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Breaking of time reversal invariance in nonlinear acoustics
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Time-reversal invariance of nonlinear acoustic wave propagation is experimentally investigated. Reversibil-
ity is studied for propagation shorter or longer than shock formation distance. In the first case, time-reversal
invariance holds and a sinusoid distorted by nonlinearities during forward propagation progressively recovers
its initial shape after the time-reversal operation. In the second case, reversibility is broken locally at the shock
front as a time-reversal operation transforms a stable compression shock into an unstable expansion shock.
Achieving experimentally the time-reversal process with a time-reversal mirror made of reversible piezoelec-
tric transducers for very broadband signals, would require transducers with huge bandwidths. To date, such
transducers remain unavailable. In order to overcome this technical limitation, we restricted ourselves in this
study to one-dimensional~1D! propagation, for which an experimental ersatz of a time-reversal mirror can be
used. Indeed, in a 1D case, the time-reversal operation applied on a plane wave can be mimicked for an
antisymmetric wave form by a reflection of the plane wave onto a pressure-release interface.
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I. INTRODUCTION

This paper presents experimental results about the rev
ibility of acoustic wave propagation in the nonlinear regim
In the linear approximation, it is well known that the tim
reversal invariance holds for wave propagation in lossl
media. Advanced and retarded potential are both solution
the wave equation. In the low-power regime, time-rever
mirrors made of arrays of reversible piezoelectric transduc
are used to switch from one solution to the other@1#. This
process is very robust and handles even multiple-scatte
medium@2#. For stronger wave amplitudes, nonlinear effe
can no longer be ignored. However, ideal-fluid equations
main time-reversal invariant. Hence, for a sinusoidal wa
even if energy is transferred to the harmonic components
nonlinearities during forward propagation, the reversibil
ensures that, after time reversal, the signal will recover
initial shape at the fundamental frequency. However, t
property holds only as long as the shock formation dista
is not reached. For longer propagation, the irreversible
of energy that occurs at the shock will break the tim
reversal invariance. After time reversal, a compression sh
will be transformed into an unstable expansion shock, t
violates the requirement of entropy increase through
shock and that will evolve as an expansion fan during
verse propagation.

The purpose of this paper is to propose an experime
check of the dependence of time-reversal invariance on
amplitude of the emitted wave. However, carrying out
time-reversal experiment in the nonlinear regime is mad
near impossible task by the spreading of energy onto
harmonics. Indeed, the time-reversal operation would req
devices with very large bandwidths~several hundred per
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cents!, while piezoelectric transducers used in time rever
mirrors have too narrow bandwidths even to transmit ba
the second harmonic properly. In order to overcome t
technical difficulty, we have to restrict ourselves in this p
per to a one-dimensional~1D! geometry, for which an ex-
perimental ersatz of a time reversal mirror can be used.
explained in the third section, this ersatz is based on the
that a time-reversal operation for a plane wave is identica
a sign change for an antisymmetric wave form. This l
operation can be easily achieved experimentally by a refl
tion of the plane wave onto a pressure release interface.

In that case, the wave propagation can be described by
inviscid Burgers’ equation for an ideal fluid~see Ref.@3# for
a review!. Thermoviscous absorption can be neglected as
acoustic Reynolds~or Gol’dberg! number Re51/aLs, where
Ls is the shock distance anda the absorption coefficient, is
much greater than one. After a theoretical discussion,
present experimental results and compare them to a num
cal simulation of the Burgers equation with a shock capt
ing numerical algorithm@4#.

II. BURGERS’ EQUATION AND REVERSIBILITY
FOR A PLANE WAVE „THE 1D MODEL …

The nonlinear 1D acoustic equations of mass and mom
tum conservation write for an ideal fluid:

]r

]t
1r

]n

]x
1n

]r

]x
50, ~1!

rS ]n

]t
1n

]n

]xD1
]p

]x
50, ~2!

wheren, r, andp are, respectively, the velocity, the densit
and the pressure. For an ideal fluid, entropy remains c
stant, hence, the equation of state writes:

dp5c2~r!dr, ~3!
:
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wherec(r) is the local speed of sound. In these conditio
the exact solution of Euler’s equations was found by R
mann in 1860@3#. He derived a solution by introducing th
Riemann invariants:

f 5
R1n

2
, ~4a!

g5
R2n

2
, ~4b!

with

R~r!5E
r0

r

c~r!
dr

r
, ~5!

so that Eqs.~1! and ~2! can be rewritten as

] f

]t
1@c~r!1n#

] f

]x
50, ~6!

