
Breaking and Fixing the 
N e e d h a m - S c h r o e d e r  
Public-Key Protocol Using 
FDR 

Gavin  Lowe* 

ABSTRACT In this paper we analyse the well known Needham-Schroeder 
Public-Key Protocol using FDR, a refinement checker for CSP. We use 
FDR to discover an attack upon the protocol, which allows an intruder to 
impersonate another agent. We adapt the protocol, and then use FDR to 
show that the new protocol is secure, at least for a small system. Finally 
we prove a result which tells us that if this small system is secure, then so 
is a system of arbitrary size. 

1 Introduct ion 

In a distributed computer  system, it is necessary to have some mechanism 
whereby a pair of agents can be assured of each other 's  ident i ty- - they  
should become sure tha t  they really are talking to each other, ra ther  than  
to an intruder impersonating the other agent. This is the role of an authen- 
tication protocol. 

In this paper  we use the Failures Divergences Refinement Checker (FDR) 
[11, 5], a model checker for CSP, to analyse the Needham-Schroeder Public- 
Key Authentication Protocol [8]. FDR takes as input two CSP processes, a 
specification and an implementation, and tests whether the implementat ion 
refines the specification [6]. I t  has been used to analyse many sorts of sys- 
tems, including communications protocols [10], distributed databases [12], 
and puzzles; we show here how it may be used to analyse security protocols. 

We model the agents taking par t  in the protocol as CSP processes. We 
also model the most  general intruder who can interact with the protocol: 
the intruder can observe and intercept messages, and so learn in format ion- -  
such as the values of nonces - -and  then use this information to introduce 
fake messages into the system. We use FDR to test  whether the protocol 
correctly achieves authentication, and discover an at tack upon the protocol,  
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which allows the intruder to imitate an agent A in a run of the protocol 
with another agent B. This attack was previously reported in [7]. 

We then adapt the protocol, and use FDR to show that the new protocol 
is secure, at least for a small system with a single initiator and a single 
responder. We then prove that this implies that a system of arbitrary size 
is secure: we prove that if there were an attack on any system running the 
protocol, no matter how large, then there would be an attack on this small 
system. This proof is by hand, rather than being fully automatic; however, 
we believe that this proof is considerably simpler than a direct proof of the 
security of an arbitrarily-sized system. 

We believe that security protocols provide an excellent subject for anal- 
ysis using process algebra tools. It is obviously important to get these pro- 
tocols right, particularly given the increasing commercial and financial use 
of the internet. However, many protocols have appeared in the literature 
only to be later broken. Often the attacks are somewhat subtle and hard 
to spot--the protocol discussed in this paper appeared 17 years before it 
was eventually broken. Further, existing formalisms for analysing protocols 
have not proved very effective---an incorrect proof of the protocol of this 
paper has appeared in [2]. 

The main contributions of this paper are two-fold: (1) a study of how 
errors may be found in security protocols using a tool such as FDR; and 
(2) a study of how a protocol, running on a system of arbitrary size, may 
be verified by considering just a single, small system. 

2 The Needham-Schroeder Public-Key Protocol 

The Needham-Schroeder Public-Key Protocol [8] aims to establish mutual 
authentication between an initiator A and a responder B. The protocol 
uses public key cryptography [4, 9]. Each agent A possesses a public key, 
denoted Ks, which any other agent can obtain from a key server. It also 
possesses a secret key, K [  1 , which is the inverse of K~. We will write {m}k 
for message m encrypted with key k. Any agent can encrypt a message m 
using A's public key to produce {m}K,; only A can decrypt this message, 
so this ensures secrecy. 

The protocol also uses nonces: random numbers generated with the pur- 
pose of being used in a single run of the protocol. We denote nonces by No 
and Nb: the subscripts are intended to denote that the nonces were gener- 
ated by A and B, respectively. 

The complete Needham-Schroeder Public-Key Protocol involves seven 
steps. However, in this paper we consider a reduced version with only three 
steps. In the steps we omit, the two agents request and receive each other's 
public keys from a key server: omitting these steps is equivalent to assuming 
that each agent initially has the other's public key. There is a well known 
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attack upon the full protocol [3], which allows an intruder to replay old, 
compromised public keys, because the key delivery messages contain no 
proof of freshness; however, this attack is easily prevented. The attack we 
consider in this paper is newer, and more subtle. 

The reduced protocol can be described as: 

Message 1. A --~ B : A.B.{Na.A}pI~(B) 
Message 2. B --4 A : B.A.{Na.Nb}pK(A) 
Message 3. A -4 B : A.B.{Nb}PK(B) �9 

Here A is an initiator who seeks to establish a session with responder B. 
A selects a nonce Na, and sends it along with its identity to B (message 1), 
encrypted using B's  public key. When B receives this message, it decrypts 
the message to obtain the nonce Na. It  then returns the nonce Na, along 
with a new nonce Nb, to A, encrypted with A's key (message 2). When A 
receives this message it would seem that  he should be assured that  he is 
talking to B, since only B should be able to decrypt message 1 to obtain Na. 
A then returns the nonce Nb to B, encrypted with B's key. It would seem 
that  B should be assured that  he is talking to A, since only A should be 
able to decrypt message 2 to obtain Nb. 

