
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Breaking redundancy‑based countermeasures
with random faults and power side channel

Saha, Sayandeep; Jap, Dirmanto; Breier, Jakub; Bhasin, Shivam; Mukhopadhyay, Debdeep;
Dasgupta, Pallab

2018

Saha, S., Jap, D., Breier, J., Bhasin, S., Mukhopadhyay, D., & Dasgupta, P. (2018). Breaking
redundancy‑based countermeasures with random faults and power side channel. 2018
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC).
doi:10.1109/FDTC.2018.00011

https://hdl.handle.net/10356/104811

https://doi.org/10.1109/FDTC.2018.00011

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. The published version is available at:
https://doi.org/10.1109/FDTC.2018.00011

Downloaded on 28 Aug 2022 01:13:51 SGT

Breaking Redundancy-Based Countermeasures with
Random Faults and Power Side Channel

Sayandeep Saha∗, Dirmanto Jap†, Jakub Breier†, Shivam Bhasin†, Debdeep Mukhopadhyay∗,
and Pallab Dasgupta∗

∗Department of Computer Science and Engineering, IIT Kharagpur, India
† Physical Analysis & Cryptographic Engineering (PACE) Labs, Nanyang Technological University, Singapore

{sahasayandeep, debdeep, pallab}cse.iitkgp.ernet.in, {sbhasin, djap, jbreier}@ntu.edu.sg

Abstract—Redundancy based countermeasures against fault
attacks are a popular choice in security-critical commercial
products, owing to its high fault coverage and applications to
safety/reliability. In this paper, we propose a combined attack on
such countermeasures. The attack assumes a random byte/nibble
fault model with existence of side-channel leakage of the final
comparison, and no knowledge of the faulty ciphertext. Unlike
the previously proposed biased/multiple fault attack, we just
need to corrupt one computation branch. Both analytical and
experimental evaluation of this attack strategy is presented on
software implementations of two state-of-the-art block ciphers,
AES and PRESENT, on an ATmega328P microcontroller, via
side-channel measurements and a laser-based fault injection.
Moreover, this work establishes that even without the knowledge
of the faulty ciphertexts, one can still perform differential fault
analysis attacks, given the availability of side-channel informa-
tion.

Index Terms—Fault Attack, Side-Channel, Combined Attack,
Redundancy-Based Countermeasure

I. INTRODUCTION

Fault-based cryptanalysis is one of the potent practical
threats to modern cryptographic primitives. It has been shown
on several occasions that a certain number of properly placed
faults can compromise the security of state-of-the-art cipher
implementations. Among different classes of fault attacks,
Differential Fault Analysis (DFA) [1] is the most prominent
and generic one in the context of block ciphers. Two most
remarkable features of DFA are; 1) its extremely relaxed
random fault model, and 2) low fault complexity. However,
it has been found that faults occurring at certain devices
are often biased in nature. Such biased fault models have
been successfully exploited to realize so-called Statistical Fault
Attacks (SFA [2]), which are simpler than DFA but demand
a large number of faults. Few SFA can work even with
knowledge of faulty ciphertext only [3].

Countermeasures to fault attack generally use some form
of redundant computation (time, information, or space redun-
dancy) [4]–[6], to detect the presence of a fault. One of the
most common and effective countermeasures involves double
computation (in time or space) with a final comparison. If
the results from redundant computations do not match, the
output of the encryption function is suppressed/randomized.
Under a single fault injection model, this countermeasure
has 100% fault coverage. Likewise, the number of redundant

computations can be increased to n+1 to detect up to n fault
injections. It is widely used in commercial products because
it also has applications in safety and reliability. Moreover, if
the designer is using highly optimized encryption functions,
the countermeasure only requires an extra call (time) or
instantiations (space) without the need of major modification.
Few previous works have shown practical attacks against this
countermeasure. For example, [7] uses biased fault model
to inject 2 faults in both computation branches of a time
redundant countermeasure (for n = 1). A double laser injec-
tion was shown to break space redundant countermeasure [8].
Thus, both the attacks exploited 2 fault injection locations (for
n = 1) to break a time/space-redundant countermeasure.

In this paper, we present a practical combined attack on re-
dundancy countermeasure (either space or time). It works with
a single fault location adversarial model, thus injecting faults
in one of the redundant branches. Then, it uses a side-channel
information to get the knowledge of the fault propagation.
This attack does not require any faulty ciphertexts. Instead,
we assume that byte/nibble-wise Hamming distance (HD) of
the correct and the faulty ciphertext is known for each fault
injection. Virtually every fault attack countermeasure either
blocks or randomizes the output once a fault is detected.
Hence the absence of faulty ciphertexts brings this attack
to practical conditions. On the other hand, the byte/nibble-
wise Hamming weight (HW) can be obtained quite accurately
by means of power or electromagnetic side-channels from
the block comparing the actual and a redundant computation.
Based on these assumptions, we propose DFA attacks for two
state-of-the-art block ciphers AES [9] and PRESENT [10]. In
a nutshell, the major contributions of this work are as follows:

• We propose a first combined attack on redundancy based
countermeasure. The attack assumes a single fault loca-
tion adversary model assisted with supplementary side-
channel information. This, to best of our knowledge, is
the first work addressing inherent vulnerabilities of a
countermeasure without bypassing it.

• The attack functions under random fault model, unlike,
previous works which assume a biased or multiple fault
injection.

• The proposed attack does not require the knowledge

of faulty ciphertexts. The side-channel is exploited to
measure HD of correct and faulty ciphertext. Although
the recently proposed ineffective fault attacks [11] work
without faulty ciphertexts, they typically exploit a very
special class of biased faults which may not take place
in all class of devices.

• The proposed attack strategy is evaluated on two widely
deployed block ciphers – AES and PRESENT.

