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Breaking of time reversal invariance in nonlinear acoustics
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Time-reversal invariance of nonlinear acoustic wave propagation is experimentally investigated. Reversibil-
ity is studied for propagation shorter or longer than shock formation distance. In the first case, time-reversal
invariance holds and a sinusoid distorted by nonlinearities during forward propagation progressively recovers
its initial shape after the time-reversal operation. In the second case, reversibility is broken locally at the shock
front as a time-reversal operation transforms a stable compression shock into an unstable expansion shock.
Achieving experimentally the time-reversal process with a time-reversal mirror made of reversible piezoelec-
tric transducers for very broadband signals, would require transducers with huge bandwidths. To date, such
transducers remain unavailable. In order to overcome this technical limitation, we restricted ourselves in this
study to one-dimensiondlD) propagation, for which an experimental ersatz of a time-reversal mirror can be
used. Indeed, in a 1D case, the time-reversal operation applied on a plane wave can be mimicked for an
antisymmetric wave form by a reflection of the plane wave onto a pressure-release interface.
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[. INTRODUCTION cents, while piezoelectric transducers used in time reversal
mirrors have too narrow bandwidths even to transmit back
This paper presents experimental results about the reverte second harmonic properly. In order to overcome this
ibility of acoustic wave propagation in the nonlinear regime.technical difficulty, we have to restrict ourselves in this pa-
In the linear approximation, it is well known that the time- Per to a one-dimensiondlD) geometry, for which an ex-
reversal invariance holds for wave propagation in losslesperimental ersatz of a time reversal mirror can be used. As
media. Advanced and retarded potential are both solutions ¢fxplained in the third section, this ersatz is based on the fact
the wave equation_ In the |Ow-power regime, time-reversathat a time-reversal operation for a plane wave is identical to
mirrors made of arrays of reversible piezoelectric transducerd Sign change for an antisymmetric wave form. This last
are used to switch from one solution to the othE} This  Operation can be easily achieved experimentally by a reflec-
process is very robust and handles even multiple-scatteringPn of the plane wave onto a pressure release interface.
medium[2]. For stronger wave amplitudes, nonlinear effects In that case, the wave propagation can be described by the
can no longer be ignored. However, ideal-fluid equations reinviscid Burgers’ equation for an ideal fluidee Ref[3] for
main time-reversal invariant. Hence, for a sinusoidal wave@ review. Thermoviscous absorption can be neglected as the
even if energy is transferred to the harmonic components bgcoustic Reynoldéor Gol'dberg number Re=1/aLs, where
nonlinearities during forward propagation, the reversibility Ls is the shock distance andthe absorption coefficient, is
ensures that, after time reversal, the signal will recover itgnuch greater than one. After a theoretical discussion, we
initial shape at the fundamental frequency. However, thigresent experimental results and compare them to a numeri-
property holds only as long as the shock formation distanc€al simulation of the Burgers equation with a shock captur-
is not reached. For longer propagation, the irreversible losg numerical algorithnj4].
of energy that occurs at the shock will break the time-
reversal invariance. After time reversal, a compression shock Il. BURGERS’ EQUATION AND REVERSIBILITY
will be transformed into an unstable expansion shock, that FOR A PLANE WAVE (THE 1D MODEL )

violates the requirement of entropy increase through the . . .
. . ; The nonlinear 1D acoustic equations of mass and momen-
shock and that will evolve as an expansion fan during re-

. tum conservation write for an ideal fluid:
verse propagation.

The purpose of this paper is to propose an experimental ap I ap
check of the dependence of time-reversal invariance on the E+p5+ V&=0, (1)
amplitude of the emitted wave. However, carrying out a
time-reversal experiment in the nonlinear regime is made a o av\ ap
near impossible task by the spreading of energy onto the p(—+v—> +—=0, (2
harmonics. Indeed, the time-reversal operation would require ot x| IX

devices with very large bandwidthseveral hundred per- wherew, p, andp are, respectively, the velocity, the density,

and the pressure. For an ideal fluid, entropy remains con-

_ _ stant, hence, the equation of state writes:
*Corresponding author. FAX: 33-140-794-468; Email address:
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wherec(p) is the local speed of sound. In these conditions
the exact solution of Euler's equations was found by Rie
mann in 1860 3]. He derived a solution by introducing the
Riemann invariants:

