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ABSTRACT 

We consider the proposal that supersymmetry is broken at a scale p 

midway between the Planck scale M and the usual weak scale. We show how 

a phenomenological explicitly softly broken supersymmetric theory can 

emerge below scale I-I. The characteristic scale for the explicit 

supersymmetry breaking is of order a~zOl. Identifying this with the weak 

scale ~250 GeV gives w u 10'2 GeV. 
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1. SUPERSYMMETRY AND THE GAUGE HIERARCHY PROBLEM 

The present theory of elementary particles, SU(31xSU(21XU(l), contains 

some 13 independent field multiplets and about 20 free dimensionless 

parameters. It is widely believed that this theory is at most a low 

energy remnant of a more symmetrical theory which is manifest at some 

very high energy, possibly the Planck scale M. Perhaps the most 

surprising feature of such a theory is the very existence of a low energy 

world characterized by masses some 17 orders of magnitude smaller than 

M.' 

In general such large ratios of scales are not stable. Parameters may 

be adjusted to obtain these ratios in the classical Lagrangian but in 

general radiative corrections will upset the delicate adjustments, 
. 

leading to an order by order readjustment of fundamental parameters to 

many decimal places. 

The only known remedy for this unnatural situation is to have a 

symmetry which can prevent radiative corrections from spoiling the 

hierarchy. This can occur if a symmetry prevents some mass term from 

occurring. For example chiral and gauge symmetries can prevent fermion 

and gauge boson masses. If such symmetries are violated by very small 

dimensionless parameters, the resulting masses will remain small. This 

idea leads to a fundamental requirement of naturalness: For every 

quantity which almost vanishes, a symmetry should exist which, if 

unbroken, would require that quantity to exactly vanish. The 

nonvanishing is caused by small dimensionless parameters which break the 

symmetry. Although this mechanism does not explain the smallness of such 
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quantities it does provide a framework in which the smallness is stable 

against radiative corrections. 

In the current "standard" theory the masses of quarks, leptons and 

gauge bosons are all proportional to a single mass parameter *lo2 GeV 

which can be identified with the quadratic (mass) terms in the scalar 

Higgs potential. Unfortunately the theory contains no symmetry which 

potentially could keep this scale zero. This fact manifests itself in 

quadratically divergent radiative corrections to the mass of the Higgs 

field.2 

Two ways out have been proposed, both of which require new physics in 

the TeY region, In one scheme the Higgs scalars are replaced by 

dynamically bound composites.293 The other scheme introduces . 

supersymmetry IS.S.1 in order to control the Higgs mass parameter.4j5 

Indeed, S.S.6 is the only known symmetry which can keep a scalar mass 

zero in the presence of interactions. Roughly speaking supersymmetry 

introduces partners which cancel quadratic divergences in the Higgs mass. 

Typically the radiative corrections to the Higgs (massI will be +JU times 

the typical splitting within a supermultiplet. For example the graph 

shown in Fig. 1 will be cancelled by a second graph in which the 

fermionic partners of H and W circulate in the loop. The cancellation is 

exact in the limit in which the fermions are equal in mass to their 

bosonic partners. More generally 

6rnHZ * u. Am', (1.11 

where Am2 is of order of the supersplitting. 
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Evidently if the theory is to be free of unnatural adjustments we 

would want SmH' to be no bigger in order of magnitude than m$ itself. 

This requires 

Am’ S 
1 

--_:xlOOGeV +, a few TeV . (1.2) 
Ja 

The obvious conclusion is that the scale of S.S. breaking ought to be of 

the same general order of magnitude as the weak scale. 

In this paper we will argue that the scale for spontaneous breaking of 

S.S. can be many orders of magnitude higher than the weak scale if the 

S.S. breaking mechanism is in some sense distant from the ordinary 

degrees of freedom. Indeed we shall show that the fundamental 

spontaneous S.S. breaking scale can be as large as +lfJ'* GeV without . 

inducing a corresponding splitting among the superpartners responsible 

for keeping mHz small. 

The possibility of supersymmetry breaking at an intermediate scale was 

raised by Witten and Banks.e Recent models by Dine and FischlerP9 

Dimopoulos and Raby'O and Earbieri, Ferrara and Nanopoulos'l are also of 

this type. Many of the features we discuss are also evident in the 

M >> l.t limits of the models of Alvarez-Gaume, Claudson and Wise12 and 

Dine and Fischler.'o 

In Section 2 we describe a toy model in which S.S. is broken by the 

O'Raifeartaigh mechanismlQ at an intermediate mass scale p,. The S.S. 

breaking however is not directly coupled to the ordinary light world. 

Instead it is coupled to a world of superheavy supermultiplets of mass 
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M >> p. These in turn couple to the light world. This produces an 

indirect coupling mediated by superheavy intermediate states. 