• Validation of the attack is shown using practical laser
fault injection on microcontroller target. The number of
required injections are 225 and 4 for AES and PRESENT
respectively, which can be easily performed in a day.

The rest of the paper is organized as follows. In Section II,
we present a brief description of the block ciphers under con-
sideration, as well as a precise description of the redundancy-
based countermeasure we target. A brief overview of the
related work is also presented. Section III formally presents
the proposed attack and describes two use-cases on AES and
PRESENT. Practical realization of the attacks are discussed in
Section IV. Finally we conclude in Section V.

II. PRELIMINARIES

A. Overview of AES and PRESENT Block Ciphers

AES [9] is a Substitution-Permutation Network (SPN) ci-
pher which is currently the worldwide standard for symmetric
key encryption. The most widely utilized version, AES-128, is
composed of 10 rounds and has a block size and a key size of
128 bits. Each encryption round, except the last one, consists
of 4 bijective boolean functions to provide confusion and dif-
fusion. The nonlinear SubBytes layer of AES, which provides
confusion, consists of 16, 8×8 S-Boxes. Each S-Box performs
an inversion operation on the finite-field GF (28) followed by
an affine transform. On the other hand, the diffusion layer
of AES is a combination of a byte-permutation (ShiftRows)
followed by a Maximum Distance Separable (MDS) matrix
(MixColumns). Finally, a round key of 128 bits, generated
from the 128-bit master key by means of an invertible key
schedule, is XOR-ed with the state at the end of each round
to ensure the confidentiality (AddRoundKey). The last round
of AES does not include the MixColumns operation.

The block cipher PRESENT [10] is another member of
the SPN class of ciphers, which is specifically engineered for
lightweight applications. It consists of 31 rounds, a block size
of 64 bits and supports master keys of lengths 80 and 128
bits. Each encryption round contains: an addRoundKey layer
for XORing the round keys, a nonlinear S-Box layer having
16 4 × 4 S-Boxes (sBoxLayer), and a linear bit-permutation
layer (pLayer) providing the diffusion. Additionally, a post-
whitening round key is XOR-ed with the outcome of the last
round. Similar to AES, PRESENT also consists of an invertible
key schedule generating 64-bit round keys from the 80/128-bit
master key.

B. Redundancy-based Fault Attack Countermeasures

Redundancy based countermeasures are probably the most
widely used primitives to thwart DFA attacks. They can be

classified in three broad classes, namely – information redun-
dancy, time redundancy, and space redundancy. Information
redundancy countermeasures utilize error-detection/correction
codes as redundant computation [12]. Such countermeasure
strategies, though typically lightweight in nature, may not
provide 100% fault coverage guarantee.

Time and space redundancies [5], [6], on the other hand, are
based on a relative simpler principle of recomputation. In the
easiest case, the cipher can be recomputed on the same input
twice in time or space and then the results can be checked
for a match [5]. Such recomputation may happen at various
levels of granularities, for example for each round or even for
each sub-operation. A couple of other variants, like computing
inverse or redundant computation over permuted operands, has
also been proposed. In fact, some of such implementations
are commercially deployed and also shown vulnerable against
practical fault attacks [13].

C. Related Work

The proposed attack in this work uses Side-Channel Anal-
ysis (SCA) to aid the fault analysis attack. As shown before,
fault injection countermeasures can lower the implementation
resistance to SCA [14]. Several works have demonstrated
SCA assisted biased fault attacks on AES [15]–[17]. The first
practical combination of DFA with SCA was proposed in [18].
Authors used SCA to determine the exact value of injected
random fault mask which simplified the analysis. Practical
attacks were shown on an unprotected implementation of
PRESENT-80 running on an 8-bit microcontroller. The attack
strategy proposed by us is somewhat motivated by [18].

Attacks on redundancy based countermeasures have also
been explored previously. In [19] and [20], authors practically
show that exploitable fault injections are possible for most
of the cases with high probability in information redundant
countermeasures. A strong practical example in this context
is [13], where it was shown that the commercially available
processors for automotive domain, having an ASIL-D level of
safety and fault tolerance guarantees can be easily bypassed
with faults. Another relevant work in this context is [7],
where the bias in the fault distribution was exploited to
inject same faults in both branches of a time redundancy
countermeasure for AES. The work in [8] extended the same
attack philosophy on infection based countermeasures using
multiple laser-based fault injection. Recently, a fault-assisted
side-channel attack was proposed [21], which faulted the mask
loading in a masked implementation, resulting to a zero mask
and effectively changing the implementation to unprotected
one. Then they could mount a classical side-channel attack on
the cipher.

However, most of these attacks tried to bypass the counter-
measure mechanism, whereas we try to exploit the counter-
measure itself to leak the information.

Enc

Enc
In

Fault

=0?

N

Rnd

Y

C
ip

h
ertex

t

SCA

Leakage

Analysis

SCA Leakage (HW)

Correct Ciphertext

Key

(a) (b)

Fig. 1: Fault propagation pattern in AES with the fault injected
at the beginning of the 8th round. The distinguishing property
is shown in grey.

III. ATTACKING REDUNDANCY-BASED
COUNTERMEASURES WITH RANDOM FAULTS

In this section, we describe the proposed attack strategy on
redundancy based countermeasures with random byte/nibble
faults. Our work can be distinguished from the previous
proposals in two aspects. The random fault injection attacks
described previously in [19], [20] try to figure out faults which
can evade the countermeasure. In contrary, the proposed attack
here works even if the fault is detected. On the other hand, the
biased fault attacks in [7] and [8] assume relatively restricted
fault model and injection of two faults in actual and redundant
computation, whereas our proposal assumes a single fault
injection.

A. Adversary Model

In this work, we target time/space redundancy countermea-
sures which perform encryption operation on the same data
at least twice and then compare the ciphertexts. Due to its
simplicity, this form of fault tolerance can be adapted quickly
in most of the practical scenarios. Almost every redundancy-
based countermeasure uses a comparison operation to detect
the existence of faults in the computation. Such comparison
blocks are supposed to report an error if the ciphertexts are
unequal. The adversary measures the side-channel activity of
the comparison.