(o R+v 4
= (43
_Rv 4b
g_ 2 ’ ( )
with
p dp
rio)=["etp) L, )
Po P
so that Egs(1) and(2) can be rewritten as
of of . 5
=i Tlelp) +vl—= =0, (6)
J9 9
— e vl =o0. @)
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FIG. 1. A time-reversal experiment for a one-dimensional non-
linear propagation. The signgi(t) received at positionx=X, is
time reversedp(T—t)] and reemitted towards<O.

In a frame of coordinates moving with velocity, these
two equations can be transformed into the inviscid Burgers’
equation.

Equations(9) and (10) generalize to nonlinear acoustics
the factorization of the second-order linear wave equation
into two first-order one-way equations. The main difference
is that, in nonlinear acoustics, the actual sound velocijty

These two equations describe propagation, respectively: v depends on the instantaneous value of the acoustic

towardsx>0 with velocity c+ » and towardx<0 with ve-
locity c—v.

field. The different parts of the wave form propagate at
slightly different velocities, thus leading to the distortion of

As propagation is nonlinear, these two disturbances interthe wave profile with a steepening of ascending parts of the
act with one another by modifying the local speed of soundvave profile and a flattening of descending ones. This pro-

so that Eqs.(6) and (7) are coupled. However, if there is
initially no wave propagating towards<0 [g(x,0)=0], it
remains so all the time; hencB=v andf=v.

Expanding the speed of sound up to order 1 in the Mach
number,M = v/c, and using the impedance relation between

velocity and acoustical density fluctuatioms= =dp/pqcg
(+ for forward propagation~ for backward propagation
yields

2Av+0(M),

8

C(p)=co+

where B/A is the nonlinearity parameté¢8] (=5 in wate)
andc, the speed of sound at equilibrium. The magnitude o

the acoustic perturbation is measured by the Mach number

that remains very small, less thanf0in our water experi-
ment and in most situations, ensuring the validity of this
approximation.

Introducing Eq.(8), Eq. (6) becomes:

P et By L =0 9
Ty (Co 5”)& \ 9

where B=B/2A+1. Similarly, considering only waves
propagation towardg<0, yields:

0.

2% v
_E—’_(CO_EV)& (10)

{

cess results in discontinuity or shock formation at a distance
equal(for a sinusoidal waveto

1
L= Em (11
wherek is the wave number.

For propagation distances longer tHayy Burgers’ equa-
tion is insufficient to determine the position of shocks and
must be complemented by the so-called “equal area rule,”
which is the low-amplitude approximation of Rankine-
Hugoniot relations for shock waves. This point will be ad-
dressed later. In this first section, let us examine time-
eversal invariance of nonlinear wave propagation before
aching the shock distance.

A time-reversal operation in a one-dimensional configu-
ration is described in Fig. 1. The forward propagation is
described by EQq(9), v(x,t) is measured at some position
X=X, smaller than the shock distance, and its time depen-
dence is recorded. After some delfgnsuring causality, the
record is played backward generating a wave propagating
towardsx<<0. The evolution of this time-reversed wave is
now described by Eq10) with the new boundary condition

at Xo: g(t)=—»(T—1). It is immediate to check that, if
v(x,t) is a solution of Eq(9) then— »(x,T—1) is a solution

of Eqg. (10). Hence, the time-reversal invariance holds even
in a nonlinear regime. The change of sign comes from the
fact thatv(t) is a first-order time derivative of the displace-
ment(a “flux” quantity in thermodynamics termsIn prac-

re
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o . FIG. 3. Computed signal received onto the array when the digi-
FIG. 2. A pointlike source scans the plaRegenerating for each tized plane source transmits a wave packet.

location a diverging spherical wave that is received and stored on

each transducer of the array. This procedure simulates a digitize\g,ave with an amplitude up to 5 Atm can be generated. For
plane source of equivalent aperture. such a wave, the shock distance is 0.3 m.