The resulting theory at energies less than p looks like an explicitly 

softly broken S.S. characterized by a scale a(p2/M). In particular if a 

particle such as the Higgs scalar is protected from mass counterterms by 

S.S. then its mass will be no bigger than a(~2/M). One of the central 

points of this paper is to determine the stability of such a two stage 

hierarchy against radiative corrections, 

In Section 3 we introduce light gauge fields into the model and 

discuss new features such a gaugino mass generation. Section 4 is 

devoted to the physics of the Goldstone multiplet. Section 5 analyzes an 

example of Witten's inverted hierarchy,15 showing how it fits into our . 

general framework. In Section 6 we discuss our conclusions and speculate 

about the influence of gravity on this class of theories. 

In Appendix A we show that the one loop gluino mass vanishes in a 

class of theories. In Appendix B we discuss some features of theories in 

which the supersymmetry breaking at scale p is due to the Fayet- 

Iliopoulos16 mechanism rather than the O'Raifertaigh mechanism. 
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2. A TOY MODEL 

Our simplest example involves four chiral superfields.17 Two of them, 

6 and e, are heavy with mass MM. 

b = B + i$B@ + 6BFB 

(2.1) 

i = c + i$& + eeFc 
A superfieid 2 describes the Goldstino and its scalar partner 

i = x +. i-Ix9 + eeFx 
S.S. is broken by Fx getting a v.e.v. of order p2, 

(2.2) 

The ordinary light world is replaced by a single superfield t. 

i = L + i+Le + eeFL (2.31 

The superpotential is 

wti,?,2,C, = gj: iL2 [ 1 fj2 - - + tIci + rl'$i: 
9 

+ g63 + g$L + g&2 + gi3 (2.4) 

For simplicity, all dimensionless coupling constants are called g. We 

assume g is small enough to do perturbation theory and that M )> CL. 

The potential (2.4) leads to spontaneous breaking of S.S. Recall that 

the equations of motion for Fi arei 



- 7- 

EWi ' 
Fi* = -- (2.5) 

b3i 3=# 

which gives 

- Fx” = gB2 - ~2 (2.6) 

- Fc* = M'B (2.7) 

Evidently these cannot both be zero so supersymmetry is broken. 

The absolute minimum of the potential 

V = CFi*Fi 

occurs at 

B=C =L=O , (2.8) 

while X is undetermined. We can always set the v.e.v. of X to zero by 

adjusting M, We assume that when this is done M-f 0. ._ 

The S.S. breaking v.e.v. is <Fx> which according to (2.6) is 

Fx = w2 (2.9) 

Taking w to be as large as 10 l2 GeV might seem to undetermine the 

original intent of the S.S., namely to keep the radiative corrections to 

the quadratic light scalar ef,fective potential of order 100 GeV or less. 

Normally we would assume these would be of order g3p2/4n2. For example 

consider the ordinary Feynman graph in Fig. 2, where the cross indicates 

the insertion gBzp2 which appears in the Lagrangian from the term Fx*Fx. 

On dimensional grounds it is of order g3y2/4T2. Note that even though 

S.S. breaking is only coupled to L through intermediate superheavies it 

can potentially split L masses by *pt. 
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However by combining S.S. combinations of ordinary Feynman graphs one 

finds the order p2 contributions cancel to all orders in g. For example 

the graph shown in Fig. 3 is part of the same supergraph as Fig. 2. It 

exactly cancels Fig. 2. This cancellation is very general and can be 

expressed as a theorem: 

Consider the quadratic contribution to the effective potential V(L) 

which arises when S.S. is broken at scale u. It can be written as a 

series in powers of pz/Mz: 

Vz(L) = LZv2 

I 

co(g) + c,(g 

I-L2 
>- + cz(9 

tl2 

The theorem asserts that 

Co(g) = 0 

b’ 1 - + . . . 
I 

(2.10) 

MQ 

(2.11) 

To see this we work in a supersymmetric formalism in which S.S. breaking 

is represented by a "spurion" line in a supergraph. The spurion is Fx 

which has v.e.v. w2. For example Fig. 4 shows the supergraph containing 

Figs. 2 and 3. 

Calculating this graph is equ 

the term 

ti 

valent to computing the correction to 

i i)F (2.12) 

in the effective action. When i is given its v.e.v. 

C<?> = <Fx>f30 = w208) Eq. (2.12) becomes pzLL. 
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Although dimensional analysis and symmetry considerations allow a log- 

devergent tii2>r counterterm it vanishes to all orders by the Grisaru- 

Rocek-Siegel (GRSI theorem which says that "F terms" are not induced by 

loop diagrams.'* 

The possibility remains that a "D term" might give rise to a splitting 

of the L supermultiplet. For example consider the operator 

tf* f ?)I, (2.13) 

Giving 2 its v.e.v. produces the effective term 

v2(i" i)F (2.141 

We shall discuss this operator later. For now we note that it does not 

contain anything quadrative in the scalar components of L. 