The main idea of the proposed attack is to extract HW of this
XOR output. The main idea is depicted in Figure 1. Without
the loss of generality, we assume that there is one actual, and
one redundant branch of computation in the countermeasure
implementation under consideration. It is fairly reasonable to
assume that the output of the XOR comparison is stored in
registers, which in turn causes the side-channel leakage. A
random byte/nibble fault with unknown fault value and known
location is injected at one of these computation branches.
The HW obtained basically represents the HD between the
correct and the faulty ciphertext. For obvious reasons, we
assume the correct ciphertext to be known. On the other
hand, the attacker will have no exact knowledge about the
faulty ciphertexts as they are supposed to be blocked or
randomized after the fault is detected. It should be noted
that the assumption of random fault injection is still relevant,
even with the existence of sophisticated biased fault attacks on
redundancy-based countermeasures [7]. In practice, one cannot

expect the existence of a favorable biased fault model for all
possible class of devices. Further, there exist biased fault aware
synthesis techniques for hardware [22], which one may also
adopt for certain general purpose processors. All these facts
leave random fault models as the only mean for realizing fault
injection attacks, at least for certain scenarios.

The experimental validation is later done on a 8-bit micro-
controller, thus we assume assumption the knowledge of byte-
wise HW from SCA.

B. A General View for DFA Attack Complexity

DFA attacks are known for their extremely relaxed fault
models. However, the complexity of the attacks become ex-
tremely significant while realizing them practically. From a
general point of view, the complexity of a fault attack depends
on three factors. The first among them is the number of faults
injected which we denote as |F|. Fault injection results in a
distinguisher (or a set of distinguishers) which is used as a
filter to rule out wrong key guesses. Each key guess must be
evaluated by the distinguisher exhaustively (in a divide-and-
conquer fashion). So there is a cost of exhaustive evaluation
which we denote by |E|. Finally, there is a reduced key-space
after distinguisher evaluation, to be exhausted via brute-force
search. Let us denote the size of the remaining keyspace as
|R|. The complexity of the attack is denoted as:

C = 〈|E|, |F|, |R|〉 (1)

One should note that in order to be practically realizable, all
of the three complexity measures must remain below some
feasible computational limits. We consider the feasible limit
of computation to be 250, which is reasonable with modern
computers. However, in the case of |F| and |R|, one must
also ensure that they still remain lower than the brute-force
search complexity of the key bits associated. Otherwise, no
gain will be obtained from the fault attack.

C. Attacking Block Ciphers without Faulty Ciphertexts

Being a special form of SCA attacks, fault attacks also
exploits information leakage to reduce the entropy of the
secret key. Although the source of the leakage in all classes
of fault attacks is the injected fault, the observation point of
the leakage may be different. For example, in classical DFA
attacks, the faulty ciphertexts manifest the leakage. On the
other hand, in typical biased fault attacks e.g. Differential Fault
Intensity Analysis (DFIA) [2], information is leaked both via
the faulty ciphertexts and the biased fault model. In certain
cases, the very existence of fault also leaks information. Most
prominent examples of such fault attacks are Fault Sensitivity
Analysis (FSA) [23] and the recently proposed Ineffective
fault-based attacks [11]. In fact, with a rather restricted fault
model, attacks can be performed without the knowledge of the
plaintext or the ciphertexts, as shown in [24].

While most of the alternative leakage sources are manifested
in the context of biased faults, in this work we show that such
leakage also exists for DFA. The byte-wise HD of the correct
and faulty ciphertexts are the main source of leakage in the

SB

C
ip

h
ertex

t

D
ifferen

ce

SB

SR

SR

MC

f f’ f’ 2f’

f’

f’

3f’

f1

f2

f3

f4

9
10f1

f2

f3

f4

Fig. 2: Fault propagation pattern in AES with the fault injected
at the beginning of the (a) 9th round, and (b) 8th round.
Distinguishing properties of interest are shown in grey.

proposed attack strategy. In the following, we explain the root
cause of key entropy reduction due to this HD information.

Let us denote a byte of the correct ciphertext as C and
that of a faulty ciphertext as C∗. The XOR difference be-
tween these two is denoted as δ, and the SCA provides
us with HW (δ) = HW (C ⊕ C∗). Given HW (δ) = w
(w ∈ {1, 2, 3, 4, 5, 6, 7, 8}) and C as known, we have

(
8
w

)
choices for C∗, whereas without the knowledge of HW (δ),
the number of choices would become 28. One of these

(
8
w

)
choices must be the actual faulty ciphertext. A key observation
is that, for typical values of HW (δ),

(
8
w

)
can be significantly

low, and in the best case with w = 8,
(
8
w

)
becomes 1.

Hence, it can be concluded that, even without having the
exact knowledge of the faulty ciphertexts, for certain choices
of HW (δ) the number of choices for C∗ will be sufficiently
low to be tried exhaustively. This is the main motivation of
the attacks we are going to propose next.

D. Case Study I: Attack on AES

Let us consider the AES block cipher with a byte fault
injected at the beginning of the 9th round. The propagation
pattern of the fault is presented in Figure 2. The fault corrupts
only 32 bits of the state and consequently only 32 bits of the
keys associated can be extracted simultaneously 1. In order to
extract the last round keys in 32-bit chunks, one has to solve
a system of difference equations, as shown in the following.