3 Using FDR to find an at tack on the 
Needham-Schroeder Public-Key Protocol 

In this section we model the protocol using CSP. We assume that  the reader 
is familiar with CSP, as described in [6]. We model the protocol by defining 
CSP processes corresponding to each of the two agents. We also give a CSP 
description of the most general intruder who can interact with the protocol. 
We then use the FDR refinement checker to test whether the intruder can 
successfully attack the protocol. 

We assume the existence of the sets Initiator of initiators, Responder 
of responders, Key of public keys, and Nonce of nonces. We will represent 
a protocol message of the form: 

Message 1. A --~ B : A.B.{Na.A}~ch 

by the CSP event comm.Msgl.A.B.Encrypt.Kb.Na.A, etc. We are mod- 
elling a protocol message with an encrypted component of the form {m}k 
by a CSP event containing fields of the form Encrypt.k.m. We define the 
sets of communications events corresponding to the three steps in the pro- 
tocol: 

MSG1 { M sgl.a.b.Encrypt.k.na.a* I 
a E Initiator, a ~ E Initiator, b E Responder, 
k E Key, na E Nonce}, 
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MSG2 9- {Msg2.b.a.Encrypt.k.na.nb l 
a E Initiator, b E Responder, 
k E Key, ha E Nonce, rib E Nonce}, 

MSG3  9- {Msg3.a.b.Encrypt.k.nb l 
a E Initiator, b E Responder, k 6 Key, nb 6 Nonce}, 

M S G  9- MSG1 U MSG2 U MSG3.  

Standard communications in the system will be modelled by the chan- 
nel comm. We also want to model the fact tha t  the intruder can fake or 
intercept messages, and so we introduce extra channels fake  and intercept. 
We declare these channels: 

channel comm, fake ,  intercept : MSG.  

We will ensure that  the receiver of a faked message is not aware that  it is 
a fake, and that  the sender of an intercepted message is not aware that  it 
is intercepted. 

We introduce two extra channels, defining the external interface of the 
protocol. We represent a request from a user for initiator a to connect with 
responder b by the event user.a.b; we represent the resulting session by the 
event session.a.b. We also add channels to represent the state of the agents: 
these will be useful in the subsequent analysis of the system. We represent 
the initiator a thinking it is taking part  in a run of the protocol with b 
by the event I_running.a.b, and represent the responder b thinking it is 
taking part  in a run of the protocol with a by the event R_running.a.b; we 
represent the initiator committing to the session by the event I_comrnit.a.b, 
and represent the responder committing to the session by 19_commit.a.b. 
We declare these channels by: 

channel user,  session, I_running,  B_running,  I_commit ,  B_.commit : 
Ini tiator.Responder. 

We will represent a responder with identity a, who has a single nonce ha, 
by the CSP process I N I T I A T O R ( a ,  na). If we want to consider a respom 
der with more than one nonce, then we can compose several such processes, 
either sequentially or interleaved. Ignoring, for the moment, the possibility 
of intruder action, the process can be defined by: 

I N I T I A T O R ( a ,  no) 9_ 
user.a?b -~ I_.running.a.b --~ 
comm ! M s g l.a.b.Encrypt.key( b ) .na.a -+ 
comm.M s g2.b.a.Encrypt.key( a) ?n'.nb --~ 

I if na = na 
then comm!Msg3.a.b.Encrypt.key(b).nb -+ 

I_commit.a.b -~ session.a.b -~ Skip 
else Stop. 
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The init iator receives a request from the user to connect with responder b, 
and so starts  what  he believes is a run of the protocol with b. He sends 
a message 1, containing the nonce na, encrypted with b's public key. He 
receives a message 2 back, and checks the value of the first nonce. He then 
sends back the corresponding message 3, commits to the session, and carries 
out  the session. 

We now introduce the possibility of enemy action by applying a renaming 
to the above process. Our renaming should ensure tha t  message ls  and 
message 3s sent by the initiator can be intercepted, and message 2s can be 
faked. We define an initiator with identity A and nonce Na by: 1 

INITIATOR1 ~- 
INITIATOR(A,  Na) 

[[comm.Msgl ~-- comm.Msgl , comm.Msgl +- intercept.Msgl, 
comm.Ms92 +- comm.Ms92, comm.Msg2 +-- f ake.Msg2, 
comm.Msg3 +- comm.Msg3, comm.Msg3 6- intercept.Msg3]]. 

We can define a CSP process representing the responder, similarly. 

3.1 The intruder 

We want to model the intruder as a process that  can perform any at tack 
tha t  we would expect a real-world intruder to be able to perform. Thus the 
intruder should be able to: 

�9 Overhear and /o r  intercept any messages being passed in the system; 

�9 Decrypt  messages that  are encrypted with his own public key, so as 
to  learn new nonces; 

�9 Introduce new messages into the system, using nonces he knows; 

�9 Replay any message he has seen (possibly changing plain-text parts) ,  
even if he does not understand the contents of the encrypted part .  

We assume tha t  the intruder is a user of the computer  network, and so can 
take par t  in normal runs of the protocol, and other agents may initiate runs 
of the protocol with him. We will define the most  general (i.e. the most  non- 
deterministic) intruder who can act as above. We consider an intruder with 
identity I ,  with public key Ki, who initially knows a nonce Ni. All of our 
refinement tests are in the traces model, set--for reasons of efficiency--we 
define the intruder using external choices, where nondeterministic choices 
might  seem more natural .  