Another operator of interest is 

ti i 2”)o (2.15) 

yielding the effective operator 

!-.12(i i>, (2.16) 

Curiously this operator is supersymmetric and although it can produce 

boson masses it does so in a supersymmetric manner. We shall return to 

it later. 

The next class of operators contain X quadratically. Consider 

ti* i i* i,D (2.17) 

which gives 

pw* i)A = FL4 L* L (2.18) 

A contributing supergraph is shown in Fig. 5. By dimensional analysis it 

is of order: (g"/4a2)(1/M2) (with the exception of Eq. (5.13) all 

coefficients are estimates). Thus the induced scalar mass-squared is 
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g’ 
- . 
4n2 

The operator L*L induced by (2.151 sp lits the L-bosons from their 

fermionic partners but leaves the sea lar and pseudosca lar degenerate. 

w4 
-- 

rl2 
(2.19) 

Similarly the graph in Fig. 6 gives rise to the mass term Lt from the 

-*+.A 
operator (LLXX*)D. This operator gives equal and opposite contributions 

to the scalar and pseudoscalar (mass12. The magnitude is again given by 

(2.191. 

Fermion masses can also be generated. Consider the operator 

- 

ti i ?*1l, (2.20) 

which is produced by Fig. 7 with the coefficient (g3/4~21(1/tl). When X 

is set equal to p2B8 we obtain the effective operator 

g3 I2 
_I . - . ti i)F (2.21) 

4n2 tl 

which is supersymmetric. It produces both fermion and boson masses. 

Supersymmetry violating fer'mion masses are suppressed by additional 

powers of p,2/M2. (See however Section 3 for gaugino masses.) 

Soft supersymmetry violating interactions cubic in boson fields can 

also occur. The operator 

ti* i ic*il, (2.22) 

(see Fig. 81 yields the breaking 
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g3 P2 
-.-. (L* L)F 
4x2 M 

(2.23) 

which contains 

g3 lr2 
-.-. L* FL 

4n2 M 

Using the equation of motion for FL this becomes the sum of two' 

supersymmetry violating terms 

a L3 + b L2 

g' P2 
a+-.- ; b* 

- 4n2 M 

g3 P2 
-.- 
4n2 M 1 

2 

(2.25) 

Note that so far all the induced dimensional constraints have a common 

scale proportional to p2/M. This circumstance, if general, insures the 

stability of the hierarchy. However the present model does have an 

effect which ruins this stability. Consider Fig. 9, this graph induces 

wave function mixing of the Goldstino multiplet X with L through the 

supersymmetric operator 

With coefficient g2/4n2. It gives an effective operator 

g2 
- b2 FL 

4ll2 

(2.26) 

(2.271 
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This is a supersymmetric operator but it causes a shift of L by 

~(g~2/4~2)1'2 giving it a mass ~(g3p2/4n2)"2. It evidently destroys the 

two stage hierarchy. If other light fields couple to L they too would 

get masses of order p from (2.27) even if they are forbidden to directly 

mix with X. 

A similar, S.S. violating, effect is produced by the graph in Fig. 10 

which gives 

cl3 
- ti St i*>rJ (2.28) 

4lltrl 

The low energy effective operator is 

g3 K4 
-.- L .. (2.291 

4~r~ M 

This explicitly breaks low energy S.S. by an amount >> (~2/M)3. This 

effect will introduce S.S. violating throughout the low energy sector. 

(It is of course possible that this is the true scale of supersymmetry 

violation in the real world.) 

In realistic theories we can easily avoid this problem by not having 

neutral chiral fields which couple directly to the light sedtor. For 

example the light sector might consist of the minimal supersymmetric 

ex-tension of quarks, leptons, Higgs bosons and SU(3)xSU(2)WCl) gauge 

bosons. All light chiral multiplets are non-neutral under 
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SU(~)XSU(~)XU(~) and cannot mix with the Goldstino fie Ids, or par ticipate 

in the graph of Fig. 10. 

Thus far we have not considered graphs with internal i lines. 

Consider for example Fig. 11. Power counting reveals that the only 

significant contribution to this graph occurs when the internal lines 

carry R2 of order M2. When the momentum of an i line is of order M it is 

appropriate to treat it as part of the heavy sector which is integrated 

out. Thus Fig. 11 is essentially identical to Fig. 5 in its effects. 