]g

]t
2@c~r!2n#

]g

]x
50. ~7!

These two equations describe propagation, respectiv
towardsx.0 with velocityc1n and towardsx,0 with ve-
locity c2n.

As propagation is nonlinear, these two disturbances in
act with one another by modifying the local speed of sou
so that Eqs.~6! and ~7! are coupled. However, if there i
initially no wave propagating towardsx,0 @g(x,0)50#, it
remains so all the time; hence,R5n and f 5n.

Expanding the speed of sound up to order 1 in the M
number,M5n/c, and using the impedance relation betwe
velocity and acoustical density fluctuationsn56dp/r0c0
~1 for forward propagation,2 for backward propagation!
yields

c~r!5c01
B

2A
n1o~M !, ~8!

whereB/A is the nonlinearity parameter@3# ~>5 in water!
andc0 the speed of sound at equilibrium. The magnitude
the acoustic perturbation is measured by the Mach num
that remains very small, less than 1023 in our water experi-
ment and in most situations, ensuring the validity of th
approximation.

Introducing Eq.~8!, Eq. ~6! becomes:

]n

]t
1~c01bn!

]n

]x
50, ~9!

where b5B/2A11. Similarly, considering only wave
propagation towardsx,0, yields:

2
]n

]t
1~c02bn!

]n

]x
50 . ~10!
01660
,
-

ly,

r-
d

h
n

f
er

In a frame of coordinates moving with velocityc0 , these
two equations can be transformed into the inviscid Burge
equation.

Equations~9! and ~10! generalize to nonlinear acoustic
the factorization of the second-order linear wave equat
into two first-order one-way equations. The main differen
is that, in nonlinear acoustics, the actual sound velocityc0
6bn depends on the instantaneous value of the acou
field. The different parts of the wave form propagate
slightly different velocities, thus leading to the distortion
the wave profile with a steepening of ascending parts of
wave profile and a flattening of descending ones. This p
cess results in discontinuity or shock formation at a dista
equal~for a sinusoidal wave! to

Ls5
1

kbM
, ~11!

wherek is the wave number.
For propagation distances longer thanLs , Burgers’ equa-

tion is insufficient to determine the position of shocks a
must be complemented by the so-called ‘‘equal area rul
which is the low-amplitude approximation of Rankin
Hugoniot relations for shock waves. This point will be a
dressed later. In this first section, let us examine tim
reversal invariance of nonlinear wave propagation bef
reaching the shock distance.

A time-reversal operation in a one-dimensional config
ration is described in Fig. 1. The forward propagation
described by Eq.~9!, n(x,t) is measured at some positio
x5x0 smaller than the shock distance, and its time dep
dence is recorded. After some delayT ensuring causality, the
record is played backward generating a wave propaga
towardsx,0. The evolution of this time-reversed wave
now described by Eq.~10! with the new boundary condition
at x0 : g(t)52n(T2t). It is immediate to check that, i
n(x,t) is a solution of Eq.~9! then2n(x,T2t) is a solution
of Eq. ~10!. Hence, the time-reversal invariance holds ev
in a nonlinear regime. The change of sign comes from
fact thatn(t) is a first-order time derivative of the displace
ment~a ‘‘flux’’ quantity in thermodynamics terms!. In prac-

FIG. 1. A time-reversal experiment for a one-dimensional no
linear propagation. The signalp(t) received at positionx5x0 is
time reversed@p(T2t)# and reemitted towardsx,0.
2-2
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tice, pressure is more usually recorded than velocity. T
impedance relation betweenp andn, which are in phase for
forward propagation and antiphase for backward propa
tion, implies that, on the contrary, during a time-rever
experiment,p(t) is transformed inp(T2t) ~pressure is an
‘‘affinity’’ quantity in thermodynamics terms!.