1 This  is the  process that  can perform either a comm.Msgl or intercept.Msgl event 
whenever  INITIATOR(A, Na) can perform a corresponding comm.Msgl, etc. 
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At any instant, the state of the intruder can be parameterized by the 
knowledge it has acquired. More precisely, our model of the intruder will 
be parameterized by the sets mls ,  m2s and m3s of message ls, message 2s 
and message 3s that  it has been unable to decrypt, and the set ns of nonces 
that  it knows. 

The intruder can observe messages being passed in the system, possibly 
intercepting them. If the messages are encrypted with its own key K~, then 
it can learn new nonces; otherwise it remembers the encrypted component. 
I t  can introduce fake messages into the system using nonces that  it knows, 
or by replaying encrypted components that  it has been unable to decrypt. 
This is captured by the following (rather long, but reasonably uniform) 
CSP definition 2. 

I (mls ,  m2s, m3s, ns) 
cornm.M s g l ? a.b.Encrypt.k.n.a I -~ 

if k = Ki then I (mls ,m2s ,  m3s,ns U {n}) 
else I (m l s  U { Encrypt.k:n.at}, m2s, m3s, ns) 

[] inter eept.M s g l ? a.b.Encrypt.k.n.a ~ -+ 
if k = Ki then I (mls ,m2s ,  m3s,ns U {n}) 
else I (m ls U { Encrypt.k.n.a'}, m2s, m3s, ns) 

[] camm.M sg2?b.a.Encrypt.k.n.n ~ -~ 
if k = Ki then I (mls ,  m2s, m3s, ns U {n, n'}) 
else I (m ls, m2s U { Encrypt.k,n.n~}, m3s, ns) 

[] intercept.M sg2?b.a.Encrypt.k.n.n ~ --~ 
if k = Ki then I (mls ,m2s ,  m3s,ns U {n,n'}) 
else I (m ls, m2s U { Encrypt.k.n.n~}, m3s, ns) 

[] comm.M s g3? a.b.Encrypt.k.n --~ 
if k = Ki then I (mls ,m2s ,  m3s, ns U {n}) 
else I (m ls, m2s, rn3s U { Encrypt.k.n} , ns) 

[] inter cept.M s g3? a.b.Encrypt.k.n -~ 
if k = Ki then I (mls ,  m2s, m3s, ns U {n}) 
else I(mlz ,  m2s, m3s U { Encrypt.k.n}, ns) 

[] f ake.Msgl?a.b?m : m l s  --~ I(m ls, m2s, m3s, ns) 
D fake.Msg2?a.b?m :m2s --~ I(mls ,  m2s, m3s, ns) 
[] fake.Msg3?a.b?m :m3s -~ I(mls,  m2s, m3s, ns) 
[] f ake.Msgl?a.blEncrypt?k?n :ns?a ~ -~ I (mls ,  m2s, m3s, ns) 
[] f ake.Msg2?b.a!Encrypt?k?n :ns?n' :ns ~ I (mls ,  m2s, m3s, ns) 
[] fake.Msg3?a.b!Encrypt?k?n :ns --~ I (mls ,  m2s, m3s, ns). 

We consider an intruder who initially knows the nonce Ni: 

I N T R U D E R  -~ I({}, {}, {}, {Ni}). 

21n practice, it is more efficient to define the intruder slightly differently, as the 
interleaving of four components. 



153 

3.2 Analyz ing the sys tem 

We may now define a system with an intruder: 3 

A G E N T S  ~- 
I N I T I A T O R 1  I[ ~comm, session.A.B~ ]1RESPONDER1, 

S Y S T E M  ~ A G E N T S  I[ ~ fake, comm, intercept~ ]1 INTRUDER.  

We can use FDR to test whether the protocol correctly authenticates 
the two agents. FDR takes as two inputs, a specification and an implemen- 
tation, and test  whether the implementation refines the specification. In 
this paper we are working in the traces model of CSP [6], so checking for 
refinement amounts to testing whether each trace of the implementation is 
also a trace of the specification. 

To test  whether the protocol correctly authenticates the responder, we 
need to find a specification that  allows only those traces where the initia- 
tor  A commits to a session with B only if B has indeed taken part  in the 
protocol run. The initiator committing to a session is represented by an 
I_commit.A.B event; the responder taking part  in a run of the protocol 
with A is represented by R_running.A.B. Thus the authenticity of the 
responder can be tested using the specification AR: 

AR~ ~- R_running.A.B -+ I_commit.A.B --~ AR~, 

A1 ~- ~R_running.A.B , I_commit.A.B~ , 

AR ~- ARo III RUN(Z \ A1). 

ARv expresses that  an I_commit.A.B event should only occur after 
an R_running.A.B event; interleaving this specification with RU N (E \ A1) 
(where Z is the set of all events) allows all other events to occur in an ar- 
bi trary order. 

FDR can be used to verify that  S Y S T E M  refines AR, and so the pro- 
tocol does indeed correctly authenticate the responder 4. 