Sometimes loop integrations involving c lines will diverge 

logarithmically when N + EQ. In this case significant contributions come 

both from R2 +. t-l2 and R2 << M2. For example see Fig. 12. Power counting 

shows that the left loop is of order . 

d4A 

s- 

(2.30) 

Lb 

for all R2 << M2. 

A convenient way to separate the low energy and high energy 

contributions is to subtract out the value of the right loop at zero 

external momentum. This is shown schematically in Fig. 13. The first 

pieces now behave like 

d4R 

s- 52 

(2.311 

and contributes only for R y M. This can be considered as part of the 
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integration of the large mass degrees of freedom. The second part 

involves only light lines and is logarithmically divergent. It is just 

il 

the contribution in the effective light theory of a previously computed 

S.S. breaking operator. This procedure can be generalized. The 

resulting logs can be treated by the usual renormalization group method. 

Power counting shows that the effective low energy theory has no 

quadratic divergences. The effective supersymmetry breaking operators we 

have found all on Girardello and Grisaru's list of soft breakings.lg The 

only logarithmic divergences of the low energy theory are supersymmetric 

wave function renormalization and renormalization of the effective 

supersymmetry violating interactions. 

- 

The models we have thus far considered have no particles with mass *v. . 

Generalizations can contain intermediate mass particles. In particular 

in Mitten's inverted hierarchy scheme15 particles of mass "1-1 couple 

directly to the light and heavy sectors but not to the supersymmetry 

breaking. These particles do not affect the above analysis. To see this 

first consider graphs with internal intermediate mass lines involving 

only i lines externally. These graphs are supersymmetric and by the GRS 

theorem only renormalize the wave functions of the low mass fields. 

Graphs which couple to external Fx are small as before. -For example 

consider the graph in Fig. 14 involving intermediate mass particles I. 

This makes a mass renormalization for L from the operator ($?Xii*c),. 

This graphs can be analyzed by the same method as Fig. 12. Its 

coefficient is of order 
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g6 
(2.32) 

(4Tr~I~rl~ 

Apart from the log this has the same order of magnitude as other two loop 

diagrams involving only heavy lines. The logs can again be summed with 

the renormalization group. 

Another mass term of order p that might be present (and generally is 

in inverted hierarchy models) is the mixing between the heavy and light 

fields: pii. Figure 15 gives rise to the supersymmetric mass term 

(pZOl) tCi) F. This is an F-term but is not forbidden by the GRS theorem 

because it is a tree level graph. Figure 16 induces g(y2/t12)(~~~)r which 

leads to the mass term g(~'+/M2)L2. This is the same mass term induced at 
. 

one loop in Fig. 6, but the coefficient here is larger unless the mixing 

is small. 

The mass term ugc could have been absorbed by a small redefinition 

6 and i. Then Fig. 16 appears explicitly in the Lagrangian as a smal 

CO(p2/M2)1 Yukawa coupling between the light fields and Goldstino fie 

of 

Id. 
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3. EXAMPLES WITH GAUGE FIELDS 

A simple model involving light gauge fields utilizes heavy adjoint 

fields 6, i and a singlet Goldstino field 2. The light fields are the 

gauge field 6 and some matter multiplets i in the fundamental and'i in 

the antifundamental. The superpotential is 

In addition the action involves the usual gauge couplings to the gauge 

bosons and fermions. The gauge coupling is denoted e. Our goal is a low 

energy theory containing the super-field-s 3, i, and I?. As before there 

will b_e soft explicit violations of supersymmetry. Much of the 

discussion is the same as Section 2. . 

In particular the scalar masses LL, LL* and the interaction LFS are 

induced with the same order of magnitude. The dangerous terms linear in 

c are now excluded by the unbroken gauge symmetry. If there were no 

direct couplings i?ii fas may be the case in left-right asymmetrical 

theories) scalar masses would still be generated by two loop graphs such 

as Fig. 17. The resulting order of magnitude of their masses is 

p2 e2g 
- . - (3.2) 

M 4TI2 

In this diagram the significant contribution occurs when all lines have 

momenta WM. Accordingly it is treated as part of the high energy 

integration. 
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A phenomenologically important question is the gaugino mass. Since 

this necessarily breaks S.S. it must proceed via heavy intermediaries as 

in Fig. 18. The resulting operator is 

e29 
- (i? i D B2 D $10 (3.3) 

4n2M 

where the D's inside parentheses denote covariant derivatives." 