Time-reversal invariance is illustrated by Fig. 1: durin
forward propagation, overpressures propagate faster than
derpressures and the signal distorts. After a time-reversa
eration, overpressures are now back emitted in late comp
to underpressures, a delay that will be progressively mad
during backward propagation by their highest velocity. T
signal will progressively undistort and finally recover its in
tial sinusoidal shape.

III. EXPERIMENTAL SETUP

To realize this scheme experimentally, the first step c
sists in synthesizing a wave as plane as possible along
mirror aperture. This is achieved by working in the near fie
of a plane piston. Thus, the wave remains collimated
diffraction effects are reduced. This piston is made up of
array of 61 transducers working at a central frequency o
MHz and immersed in water. Transducers—8 mm diame
disks—are set up with a 10 mm step on an hexagonal pa
~Fig. 2!. This arrangement gives a total apertureD50.09 m
resulting in a Fresnel distance ofD24l51.2 m. Each trans-
ducer is wired to an electronic channel with its own pr
grammable transmitter, an 8-bits dynamics and a 30-M
sampling rate, providing complete control of the amplitu
and time dependence of the signals.

A plane wave is synthesized by scanning a control pl
~in practice, the plane of time reversal! with a point source at
numerous positions, collecting on each transducer of
emitting array the corresponding responses~Fig. 2!. Sum-
ming the contributions from all source positions, a set of
signals is computed~Fig. 3!. This step of the procedure i
linear as the point source is very weak. Time reversing th
61 signals and using them to drive the transducers gene
an almost plane wave front in the control plane, as contro
experimentally on the phase~Fig. 4!. This procedure mini-
mizes diffraction effects, for instance, the amplitude dis
bution of the sources in the control plane is apodized in or
to decrease edge waves effects. In this configuration, a p

FIG. 2. A pointlike source scans the planeP, generating for each
location a diverging spherical wave that is received and stored
each transducer of the array. This procedure simulates a digit
plane source of equivalent aperture.
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wave with an amplitude up to 5 Atm can be generated.
such a wave, the shock distance is 0.3 m.

The second step consists of achieving a time reversa
the synthesized plane wave. Unfortunately, achieving exp
mentally a time-reversal operation by the use of an ano
time-reversal mirror~TRM! would require devices with very
large bandwidths~to re-emit the harmonics resulting from
signal distortion during forward propagation!, while piezo-
electric transducers used in our TRMs have too narrow ba
widths even to transmit back the second harmonic prope
To overcome this problem, the proposed trick is to rem
that, for 1D problems and for an antisymmetric wave pac
@p(2t)52p(t)#, a time reversal@p(2t)# is identical to a
reflection onto a pressure release interface@2p(t)# ~Fig. 5!.
This trick is valid in the nonlinear regime because nonline
propagation keeps the antisymmetry of a signal. Nonethel
this trick does not allow us to re-emit the time-reversed s
nal with a time-delayT, so that incident and reflected wave
will interact close to the interface. However, it is well know
that nonlinear interaction between counterpropagating ac
tic waves are not cumulative. Hence, they remain very sm
compared to the large distortions obtained by the self in
action of one-way waves.

n
ed

FIG. 3. Computed signal received onto the array when the d
tized plane source transmits a wave packet.

FIG. 4. Spatial distribution of amplitude and phase in planeP of
the wave front generated by transmitting signals of Fig. 3 after ti
reversal.
2-3
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TANTER, THOMAS, COULOUVRAT, AND FINK PHYSICAL REVIEW E64 016602
To obtain pressure-release reflection, a 13-mm Mylar
sheet is stretched on a hollow cylindrical shell in order
make a water-air interface. A thin sheet is required to av
any filtering even for the higher harmonics. The interface
set in the planez50.8 m away from the array~Fig. 6!.