We now consider authentication of the initiator. The protocol should 
ensure that  the responder B commits to a session with initiator A only if 
A took part  in the protocol run. Formally, an R_commit.A.B event should 
occur only if there has been a corresponding I_running.A.B event. This 
requirement is captured by the specification AI: 

AIo ~ I_running.A.B -~ R_commit.A.B -+ AIo, 
A2 ~ ~L-running.A.B,R_commit.A.B~, 

AI  ~ AIo III RUN(E \ A2). 

a O u r  no t a t i on  differs a l i t t le f rom [6]: we write P ][ A ][ Q for the  paral lel  compos i t ion  
of  P and  Q, synchron iz ing  on the  set o f  events  A; we write ~ c l , . . . ,  CnD for the set of  
all c o m m u n i c a t i o n s  over channe l s  cl , . .  �9 en. 

4The  F D R  inpu t  files used  for th is  case s t u d y  can  be obta ined  f rom U R L  http:  
//~n~. comlab, ox. ac. uk/oucl/user a/gavin, lowe/SecuritylNSPKP/index .html. 
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FDR can be used to discover that S Y S T E M  does not refine AI. It  finds 
that  after the trace: 

(user.A.I , I_running.A.I  , 
inter cept.M sg l .A.I.Encrypt.Ki.Na.A , 
f ake.M sgl.A.B.Encrypt.Kb.Na.A , 
intercept.M sg2.B.A.Encrypt.Ka.Na.Nb , 
f ake.M sg2.I.A.Encrypt.Ka.Na.Nb , 
intercept.M sg3.A.I.Encrypt.Ki.Nb , 
f ake.M sg3.A.B.Encrypt.Kb.Nb) 

the system can perform R_cennmit.A.B. Thus the responder B commits to 
a session with A even though A is not trying to establish a session with B 
(there has been no corresponding I_.running.A.B event). 

We can rewrite this at tack as follows. The attack consists of the inter- 
leaving of two runs, which we write as a and ;3. (We use the term run for a 
particular instance of the protocol; we use the term attack, for any sequence 
of events leading to a breach of security.) In run c~, A tries to establish a 
session with l ,  while in run ;3, the intruder impersonates A to establish a 
false session with B. We write, for example,/3.2 to represent message 2 of 
run ;3; we write I(A) to represent the intruder imitating A. 

Message a.1. A -~ I : A.I.{N~.A}pK(1) 
Message ;3.1. [(A) -~ B : A.B.{Na.A}pK(B) 
Message ;3.2. B -~ I(A) : B.A.{Na.Nb}PK(A) 
Message a.2. I -~ A : I.A.{Na.Nb}PK(A ) 
Message a.3. A -~ I : A.I.{Nb}pK(1) 
Message ;3.3. I(A) -~ B : A.B.{Nb}p~(B). 

In message a.1, A tries to establish a session with I,  sending the none Na 
encrypted with I ' s  key. In message ;3.1, the intruder imitates A to start  
a run of the protocol with B, sending the same nonce Na. B responds by 
choosing a new nonce Nb, and returning it in message/3.2. The intruder 
cannot decrypt this message to obtain Nb, but  instead uses A as an oracle, 
by replaying this message in message a.2; note that  this message is of 
the form expected by A in run ~. A decrypts the message to obtain Nb, 
and returns this to I in message a.3. I can then decrypt this message to 
obtain Nb, which he returns to B in message/3.3, thus completing run ;3 of 
the protocol. Hence B believes that  he has correctly carried out a run of 
the protocol with A. 

4 A corrected protocol 

It  is easy to adapt the protocol to prevent the attack found above; we 
simply include the identity of the responder within the encrypted part  of 
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message 2: 

Message 1. A --~ B : A.B.{Na.A}pK(B) 
Message 2. B --~ A : B.A.{Na.Nb.B}pK(A) 
Message 3. A -~ B : A.B.{Nb}PK(B) �9 

This prevents the above attack, because message/5.2 would become: 

Message ft.2. B --+ I (A)  : B .A.{Na.Nb.B}pK(A) ,  

and the intruder can not successfully replay this in message a.2, because 
A is expecting a message containing I ' s  identity. 

We may adapt  our CSP representation of the protocol and the intruder. 
FDR then falls to find any at tacks on the protocol in the case where the 
initiator A and responder B each have a single nonce, and so can take par t  
in a single run of the protocol. We conclude that  the protocol is safe, at 
least for this small system. 

The question remains, though: is a more general system safe from attack? 
If  the agents had more nonces, could the intruder obtain enough knowledge 
from several runs to be able to a t tack the protocol? How about  if there were 
more than  just  the two honest agents involved? Or how about  if the same 
agent could act both  as initiator and responder? 

These kind of questions arise in many model checking problems, and are 
not unique to the area of security protocols. We may typically use a tool 
to verify a small system of fixed size; but  this does not necessarily tell us 
tha t  larger systems are also correct. One solution is to p rove - -by  some 
m e t h o d - - t h a t  if a system of arbi t rary size were incorrect, then this would 
imply tha t  the small system were also incorrect. Following this idea, in 
Section 6 we prove that  if there were an at tack on a more general system 
running the Needham-Schroeder protocol, then there would be an at tack on 
the small system we considered above. But first, we define some notation, 
and prove a useful result concerning the way in which an intruder responds 
to a nonce challenge. We adopt  a very general setting, so tha t  our results 
may  be applicable to a wide class of protocols. 