Giving X its v.e.v. yields 

et9 P2 - . ----xx 
4n" M 

(3.4) 

Here X = gaugino field. However, careful inspection shows that the 

- 

actual coefficient of this graph is zero. In Append ix A we have proved 

that the one-loop contribution to gaugino masses van ishes'identically in 

a class of theories of this type. This is not so in theories with 

superheavy vectors - see Section 5. Two loop diagrams give gaugino 

masses of order 

Final ly if the low energy gauge group contains U(1) then the Fayet- 

Iliopoul OS D-term Vn can be induced. It is not produced directly as a 

e2g3 P2 
. - 

(4liZ12 M 

(3.5) 

counter-term in the supersymmetric Lagrangian. However the operator 

(D" k, ?* i,,‘ (3.6) 
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is not excluded by any general theorem. Giving 2 its v.e.v. yields 

with coefficient *teg2/4nZ)(~'+/M21. 

To summarize, we get the same general pattern here as in Section 2. 

Integrating out the heavy fields and replacing k with its v.e.v. leads to 

a variety of supersymmetric and nonsupersymmetric effective interactions. 

is always y2/M to a power, 

of the 1 ight singlet matter 

The coefficient of the effective interaction 

times coupling constants (except for the case 

field). 
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4. THE GOLOSTINO SECTOR 

The operators which induce supersymmetry breaking in the low energy 

theory also determine the couplings of the Goldstino. As an example 

consider the operator 

which was produced by Fig. 5. The term proportional to Fx"fFx gave a mass 

splitting 6mt u g'p+/4n2M2. The term proportional to Fxf3x is 

g4K2 Am2 
Jlx +'L L* * - Jlx 3L L* (4.2) 

4llzP-P IL2 

This is just what the Ward identities of broken supersymmetry require. 

-The coupling of the Goldstino 3x is proportional-to the effective 

supersymmetry violation Amz, and inversely proportional to the 

supersymmetry breaking v.e.v. Fx = p.2. 

It is interesting to consider also operators containing only X. The 

diagrams in Fig. 19 give rise to the operators 

9” 
(2% ic* 2 21, 

4rrtr12 

(4.3a> 

(4.3b) 

(4.3cl 

(4.3d) 
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Inserting the v.e.v. of Fx, (4.3a) becomes simply g21~"/4-rr2. It is a 

correction to the vacuum energy, The method used in this paper is easily 

applied to the calculation of the vacuum energy (effective potential) in 

these models. This will be published separately.20 

At Fx = ~2, ti*i??>~~ becomes p4X. It represents a shift of the scalar 

component of X. In the state which minimizes the effective potential, 

the coefficient of this operator must vanish. 

At tree level the Goldstino superfield k is massless. The Goldstino 

itself remains massless (ignoring gravity). The operators (4.3~) and 

(4.3d) give rise to 

- g4 P4 
- . - x* x (4.4) 
4n2 rl2 

and 

g4 IL4 
- . - x2 (4.5) 
4ll2 M2 

which are masses for the X scalars. They are of the same order as the 

masses in the low energy sector. 

In all examples so far, the Goldstino was part of a chiral superfield 

i. In Appendix B we briefly consider models in which S.S. is broken by a 

D-term, so that the Goldstino is part of a gauge multip1et.l" 
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5. THE INVERTED HIERARCHY 

Witten's inverted hierarchy modeli provides us with an &specially 

interesting example, in which the superheavy scale M is spontaneously 

induced by radiative effects. The particular example is due to 

Ginsparg2' and consists of an SU(2) gauge theory with gauge superfield V.=J 

(a = 1,2,3) coupled to adjoint chiral fields Ya and Bat and a singlet 2; 

the superpotential for the chiral fields is 

with 2g > X. The gauge interactions of the chiral fields are contained 

in the gauge invariant kinetic energy, 

where 0 is a matrix in the appropriate representation. 

The full scalar potential is minimized at 

<B3> 
= +-,, c J 

<B1,2> = 0 

29 
<Y3> = - - 

x 

<Y1,2> = 0 

x2 
I 1 

l/2 

1 VP <z> 

2g2 

(5.3) 

The expectation value of Z is undetermined at tree level. Following 

Witten we assume that quantum corrections produce a minimum at a value 
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<I> such that 

An ( <Z)/K 1 * l/g2 

which for small couplings makes <Z> many orders of magnitude larger than w. The nonvanishing auxiliary fields are 

f.12x2 
<Fz> = - 

2!3 
(5.4) X2 

[ 1 
l/2 

<Fy3> = - TL~X 1 - - 

2g2 

The supersymmetry is broken at order W. 

One linear combination of .? and ? a has a vanis.hing expectation value 
. 

for both scalar and auxiliary components - we call it fi: 

fi q ?3 case - i sin6 

where 

case = at492 - x21-"* 

The other linear combination 

7 = P3 sine + i c0se 

(5.5) 

(5.6) 

(3.7) 

has 

(5.8) 
l/2 

<FT> E f 
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The expectation value of Y a breaks the gauge symmetry to U(1) at the 

large scale M. To see the spectrum it is convenient to use a unitary 

gauge 
, 

A 

Y’ = f2 = 0 

and to shift away the scalar field expectation values 

(5.9) 

(5.10) 

The superpotential becomes 

g c0se E-i - if + gM c0se s-i? 