IV. REVERSIBILITY OF A SIMPLE WAVE

First of all, reversibility is checked in the case of a sho
distance of 1.1 m~1.7 Atm wave amplitude!, larger than the
propagation distance array-Mylar sheet. Figure 7 pres
measurements of the pressure wave forms at two locat
along the axisz:z520.4 m ~solid line! and z520.02 m
~dashed line!. Distances are measured from the water-air
terface and are noted negative/positive for forward/backw
propagation. One can observe the nonlinear steepening o
profile during forward propagation. The experimental sign
are compared to a numerical simulation of the inviscid
Burgers equation. This simulation is achieved by the use
the hybrid finite differences scheme of MacDonald and A
brosiano@4#. It combines a second-order finite differenc
scheme when the signal is smooth with a one-sided, fi
order scheme that prevents artificial dispersive ripples to
pear near sharp gradients while ensuring monotonic
Clearly, the Burgers equation reproduces the measured
tortion of the wave profiles as the signal propagates furth

Time-reversal invariance means that, at each position,
time wave forms during forward and backward propagat
are the time reversal of one another. We check this prop
experimentally for two depths: at mid distance,z560.4 m

FIG. 5. The time-reversed version of an antisymmetric time s
nal is equivalent to its opposite: The time-reversal operation ca
mimicked by a reflection onto a water-air interface~reflection coef-
ficient r 521!.

FIG. 6. Experimental setup. A transducer array radiates a q
siplane wave. A bilaminar hydrophone records the signal rece
at locationz0 . The plane wave is reflected on a plane water-
interface and back propagates towards the initially emitting arr
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~Fig. 8! and close to the emitting array,z560.8 m ~Fig. 9!.
Both figures compare the measured signals during the
ward ~solid line! and backward propagation~dashed line!.
For this comparison, backward signals have been change
their opposite~as signals here are antisymmetric!. It clearly
appears on the figure that the forward and backward sig
at both locations almost perfectly superpose: time-reve
invariance is satisfied, the nonlinear distortion of the wa
profile has been balanced by time reversal. It is especi
spectacular near the emitting array, where the backward
nal has perfectly recovered its initial sinusoidal shape. T
transfer of energy from the fundamental to the harmon
during forward propagation has been completely rever
during backward propagation. The phenomenon of nonlin
distortion healing by a pressure-release interface was
served previously@5# and has been used to delay nonline
attenuation@6# but, to our knowledge, has never been link
to the time-reversal invariance.

It is to be noted that, to get a perfect superposition

-
e

a-
d

r
.

FIG. 7. Time dependence of the pressure in atmosphere f
zoom of the wave packet at mid distance,z520.4 m solid line, and
close to the pressure release interface,z520.02 m dashed line. Top
figure, experiment; bottom figure, the one-dimensional numer
simulation of the Burgers equation.

FIG. 8. Comparison of pressure dependence at mid distanc~z
520.4 m solid line, andz510.4 m dashed line!. Signals corre-
sponding to backward propagation have been multiplied by21 in
order to allow exact comparison. Top figure, experimental resu
bottom figure, numerical results. In experimental results, the das
curve has been multiplied by 1.15 to compensate for diffract
spreading.
2-4
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BREAKING OF TIME REVERSAL INVARIANCE IN . . . PHYSICAL REVIEW E64 016602
forward and backward signals, the amplitudes of these
ones had to be enhanced to compensate for diffrac
spreading. However, this compensation factor has b
checked experimentally to fit the amplitude decrease du
linear diffraction acoustics when the emitted signal is mu
weaker. Therefore, it is related only to pure, linear diffra
tion. This means that, though our experiment is not perfe
1D due to the finite size of the emitter, our time-rever
ersatz is very robust and ensures an almost perfect time
versal, independently of any diffraction effect.

V. IRREVERSIBILITY OF A SHOCK WAVE

For a propagation distance longer thanLs , the overpres-
sures that propagate faster overtake the underpressures,
ing to an unphysical multivalued wave profile. To recove
physically acceptable solution, a discontinuity, or sho
wave, must be introduced that skips the multivalued par
the profile. The position of this shock is determined acco
ing to Rankine-Hugoniot relations@3,7#, that express the
principles of mass, momentum, and energy conserva
through the shock. Also, Rankine-Hugoniot relations st
that, according to the second principle of thermodynam
the entropy must increase through the shock:

s22s1>0. ~12!

Therefore, even in an ideal fluid, shock formation is
irreversible process that breaks the time-reversal invaria
For small amplitude acoustic waves, Rankine-Hugoniot re
tions can be approximated by the ‘‘equal area rule,’’ acco
ing to which the two lobes of the multivalued solutio
skipped by the shock must be of equal areas. Entropy
equality also implies that only compression shocks are th
modynamically acceptable~for fluids such thatb>0!.