2f1 = S−1(C1 ⊕ k1)⊕ S−1(C1 ⊕ δ1 ⊕ k1)
f1 = S−1(C14 ⊕ k14)⊕ S−1(C14 ⊕ δ14 ⊕ k14)
f1 = S−1(C11 ⊕ k11)⊕ S−1(C11 ⊕ δ11 ⊕ k11) (2)
3f1 = S−1(C9 ⊕ k9)⊕ S−1(C9 ⊕ δ9 ⊕ k9)

Here Ci, ki and δi denote a byte of the correct ciphertext,
the key and XOR difference of the correct and the faulty
ciphertext, respectively (i ∈ {1, 9, 11, 14}). Note that, exact
knowledge of δ enables exact determination of the faulty
ciphertext C∗. S−1 here denotes the inverse S-Box operation.
In classical DFA attack, both the correct and faulty ciphertexts
are known and as a result, each δi is also known uniquely.
However, the present context, where only the HW of each δi

1It may seem that an injection at 8-th round, corrupting the complete state
is better. However, we may not be able to exploit this advantage in our present
scenario, as it will be shown later in this paper

is known, leaves us with multiple options for a δi, and as
a result, δi must be treated as an unknown in the difference
equations.

From Eq. (2), it is evident that one should enumerate the
candidate solutions for each pair (ki, δi), one of which will
provide the correct key as well as the original faulty ciphertext
byte. The total number of possible values assumed by each δi
depends upon its HW. Assuming the width of δi to be 8, there
could be 8 possible HW’s excluding the 0. The number of
candidate δis corresponding to each HW is given by

(
8

W (δi)

)
,

with W () denoting the HW. As a result, the number of values
assumed by each (ki, δi) pair becomes 28 ×

(
8

W (δi)

)
.

For any fixed δi and fi each equation from Eq. (1) gives
one solution for ki on average. Using this fact, we can
estimate the number of solutions for Eq. (1) having form
〈(k1, δ1), (k9, δ9), (k11, δ11), (k14, δ14)〉. The total number of
possible solutions is

(
28
)4 × ∏i∈I

(
8

W (δi)

)
× 2−24 = 28 ×∏

i∈I
(

8
W (δi)

)
, where I = {1, 9, 11, 14}. The factor 2−24 is

the probability of occurrence of the distinguishing pattern
〈2f1, f1, f1, 3f1〉. As per the notations in this paper, we have
|E|= 232×

∏
i∈I
(

8
W (δi)

)
, |R|= 28×

∏
i∈I
(

8
W (δi)

)
, for |F|= 1.

1) Selection of Proper Faults: It is evident that in our
attack setup under consideration, keys are extracted in 4-byte
chunks. So, in order to obtain an attack, which is better than
brute-force we have to settle down to a complexity figures
of |R|≤ 232 and |F|≤ 232. Also we require |E| to be a
practically enumerable figure. Let us first analyze the worst
case complexity figures for this attack. The worst case situation
happens when

(
8

W (δi)

)
=
(
8
4

)
= 70. In this case, we have

|E|= 232×
(
8
4

)4 ≈ 232×(26)4 = 256, and |R|= 232 for |F|= 1.
Apparently, there is no reduction in the key space. In contrary,
the best case situation happens while

(
8

W (δi)

)
=
(
8
8

)
= 1. In

this case, we can uniquely determine the faulty ciphertext and
the |R| becomes 28.

One crucial observation at this point is that we can identify
the best and worst cases quite easily as we already have the
HW information in our possession for each fault injection. One
can thus wait for a favorable fault case to happen and then
launch the attack. This will, however, increase the |F|. Unfor-
tunately, the probability of occurrence of a favorable even is
often low. For example, the best case event has the probability
Pr[∧i∈IW (δi) = 8] =

∏
i∈I #(W (δi)=8)

232 = (1
28)

4 = 2−32.
That is to say, we have to inject 232 faults in order to get the
best case event. Also, note that unique identification of the
key is still not possible with one favorable case and we need
one more such case. So, in total, we require 233 injections to
uniquely figure out 32 secret key bits. This is, in fact, worse
than exhaustive search once again.

It is apparent that we have to strike a trade-off between
the number of fault injections and the size of the remaining
key space. In order to achieve this, we set a simple strategy.
Let S = {1, 2, 3, 4, 5, 6, 7, 8} be the set of all possible HWs
for a byte. The idea is to consider cases from the set S′ =
S−{3, 4, 5}. To be precise, we want |F|= 232∏

i∈I #(W (δi)=wi)
,

where wi ∈ S′. In the worst case, |F|= 232

(28)4 ≈
232

(25)4 ≈ 212,

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S S S S

ki

ki+1

Fig. 3: Fault propagation in PRESENT with the fault injected
at the beginning of the 30th round (modified from [26]).

which is a fairly reasonable quantity. On the other hand, the
worst case value of |R| is |R|= 28×

∏
i∈I
(
8
2

)
= 28×(28)4 ≈

28 × (25)4 = 228 ≤ 232. For a random selection of w1 =
1, w9 = 2, w11 = 8, w14 = 7, we get |F|= 232/(8× 28× 1×
8) ≈ 222 and |R|= 28×(8×28×1×8) ≈ 218. This means that
with 222 fault injection the key space reduces to 218. So, with
2× 222 injections, the 32 bit key can be determined uniquely.
The complete 128-bit round key can be extracted with total
223 × 4 = 225 fault injections in this case.

2) Fault Injection at the 8th Round: Injection of a fault at
the beginning of the 8th round results in complete diffusion
of the fault to all the bytes. As it has been shown in [25],
propagation of the fault gives rise to 4 independent system of
difference equations returning each of the 32-bit key chunks.
In the case of classical DFA, where the ciphertext bytes are
known, the complete 128-bit key can be extracted only by
means of a single injection in 8th round [25]. However, the
present context is slightly different as here we can only use
those fault instances which result in specific HW patterns in
the ciphertext differences. Obtaining favorable HW patterns
for more than 4 bytes of δis will have extremely low probabil-
ity in practice, which will necessitate injection of a formidable
number of faults. As a result, we cannot directly take the
advantage of 8th round fault injection in the present scenario.
However, one may carefully store incidentally occurring fa-
vorable cases corresponding to each independent key chunk,
while running a fault campaign. This strategy should provide
quite a significant reduction in the number of fault injections.

