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Abstract: Natural products have multifarious bioactivities against bacteria, fungi, viruses, cancers
and other diseases due to their diverse structures. Nearly 65% of anticancer drugs are natural products
or their derivatives. Thus, natural products play significant roles in clinical cancer therapy. With
the development of biosynthetic technologies, an increasing number of natural products have been
discovered and developed as candidates for clinical cancer therapy. Here, we aim to summarize the
anticancer natural products approved from 1950 to 2021 and discuss their molecular mechanisms. We
also describe the available synthetic biology tools and highlight their applications in the development
of natural products.

Keywords: natural product; cancer therapy; molecular mechanism; synthetic biology

1. Introduction

Cancer is one of the deadliest diseases, in which cell grow uncontrollably and then
are shed into the blood, which transports the cells to other parts of the body. Cancer has
been highlighted as one of the most serious health challenges worldwide. According to
global cancer statistics, in 2020, 19.3 million new cancer cases and 10.0 million cancer
deaths were reported [1]. In particular, in 2020, the cumulative risk of cancer incidence
and mortality increased to 20.58% and 10.73%, which are 2.08 and 1.90 times higher than
these in 2002, respectively [2]. Thus, an increasing number of researchers are focusing on
cancer research and therapy [3,4]. Conventional cancer therapies include surgery, radiation,
and chemotherapy. Clinical cancer drugs play essential roles in cancer therapy. However,
chemotherapy is often accompanied by the emergence of resistance, cancer recurrence
and the development of serious side effects, such as peripheral neuropathy, nephropathy
and liver injury [5,6]. Therefore, there remains an urgent demand for clinical drugs with
excellent curative effects against cancer.

Natural products (NPs) originate from animals, plant extracts, insects, marine organ-
isms, microorganisms and other organisms. They are produced by a series of mechanisms
in hosts, mainly including polyketide synthase (PKS), nonribosomal peptide synthetase
(NRPS) and ribosomally synthesized and posttranslationally modified peptide (RiPP) mech-
anisms. Due to the wide variety of biosynthetic mechanisms, NPs exhibit diverse structures,
biological activities and applications, especially in the treatment of human diseases and
in veterinary and agricultural applications [7]. As primary and secondary metabolites or
intermediates, NPs do not involve dangerous chemical synthesis processes and byproducts.

NPs, such as the anticancer drug paclitaxel [8], immunosuppressive drug rapamycin [9]
and antiparasitic drug artemisinin [10], have been extensively applied for the prevention
and treatment of various human diseases. As of 2019, 64.4% of the 1881 drugs approved
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by the United States Food and Drug Administration (U.S. FDA) are NPs or their deriva-
tives and analogues, such as plant-derived artemisinin and microorganism-derived fidax-
omicin [11]. At present, nearly 70% of antibacterial drugs and 65% of antitumor drugs
come from NPs and their derivatives [12], such as daptomycin [13] and actinomycin. Due
to their structural diversity, NPs have a broad array of anticancer mechanisms. They can
inhibit cancer development by arresting cell proliferation and promoting cell apoptosis,
autophagy and immunotherapy via a series of signaling pathways [14,15].

To discover novel and valuable NPs, an increasing number of strategies and tools
have been developed and applied. Synthetic biology is the most popular and powerful
strategy for discovering novel and valuable NPs. As an emerging field of biological research
in the early 21st century, synthetic biology aims to artificially design and construct new
biological systems with specific physiological functions to establish biological manufac-
turing pathways for products, such as drugs, functional materials or energy substitutes.
To design and construct biological systems, numerous tools and methods have been de-
veloped, such as the antibiotics and secondary metabolite analysis shell (antiSMASH)
web server [16], clustered regularly interspaced short palindromic repeats-CRISPR associ-
ated protein (CRISPR-Cas) [17,18], DNA assembly [19], direct cloning [20], transcriptional
regulation [21], protein engineering [22], multiple omics [23] and host engineering [24].

In this review, we will summarize the approved anticancer natural drugs covering
from 1950 to 2021 and discuss the great potential of the clinical applications of NPs in
cancer therapy and summarize their anticancer mechanisms. We will also outline the
synthetic biology strategies and tools used for discovering valuable NPs and highlight their
applications in NP development.