The second step consists of achieving a time reversal of
tice, pressure is more usually recorded than velocity. Thehe synthesized plane wave. Unfortunately, achieving experi-
impedance relation betwegnand v, which are in phase for mentally a time-reversal operation by the use of an another
forward propagation and antiphase for backward propagaime-reversal mirrofTRM) would require devices with very
tion, implies that, on the contrary, during a time-reversalarge bandwidthgto re-emit the harmonics resulting from
experiment,p(t) is transformed inp(T—t) (pressure is an  sjgnal distortion during forward propagatiprwhile piezo-
“affinity” quantity in thermodynamics terms electric transducers used in our TRMs have too narrow band-

Time-reversal invariance is illustrated by Fig. 1: during widths even to transmit back the second harmonic properly.
forward propagation, overpressures propagate faster than uip overcome this problem, the proposed trick is to remark
derpreSSUreS and the Signal distorts. After a time-reversal O@hat, for 1D pr0b|ems and for an antisymmetric wave packet
eration, overpressures are now back emitted in late compare{g,(_t) =—p(t)], a time reversalp(—t)] is identical to a
to underpressures, a delay that will be progressively made ugflection onto a pressure release interfae(t)] (Fig. 5).
during backward propagation by their highest velocity. TheThjs trick is valid in the nonlinear regime because nonlinear
signal will progressively undistort and finally recover its ini- propagation keeps the antisymmetry of a signal. Nonetheless,
tial sinusoidal shape. this trick does not allow us to re-emit the time-reversed sig-

nal with a time-delayT, so that incident and reflected waves
Il EXPERIMENTAL SETUP will interact clqse to th'e interface. However, it is We[l known
that nonlinear interaction between counterpropagating acous-

To realize this scheme experimentally, the first step contic waves are not cumulative. Hence, they remain very small
sists in synthesizing a wave as plane as possible along ttompared to the large distortions obtained by the self inter-
mirror aperture. This is achieved by working in the near fieldaction of one-way waves.
of a plane piston. Thus, the wave remains collimated and
diffraction effects are reduced. This piston is made up of an
array of 61 transducers working at a central frequency of 1
MHz and immersed in water. Transducers—8 mm diameter
disks—are set up with a 10 mm step on an hexagonal pattern
(Fig. 2). This arrangement gives a total apertire-0.09 m
resulting in a Fresnel distance BP4\=1.2m. Each trans-
ducer is wired to an electronic channel with its own pro-
grammable transmitter, an 8-bits dynamics and a 30-MHz 20 20
sampling rate, providing complete control of the amplitude Y (mm) X (mm)
and time dependence of the signals.

A plane wave is synthesized by scanning a control plane
(in practice, the plane of time reversalith a point source at
numerous positions, collecting on each transducer of the

Pressure (bar)

emitting array the corresponding respons$Egy. 2). Sum- Eo A
ming the contributions from all source positions, a set of 61 T
signals is computedFig. 3). This step of the procedure is 6&‘_’-2

linear as the point source is very weak. Time reversing these
61 signals and using them to drive the transducers generates
an almost plane wave front in the control plane, as controlled
experimentally on the phag€&ig. 4). This procedure mini-
mizes diffraction effects, for instance, the amplitude distri- FIG. 4. Spatial distribution of amplitude and phase in plBre

bution of the sources in the control plane is apodized in ordethe wave front generated by transmitting signals of Fig. 3 after time
to decrease edge waves effects. In this configuration, a planeversal.

0

20 x (mm)

Y (mm) 20 ‘
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FIG. 5. The time-reversed version of an antisymmetric time sig-
nal is equivalent to its opposite: The time-reversal operation can be
mimicked by a reflection onto a water-air interfaceflection coef- 0 0.5 1 15
ficientr=—1). Time (ps)

Pressure (atm)
L o
..“mm‘""ﬁ"‘-._ s
S

T btai | flecti MV FIG. 7. Time dependence of the pressure in atmosphere for a
0 obtain pressure-release reflection, a 8- Mylar zoom of the wave packet at mid distanze; — 0.4 m solid line, and

sheet is stretch_ec! on a hollow _cylindricz_il She"_ in order tf)close to the pressure release interface,— 0.02 m dashed line. Top
make a water-air interface. A thin sheet is required to avoidigre  experiment; bottom figure, the one-dimensional numerical

any filtering even for the higher harmonics. The interface issimulation of the Burgers equation.
set in the plang=0.8 m away from the arragFig. 6).