3) Practicality of the Proposed Attack: Although the com-
plexity figures of the proposed attack are feasible both theoret-
ically and practically, the number of fault injections required is
still significantly high. However, we argue that this is probably
the best figure we can achieve without the knowledge of the
faulty ciphertexts in a random fault scenario. Also, with the
availability of sophisticated and fast commercial fault injection
setups, such figures are quite possible to achieve practically.
As shown later, our setup can easily reach over 226 correct
and faulty ciphertext pairs per day. It is largely limited by the
time for each encryption.

E. Case Study II: Fault Attack on PRESENT

It is apparent from the last example that, attacking AES is
indeed possible even without exact knowledge of the faulty

195 200 205 210 215 220

0

0.1

0.2

0.3

Amplitude

F
re

q
u
e
n
c
y
o
f
o
c
c
u
re

n
c
e

ST operation

0x00
0x08
0x80
0x88

Fig. 4: Extracting nibble-wise HW values from byte-wise
HWs. SCA traces for 4 possible situations. The distributions
are derived from practical measurements on a micro-controller.

ciphertexts. However, the fault complexity is relatively high.
In this second use case, we show that for certain lightweight
block ciphers such attacks can be realized with very reasonable
fault and computational complexities. As a concrete realiza-
tion, we describe an attack on the PRESENT cipher with
nibble faults injected at the beginning of the 30th round.

The encryption operation in PRESENT involves 31 round
keys and a post-whitening key at the end of the 31st round. We
aim to extract this post-whitening with our proposed attack.
With the knowledge of per-nibble HD of correct and faulty
ciphertexts, we solve equations having the following form for
each nibble.

fi = S−1(Ci⊕Ki)⊕S−1(Ci⊕ δi⊕Ki), for i ∈ [0, 15] (3)

1) Choice of the Injection Round: Most of the previous
DFA attacks on PRESENT choose the 28th or 29th round of
the cipher. Such choices allow fault propagation to most of the
ciphertext nibbles with a very high probability, and also reduce
the required number of injections. However, in the current
context, we choose the 30th round as the fault injection point.
The reason behind this choice is entirely practical. Since our
target architecture is an 8 bit microcontroller we can only
expect byte-wise HW values by means of SCA. However,
PRESENT utilizes nibble and bit-level boolean operations and
it is not straightforward to obtain nibble level information
from byte-level SCA. Although template building can be
a general solution to this problem, detailed evaluation of
template building is out of the scope of this paper. For our
specific case, however, we can provide an alternative and
simple solution. The idea is to restrict the number of values
each δi may assume. Note that δis are a 4-bit variables.

With a fault injection at 30th round, we can easily achieve
the aforementioned goal. We first illustrate this by means
of an example. The fault propagation pattern, with a 30th
round nibble fault injection, is depicted in Figure. 3, where the
nibble 0 of the state has been corrupted. We call a nibble/byte
as active, if the differential of the correct and faulty values
assumed by it is nonzero. Similarly, an S-Box is active, if it
has a non-zero input differential. Referring to Figure. 3, one
can observe that for any value of the injected fault at round

30, at least 1, and at most, 4 S-Boxes at round 31 may become
active. Moreover, the input differential for each of these active
S-Boxes assumes the value 1000, thanks to the bit-permutation
layer of PRESENT. After the completion of the 31st round,
at least 4 and at most 16 nibbles get activated. Once again
due to the bit-permutation operation, all the corrupted nibbles
assume the value 1000.

The above-mentioned observation can generalized for any
given nibble location and rounds as follows:

Observation 1. For n, d, l ∈ {0, 1, 2, 3}, if the (4n + d)th
S-Box at round r is active, then the lth bit of the output
differential of this active S-Box becomes the dth bit of the
input differential of the S-Box (n + 4l) in round r + 1. As
a consequence, for any nibble fault injection at round r, the
input differentials of the active S-Boxes at round r+1 becomes
1000 or 0100 or 0010 or 0001, depending on the nibble where
the fault was injected. The same input differential values can
be observed for the active S-Boxes at round r + 2. Further,
the number of active S-Boxes are at most 4 for round r + 1
and at most 16 for round r + 2.

It is now trivial to observe that after a fault injection at 30th
round, the nibble-wise HWs for each ciphertext differential
(W (δi)) becomes either 1 (for active nibbles) or 0 (otherwise).
An example of a typical nibble-wise HW pattern in the
ciphertext is [0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1]. In terms
of bytes, one can only observe 3 possible HW values, namely
0, 1 and 2. While it is fairly straightforward to identify the
corresponding nibble-wise HWs for byte-wise HW values 0
and 2, an ambiguity takes place if a byte-wise HW of 1
is obtained. There are two possible patterns of nibble-wise
HWs ([1, 0] and [0, 1]) corresponding to a byte-wise HW of 1.
Fortunately, we found that the SCA signatures corresponding
to these two patterns are clearly distinguishable. Figure 4
depicts the SCA traces corresponding to 4 byte-wise HW cases
which shows that nibble-wise HW values can be identified
unambiguously.

2) Nibble-wise Key Recovery with HW Information: As
already pointed out in the last subsection, the δis can only
assume values 1000, 0100, 0010, and 0001, while active, and
a value 0 otherwise. Further, for a fixed fault injection location,
only a single value can be assumed by an active δi. For exam-
ple, as per the fault propagation pattern shown in Figure. 3, an
active δi can only assume a value 1000. Hence, for a known
fault injection location, there is a one-to-one correspondence
between the δi and W (δi) values. As a consequence of the
aforementioned one-to-one correspondence, we can directly
figure out the δi values from the observed W (δi) values and
the faulty ciphertexts can be obtained directly.