2. FDA-Approved Anticancer Natural Products

As a typical and general medical therapy for cancer, chemotherapeutic drugs can also
damage normal cells and then cause a series of complications. Moreover, drug resistance
emerges with the wide use of chemotherapeutic drugs, especially in advanced-stage cancers.
All these factors can result in the failure of cancer therapy. Thus, there is a need for drugs
with strong activities against cancer cells and low toxicity against normal cells. Different
NPs, on the one hand, exhibit effective activities against various types of cancer; on the
other hand, they play prominent roles in drug resistance via various mechanisms [25–27].
Moreover, they can also improve the effects of immune therapy [15]. In brief, natural
products are becoming significant for medicine research.

In this section, we summarize all FDA-approved anticancer NPs, covering 72 years
from 1950 to 2021. In total, 87 NPs are summarized and discussed according to their
names and sources (Table 1). Forty-five percent of anticancer drugs are derived from large
biological macromolecules, NPs or their derivatives (Figure 1A). Specifically, the number of
NPs applied in cancer therapy has grown rapidly from 1950 to 2020 (Figure 1B, Table 1). In
the 1950s, 7 NPs were approved for application in clinical cancer therapy. Meanwhile, in
the 2010s, 21 NPs were approved for cancer therapy, three times the number approved in
the 1950s. The anticancer cancer NPs approved in the last two decades account for 41% of
all approved NPs (Figure 1C). This suggests that with the development of technology, an
increasing number of NPs are being found and applied in clinical cancer therapy. More
interestingly, the number of steroids decreased gradually, and only one hormone was
approved in the last decade, for therapy of castration-resistant prostate cancer, which is
four times lower than the number approved in the 1950s (Figure 1D, Table 1). On the other
hand, marine NPs and antibody drug conjugates (ADCs) have emerged and increased
rapidly in the last two decades, and they will be the main sources of clinical drugs. Except
for these approved NPs, a large number of NPs have been reported to be toxic to cancer
cells through various mechanisms, and some of them entered clinical trials [28–30]. These
unapproved NPs still have great potential as clinical drugs.
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Table 1. All natural anticancer drugs approved from 1950 to 2021.

Active Ingredient Drug Name Target Cancer Type Year Intro. Source Ref.

plant NPs
asparaginase

Erwinia chrysanthemi Rylaze acute lymphoblastic leukemia
and lymphoblastic lymphoma 2021 Erwinia chrysanthemi [31]

padeliporfin
potassium Tookad prostate cancer 2015 a derivative of chlorophyll [32]

paclitaxel injection
concentrate for
nanodispersion

PICN metastatic breast cancer 2014 taxus species [33]

homoharringtonine Ceflatonin myeloid leukemia 2012 Cephalotaxus harringtonia [34]
ingenol mebutate Picato actinic keratosis 2012 Euphorbia peplu [35]

cabazitaxel Jevtana castration-resistant metastatic
prostate cancer 2010 a taxane derivative [36]

vinflunine Javlor advanced and metastatic
urothelial carcinoma 2010 a semisynthetic

vinca-alkaloid [37]

nanoparticle-based
formulation of

paclitaxel
Nanoxel

ovarian, non-small cell lung,
breast, gastric, endometrial and

pancreatic cancers
2007 taxus species [38]

albumin-bound
paclitaxel Abraxane

ovarian, non-small cell lung,
breast, gastric, endometrial and

pancreatic cancers
2005 taxus species [39,40]

belotecan HCL Camtobell small cell lung cancer 2004 a camptothecin analog [41]

liposomal
formulation of

paclitaxel
Lipusu

non-small cell lung, breast,
gastric,

endometrial and pancreatic
cancers

2003 taxus species [42]

fulvestrant Faslodex advanced breast cancer 2002 a taxane plant product [43]

arglabin n.r. oral squamous cell carcinoma,
breast cancer 1999 Artemisia species [44]

topotecan HCl Hycamptin small cell lung cancer 1996 a camptothecin analog [45]
etoposide
phosphate Etopophos advanced-stage Hodgkin

lymphoma 1996 a semisynthetic derivative
of podophyllotoxin [46]

docetaxel Taxotere HER2-positive metastatic breast
cancer 1995 yew tree [47]