(Fig. 8 and close to the emitting arrag= +0.8 m (Fig. 9).
IV. REVERSIBILITY OF A SIMPLE WAVE Both figures compare the measured signals during the for-
i o , ward (solid line and backward propagatiofdashed ling
. First of all, reversibility is checkedlln the case of a shockpq, this comparison, backward signals have been changed in
distance of 1.1 n{1.7 Atm wave amplitude larger than the  air opposite(as signals here are antisymmelritt clearly
propagation distance array-Mylar sheet. Figure 7 presentgsnears on the figure that the forward and backward signals

measurements of the pressure wave forms at two locationg hoth |ocations almost perfectly superpose: time-reversal

along the axisz:z=-—0.4m (solid ling) and z=-0.02mM  jyyariance is satisfied, the nonlinear distortion of the wave
(dashed ling Distances are measured from the water-air in-profile has been balanced by time reversal. It is especially

terface and are noted negative/positive for forward/backwargpectacu|ar near the emitting array, where the backward sig-

propagation. One can observe the nonlinear steepening of thgy| has perfectly recovered its initial sinusoidal shape. The
profile during forward propagation. The experimental signals,ansfer of energy from the fundamental to the harmonics
are compared_to a nl_ngricaI §imglation_of the inviscid 1Dduring forward propagation has been completely reversed
Burgers equation. This simulation is achieved by the use ofjring backward propagation. The phenomenon of nonlinear
the hybrid finite differences scheme of MacDonald and Am-gistortion healing by a pressure-release interface was ob-
brosiano[4]. It combines a second-order finite differencesggpeq previously5] and has been used to delay nonlinear

scheme when the signal is smooth with a one-sided, firstyitenyatior{6] but, to our knowledge, has never been linked
order scheme that prevents artificial dispersive ripples to apy, the time-reversal invariance.

pear near sharp gradients while ensuring monotonicity.
Clearly, the Burgers equation reproduces the measured dis-
tortion of the wave profiles as the signal propagates further.
Time-reversal invariance means that, at each position, the
time wave forms during forward and backward propagation
are the time reversal of one another. We check this property
experimentally for two depths: at mid distan@es =0.4 m

It is to be noted that, to get a perfect superposition of

-

Pressure (atm)
o

'
=y

Py

Pressure (atm)
o

[
Y

Air

FIG. 8. Comparison of pressure dependence at mid dist@nce
L=08m =—0.4m solid line, andz=+0.4 m dashed line Signals corre-
sponding to backward propagation have been multiplied-tyin
FIG. 6. Experimental setup. A transducer array radiates a quasrder to allow exact comparison. Top figure, experimental results;
siplane wave. A bilaminar hydrophone records the signal receivetottom figure, numerical results. In experimental results, the dashed
at locationz,. The plane wave is reflected on a plane water-aircurve has been multiplied by 1.15 to compensate for diffraction
interface and back propagates towards the initially emitting array. spreading.
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be neglected anymore. The two parts of the wave profile on
each side of the shock are indeed connected by a very rapid
but continuous transition. This tiny shock structure realizes a
dynamical balance between dissipative smoothening and
nonlinear steepening. For thermoviscous absorption, this
shock structure is described by the Taylor's shock structure
[8] (a hyperbolic tangent However, the position of the
shock and the energy loss through it, can be described inde-
pendently of the physical mechanism of energy absorption
(provided this last one is small enoygfhis explains why
numerical simulationgthat introduce artificial numerical dis-
sipation to stabilize solutions at the discontinlity experi-
mental measurementshat introduce additional attenuation
FIG. 9. Comparison of pressure dependence at the beginning éfue to the hydrophone filtering of high frequengiegver-
the forward propagatiofz= —0.8 m solid lin@, and at the end of theless reproduce the shock positions and amplitude.
the backward propagatioz= + 0.8 m dashed line Signals corre- Time reversing a compression shock leads to an expan-
sponding to backward propagation have been multiplied-lyin ~ sion shock that violates the second principle and will there-
order to allow exact comparison. Top figure, experimental resultsfore be unstable. Solving the inviscid Burgers equation with
bottom figure, numerical results. In the experimental results, thean initial expansion shock, the method of characteristics
dashed curve has been multiplied by 1.75 to compensate for diffracshows two diverging characteristics emanating from each
tion spreading. side of the shock(because the overpressure part already