+ Xl.r. c0se i2t3 - g sine 6i-t (5.11) 

This has the same general form as the superpotentials studied in previous 

sections. The important piece from the kinetic Lagrangian is that for 

the large fields Z and Yo. In terms of the new fields it is 
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( I 2 c0se - 6 sine + M case 12 

f tee9133 1 2 sin e -+ CJ c0se + M sine 12 }s 

= 
( $*i + O*ij + 2r12 e2 sin20 (GT2 + tz2) )o 

+ interactions (5.121 

Here 6 is in the adjoint representation: 

(bbc = - Zi?, Eabc (5.13) 

The only supersymmetry breaking expectation value is Fx. From (5.111, 

(5.12)_and (5.131 we see that all vertices involving 2 also include $1, 

A 
v2, or Z. These fields are all superheavy. Thus, to bridge between the 

. 

supersymmetry breaking and the light fields always requires intermediate 

states with superheavy fields. This comes about because the auxiliary 

field expectation value and the undetermined scalar expectation value 

were in the same superfield ?. This is a fairly general property of 

O'Raifertaigh supersymmetry breaking. 

This model does contain a light neutral field 6 which can mix with ?. 

This is not dangerous because fi couples to the other light fields only 

through superheavies. 

The light sector in this model consists of the light matter field i 

and the unbroken Abelian gauge field $3. The L scalars get supersymmetry 

breaking masses from graphs mediated by heavy vector fields such as 

Fig. 20. This induces 
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e4 

(i-n i k* k,, 

4n2(eM sinBIt 

(5.14) 

The photinos can get mass from loops of heavy gauge and heavy i 

fields, as shown in Figs. 21 and 22. These graphs have been calculated 

in the supersymmetric Ry gauge of Ref. 22. The photino mass is 

2e2f * 

[ I 
ezfZ 

+ 

8-rr2 M gauge loop I 1 

etf2 I 
I- =- 

8ll2f-l t loop Sn2M 

and the sort of cancellation found in Appendix A does not quite occur. 

This mass can also be obtained from a Tow energy theorem for 

spontaneously broken R-symmetry.zo - 
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6. CONCLUSIONS 

What we have shown in this paper is that a class of model exists in 

which supersymmetry is broken at a scale p intermediate between a 

superheavy mass t-l and a light scale ~2/fl. The breaking of S.S. manifests 

itself in the light world through explicit violations with a strength 

characteristic of the light scale. Most of the machinery of the 

supersymmetry breaking mechanism is hidden at the superheavy scale. I n 

practice, this suggests a phenomenological explicitly softly broken low 

energy theory, which could contain nothing more than the quarks, leptons, 

SU(31XSU(2)XU(l) gauge fields, and two Higgs double,ts, plus their 

supersymmetric partners. Explicit masses of order pz/M would be: 

1. Supersymmetric mass terms for the Higgs doublets. 

2. Supersymmetry violating gaugino mass. 
. 

3. Supersymmetry violating scalar masses. 

The only supersymmetry violating interactian is a trilinear scalar 

interactions from CCsil~. Curiously, the constraints on the explicit 

breakings are the same as in Ref. 19. 

To calculate the actual value of the S.S. violating parameters 

requires a detailed knowledge of the superheavy sector, perhaps including 

gravity. Exchange of gravitons and gravitinos of momentum near the 

Planck scale should induce the same operators we have discussed with M, 

in place of the superheavy scale. Unless the superheavy scale is 

significantly smaller than M,, gravity cannot be ignored. In fact, if 

all other interactions connecting the Goldstino to normal matter were 

turned off or made very small, gravity would still connect the .two. 
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Indeed, one definite effect of gravity is to combine the Goldstino and 

the gravitino into a spin 312 particle of mass 14~r/3)"~ 1~.*/Plr.'~ 

The fact that the Goldstino and its scalar partners are massive has 

cosmological implications, as noted by Weinbergzb and Hung and Suzuki.25 

Assuming that they are in thermal equilibrium in the early universe, they 

would dominate the mass of the universe at helium synthesis temperatures 

unless they had already decayed. This gives a lower bound on the S.S. 

breaking scale of ~10" GeV, consistent with our S.S. breaking scale. 
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APPENDIX A 

THE ONE LOOP GAUGINO MASS 

Consider a Lagrangian of the form 

?(ijEijgij - IJ.‘) + Mij$ihj + 2Nijiitj + Pijtitj (A.11 

where ii and Ei are a collection of chiral fields (i = l,...,n). For 

convenience we take them all in a real representation of the gauge group 

G - the argument is trivially extended to arbitrary representations. The 

condition-for S.S. to be broken is 

Pij = 0 ; N-* 13 nonsingular 

The mass matrix then has the form 

(A.21 

. 