irinotecan HCl Campto colorectal and pancreatic cancer 1994 a camptothecin analog [48]

paclitaxel Taxol
non-small cell lung, breast,
gastric, endometrial and

pancreatic cancers
1993 pacific yew trees [49]

masoprocol Actinex a potent sensitizer 1992 creosote bush [50]

vinorelbine Navelbine non-small cell lung cancer 1989 a semisynthetic vinca
alkaloid [51]

solamargines Curaderm nasopharyngeal carcinoma cells 1989 Solanum undatum [52]

elliptinium acetate Celiptium breast cancer 1983 a derivative of ellipticine
derived from plant [53]

etoposide n.r. extensive-stage small cell lung
cancer 1980 a semisynthetic derivative

of podophyllotoxin [54]

vindesine n.r. Leukemia, non-small-cell lung
cancer 1979 Catharanthus roseus [55]

teniposide n.r. acute lymphoblastic leukemia 1967 a semisynthetic derivative
of podophyllotoxin [56]

vinblastine n.r. Hodgkin lymphoma 1965 Catharanthus roseus [57]

vincristine n.r. hematologic malignancies and
solid tumors 1963 nerium oleander [57]
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Table 1. Cont.

Active Ingredient Drug Name Target Cancer Type Year Intro. Source Ref.

microbial NPs

midostaurin Rydapt acute myeloid leukemia,
advanced systemic mastocytosis 2017

a derivate of staurosporine
produced by Streptomyces

staurosporeus
[58]

romidepsin Istodax T cell lymphomas 2010 Chromobacterium violaceum [59]

temsirolimus Toricel relapsed or refractory solid
tumors 2007

a derivative of sirolimus
produced by Streptomyces

hygroscopicus
[60]

ixabepilone Ixempra breast cancer 2007
a derivate of epothilone B
produced by Sorangium

cellulosum
[61]

amrubicin HCl Calsed small-cell lung cancer 2002 an anthracyclin analogue [62]

valrubicin Valstar non-muscle invasive bladder
cancer 1999 a derivative of the

anthracycline doxorubicin [63]

zinostatin stimalamer Smancs hepatocellular
carcinoma 1994

chemically synthesized by
coupling one molecule of
neocarzinostatin produced

by Streptomyces
carzinostaticus

[64]

idarubicin HCl Zavedos acute myelogenous leukemia 1990
an analogue of

daunorubicin produced by
Streptomyces peucetius

[65]

pirarubicin Pinorubicin lung cancer, breast cancer 1988 a novel anthracycline
derivative of doxorubicin [66]

epirubicin HCI Farmorubicin B cell lymphoma, head and neck
cancer and other solid cancers 1984 a semisynthetic derivative

of doxorubicin [67]

aclarubicin Aclacin
acute myeloid leukemia,

hematologic cancers and solid
tumors

1981 Streptomyces galilacus [68]

peplomycin Pepleo
cutaneous squamous cell

carcinoma, prostatic cancer,
breast cancer

1981 a derivative of bleomycin [69]

asparaginase n.r. leukemia and lymphoma 1969 Escherichia coli [70]
daunomycin n.r. acute promyelocytic 1967 Streptomyces species [71]

bleomycin n.r.

squamous cell carcinoma from
head and necki, lymphomas,

testicular
carcinoma

1966 Streptomyces verticillus [72]

doxorubicin n.r.
ladder, breast, stomach, lung,
ovaries, thyroid, soft tissue

sarcoma
1966 Streptomyces peucetius var.

caesius [73]

actinomycin D n.r.
solid tumors in children and

choriocarcinoma in adult
women

1964 Streptomyces species [74]

mithramycin n.r. chronic and acute myeloid
leukemia, testicular carcinoma 1961 Streptomyces species [75]

mitomycin C n.r.

bladder, breast carcinoma, head
and neck malignancies, and
some other gastrointestinal

cancer

1956 Streptomyces caespitosus [76]

leucovorin n.r. haematologic malignancies and
osteosarcomas 1950 Leuconostoc citrovorum [77]
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Table 1. Cont.