5 A logic for analyzing protocols 

5.1 M e s s a g e s  

We begin by defining the da ta  type of messages. A message may  be an 
a tom,  the concatenation of two simpler messages, or a message encrypted 
with a key. We may  define the set M sg  of messages by the following BNF 
expression: 

a E Atom ::= C I N I k I . . . ,  
m �9 M s g  ::= a [ m . m  [ {re}k, 
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where C ranges over the set Agent  of agent names, k over the set K ey  
of keys, and N over the set Nonce of nonces. We take the concatenation 
operator "." to be associative. For each key k, we assume the existence 
of an inverse k -1 , such that  a message encrypted with k can be decrypted 
with k -1: in symmetric crypto-systems, each key is its own inverse; in public 
key systems, the public and secret keys are inverses. 

We may also define what it means for a message to contain another: 

acon ta insm ~ a - - m ,  

ml.m2 contains m ~ ml.m2 = m V m l  contains m V m2 contains m ,  

{ r n ] } k  contains m ~ { m ] } k  = m V m ]  contains m.  

We may use this to define the submessages of a particular message: 

sub-msgs(m) ~ {m' 6 M s g  I m contains m'}.  

We will want to be able to discuss which messages an intruder can pro- 
duce given the messages that  he has seen so far, We write B F m to 
represent that  the intruder may derive message m from the finite set of 
messages B. The following definition is adapted from [13]. 

m E B  =~ B F m ,  (1) 

B F m A B F m  ~ :~ B F m . m  ~, (2) 

B t - m . m  ~ ~ B t - m A B I - m ' ,  (3) 

B k m A B F - k  =~ B t - { m } k ,  (4) 

B F { m } ~ A B F - k  -1 ~ B k m .  (5) 

If  the intruder has already seen message m (i.e. m E B) then he can pro- 
duce that  message (rule 1). If he can produce both halves of a concatenated 
message, then he can produce the entier message (rule 2), and vice versa 
(rule 3). If he can produce a message m and a key k, then he can en- 
crypt m with k (rule 4). If we can produce an encrypted message and the 
corresponding decrypting key, then he can decrypt the message (rule 5). 
We also write B J / m  for -1 (B t- m). 

We state a few lemmas about the F relation that  will prove useful. These 
may be proved by rule induction. 

L e m m a  1: If m may be derived from some set of information B, then it 
may be derived from any larger set of information: 

B F m A B C _ B  ~ ~ B ~ P m .  

L e m m a  2: Derived messages may be used in subsequent derivations: 

B F r a l  A B U { m l } F - m  ~ B F - m .  
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L e m m a  3: If  m may  be derived from B, but  some sub-message X may  
not: 

B I - m  A m c o n t a i n s X  A B J # X ,  

then there is some encrypted sub-message Y of m,  which contains X,  may  
be derived from B, is contained in some element of B,  but which cannot 
be decrypted: 

3 Y �9 sub-rnsgs(m) �9 Y contains X A B t- Y A 3 b �9 B �9 b contains Y 
A 3 Z � 9 1 4 9  J#k -1. 

L e m m a  4: Suppose A U B t- x, x contains a, and a �9 Atom. Then either 
some element of B contains a key, some sub-message of x containing a may  
be derived from A, or a is contained in some element of B: 

k �9 Key  �9 3b �9 B �9 b containsk A A J# k A A U  B I- k 
V 3 z �9 sub-msgs(x) �9 z contains a A A I- z 
V 3b �9 B �9 b contains a A A )# a. 

5 .2  Traces 

We let R u n l d  be the space of run identifiers, ranged over by c~, fl, etc. We 
define a message number to be a (run identifier, natural  number) pair. 

M s g N o  ~ R u n f d x  N. 

We write ~.i for message i of run c~. 
As above, we will write I (A)  to represent the intruder imitating agent A. 

We define the set Agent  + to contain all agent identifiers, and all such I(A):  

Agent  + -~ Agent  U {I(A) I A E Agent  \ {I}}. 

We also define the set of agent identifiers representing the intruder: 

I n t I d  ~ {[} U t [ (A)  I A �9 Agent  \ { I}} .  

We define a communication to be a quadruple where the fields are: (1) the 
message number,  (2) the sender of the communication, where I (A)  repre- 
sents the intruder imitating A, (3) the receiver, where I (A)  represents the 
intruder intercepting a message meant  for A, and (4) the actual message 
tha t  is sent: 

Communicat ion  ~- M s g N o  • Agent  + x Agent  + • Msg.  

When convenient, we will represent the communication (c~.i, A, B, m) by 
the more conventional, and visually more pleasing: 

Message ~.i. A ~ B : m. 
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We define a run to be a sequence s of such communications where all 
the communications have the same run identifier: 

3 a .  V ( B . i , C , D , m )  in s �9 ~ = a,  

and the honest agents follow the protocol. 
We define a trace to be a sequence of communications, formed from the 

interleaving of several runs with distinct run identifiers. We let tr, tr  ~ range 
over traces. 