Of course, an abrupt shock is only a mathematical ide
zation of physical reality. Shock waves correspond to regi
of sharp gradients where thermoviscous dissipation can

FIG. 9. Comparison of pressure dependence at the beginnin
the forward propagation~z520.8 m solid line!, and at the end of
the backward propagation~z510.8 m dashed line!. Signals corre-
sponding to backward propagation have been multiplied by21 in
order to allow exact comparison. Top figure, experimental resu
bottom figure, numerical results. In the experimental results,
dashed curve has been multiplied by 1.75 to compensate for dif
tion spreading.
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be neglected anymore. The two parts of the wave profile
each side of the shock are indeed connected by a very r
but continuous transition. This tiny shock structure realize
dynamical balance between dissipative smoothening
nonlinear steepening. For thermoviscous absorption,
shock structure is described by the Taylor’s shock struct
@8# ~a hyperbolic tangent!. However, the position of the
shock and the energy loss through it, can be described in
pendently of the physical mechanism of energy absorp
~provided this last one is small enough!. This explains why
numerical simulations~that introduce artificial numerical dis
sipation to stabilize solutions at the discontinuity! or experi-
mental measurements~that introduce additional attenuatio
due to the hydrophone filtering of high frequencies! never-
theless reproduce the shock positions and amplitude.

Time reversing a compression shock leads to an exp
sion shock that violates the second principle and will the
fore be unstable. Solving the inviscid Burgers equation w
an initial expansion shock, the method of characteris
shows two diverging characteristics emanating from e
side of the shock~because the overpressure part alrea
ahead propagates faster! and leaving a ‘‘blank’’ in between.
This blank is filled up by a centered expansion fan of ch
acteristics, so that the two diverging parts of the initial d
continuity are connected by a straight line@9#. This situation
is analogous to the centered Prandtl-Meyer fan for a su
sonic flow around a sharp corner. Therefore, for an initia
sinusoidal wave propagating longer than the shock dista
the ‘‘signature’’ of the breaking of time-reversal invarianc
by irreversible shocks will be, after backward propagatio
this expansion fan that will persist and never coincide w
any part of the initial signal. If taking into account dissip
tion, this instability can be explained in other words by t
fact that now dissipation and nonlinear distortion act conc
rently for an expansion shock, instead of counterbalanc
for a compression shock.

To check the breaking of time-reversal invariance, t
same experiment as described previously is reproduced
now the emitted amplitude is 5 Atm, resulting in a sho
distance of 0.3 m smaller than the propagation distance.
steepening is now much faster, and sharp shocks are for
when the wave impinges on the water-air interface~Fig. 10,
compare to Fig. 7!. The signal at mid distance~solid line! is
shocked but descending parts keep some sinusoidal s
whereas, at the end of forward propagation~dashed line!, a
shape close to a sawtooth profile is obtained.

The numerical simulations show a good agreement co
pared to the experimental signals. The little differences
tween simulation and experiment are only due to diffract
effects that are of course not taken into account in the
numerical scheme, and which are known to produce
slight asymmetry of the signal with enhanced peaks.

Breaking of time-reversal invariance is illustrated by Fig
11 and 12 where forward and backward time wave forms
compared at the same location at mid distance,z560.4 m
~Fig. 11! and near the emitting array,z560.8 m ~Fig. 12!.
The samecorrection factors as for the previous case ha
been used to compensate for diffraction spreading. Co
pared to the moderate amplitude case for which shock

of
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TANTER, THOMAS, COULOUVRAT, AND FINK PHYSICAL REVIEW E64 016602
tance was not reached and superposition was almost pe
~Figs. 8 and 9!, the profiles are now far from superposing o
another. It is clear in Fig. 11 that the forward shock wav
have been time reversed into backward expansion fans
do not superpose at all~neither in amplitude or slope!, a
proof that the breaking of time-reversal invariance is due
the reversal of stable compression shocks into unstable
pansion shocks. On the contrary, the other parts of the w
profile that have not sustained irreversible losses perfe
superpose on numerical simulations. This superpositio
not so perfect on experimental measurements due to the
fraction asymmetry of the profiles~positive overpressure o
the descending part!, but remains obvious on a significan
part of the wave forms.