Active Ingredient Drug Name Target Cancer Type Year Intro. Source Ref.

antibody-conjugated NPs

enfortumab
vedotin-ejfv Padcev refractory bladder cancer 2019

a nectin-4-targeted antibody
conjugated to monomethyl
auristatin E, which is a toxin

[78]

polatuzumab
vedotin Polivy

relapsed or refractory diffuse
large

B-cell lymphoma
2019

an anti-CD79b antibody
conjugated to monomethyl
auristatin E, which is a toxin

[79]

trastuzumab
emtansine Kadcyla HER2-positive early breast

cancer 2019

a monoclonal antibody
trastuzumaba conjugated to

emtansine, which is a
derivative of maytansine

[80]

inotuzumab
ozogamicin Mundesine acute lymphoblastic leukemia 2017 an anti-22 antibody linked

to calicheamicin [81]

brentuximab
vedotin Adcetris relapsed or refractory hodgkin

lymphoma 2011
an anti-CD30 antibody

conjugated to monomethyl
auristatin E, which is a toxin

[82]

gemtuzumab
ozogamicin Mylotarg acute myeloid leukemia 2000 anti-CD33 antibody linked

to calicheamicin, a toxin [83]

marine NPs
lurbinectedin Zepzelca metastatic small cell lung cancer 2020 a marine-derived drug [84]

aplidine Aplidin acute lymphoblastic leukemia 2018 Aplidium albican [85]

trabectedin Yondelis
soft tissue

sarcomas—liposarcoma
and leiomyosarcoma

2015 Ecteinascidia turbinata [86]

eribulin Halaven breast cancer and soft-tissue
sarcoma 2010

a macrocyclic ketone
analogue of the

halichondrin
[87]

hormones

abiraterone acetate Zytiga castration-resistant prostate
cancer 2011 a semisynthetic steroid [88]

vapreotide acetate Docrised esophageal variceal bleeding 2004 a somatostatin analogue [89]

exemestane Aromasin
hormone receptor-positive

breast
cancer

1999 endocrine agent, steroidal
compound [90]

angiotensin II Delivert pancreatic cancer 1994 an endogenous hormone [91]
formestane Lentaron breast cancer, prostatic cancer 1993 a steroid substrate analog [92]

triptorelin Decapeptyl prostate cancer 1986
a decapeptide analog of

luteinizing hormone
releasing hormone

[93]

estramustine n.r. prostate cancer 1980 a stable estradiol [94]

methyltestosterone n.r. breast cancer 1974 an anabolic–androgenic
steroid [95]

calusterone n.r. advanced breast cancer 1973 an androgenic steroid [96]
megesterol acetate n.r. metastatic breast cancer 1971 n.r. [97]

testolactone n.r. desmoid tumors, breast cancer 1969 a nonselective steroid [98]
dromostanolone n.r. breast cancer 1961 an androgen steroid [99]

nandrolone
phenylpropionate n.r. hepatocellular adenomas 1959 a steroid [100]

dexamethasone n.r. breast cancer, acute leukemia
lymphoma 1958 a glucocorticoid [101]

medroxyprogesterone
acetate n.r. hormone-related cancers,

cachexia syndrome 1958 a hormone progesterone
variant [102]

triamcinolone n.r. ocular conditions unresponsive
to topical steroids 1958 a corticosteroid [103]

methylprednisolone n.r. hodgkin lymphoma 1955 a corticosteroid [104]
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Table 1. Cont.

Active Ingredient Drug Name Target Cancer Type Year Intro. Source Ref.

other NPs

forodesine HCl Mundesine relapsed peripheral T cell
lymphoma 2017 a purine nucleoside

analogue [105]

a nanoemulsion
formulation

containing 10%
aminolaevulinic acid

hydrochloride

Ameluz lesion-directed and
field-directed actinic keratosis 2012

the precursor of the
endogenous photosensitizer

Protoporphyrin IX
[106]

carfilzomib Kyprolis relapsed or refractory multiple
myeloma 2012 a peptide epoxyketone [107]

mifamurtide Junovan nonmetastatic osteosarcoma 2010

a conjugate of muramyl
tripeptide linked to

dipalmitoyl phosphatidyl
ethanolamine

[108]

pralatrexate Folotyn relapsed/refractory peripheral
T cell lymphomas 2009 a folic acid analogue [109]

talaporfin sodium Laserphyrin esophageal cancer 2004 mono-L-asparthyl chlorine
e6: NPe-6 [110]

