb}PK(B) �9

This prevents the above attack, because message/5.2 would become:

Message ft.2. B --+ I (A) : B .A.{Na.Nb.B}pK(A) ,

and the intruder can not successfully replay this in message a.2, because
A is expecting a message containing I ' s identity.

We may adapt our CSP representation of the protocol and the intruder.
FDR then falls to find any at tacks on the protocol in the case where the
initiator A and responder B each have a single nonce, and so can take par t
in a single run of the protocol. We conclude that the protocol is safe, at
least for this small system.

The question remains, though: is a more general system safe from attack?
If the agents had more nonces, could the intruder obtain enough knowledge
from several runs to be able to a t tack the protocol? How about if there were
more than just the two honest agents involved? Or how about if the same
agent could act both as initiator and responder?

These kind of questions arise in many model checking problems, and are
not unique to the area of security protocols. We may typically use a tool
to verify a small system of fixed size; but this does not necessarily tell us
tha t larger systems are also correct. One solution is to p rove - -by some
m e t h o d - - t h a t if a system of arbi t rary size were incorrect, then this would
imply tha t the small system were also incorrect. Following this idea, in
Section 6 we prove that if there were an at tack on a more general system
running the Needham-Schroeder protocol, then there would be an at tack on
the small system we considered above. But first, we define some notation,
and prove a useful result concerning the way in which an intruder responds
to a nonce challenge. We adopt a very general setting, so tha t our results
may be applicable to a wide class of protocols.

5 A logic for analyzing protocols

5.1 M e s s a g e s

We begin by defining the da ta type of messages. A message may be an
a tom, the concatenation of two simpler messages, or a message encrypted
with a key. We may define the set M sg of messages by the following BNF
expression:

a E Atom ::= C I N I k I . . . ,
m �9 M s g ::= a [m . m [{re}k,

156

where C ranges over the set Agent of agent names, k over the set K ey
of keys, and N over the set Nonce of nonces. We take the concatenation
operator "." to be associative. For each key k, we assume the existence
of an inverse k -1 , such that a message encrypted with k can be decrypted
with k -1: in symmetric crypto-systems, each key is its own inverse; in public
key systems, the public and secret keys are inverses.

We may also define what it means for a message to contain another:

acon ta insm ~ a - - m ,

ml.m2 contains m ~ ml.m2 = m V m l contains m V m2 contains m ,

{ r n] } k contains m ~ { m] } k = m V m] contains m.

We may use this to define the submessages of a particular message:

sub-msgs(m) ~ {m' 6 M s g I m contains m'}.

We will want to be able to discuss which messages an intruder can pro-
duce given the messages that he has seen so far, We write B F m to
represent that the intruder may derive message m from the finite set of
messages B. The following definition is adapted from [13].

m E B =~ B F m , (1)

B F m A B F m ~ :~ B F m . m ~, (2)

B t - m . m ~ ~ B t - m A B I - m ' , (3)

B k m A B F - k =~ B t - { m } k , (4)

B F { m } ~ A B F - k -1 ~ B k m . (5)

If the intruder has already seen message m (i.e. m E B) then he can pro-
duce that message (rule 1). If he can produce both halves of a concatenated
message, then he can produce the entier message (rule 2), and vice versa
(rule 3). If he can produce a message m and a key k, then he can en-
crypt m with k (rule 4). If we can produce an encrypted message and the
corresponding decrypting key, then he can decrypt the message (rule 5).
We also write B J / m for -1 (B t- m).

We state a few lemmas about the F relation that will prove useful. These
may be proved by rule induction.

L e m m a 1: If m may be derived from some set of information B, then it
may be derived from any larger set of information:

B F m A B C _ B ~ ~ B ~ P m .

L e m m a 2: Derived messages may be used in subsequent derivations:

B F r a l A B U { m l } F - m ~ B F - m .

157

L e m m a 3: If m may be derived from B, but some sub-message X may
not:

B I - m A m c o n t a i n s X A B J # X ,

then there is some encrypted sub-message Y of m, which contains X, may
be derived from B, is contained in some element of B, but which cannot
be decrypted:

3 Y �9 sub-rnsgs(m) �9 Y contains X A B t- Y A 3 b �9 B �9 b contains Y
A 3 Z � 9 1 4 9 J#k -1.

L e m m a 4: Suppose A U B t- x, x contains a, and a �9 Atom. Then either
some element of B contains a key, some sub-message of x containing a may
be derived from A, or a is contained in some element of B:

k �9 Key �9 3b �9 B �9 b containsk A A J# k A A U B I- k
V 3 z �9 sub-msgs(x) �9 z contains a A A I- z
V 3b �9 B �9 b contains a A A)# a.