We may abstract the data  included in the communications of a particular 
r u n :  

data(tr )  ~ {m [ 2 a,i, A, B �9 (a.i, A, B, m) in tr}. 
We make the assumption that  when an honest agent introduces a new 

nonce into a run of the protocol, the nonce really is freshly chosen; this 
means that  the agent will introduce different nonces into different runs, that  
no other honest agent will introduce the same nonce, and that  the intruder 
does not initially know the value of the nonce. We term this assumption 
the nonce assumption. 

5.3 Intruders 

We assume that  the intruder has some initial knowledge, which may be 
represented by a set of atoms IKo .  This will normally include the identities 
of all agents in the system, all the public keys, and I ' s  own secret key. We 
may define the intruder's knowledge after a particular trace: 

knowledge-aftertr ~ {m [ IKo  U data(tr) ~- m}. 

The intruder knows the message m after trace tr  if m may be derived from 
the data in tr  a n d / ' s  initial knowledge. 

We define a trace to be valid if the intruder only produces messages that  
are derivable from the knowledge that  it has acquired: 

valid(tr) 
V t r  ~ E T r a c e  ; ~.i E M s g _ N o  ; m E M s g  ; I ~ E I n t I d  ; C E A g e n t  �9 

t r J ~ - ~ ( ( a . i , [ ' , C , m ) )  <_ t r  ~ m E knowledge-aftertr ~. 

If the intruder sends a message m after observing tr ' ,  then m is in the 
intruder 's knowledge at that  point. 

We write I learns X from a.i  if the intruder learns the piece of informa- 
tion X from message number ~.i: 

( I  learns X from a. i ) ( t r )  ~- 
3 m E M s g  ; A,  B E A g e n t  ; tr ~ E T r a c e  ~ 

t r " - ~ ( ( a . i , A , B , m ) )  < tr 
A X r knowledge-after t r  ~ 
A X E knowledge-after(tr'r~((a.i, A, B, m))). 
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We drop the argument tr when it is obvious from context. 
We write I says X in a.i if the intruder sends the communication a.i,  

which contains X as a sub-message: 

( I  says X in a.i)(tr) ~ 3 m  E Msg  ; I' E I n t l d ;  A E Agent �9 
(~.i, F ,  A, m) in t r  A m contains X. 

5.4 Nonce challenges 
We now prove a result concerning the way in which an intruder meets a 
nonce challenge. We make some additional assumptions about the protocol 
in question: 

�9 The encrypted parts of differently numbered messages in the protocol 
are textually distinct: if M~ is a valid message i, and Mj is a valid 
message j ,  and M~ contains {M}k and Mj contains {M}k then i --- j .  
Thus it is always possible to tell which message an encrypted part  
comes from; this means, for example, that  the intruder cannot replay 
some encrypted text  taken from a message 1, and have it interpreted 
as a message 2. 

�9 All runs of the protocol have essentially the same form. 

�9 The intruder does not learn any additional keys during a trace: if 
k E knowledge-after tr then k E IKo. 

Note tha t  the Needham-Schroeder Public Key Protocol satisfies these as- 
sumptions: that  the intruder does not learn any additional keys during a 
trace follows from the fact that  that  secret keys are never passed during 
the protocol (this can be proved formally using Lemma 4). 

T h e o r e m  5: Consider a valid trace tr that  includes a nonce challenge, 
met by the intruder: 

Message a.i. A ~ I (B)  : M i ( N )  
Message n.j. I (B)  --~ A : M2 (N),  

where MI ( N)  and M2(N) contain the nonce N: 

M I ( N )  contains N A M2(N) contains N, 

and the nonce is first introduced in message a.i, and first returned in n.j .  
Suppose further tha t  

V z  E s u b - m s g s ( M 2 ( N ) )  �9 
z contains N =~ Igo U {z} F N V I g o  U {z} t- M2(N). (6) 

Then one of the following holds: 
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1. The intruder can produce either N or M2 (N) immediately from mes- 
sage a.i: 

I learns N from a. i  V I learns M2(N) from a.i. 

2. The intruder replays some encrypted sub-message Y of ~.i in mes- 
sage i of some other run fl: 

3 Y  �9 M I (N )  contains Y A Y contains N A [ says Y in/3.i 
A :q Z E M s g  ; k e Key  . Y = { Z }k  A k -1 ~ I K 0 ,  

and learns either N or M~(N) from a later message of fl: 

3k > i �9 I learns N from/~.k V [ learns M2(N) from/~.k. 

Proo f . "  Assume the conditions of the theorem. By the nonce assumption, 
the intruder does not know the value of N or M2(N) before message a.i.  
Clearly, the intruder must, at some point, learn M2(N) in order to produce 
message a . j .  Suppose the intruder first learns either N or M2(N) from 
message fl.k with contents M3: 

Message fl.k. C --~ D : M3. 

Formally: 

tr'~((fl.k, C, D, M3)) ~ tr 
A N, M2(N) ~ knowledge-aftertr' 
A ( g  E knowledge-after(tr'~((~.k, C, D, M3))) 

V M~ (g) e knowledge-aher(tr'~'((B.k, C, D, M3))). 

If a.i = /~.k then we have case 1. Otherwise, fl.k occurs after a.i ,  but 
before a.j. 