. ) ahead propagates fastand leaving a “blank” in between.
forward and backward signals, the amplitudes of these lasfpis plank is filled up by a centered expansion fan of char-
ones had to be enhanced to compensate for diffractioBcteristics, so that the two diverging parts of the initial dis-
spreading. However, this compensation factor has beeEontinuity are connected by a straight lifg§. This situation
checked experimentally to fit the amplitude decrease due tg analogous to the centered Prandtl-Meyer fan for a super-
linear diffraction acoustics when the emitted signal is muchsgnic flow around a sharp corner. Therefore, for an initially
v_veaker.. Therefore, it is related only to pure, .Ilnear diffrac-jnhusoidal wave propagating longer than the shock distance,
tion. This means that, t.hough our experlment IS_nOt perfectlype “signature” of the breaking of time-reversal invariance
1D due_ to the finite size of the emitter, our tlme-re\_/ersalby irreversible shocks will be, after backward propagation,
ersatz is very robust and ensures an almost perfect time reyis expansion fan that will persist and never coincide with

Py

[
-

Pressure (atm)
o

-

Pressure (atm)
o

1
jry

' i ;
0 0.5 1 1.5 2 25 3
Time (us)

versal, independently of any diffraction effect. any part of the initial signal. If taking into account dissipa-
tion, this instability can be explained in other words by the
V. IRREVERSIBILITY OF A SHOCK WAVE fact that now dissipation and nonlinear distortion act concur-

For a propagation distance longer thag, the overpres- rently for an expansion shock, instead of counterbalancing

sures that propagate faster overtake the underpressures, Ie‘fi%{"?ocgrl%fstﬁgnbfggzﬁ of time-reversal invariance. the
ing to an unphysical multivalued wave profile. To recover 4same experiment as desgribed reviously is re roducéd but
physically acceptable solution, a discontinuity, or shock P P y P ’

wave, must be introduced that skips the multivalued part Oﬂios\f[\;:; Sfmo't;e?n iTngllltéert?];i fhg‘tr?(’) raesglit(l)nng dlir;t:nizoszl'lile
the profile. The position of this shock is determined accord- ' bropag X

ing to Rankine-Hugoniot relationg3,7], that express the steepening is now much faster, and sharp shocks are formed

principles of mass, momentum, and energy conservatio?’?'herl the wave impinges on the water-air interfgesg. 10,

through the shock. Also, Rankine-Hugoniot relations stategﬁ(r)ncﬁ)(agg :)outF IgéZchr:gir?Ignir?st Lrgg dl:garggs;m;g?; shape
that, according to the second principle of thermodynamics; gp P P

: . whereas, at the end of forward propagatidashed ling a
the entropy must increase through the shock: shape close to a sawtooth profile is obtained.