5 .2 Traces

We let R u n l d be the space of run identifiers, ranged over by c~, fl, etc. We
define a message number to be a (run identifier, natural number) pair.

M s g N o ~ R u n f d x N.

We write ~.i for message i of run c~.
As above, we will write I (A) to represent the intruder imitating agent A.

We define the set Agent + to contain all agent identifiers, and all such I(A):

Agent + -~ Agent U {I(A) I A E Agent \ {I}}.

We also define the set of agent identifiers representing the intruder:

I n t I d ~ {[} U t [(A) I A �9 Agent \ { I}} .

We define a communication to be a quadruple where the fields are: (1) the
message number, (2) the sender of the communication, where I (A) repre-
sents the intruder imitating A, (3) the receiver, where I (A) represents the
intruder intercepting a message meant for A, and (4) the actual message
tha t is sent:

Communicat ion ~- M s g N o • Agent + x Agent + • Msg.

When convenient, we will represent the communication (c~.i, A, B, m) by
the more conventional, and visually more pleasing:

Message ~.i. A ~ B : m.

158

We define a run to be a sequence s of such communications where all
the communications have the same run identifier:

3 a . V (B . i , C , D , m) in s �9 ~ = a,

and the honest agents follow the protocol.
We define a trace to be a sequence of communications, formed from the

interleaving of several runs with distinct run identifiers. We let tr, tr ~ range
over traces.

We may abstract the data included in the communications of a particular
r u n :

data(tr) ~ {m [2 a,i, A, B �9 (a.i, A, B, m) in tr}.
We make the assumption that when an honest agent introduces a new

nonce into a run of the protocol, the nonce really is freshly chosen; this
means that the agent will introduce different nonces into different runs, that
no other honest agent will introduce the same nonce, and that the intruder
does not initially know the value of the nonce. We term this assumption
the nonce assumption.

5.3 Intruders

We assume that the intruder has some initial knowledge, which may be
represented by a set of atoms IKo . This will normally include the identities
of all agents in the system, all the public keys, and I ' s own secret key. We
may define the intruder's knowledge after a particular trace:

knowledge-aftertr ~ {m [IKo U data(tr) ~- m}.

The intruder knows the message m after trace tr if m may be derived from
the data in tr a n d / ' s initial knowledge.

We define a trace to be valid if the intruder only produces messages that
are derivable from the knowledge that it has acquired:

valid(tr)
V t r ~ E T r a c e ; ~.i E M s g _ N o ; m E M s g ; I ~ E I n t I d ; C E A g e n t �9

t r J ~ - ~ ((a . i , [' , C , m)) <_ t r ~ m E knowledge-aftertr ~.

If the intruder sends a message m after observing tr ' , then m is in the
intruder 's knowledge at that point.

We write I learns X from a.i if the intruder learns the piece of informa-
tion X from message number ~.i:

(I learns X from a. i) (t r) ~-
3 m E M s g ; A, B E A g e n t ; tr ~ E T r a c e ~

t r " - ~ ((a . i , A , B , m)) < tr
A X r knowledge-after t r ~
A X E knowledge-after(tr'r~((a.i, A, B, m))).

159

We drop the argument tr when it is obvious from context.
We write I says X in a.i if the intruder sends the communication a.i,

which contains X as a sub-message:

(I says X in a.i)(tr) ~ 3 m E Msg ; I' E I n t l d ; A E Agent �9
(~.i, F , A, m) in t r A m contains X.

5.4 Nonce challenges
We now prove a result concerning the way in which an intruder meets a
nonce challenge. We make some additional assumptions about the protocol
in question:

�9 The encrypted parts of differently numbered messages in the protocol
are textually distinct: if M~ is a valid message i, and Mj is a valid
message j , and M~ contains {M}k and Mj contains {M}k then i --- j .
Thus it is always possible to tell which message an encrypted part
comes from; this means, for example, that the intruder cannot replay
some encrypted text taken from a message 1, and have it interpreted
as a message 2.

�9 All runs of the protocol have essentially the same form.

�9 The intruder does not learn any additional keys during a trace: if
k E knowledge-after tr then k E IKo.

Note tha t the Needham-Schroeder Public Key Protocol satisfies these as-
sumptions: that the intruder does not learn any additional keys during a
trace follows from the fact that that secret keys are never passed during
the protocol (this can be proved formally using Lemma 4).