With the faulty ciphertexts in possession, the post-whitening
key can be recovered nibble-wise in a parallel manner, by
solving Eq. (3) independently for each nibble. One should note
that the exact value of fi is known here having a probability
of occurrence 1

24 . As a result, the quantity |E| becomes 24,
whereas |R|= 24 × 2−4 = 1 for |F|= 1. In nutshell, each
key nibble can be uniquely determined by means of a single

fault injection. Further, due to the incomplete diffusion of the
fault up to the beginning of the 31st round (see Figure. 3),
at most 4 key nibbles can be recovered at once for a single
nibble fault injection. In order to recover the complete 64
bit key, thus the adversary should corrupt 3 other nibble
locations, one at a time. The total number of fault injections
thus becomes |F|= 4, for a complete round key. Also, due to
the probabilistic nature of the fault propagation in PRESENT,
not all the nibble gets active with a single fault injection at the
30th round. The calculation |F|= 4 is, therefore, a best-case
estimate of the total number of injections required. In practice,
|F| will increase to some extent. At the worst case, recovery of
each key nibble will require one injection resulting in total 16
injections. All these complexity figures are fairly reasonable.

IV. EXPERIMENTS

To validate our attack, we implemented the target design on
an 8-bit microcontroller with a 2-stage pipeline. The choice of
micro-controller was motivated by reasonable signal to noise
ratio (SNR) for side-channel measurement and unexpected
fault effects in the pipeline.

A. Experimental Setup
For the purpose of fault injection, we use laser as the

injection technique. The laser setup is made of a near-infrared
(1064 nm) pulse laser diode with a power of 20 W, reduced
to 8 W by using 20× objective lens. The spot size after 20x
magnification is 15×3.5 µm. The device under test (DUT)
was mounted on the X-Y-Z positioning table with a step
precision of 0.05 µm. The DUT, operating at a core frequency
of 16 MHz, has a total chip area of 3 mm × 3 mm. For a
DUT operating at 16 MHz, the laser system can target every
other instruction with its pulse repetition rate of 10 MHz. To
enable laser injection, the chip had to be opened from the
backside by mechanical means to expose the substrate. The
substrate of the chip is further polished for making the laser
injection effective. To precisely localize the points of injection
we perform a profiling phase on the microcontroller instruction
set. We identified a favorable zone on the chip with an area
of approximately 75×100 µm large (≈0.083% of the chip
area). The laser power was capped at 4.5% as it allowed 100%
repeatability of faults and higher power might have destroyed
the chip. After the initial profiling phase, the cipher was
implemented and flashed on the micro-controller. We target
the S-Box look-up operation in both AES and PRESENT
ciphers. This primarily involves targeting a LD (load) operation
during a table look-up. As both the cipher implementations
are constant time, once the timing of target LD operation is
determined, we are able to inject faults with 100% repeatability
in both AES and PRESENT. When analyzed, the resultant
fault model is instruction-skip/change, but when ported to S-
Box look-up, it is equivalent to random byte fault, which is
compatible with the required fault models.

B. Practical Evaluation and Results
The redundancy countermeasure was first implemented in

‘C’ language, by comparing outputs of two encryption calls

with same inputs. However, the resulting comparison was not
constant time with several branch instructions. To fix the
timing problem, the comparison was implemented by series
of EOR instructions (XOR). We identified two prominent
instructions to measure which carried the information related
to the comparison of redundant two ciphertexts i.e. EOR and
ST (store). As the data width of the micro-controller is 8-bits,
the comparison is implemented byte-wise.

The side-channel measurement on the comparison of redun-
dant encryption is done using a Lecroy WaveRunner 610zi os-
cilloscope. We preferred electromagnetic (EM) measurement
over power to achieve high SNR. RF-U 5-2 H-field probe
from Langer was used for the measurement. The measurement
was further boosted by 30 dB amplification and a low-pass
filter (0-48 MHz). However, with the micro-controller under
a microscope for laser injection, it was hard to measure the
EM signal directly on the chip. We looked for points of
interest along the chip to measure using visual profiling of
S-Box operation. By trial and error approach, we were able
to find relevant measurement points on the package, while
still allowing laser injection on the chip. Finally, the EM
measurement is disturbed by laser injection itself, which can
be avoided by allowing few cycles between laser injection
and side-channel measurement. As the fault is done during the
encryption and side-channel measurement in final comparison,
this condition was easy to achieve.

The final measurements are done for AES-128 and
PRESENT-80. The byte-wise comparison is ideal in case of
AES, but for PRESENT-80 it will be ideal to measure the
comparison nibble-wise. However, as already explained in
Section. III-E1, measuring PRESENT-80 comparison byte-
wise will also give nibble-wise information (with some added
noise). The details of implementation are given in Table I.
As we need one correct and one faulty ciphertext for each
plaintext, twice the number of encryptions must be performed.
Thus the total number of correct faulty ciphertext pair col-
lected in a day is also provided in Table I. The measurement
results and the distribution along different HWs is shown in
Figure 5 (for AES-128) and Figure 6 (for PRESENT-80). As
shown, the ST operation allows a clear identification of the
ciphertext difference. Even for EOR operation the identification
is possible. This especially works with our fault model where
only corner HW are of prime interest. Extending to other
targets like 32-bit micro-controller or other targets would need
a proper update of the measurement setup.

C. Discussion

It is worth noting that, apart from being the first instance
of DFA having no explicit information about the faulty ci-
phertexts, the proposed attack strategy also points out that
the comparison step of correct and faulty ciphertext must be
protected properly. The technique has been implemented on an
8-bit microcontroller. Further adaption of SCA measurement
setup might be required for the extension to other platforms,
which could involve, template building, localized measured,
pre-processing and filtering etc.