s,—5,=0. (12 The numerical simulations show a good agreement com-
pared to the experimental signals. The little differences be-
Therefore, even in an ideal fluid, shock formation is antween simulation and experiment are only due to diffraction
irreversible process that breaks the time-reversal invarianceffects that are of course not taken into account in the 1D
For small amplitude acoustic waves, Rankine-Hugoniot relanumerical scheme, and which are known to produce the
tions can be approximated by the “equal area rule,” accordslight asymmetry of the signal with enhanced peaks.
ing to which the two lobes of the multivalued solution  Breaking of time-reversal invariance is illustrated by Figs.
skipped by the shock must be of equal areas. Entropy inil and 12 where forward and backward time wave forms are
equality also implies that only compression shocks are thereompared at the same location at mid distarme 0.4 m
modynamically acceptablgor fluids such tha{3=0). (Fig. 11) and near the emitting arrag=+0.8 m (Fig. 12.
Of course, an abrupt shock is only a mathematical idealiThe samecorrection factors as for the previous case have
zation of physical reality. Shock waves correspond to regiondeen used to compensate for diffraction spreading. Com-
of sharp gradients where thermoviscous dissipation canngdared to the moderate amplitude case for which shock dis-
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FIG. 10. Time dependence of the pressure in atmosphere at mid FIG. 12. Comparison of pressure dependence at the beginning
distance,z=—0.4 m solid line, and close to the pressure releaseof forward propagation and at the end of backward propagdtion
interface,z= —0.02 m dashed line. Top figure, experiment; bottom = —0.8 m solid line, andz=+ 0.8 m dashed line Signals corre-
figure, numerical simulation. sponding to backward propagation have been multiplied-tyin

order to allow exact comparison. Top figure, experimental results;
bottom figure, numerical results. In the experimental results, the
tance was not reached and superposition was almost perfedashed curve has again been multiplied by the 1.75 factor compen-
(Figs. 8 and 9 the profiles are now far from superposing onesating for linear diffraction spreading.
another. It is clear in Fig. 11 that the forward shock waves
have been time reversed into backward expansion fans that

do not superpose at afheither in amplitude or slopea  the wave profiles that have not undergone irreversible shocks

proof that the breaking of time-reversal invariance is due tqecoyer almost perfectly their initial shape, both for experi-
the reversal of stable compression shocks into unstable eXsental and numerical simulations.

pansion shocks. On the contrary, the other parts of the wave
profile that have not sustained irreversible losses perfectly
superpose on numerical simulations. This superposition is
not so perfect on experimental measurements due to the dif-
fraction asymmetry of the profile@ositive overpressure on A time-reversal experiment has been carried out in non-
the descending partbut remains obvious on a significant |inear acoustics. To overcome the impossibility of realizing a
part of the wave forms. _ time-reversal mirror with a sufficient band-width, an ersatz
The same conclusions can be drawn from Fig.(d2m-  paq peen used at one dimension by noting that, for antisym-

Smetric wave forms, time reversal is equivalent to reflection

straight line resulting to the timg reversal of the_shpck WaVeHnto a pressure-release interface. This experiment has been
do not superpose to the ascending parts of the incident S|gnFP
i

; . . onducted in a weakly viscous medium for which classic
that lead to shock formation, while the descending parts of. o -
near attenuation is negligible at the fundamental frequency.

Up to the shock formation, the reversibility holds and the
A I Ny energy stored in the harmonics components returns to the
k ’ k 3 fundamental after the time reversal. Hence, a simple wave
distorts as it travels towards the reflector and undistorts
thereafter. The perfect superposition of incident and reflected
wave profiles has been checked experimentally. On the con-
trary, the wave undergoes an irreversible alteration when a
shock is formed, always implying dissipation and thus break-
ing the time-reversal invariance. Time reversal changes
shocks into expansion shocks that are unstable because dis-
; sipation and nonlinearity work together to smooth it. During
15 backpropagation, the part of the signal corresponding to this
Time () inverted shock remains as a straight line whose slope de-
FIG. 11. Comparison of pressure dependence at mid distandg/©€ases rapidly, so that the initial wave form cannot be re-
(z=—0.4m solid line, anz= + 0.4 m dashed lineduring forward ~ covered. On the contrary, other parts of the signal that have

and backward propagation. Signals corresponding to backwarBOt undergone irreversible shocks recover their initial shape,
propagation have been multiplied byl in order to allow exact as proved experimentally. This last point emphasizes that the
comparison. Top figure, experimental results; bottom figure, nubreaking of time-reversal invariance in nonlinear acoustics is
merical results. In experimental results, the dashed curve has beégientified to the energy loss through shocks and to their re-
multiplied by 1.15 to compensate for diffraction spreading. versal as unstable expansion shocks.

VI. CONCLUSION
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