T h e o r e m 5: Consider a valid trace tr that includes a nonce challenge,
met by the intruder:

Message a.i. A ~ I (B) : M i (N)
Message n.j. I (B) --~ A : M2 (N),

where MI (N) and M2(N) contain the nonce N:

M I (N) contains N A M2(N) contains N,

and the nonce is first introduced in message a.i, and first returned in n.j .
Suppose further tha t

V z E s u b - m s g s (M 2 (N)) �9
z contains N =~ Igo U {z} F N V I g o U {z} t- M2(N). (6)

Then one of the following holds:

160

1. The intruder can produce either N or M2 (N) immediately from mes-
sage a.i:

I learns N from a. i V I learns M2(N) from a.i.

2. The intruder replays some encrypted sub-message Y of ~.i in mes-
sage i of some other run fl:

3 Y �9 M I (N) contains Y A Y contains N A [says Y in/3.i
A :q Z E M s g ; k e Key . Y = { Z }k A k -1 ~ I K 0 ,

and learns either N or M~(N) from a later message of fl:

3k > i �9 I learns N from/~.k V [learns M2(N) from/~.k.

Proo f . " Assume the conditions of the theorem. By the nonce assumption,
the intruder does not know the value of N or M2(N) before message a.i.
Clearly, the intruder must, at some point, learn M2(N) in order to produce
message a . j . Suppose the intruder first learns either N or M2(N) from
message fl.k with contents M3:

Message fl.k. C --~ D : M3.

Formally:

tr'~((fl.k, C, D, M3)) ~ tr
A N, M2(N) ~ knowledge-aftertr'
A (g E knowledge-after(tr'~((~.k, C, D, M3)))

V M~ (g) e knowledge-aher(tr'~'((B.k, C, D, M3))).

If a.i = /~.k then we have case 1. Otherwise, fl.k occurs after a.i , but
before a.j.

We now show that Ma contains N. If the intruder learns N from mes-
sage /~.k, i.e. IKo O data ~r t U {M3} F N, then the result follows from
Lemma 4 and the assumption that the intruder's key knowledge is constant.
If the intruder learns M2(N) from message fl.k, i.e. IK0Odata tr'U{M3} ~-
M2(N), then again from Lemma 4 we have:

Bz E sub-msgsM2(N) �9 z contains N A [Ko U data t r ~ }- z
V M3 contains N.

But the first disjunct and equation 6 would imply that IKo U data tr ~ F N
or IKo U data t r ~ }- M2(N), contradicting the above. Hence M3 contains N.

By the assumption that a . j is the first message after a . / t h a t contains N,
we have a p/~. From the nonce assumption, we must have that the nonce N

161

is introduced into run/3 by the intruder, say in message/3.1 (! < k), follow-
ing trace tr":

3 I ' E I n t l d ; E E Agent �9 tr"~((l~.l , I', E, M4(N))) < tr'
A M4(N) contains N.

Tha t is:
Message f~.l. I ' -+ E : M4(N).

By assumption, the trace is valid, so IKo U data tr" }- M4(N). Hence, from
Lemma 3 and the fact tha t the intruder does not know N after tr", M4(N)
contains some encrypted sub-message Y of some previous message 7 .m with
contents Ms(N):

: l y �9 M4(N) contains Y A Y contains N A Y E knowledge-aftertr I'
A 3F, G E Agent * (%m,F ,G, Ms(N)) in tr" A Ms(N) contains Y
A S Z E Msg ; k E Key �9 Y = {Z}k A k -1 ~ knowledge-aftertr ' .

Tha t is:
Message %m. F --~ G : M5(N).

By the assumption that encrypted components of differently numbered
messages are textually distinct, we must have tha t M4(N) and Ms(N)
have the same message number, i.e. I = m; hence/~ ~ 7- Either a = 7 or
a ~ 7; we show that the lat ter case leads to a contradiction.

So suppose that a ~ 7- By the nonce assumption, N must have been
introduced into run 7 by the intruder, say in message %n (n < 1). By
the assumption tha t all runs take the same form, message f~.n must also
contain N. But this contradicts the assumption tha t N was introduced
into/~ in message/~.l.

Hence we have tha t c~ = % Message c~.m precedes c~.j and contains N,
and so must be ~.i. Collecting all the above information gives us case 2.

[]

6 Verifying systems of arbitrary size

In this section we show tha t if there is an at tack upon a system of arbi t rary
size running the corrected protocol given in Section 4, then there is an
a t tack upon the small system described above, with a single initiator A
and a single responder B, each of which has a single nonce, and so can
carry out a single run of the protocol. The proofs proceed by considering a
run leading to a failure of authentication, and considering how many extra
runs are needed for the intruder to learn any additional information it uses.