TABLE I: Summary of the attacks. TENC denotes delay of
single redundant encryption in milliseconds. NEXP denotes
maximum number of laser injection per day. The last column
presents the estimated attack complexity to extract a complete
round key (refer Eq. (1)). Note that the fault complexity (|F|)
for PRESENT will be slightly more due to its probabilistic
fault propagation

Cipher Code Size (bytes) TENC NEXP (|E|,|F|,|R|)
AES-128 7570 0.326 226.98 (243,225,1)

PRESENT-80 7110 4.01 223.36 (24,4,1)

780 781 782 783 784
time samples

182

183

184

185

186

187

188

189

190

191
HW of fault mask at XOR operation

HW mask 8
HW mask 7
HW mask 6
HW mask 5
HW mask 4
HW mask 3
HW mask 2
HW mask 1
HW mask 0A

m
pl
itu

de

180 185 190 195 200
Amplitude

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
HW of fault mask at XOR operation

HW mask 8
HW mask 7
HW mask 6
HW mask 5
HW mask 4
HW mask 3
HW mask 2
HW mask 1
HW mask 0

Fr
eq

ue
nc

y
of

 o
cc

ur
re

nc
es

(a) (b)

1778 1780 1782 1784 1786 1788
time samples

170

180

190

200

210

220

230

240
HW of fault mask at ST operation

HW mask 8
HW mask 7
HW mask 6
HW mask 5
HW mask 4
HW mask 3
HW mask 2
HW mask 1
HW mask 0

A
m
pl
itu
de

190 200 210 220 230 240
Amplitude

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
HW of fault mask at ST operation

HW mask 8
HW mask 7
HW mask 6
HW mask 5
HW mask 4
HW mask 3
HW mask 2
HW mask 1
HW mask 0

Fr
eq

ue
nc

y
of

 o
cc

ur
re

nc
e

(c) (d)

Fig. 5: The side-channel observations when comparing the cor-
rect and faulty ciphertext on byte level. (a) The HW difference
when observing the XOR directly (EOR operation) and (c) the
storing of comparison (ST operation). The distribution of the
HW values for each case are presented in (b) and (d).

To protect against such attacks, the comparison function
must be implemented in an SCA secure manner. Techniques
like masking and shuffling can be readily adapted to secure this
comparison. However, it will increase the overheads to some
extent. One should also note that this attack is not directly
applicable to a relatively costly implementation of redundancy
based countermeasure, where the comparison operation is
performed at the end of each round. The reason is that the
correct ciphertext is unavailable in such scenarios. However,
the HW information can still be obtained. An interesting future
extension could be to figure out an attack for these situations.

V. CONCLUSION

Evaluating the security of fault attack countermeasures is a
problem of great theoretical and practical value. The problem
has become even more relevant in the recent context with the
inclusion of side-channel security as an essential evaluation
criterion in the NIST call for lightweight ciphers [27]. In this
paper, we address this problem for a class of time/space redun-
dancy countermeasures and show that they can be attacked by
means of localized random faults. Perhaps the most important
contribution here is to show that the countermeasures are

780 781 782 783 784
time samples

182

183

184

185

186

187

188

189
HW of fault mask at XOR operation

HW mask 4
HW mask 3
HW mask 2
HW mask 1
HW mask 0

A
m
pl
itu
de

180 185 190 195 200
Amplitude

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
HW of fault mask at XOR operation

HW mask 4
HW mask 3
HW mask 2
HW mask 1
HW mask 0

Fr
eq

ue
nc

y
of

 o
cc

ur
re

nc
e

(a) (b)

1778 1780 1782 1784 1786 1788
time samples

170

180

190

200

210

220

230
HW of fault mask at ST operation

HW mask 4
HW mask 3
HW mask 2
HW mask 1
HW mask 0

A
m
pl
itu
de

200 210 220 230
Amplitude

0

0.05

0.1

0.15

0.2

0.25

0.3
HW of fault mask at ST operation

HW mask 4
HW mask 3
HW mask 2
HW mask 1
HW mask 0

Fr
eq

ue
nc

y
of

 o
cc

ur
re

nc
e

(c) (d)

Fig. 6: The side-channel observations when comparing the
correct and faulty ciphertext on byte level with a single nibble
active. (a) The HW difference when observing the XOR
directly (EOR operation) and (c) the storing of comparison
(ST operation). The distribution of the HW values for each
case are presented in (b) and (d) respectively.

inherently leaky and an attack may take place with the aid
of side-channel measurements. Although the attack presented
on AES have a high fault complexity, it is still below practical
limits of computation, which can be addressed with modern
high-speed fault injection mechanisms. Most notably, the
attack on PRESENT was fairly easy to launch. Such a disparity
in computational complexity also points out at weaknesses of
bit-permutation based diffusion layers with respect to MDS
based diffusion layers in the context of physical attacks.
Further extension can explore the adaption of proposed attack
to round based redundancy with techniques similar to to [28].
Adaptation of the attack for complex processor architectures
is another potential direction of research.

REFERENCES

[1] E. Biham and A. Shamir, “Differential fault analysis of secret key cryp-
tosystems,” Advances in CryptologyCRYPTO’97, pp. 513–525, 1997.

[2] N. F. Ghalaty, B. Yuce, M. Taha, and P. Schaumont, “Differential fault
intensity analysis,” in Fault Diagnosis and Tolerance in Cryptography
(FDTC), 2014 Workshop on. IEEE, 2014, pp. 49–58.

[3] T. Fuhr, E. Jaulmes, V. Lomné, and A. Thillard, “Fault attacks on
aes with faulty ciphertexts only,” in Fault Diagnosis and Tolerance in
Cryptography (FDTC), 2013 Workshop on. IEEE, 2013, pp. 108–118.

[4] M. Mozaffari-Kermani and A. Reyhani-Masoleh, “Concurrent structure-
independent fault detection schemes for the advanced encryption stan-
dard,” IEEE Transactions on Computers, vol. 59, no. 5, pp. 608–622,
2010.