= PI 

/ 

(A.31 

The coupling matrix of the Goldstino field to i and t is 

Let X be a matrix which diagonalizes M and define 
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X M %-' = M' , diagonal 

x G 2“ = C’ 

ino mass graph, Fig. 18, the 

imensional analysis the tota 

In the one loop glu 

always diagonal. BY d 

c G' i j 

i 

1 

- = Tr E G' tM')-l 1 
M'i 

= TrCGffW1l 

gauge vertices 

1 contribution 

From CA.31 it follows that 

M-1 = 

(A.51 

CA.G) 

are 

is 

I 
0 (N+)-’ 

I 

1 

I 
N-1 -N-l MCN+)-’ 

I 

(A.71 

Y 

. 

(A.81 

, 

and from (A.81 and CA.41 we see that (A.71 vanishes. 

This cancellation is curious. It takes place only at zero gluino 

momentum, and the condition that it take place is precisely the 

condition, (A-21, that supersymmetry be broken. In general it appears to 

be accidental (though for a special case, see Ref. 20) and we know of no 

reason for the two loop graph to vanish. In the case tha.t some 

eigenvalues of N are small (order ~1, some mass eigenvalues are order 

~12.Ql. The cancellation then appears after adding the effect of the light 

loops to the effective opera,tors from the heavy loops. 
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APPENDIX B 

SUPERSYMMETRY GREAKING BY D-TERMS 

In this Appendix we consider some general features of models in which 

the S.S. breaking at scale b is due to the Fayet-Iliopoulos mechahism.16 

A toy model has a lou energy gauge symmetry G and an additional U(1)' 

gauge symmetry, with superfields $a and $t and couplings e and e' 

respectively. There are heavy matter superfields 6, with 

IG representation, U(l)' charge) = (R,+l), and C, with (ii,-11, and light 

superfields L with (t-,0) and K with (F,O). The Lagrangian consists of 

the usual-kinetic terms with minimal coupling, plus 

A.. 6 
/ ll(BC)r + MtB*i*>r* + p2(?')o (8.1) 

The last term is the Fayet-Iliopoulos D-term for the U(1)' gauge . 

symmetry. The auxiliary fields for 3', 6, and C are given by 

D’ = -~2 - e’(BSB - C+tC) 

Fs* = - NC (8.2) 

Fc* = - MB 

These cannot all vanish. For CL << M, the scalar potential is minimized 

atB=C = 0, and the only S.S. breaking v.e.v. is D' = -p2. The gauge 

symmetries are unbroken (we assume L = K = 0, since this is undetermined 

at tree level). Because the U(1) gauge invariance is unbroken, , 

effective operators must be gauge invariant. Since all light fields are 

neutral under U(l)', the effective operators can only depend on the field 
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strength 

(8.3) 

The light gauge and matter fields couple to 0' only through the heavy 

fields 6 and ?. The graph in Fig. 23 induces 

e2 e’2 
(i;laa illa iida i?‘b), (8.4) 

4tl2 M' 

Inserting (8.3) this becomes a supersymmetry violating wave function 

renormaliiation, with negligible dimensionless coefficient of order 

(l.r/M14. The operator Cfiaa fiaa k'o fi'olr, which leads to a gauge fermion 

mass, is excluded by an R invariance. If additional fields are added to 

break the R invariance, a two loop gaugino tnass of order 

g2 e2 ef2 p4 
_ - 

(4ll2)Z M" 

can be produced. 

(8.5) 

The light matter superfields couple to the supersymmetry breaking only 

at two loops, through light gauge bosons. Direct coupling of the light 

matter fields to 6 or 5 is absent in this model, because it would restore 

unbroken supersymmetry. Figure 24 gives rise to the operator 

which, using (5.31, becomes a light scalar mass of order 
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e2 e’2 P4 
- . - 

4Tr2 t-l3 

(8.7) 

The masses (8.5) and (8.7) are much smaller, for given p and M, than 

those found in models with O'Raifearta igh break ing. The S.S. breaking 

scale b can be much closer to M than in those models. 

Other effective breakings can be induced if fields are added to,break 

the R-symmetries of this model. The coefficients depend on how this is 

done, but they are generally comparable to (6.4)-(8.7). One interesting 

operator,'which can occur if there is a light field ca in the adjoint 

representation of G, is (hat tia" ia)F 

(6’ Claa La) = .. (5.8) 

It gives a Dirac mass, mixing the light gauge and matter fermions, plus a 

mixing between matter scalar and gauge auxiliary fields. Power counting 

and spurion analysis19 shows that it is soft in the sense of Girardello 

and Grisaru, whereas the two pieces XJ, and DL are separately hard. 