methyl
aminolaevulinate Metvix high-risk basal cell carcinoma 2001

the precursor of the
endogenous photosensitizer

Protoporphyrin IX
[111]

aminolevulinic acid Levulan premalignant and malignant
diseases 2000 the first metabolite in the

heme biosynthesis pathway [112]

alitretinoin Panretin acute promyelocytic leukemia 1999
an endogenous vitamin A
derivative, 9-cis-retinoic

acid
[113]

cladribine Leustatin hairy-cell leukaemia 1993 a purine nucleoside
analogue [114]

cytarabine ocfosfate Starsaid acute myeloid leukemia 1993 an orally applicable prodrug
of cytosine arabinoside [115]

pentostatin Nipent lymphocytic leukemia 1992 an analogue of purine [116]
mitobronitol n.r. acute myeloblastic leukemia 1979 n.r. [117]
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sources of anticancer drugs approved from 1950_2019 and their proportions. N: natural product. ND:
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product. S*: synthetic drug with NP pharmacophore. V: vaccine. (B,C) Anticancer drugs derived
from natural products. (D) All approved anticancer natural products by source/year. ADC: antibody
drug conjugate.
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3. Anticancer Mechanisms of Natural Products

As we know, human cancer is produced from multiple processes. The cancer cells in
different processes seem to exhibit different functional capabilities. Hanahan D. envisages
eight distinct hallmark capabilities, including evading growth suppress, avoiding immune
destruction, enabling replicative immortality, activating invasion and metastasis, inducing
or accessing vasculature and so on, to rationalize the complex phenotypes of diverse human
tumor types and variants [118]. Destroying the hallmark capabilities in tumor progresses is
promising for tumor suppression.

NPs suppress cancer development via diverse anticancer mechanisms due to their
various chemical structures (Figure 2). For example, the intact lactone ring of camptothecins
and the colchicine domain of podophyllotoxins are widely recognized as the active struc-
tures for their anticancer activities [119,120]. Although the antitumor effects of some NPs
have been reviewed previously [14,121], the molecular mechanisms of NPs in cancer de-
velopment have not been comprehensively summarized and discussed. Thus, we further
summarize the molecular mechanisms of NPs in tumor suppression in this section.
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3.1. Plant-Derived Drugs

Most natural anticancer drugs identified to date are plant-derived NPs, mainly derived
from paclitaxel, camptothecin, podophyllotoxin, vinca-alkaloid and their analogues. Due
to the numerous types of plant-derived drugs, their anticancer mechanisms are varied.

Microtubules play significant roles in the proliferation, migration and invasion of
cancer cells. Various anticancer agents have been designed to target microtubules. There are
two effective antimicrotubule therapeutics, paclitaxel and vinca-alkaloids. Paclitaxel and its
analogues bind to tubulin and then promote tubulin polymerization and inhibit microtubule
disassembly [122]. In contrast to paclitaxel, vinca-alkaloids and their analogues, such as
vinflunine, vinblastine and vincristine, inhibit tubulin polymerization and subsequent
spindle assembly [123] (Figure 3A). Microtubule dynamics change dramatically over time,
which is essential for promoting microtubule growth and disassembly. Both of these classes
of drugs induce the failure of microtubule dynamics. Microtubule dynamics instability is
highly responsible for mitotic chromosome instability, which is common in cancer cells.

Camptothecin analogues, including belotecan HCl, topotecan HCl and irinotecan
HCl, kill cancer cells by specifically targeting and binding to DNA topoisomerase I, which
results in a double-stranded DNA break during the S-phase [124]. Another class of NPs,
podophyllotoxin analogues, have been identified as topoisomerase II inhibitors. The most
recent reports suggest that etoposide and its metabolites interact with topoisomerase II
enzymes on the one hand, and they can also covalently bind to CREB-binding protein
and T cell protein tyrosine phosphatase on the other hand [54]. These two proteins are
functional in the differentiation and proliferation of hematopoietic stem cells. The binding
of etoposide directly results in enzyme inhibition. DNA topoisomerases are essential in
DNA replication, transcription and chromosome segregation. Their inhibitors block these
biological processes and then disrupt cell proliferation.