The same conclusions can be drawn from Fig. 12~com-
pared to Fig. 9! at the end of the process. Once again,
straight line resulting to the time reversal of the shock wa
do not superpose to the ascending parts of the incident si
that lead to shock formation, while the descending parts

FIG. 11. Comparison of pressure dependence at mid dista
~z520.4 m solid line, andz510.4 m dashed line! during forward
and backward propagation. Signals corresponding to backw
propagation have been multiplied by21 in order to allow exact
comparison. Top figure, experimental results; bottom figure,
merical results. In experimental results, the dashed curve has
multiplied by 1.15 to compensate for diffraction spreading.

FIG. 10. Time dependence of the pressure in atmosphere at
distance,z520.4 m solid line, and close to the pressure rele
interface,z520.02 m dashed line. Top figure, experiment; botto
figure, numerical simulation.
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the wave profiles that have not undergone irreversible sho
recover almost perfectly their initial shape, both for expe
mental and numerical simulations.

VI. CONCLUSION

A time-reversal experiment has been carried out in n
linear acoustics. To overcome the impossibility of realizing
time-reversal mirror with a sufficient band-width, an ersa
has been used at one dimension by noting that, for antis
metric wave forms, time reversal is equivalent to reflecti
onto a pressure-release interface. This experiment has
conducted in a weakly viscous medium for which clas
linear attenuation is negligible at the fundamental frequen
Up to the shock formation, the reversibility holds and t
energy stored in the harmonics components returns to
fundamental after the time reversal. Hence, a simple w
distorts as it travels towards the reflector and undisto
thereafter. The perfect superposition of incident and reflec
wave profiles has been checked experimentally. On the c
trary, the wave undergoes an irreversible alteration whe
shock is formed, always implying dissipation and thus bre
ing the time-reversal invariance. Time reversal chan
shocks into expansion shocks that are unstable because
sipation and nonlinearity work together to smooth it. Duri
backpropagation, the part of the signal corresponding to
inverted shock remains as a straight line whose slope
creases rapidly, so that the initial wave form cannot be
covered. On the contrary, other parts of the signal that h
not undergone irreversible shocks recover their initial sha
as proved experimentally. This last point emphasizes that
breaking of time-reversal invariance in nonlinear acoustic
identified to the energy loss through shocks and to their
versal as unstable expansion shocks.

ce

rd

-
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e

FIG. 12. Comparison of pressure dependence at the begin
of forward propagation and at the end of backward propagation~z
520.8 m solid line, andz510.8 m dashed line!. Signals corre-
sponding to backward propagation have been multiplied by21 in
order to allow exact comparison. Top figure, experimental resu
bottom figure, numerical results. In the experimental results,
dashed curve has again been multiplied by the 1.75 factor com
sating for linear diffraction spreading.
2-6



t.

BREAKING OF TIME REVERSAL INVARIANCE IN . . . PHYSICAL REVIEW E64 016602
@1# M. Fink, Phys. Today50, 34 ~1997!.
@2# A. Derode and M. Fink, Phys. Rev. Lett.75, 4206~1995!.
@3# M. F. Hamilton and D. T. Blackstock,Nonlinear Acoustics

~Academic, New York, 1998!.
@4# B. E. McDonald and J. Ambrosiano, J. Comput. Phys.56, 448

~1984!.
@5# A. L. VanBuren and M. A. Breazeale, J. Acoust. Soc. Am.44,

1014 ~1968!.
01660
@6# T. G. Muir, L. L. Mellenbruch, and J. C. Lockwood, J. Acous
Soc. Am.62, 271 ~1977!.

@7# L. Landau and E. Lifchitz,Fluids Mechanics~Mir Editions,
Moscow, 1971!, Vol. 6, Chap. 9, p. 85.

@8# G. I. Taylor, Proc. R. Soc. London, Ser. A84, 371 ~1910!.
@9# G. B. Whitham,Linear and Nonlinear Waves~Wiley, New

York, 1974!, pp. 24, 204.
2-7