162

6.1 Attacks upon the initiator

In this section we show that if the intruder may imitate the responder to
attack the initiator in a system of arbitrary size, then there is a similar
attack upon the small system described above.

Consider a run, a, where the intruder imitates the responder B to attack
the initiator A:

Message a.1. A ~ I(B) : A.B.{Na.A}pK(B)
Message a.2. I(B) --4 A : B.A.{N,,.Nb.B}pK(A)
Message a.3. A ~ I(B) : A.B.{Nb}PK(B).

Note that the intruder only needs to send message 2 in this run, so the
only additional runs necessary are those that are needed in order to pro-
duce B.A.{ Na.Nb.B}pK(A).

The intruder cannot decrypt message a.1, because he does not know B's
secret key. Hence he learns neither Na nor B.A,{Na.Nb.B}pK(A) t~om c~.l:

-1 (I learns Na from a.1) A -~ (I learns B.A.{Na.Nb.B}pI, C(A) from t~.l),

so from Theorem 5, the intruder must replay the encrypted part of mes-
sage a.1 in message 1 of another run, /5 say, and learn either Na or
B.A.{Na.Nb.B}pK(A) from message/5.2:

I says (N,~.A}pK(B) in/5.1
A (I learns Na from/5.2 V I learns B.A.{Na.Nb.B}pK(A) from/5.2).

Note that the responder in run/5 must be B, because message/5.1 is en-
crypted with B's public key. The intruder does not need any additional
information in order to carry out this second run, so only the two runs are
needed.

Thus if the intruder can imitate the responder B to attack A, then such
an attack would have been found by considering the small system above.

6.2 Attacks upon the responder

Consider an attack where the intruder succeeds in imitating the initiator A
in a run, c~ say, of the protocol with responder B:

Message c~.l. I(A) -~ B : A.B.{Na.A}pK(B)
Message a.2. B ~ I(A) : B.A.{Na.Nb.B}pK(A)
Message a.3. I(A) -r B : A.B.{Nb}PK(B).

Note that the intruder only needs to produce Messages 1 and 3 in this run,
so the only additional runs necessary are those that are needed in order for
the intruder to learn something that it sends in one of these messages.

163

Firstly consider the nonce handshake using Nb. The intruder cannot de-
crypt message a.2, so he learns neither Nb nor A.B.{Nb}PI~(B) from a.2:

(I learns Nb from ~.2) A -~ (I learns A.B.{Nb}pI,:(B) from a.2),

so from Theorem 5 the intruder must replay the encrypted part of
message a.2 in message 2 of some other run, /3 say, and learn Nb or
A.B.{Nb}pI~(B) from message/3.3:

[says {Na.Nb.B}pI,:(A) in/3.2
A (I learns N b from/3.3 Y I learns A.B.{Nb}PK(B) from/3.3).

Note that the initiator of run/3 must be A, because message/3.2 is encrypted
with A's public key. Further, from the form of message/3.2 we see that A
must beheve that he is communicating with B. Hence run/3 is of the form:

Message/3.1. A ~ I(B) : A.B.{Na.A}pK(B)
Message/3.2. I(B) -+ A : B.A.{N~.Nb.B}pK(a)
Message/3.3. A --+ I(B) : A.B.{Nb}PK(B).

Now we see that the intruder learns the component {Na.A}pK(B) from
message/3.1, and replays this in a.1, and so only these two runs are neces-
sary for the intruder to learn all the knowledge it uses in the attack. Thus
if the intruder can imitate the initiator A to attack the responder B, then
such an attack would have been found by considering the small system
above.

In fact, in this case, we have shown that ff there were an attack, it
would be of the above form; but the above does not lead to any error of
authentication; we may deduce that there is no such attack on the sys tem--
even without the aid of FDR.

6.3 Summary

Above we showed that in order to discover an attack upon the protocol, it
is enough to consider a system with a single initiator and responder, each
with a single nonce.

We now prove a similar result concerning the intruder: it is enough to
consider an intruder with a single identity, I say, and a single public key,
Ki say. Thus, two intruders working together are no more powerful than a
single intruder. Further, it is enough to consider an intruder who initially
knows a single nonce, Ni say.

We make the assumption that the honest agents act the same way re-
gardless of the actual values of nonces introduced by other agents; we term
this data independence.