Actually if G has a U(l) factor, there is one more operator which 

dwarfs all other effects. The graph of Fig. 25 gives 

et I-t2 er2 

a’ &IF + II (B.9) 

4Tf2 4Tr2 

which is a Fayet-Iliopoulos term for the low energy U(l), with large 

coefficient. Such a large D term for ordinary hypercharge is not 



acceptab e. To make a realistic model one has to imbed hypercharge in a 

semisimp e group at low energy> or exclude the operator (8.9) by a 
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symmetry. 

The small size of (B.4)- (8.7 1 came about because UC1 1' gauge 

invariance forced the effective operators to be of high dimension. More 

general models could be built if the U(1)' gauge invariance had been 

broken at the large scale M. Is it possible for the D term of a gauge 

symmetry broken at scale M to break the supersymmetry by the Fayet- 

Iliopoulos mechanism at a much smaller scale? No, it is not. The tree 

level vacuum minimizes the energy 

- 
E = CFi*Fi (B.10) 

The energy is stationary under all variations, including the complex 

extension of the gauge group,22 

G9i = ga Tija 9j (without the usual i) (5.111 

under which 

Sa Fi = ga Tija #+j 

E;a Db = _ (Mi!)ab + iga fabc DC 

(8.12) 

where (M2Jab is precisely the vector boson mass matrix. Going to a basis 

in which CM21 is diagonal, GaE(fi,Db) = 0 implies 

1 Fi" Tija Fj 

i,j 
()a = 2ga 

(Ma)2 

(8.13) 
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Since the total energy density is O(ph), F; ( ~2, and for heavy gauge 

fields 

w4 
0” 1 - << !Az (6.14) 

PlZ 

and the S.S. breaking must be due to some other auxiliary field. This 

satisfies our intuition that all components of a multiplet of mass M, 

including the auxiliary, should decouple from the physics at much lower 

scales.26 

The model of Ref. 11 is not a counterexample to this. There, the 

D term-of a U(l) broken at high energy has a v.e.v. of order 1 TeV. As 

pointed out in Ref. 11, though, there is also an -auxiliary field, F 

RC' 

with an intermediate v.e.v.. This is an interesting variation on our 

models. The most direct connection between RC and the low energy world 

is exchange of a single heavy gauge boson. Inserting the v.e.v. for 

F , this becomes a II term for the heavy U(l), 

l?= 
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FIGURE CAPTIONS 

Fig. 1. Renormalization of the Higgs boson mass. 

Fig. 2. Graph contributing to the mass of the L scalar. The X 

represents the order v2 splitting of the B multiplet. 

Fig. 3. Another graph contribution to the mass of the L scalar. 

Fig. 4. Supergraph containing Figs. 2 and 3. 

Fig. 5. Supergraph inducing Cc++ i ?* 210. 

Fig. 6. Supergraph inducing ti i i+ 21~. 

Fig. 7. Supergraph inducing ti i 2s)~. 

Fig. 8. Supergraph inducing ti* i ~X)D. 

Fig. 9. Supergraph inducing ti i*)o. - 

Fig. 10. Supergraph inducing ti 2% i>o. 
._ 

Fig. 11. Supergraph with a light internal line. 

Fig. 12. Two loop supergraph with light internal lines. 

Fig. 13. Decomposition of graph of Fig. 12 into a high energy piece and 

a low energy piece. The heavy circle represents the value of 

the right, heavy, loop at zero external momentum. 

Fig. 14. Super-graph with intermediate mass lines which are designated I. 

Fig. 15. Supergraph inducing tC i)~. The small circle is the mass term 

pili. 

Fig. 16. Supergraph inducing ti i 2)~. 

Fig. 17. Supergraph inducing ti* c 2% i()o via gauge lines. 

Fig. 18. Supergraph inducing tka CJa 21,. This is shown to vanish in 

Appendix A. 
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Fig. 19. Supergraphs inducing operators involving ? only: 

(a) The operator ti* ?)a. 

(b) The operator t?* 2 ?)a. 

Cc) The operator ti+ ?* 2 21,. 

Cd) The operator C?* 2 f? 21,. 

Fig. 20. Supergraph inducing Cc* i g* 210 via heavy gauge bosons. 

Fig. 21. Supergraph inducing (hoa Gsa 2)~ via heavy gauge loop. 

Fig. 22. Supergraph inducing (i?oa Ijoa i)r via heavy matter loop. 

Fig. 23. Supergraph inducing (Gas k’a d&” fir/3)a. 

Fig. 24. Supergraph inducing CC* i GJa CJ’c fi’, 61i)a. 

Fig. 25. Supergraph inducing tka i’a). 
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