[5] T. G. Malkin, F.-X. Standaert, and M. Yung, “A comparative
cost/security analysis of fault attack countermeasures,” in Fault Diagno-
sis and Tolerance in Cryptography. Springer, 2006, pp. 159–172.

[6] X. Guo and R. Karri, “Recomputing with permuted operands: A concur-
rent error detection approach,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 32, no. 10, pp. 1595–
1608, 2013.

[7] S. Patranabis, A. Chakraborty, P. H. Nguyen, and D. Mukhopadhyay, “A
biased fault attack on the time redundancy countermeasure for AES,”
in International Workshop on Constructive Side-Channel Analysis and
Secure Design. Springer, 2015, pp. 189–203.

[8] B. Selmke, J. Heyszl, and G. Sigl, “Attack on a dfa protected aes by
simultaneous laser fault injections,” in Fault Diagnosis and Tolerance
in Cryptography (FDTC), 2016 Workshop on. IEEE, 2016, pp. 36–46.

[9] V. Rijmen and J. Daemen, “Advanced encryption standard,” Proceedings
of Federal Information Processing Standards Publications, National
Institute of Standards and Technology, pp. 19–22, 2001.

[10] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J.
Robshaw, Y. Seurin, and C. Vikkelsoe, “Present: An ultra-lightweight
block cipher,” in International Workshop on Cryptographic Hardware
and Embedded Systems. Springer, 2007, pp. 450–466.

[11] C. Dobraunig, M. Eichlseder, T. Korak, S. Mangard, F. Mendel, and
R. Primas, “Exploiting ineffective fault inductions on symmetric cryp-
tography,” Tech. Rep.

[12] M. Karpovsky, K. J. Kulikowski, and A. Taubin, “Robust protection
against fault-injection attacks on smart cards implementing the advanced
encryption standard,” in Dependable Systems and Networks, 2004 Inter-
national Conference on. IEEE, 2004, pp. 93–101.

[13] N. Wiersma and R. Pareja, “Safety!= Security: On the Resilience of
ASIL-D Certified Microcontrollers against Fault Injection Attacks,” in
Fault Diagnosis and Tolerance in Cryptography (FDTC), 2017 Work-
shop on. IEEE, 2017, pp. 9–16.

[14] F. Regazzoni, L. Breveglieri, P. Ienne, and I. Koren, “Interaction between
fault attack countermeasures and the resistance against power analysis
attacks,” in Fault Analysis in Cryptography. Springer, 2012, pp. 257–
272.

[15] B. Robisson and P. Manet, “Differential behavioral analysis,” in Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems.
Springer, 2007, pp. 413–426.

[16] C. Clavier, B. Feix, G. Gagnerot, and M. Roussellet, “Passive and
active combined attacks on aes combining fault attacks and side channel
analysis,” in Fault Diagnosis and Tolerance in Cryptography (FDTC),
2010 Workshop on. IEEE, 2010, pp. 10–19.

[17] A. Moradi, O. Mischke, C. Paar, Y. Li, K. Ohta, and K. Sakiyama, “On
the power of fault sensitivity analysis and collision side-channel attacks
in a combined setting,” in International Workshop on Cryptographic
Hardware and Embedded Systems. Springer, 2011, pp. 292–311.

[18] S. Patranabis, D. Mukhopadhyay, J. Breier, and S. Bhasin, “One Plus
One is More than Two: A Practical Combination of Power and Fault
Analysis Attacks on PRESENT and PRESENT-like Block Ciphers,” in
FDTC, 2017.

[19] X. Guo, D. Mukhopadhyay, C. Jin, and R. Karri, “Security analysis of
concurrent error detection against differential fault analysis,” Journal of
Cryptographic Engineering, vol. 5, no. 3, pp. 153–169, 2015.

[20] J. Breier, D. Jap, and S. Bhasin, “A study on analyzing side-channel
resistant encoding schemes with respect to fault attacks,” Journal of
Cryptographic Engineering, vol. 7, no. 4, pp. 311–320, 2017.

[21] Y. Yao, M. Yang, C. Patrick, B. Yuce, and P. Schaumont, “Fault-
assisted side-channel analysis of masked implementations,” in 2018
IEEE International Symposium on Hardware Oriented Security and
Trust (HOST). IEEE, 2018, pp. 57–64.

[22] H. Eldib, M. Wu, and C. Wang, “Synthesis of fault-attack counter-
measures for cryptographic circuits,” in International Conference on
Computer Aided Verification. Springer, 2016, pp. 343–363.

[23] Y. Li, K. Sakiyama, S. Gomisawa, T. Fukunaga, J. Takahashi, and
K. Ohta, “Fault sensitivity analysis,” in CHES’10. Springer, 2010,
pp. 320–334.

[24] R. Korkikian, S. Pelissier, and D. Naccache, “Blind fault attack against
spn ciphers,” in Fault Diagnosis and Tolerance in Cryptography (FDTC),
2014 Workshop on. IEEE, 2014, pp. 94–103.

[25] M. Tunstall, D. Mukhopadhyay, and S. Ali, “Differential fault analysis
of the advanced encryption standard using a single fault,” in IFIP
International Workshop on Information Security Theory and Practices.
Springer, 2011, pp. 224–233.

[26] J. Jean, “TikZ for Cryptographers,” https://www.iacr.org/authors/tikz/,
2016.

[27] NIST, “Submission requirements and evaluation criteria
for the lightweight cryptography standardization pro-
cess,” https://csrc.nist.gov/CSRC/media/Projects/Lightweight-
Cryptography/documents/Draft-LWC-Submission-Requirements-
April2018.pdf, 2018.

[28] J. Breier, D. Jap, and S. Bhasin, “SCADPA: Side-channel assisted
differential-plaintext attack on bit permutation based ciphers,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2018.
IEEE, 2018, pp. 1129–1134.