Suppose, then, that there is a successful attack where the intruder uses
more than one identity, more than one public key, and/or more than one

164

nonce. Consider the attack where each intruder's identity is renamed to I,
each intruder's key is renamed to Ki, and each intruder's nonce is renamed
to Ni. Then, by the data independence assumption, each run proceeds as
before. Further, at each stage or the new attack, the intruder's knowledge is
related to his knowledge at the corresponding stage of the original attack,
in the obvious way, i.e. by the above renaming (this can be proved formally
from the definition of the F- relation). Thus the intruder is able to produce
all of his messages in the new attack. Hence the new attack is indeed
successful, and is made by an attacker with a single identity, single public
key, and single nonce.

Putting together all these results, we deduce that if there is an attack on
a system running the protocol, we would have found it by applying FDR
to the small system in Section 4. Hence the protocol is secure.

7 Conclusion

In this paper we have used the Failures Divergences Refinement Checker
for CSP to analyse the Needham-Schroeder Public-Key Protocol. We have
encoded the protocol and an intruder in CSP, and used FDR to discover a
security flaw. We have adapted the protocol to remove this flaw, and used
FDR to verify that there are no attacks upon a small system running the
protocol. We then proved that this was enough to prove that there are no
attacks upon a more general system.

We should be clear as to precisely what we have proved. We have proved
that the protocol in Section 4 is secure subject to the assumptions we have
made about the method of encryption used, encapsulated in the definition
of the ~- relation. We have assumed that the encryption used is reason-
able, in that the intruder is unable to guess the values of keys it does not
know. Further, we assume that secret keys are indeed kept secret. We have
also assumed that the intruder may not alter an encrypted message be-
fore replaying it (unless the message is encrypted using the intruder's key).
However, if Cipher Block Chaining is used (see e.g. [14]) then (subject
to certain assumptions) it is possible to split an encrypted message into
encrypted sub-messages; using the notation of this paper:

BF{ml .m2}k ~ BF{ml}kAB}-{rn2}k .

Thus, our proof in not valid in this case. See [1] for examples of attacks
upon protocols using CBC.

We believe that this method of analyzing security protocols is very prac-
ticai. Encoding the protocol and the intruder in CSP is normally straight-
forward. And the tests using FDR are fast, typically taking less than two
minutes. The proof that the security of a small system implies the security
of an arbitrarily-sized system is by hand, rather than being fully automatic.

165

However, we believe that this proof is considerably simpler than a direct
proof of the security of an arbitrarily-sized system: we effectively prove the
general form an attack must take, and use FDR to do the tedious checking
of details.

We intend to analyse more protocols using this approach. In particular,
we would like to produce more lemmas and theorems that are useful in
proving results concerning the size of system it is necessary to consider
in order to be sure that there are no attacks upon a protocol; eventually,
we hope to identify properties of protocols (concerning, for example, the
number of nonce challenges) that are enough to give us such results directly.

8 REFERENCES

[1] Colin Boyd. Hidden assumptions in cryptographic protocols. Proceed-
ings o/the IEE, 137, Part E(6):433-436, November 1990.

[2] Michael Burrows, Martin Abadi, and Roger Needham. A logic of au-
thentication. Proceedings o/ the Royal Society o/ London A, 426:233-
271, 1989. A preliminary version appeared as Digital Equipment Cor-
poration Systems Research Center report No. 39, 1989.

[3] Dorothy E. Denning and Giovanni Maria Sacco. Timestamps in key
distribution protocols. Communications o/ the ACM, 24(8):533-536,
1981.

[4] W. Diffie and M. Hellman. New directions in cryptography. IEEE
Transactions on In/ormation Theory, 22:644-654, 1976.

[5] Formal Systems (Europe) Ltd. Failures Divergence Refinement--User
Manual and Tutorial, 1993. Version 1.3.

[6] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall,
1985.

[7] Gavin Lowe. An attack on the Needham-Schroeder public-key authen-
tication protocol. Information Processing Letters, 56:131-133, 1995.

[8] Roger Needham and Michael Schroeder. Using encryption for authen-
tication in large networks of computers. Communications o~ the ACM,
21(12):993-999, 1978.

[9] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications o/
the ACM, 21(2):120-126, February 1978.

[10] A. W. Roscoe. Developing and verifying protocols in CSP. In Pro-
ceedings o/Mierlo workshop on protocols. TU Eindhoven, 1993.

166

[11] A. W. Roscoe. Model-checking CSP. In A Classical Mind, Essays in
Honour of C. A. R. Hoare. Prentice-Hall, 1994.

[121 A. W. Roscoe and Helen MacCarthy. Verifying a replicated database:
A case study in model-checking CSP. Submitted for publication.

[13] Steve Schneider. Security properties and CSP. In preparation, 1995.

[14] Bruce Schneier. Applied Cryptography. Wiley, 1994.