We now show that  Ma contains N. If the intruder learns N from mes- 
sage /~.k, i.e. IKo O data ~r t U {M3} F N, then the result follows from 
Lemma 4 and the assumption that  the intruder's key knowledge is constant. 
If the intruder learns M2(N) from message fl.k, i.e. IK0Odata  tr'U{M3} ~- 
M2(N),  then again from Lemma 4 we have: 

Bz E sub-msgsM2(N) �9 z contains N A [Ko U data t r  ~ }- z 
V M3 contains N. 

But the first disjunct and equation 6 would imply that  IKo U data tr ~ F N 
or IKo U data t r  ~ }- M2(N),  contradicting the above. Hence M3 contains N. 

By the assumption that  a . j  is the first message after a . / t h a t  contains N,  
we have a p/~.  From the nonce assumption, we must have that  the nonce N 
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is introduced into run/3 by the intruder, say in message/3.1 (! < k), follow- 
ing trace tr": 

3 I '  E I n t l d  ; E E Agent �9 tr"~((l~.l ,  I', E, M4(N)))  < tr' 
A M4(N) contains N. 

Tha t  is: 
Message f~.l. I '  -+ E : M4(N). 

By assumption,  the trace is valid, so IKo U data tr" }- M4(N).  Hence, from 
Lemma 3 and the fact tha t  the intruder does not know N after tr", M4(N) 
contains some encrypted sub-message Y of some previous message 7 .m with 
contents Ms(N):  

: l y  �9 M4(N)  contains Y A Y contains N A Y E knowledge-aftertr I' 
A 3F,  G E Agent * (%m,F ,G,  Ms(N))  in tr" A Ms(N)  contains Y 
A S Z E Msg  ; k E Key  �9 Y = {Z}k A k -1 ~ knowledge-aftertr ' .  

Tha t  is: 
Message %m. F --~ G : M5(N).  

By the assumption that  encrypted components of differently numbered 
messages are textually distinct, we must  have tha t  M4(N) and Ms(N)  
have the same message number,  i.e. I = m; hence/~ ~ 7- Either a = 7 or 
a ~ 7; we show that  the lat ter  case leads to a contradiction. 

So suppose that  a ~ 7- By the nonce assumption, N must have been 
introduced into run 7 by the intruder, say in message %n (n < 1). By 
the assumption tha t  all runs take the same form, message f~.n must  also 
contain N.  But this contradicts the assumption tha t  N was introduced 
into/~ in message/~.l.  

Hence we have tha t  c~ = % Message c~.m precedes c~.j and contains N,  
and so must  be ~.i. Collecting all the above information gives us case 2. 

[] 

6 Verifying systems of arbitrary size 

In this section we show tha t  if there is an at tack upon a system of arbi t rary 
size running the corrected protocol given in Section 4, then there is an 
a t tack upon the small system described above, with a single initiator A 
and a single responder B, each of which has a single nonce, and so can 
carry out a single run of the protocol. The proofs proceed by considering a 
run leading to a failure of authentication, and considering how many  extra  
runs are needed for the intruder to learn any additional information it uses. 
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6.1 Attacks upon the initiator 

In this section we show that if the intruder may imitate the responder to 
attack the initiator in a system of arbitrary size, then there is a similar 
attack upon the small system described above. 

Consider a run, a, where the intruder imitates the responder B to attack 
the initiator A: 

Message a.1. A ~ I(B) : A.B.{Na.A}pK(B) 
Message a.2. I(B) --4 A : B.A.{N,,.Nb.B}pK(A) 
Message a.3. A ~ I(B) : A.B.{Nb}PK(B). 

Note that the intruder only needs to send message 2 in this run, so the 
only additional runs necessary are those that are needed in order to pro- 
duce B.A.{ Na.Nb.B}pK(A). 

The intruder cannot decrypt message a.1, because he does not know B's 
secret key. Hence he learns neither Na nor B.A,{Na.Nb.B}pK(A) t~om c~.l: 

-1 (I learns Na from a.1) A -~ (I learns B.A.{Na.Nb.B}pI, C(A) from t~.l), 

so from Theorem 5, the intruder must replay the encrypted part of mes- 
sage a.1 in message 1 of another run, /5 say, and learn either Na or 
B.A.{Na.Nb.B}pK(A) from message/5.2: 

I says (N,~.A}pK(B) in/5.1 
A (I learns Na from/5.2 V I learns B.A.{Na.Nb.B}pK(A) from/5.2). 

Note that the responder in run/5 must be B, because message/5.1 is en- 
crypted with B's public key. The intruder does not need any additional 
information in order to carry out this second run, so only the two runs are 
needed. 

Thus if the intruder can imitate the responder B to attack A, then such 
an attack would have been found by considering the small system above. 

6.2 Attacks upon the responder 

Consider an attack where the intruder succeeds in imitating the initiator A 
in a run, c~ say, of the protocol with responder B: 

Message c~.l. I(A) -~ B : A.B.{Na.A}pK(B) 
Message a.2. B ~ I(A) : B.A.{Na.Nb.B}pK(A) 
Message a.3. I(A) -r B : A.B.{Nb}PK(B). 

Note that the intruder only needs to produce Messages 1 and 3 in this run, 
so the only additional runs necessary are those that are needed in order for 
the intruder to learn something that it sends in one of these messages. 
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Firstly consider the nonce handshake using Nb. The intruder cannot de- 
crypt message a.2, so he learns neither Nb nor A.B.{Nb}PI~(B) from a.2: 

( I  learns Nb from ~.2) A -~ (I  learns A.B.{Nb}pI,:(B) from a.2), 

so from Theorem 5 the intruder must replay the encrypted part  of 
message a.2 in message 2 of some other run, /3 say, and learn Nb or 
A.B.{Nb}pI~(B) from message/3.3: 

[ says {Na.Nb.B}pI,:(A) in/3.2 
A ( I  learns N b from/3.3 Y I learns A.B.{Nb}PK(B) from/3.3). 

Note that  the initiator of run/3 must be A, because message/3.2 is encrypted 
with A's public key. Further, from the form of message/3.2 we see that  A 
must beheve that  he is communicating with B. Hence run/3 is of the form: 

Message/3.1. A ~ I(B) : A.B.{Na.A}pK(B) 
Message/3.2. I(B) -+ A : B.A.{N~.Nb.B}pK(a) 
Message/3.3. A --+ I(B) : A.B.{Nb}PK(B). 

Now we see that  the intruder learns the component {Na.A}pK(B) from 
message/3.1, and replays this in a.1, and so only these two runs are neces- 
sary for the intruder to learn all the knowledge it uses in the attack. Thus 
if the intruder can imitate the initiator A to attack the responder B, then 
such an attack would have been found by considering the small system 
above. 

In fact, in this case, we have shown that  ff there were an attack, it 
would be of the above form; but  the above does not lead to any error of 
authentication; we may deduce that  there is no such attack on the sys tem--  
even without the aid of FDR. 

6.3 Summary  

Above we showed that  in order to discover an attack upon the protocol, it 
is enough to consider a system with a single initiator and responder, each 
with a single nonce. 

We now prove a similar result concerning the intruder: it is enough to 
consider an intruder with a single identity, I say, and a single public key, 
Ki say. Thus, two intruders working together are no more powerful than a 
single intruder. Further, it is enough to consider an intruder who initially 
knows a single nonce, Ni say. 

We make the assumption that  the honest agents act the same way re- 
gardless of the actual values of nonces introduced by other agents; we term 
this data independence. 

Suppose, then, that  there is a successful attack where the intruder uses 
more than one identity, more than one public key, and/or  more than one 
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nonce. Consider the attack where each intruder's identity is renamed to I, 
each intruder's key is renamed to Ki, and each intruder's nonce is renamed 
to Ni. Then, by the data independence assumption, each run proceeds as 
before. Further, at each stage or the new attack, the intruder's knowledge is 
related to his knowledge at the corresponding stage of the original attack, 
in the obvious way, i.e. by the above renaming (this can be proved formally 
from the definition of the F- relation). Thus the intruder is able to produce 
all of his messages in the new attack. Hence the new attack is indeed 
successful, and is made by an attacker with a single identity, single public 
key, and single nonce. 

Putting together all these results, we deduce that if there is an attack on 
a system running the protocol, we would have found it by applying FDR 
to the small system in Section 4. Hence the protocol is secure. 

7 Conclusion 

In this paper we have used the Failures Divergences Refinement Checker 
for CSP to analyse the Needham-Schroeder Public-Key Protocol. We have 
encoded the protocol and an intruder in CSP, and used FDR to discover a 
security flaw. We have adapted the protocol to remove this flaw, and used 
FDR to verify that there are no attacks upon a small system running the 
protocol. We then proved that this was enough to prove that there are no 
attacks upon a more general system. 

We should be clear as to precisely what we have proved. We have proved 
that the protocol in Section 4 is secure subject to the assumptions we have 
made about the method of encryption used, encapsulated in the definition 
of the ~- relation. We have assumed that the encryption used is reason- 
able, in that the intruder is unable to guess the values of keys it does not 
know. Further, we assume that secret keys are indeed kept secret. We have 
also assumed that the intruder may not alter an encrypted message be- 
fore replaying it (unless the message is encrypted using the intruder's key). 
However, if Cipher Block Chaining is used (see e.g. [14]) then (subject 
to certain assumptions) it is possible to split an encrypted message into 
encrypted sub-messages; using the notation of this paper: 

BF{ml .m2}k ~ BF{ml}kAB}-{rn2}k .  

Thus, our proof in not valid in this case. See [1] for examples of attacks 
upon protocols using CBC. 

We believe that this method of analyzing security protocols is very prac- 
ticai. Encoding the protocol and the intruder in CSP is normally straight- 
forward. And the tests using FDR are fast, typically taking less than two 
minutes. The proof that the security of a small system implies the security 
of an arbitrarily-sized system is by hand, rather than being fully automatic. 
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However, we believe that this proof is considerably simpler than a direct 
proof of the security of an arbitrarily-sized system: we effectively prove the 
general form an attack must take, and use FDR to do the tedious checking 
of details. 

We intend to analyse more protocols using this approach. In particular, 
we would like to produce more lemmas and theorems that are useful in 
proving results concerning the size of system it is necessary to consider 
in order to be sure that there are no attacks upon a protocol; eventually, 
we hope to identify properties of protocols (concerning, for example, the 
number of nonce challenges) that are enough to give us such results directly. 
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