In addition, some other plant NPs, such as homoharringtonine, arglabin and sola-
margines, suppress tumor growth via specific pathways (Figure 3B). For example, arglabin
and solamargines induce apoptosis via the mitochondrial pathway, which is one of the
major mechanisms of apoptosis leading to programmed cell death. In this pathway, upon
stimulation by apoptosis signal(s), cytochrome c is released from mitochondria to the cyto-
plasm and then interacts with Apaf-1 to form apoptotic bodies. The structurally changed
Apaf-1 in the apoptotic body recruits caspase 9 and causes caspase 9 to be cleaved into two
segments and activated. Activated caspase 9 further activates subsequent caspase proteins
and then initiates apoptosis. Arglabin and solamargines inhibit the activity of Bcl-2 and
upregulate caspase-3, respectively [125,126].

3.2. Microorganism-Derived Drugs

Streptomyces strains are the main sources of microorganism-derived drugs. Although
the genetic manipulation and fermentation of Streptomyces are time-consuming, these
organisms possess rich precursors, cofactors and posttranslational modifications, which are
essential for the diverse bioactivities of natural products [24]. Due to the diverse structures
of microorganism-derived drugs, their mechanisms vary.

Nearly half of microorganism-derived drugs are anthracyclines, including aclarubicin,
daunomycin, doxorubicin and their derivatives. They are synthesized via type II polyketide
pathways [127] (Figure 3C). As the most effective curative regimen for a series of hemato-
logic cancers and solid cancers, there are two important mechanisms by which doxymycin,
daunomycin, epirubicin and idarubicin induce cancer cell apoptosis: DNA damage and
chromatin damage [128] (Figure 3B). On the one hand, anthracyclines are composed of tetra-
cycline aglycones related to aminoglycosides. The amino sugar inserts into the DNA minor
groove, while the tetracyclic moiety inserts into the DNA double helix [129]. This action
induces topoisomerase II poisoning and subsequent DNA double-strand breaks (DSBs).
On the other hand, anthracyclines release histones from the genome, which results in
chromatin damage and epigenomic and transcriptional effects. However, the combination
of DNA and chromatin damage contributes to serious side effects, such as cardiovascular
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toxicity [130] and infertility [131]. Furthermore, as an analogue of doxymycin, aclarubicin
evicts histones from the genome without inducing DSBs. It shows effective anticancer
activity but less toxicity than other anthracyclines [131]. These results provide strategies
with which researchers can improve the activity and safety of anthracycline drugs.
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Figure 3. The main molecular mechanisms and regulation networks of anticancer drugs derived
from natural products. (A) Natural products inhibit cell proliferation by destroying the microtubule
dynamic and DNA damage and inhibiting translation. (B) Natural products induce apoptosis via
mitochondrial pathway and chromatin damage and by destroying the balance of HAT and HDAC.
(C) Biosynthesis of doxorubicin, a type II polyketide [127]. ACP: acyl carrier protein. KS: ketosynthase.
KR: ketoreductase. GT: glycosyltransferase. MT: methyl transferase. OA: oxygenase. ME: methyl
esterase. (D) Natural products result in vascular shutdown via Rho pathway. ES: endoplasmic
reticulum stress. OS: oxidative stress. HAT: histone acetylase. HDAC: histone deacetylase. IFP:
incorrectly folded protein. TOP: topoisomerase.

Additionally, bleomycin and mitomycin C preferentially cleave actively transcribed
genes, and telomeric DNA is their major target. In contrast, bleomycin produces free radi-
cals that act on chromosomes and then induce chromosomal aberrations [132]. Romidepsin
is produced from by Chromobacterium violaceum and disrupts the balance of histone deacety-
lase by inhibiting the activity of class I histone deacetylase enzymes in refractory or relapsed
cutaneous and peripheral T cell lymphomas (Figure 3B). Transcriptional suppression is
another anticancer mechanism of microorganism-derived drugs, such as actinomycin D
and mithramycin. Actinomycin D is an RNA polymerase inhibitor, and mithramycin is
an inhibitor of Sp-1, which is a transcription factor of ACVRL-1 [75]. Temsirolimus is a
derivative of sirolimus produced by Streptomyces hygroscopicus. It is used for the therapy
of renal cell carcinoma by acting as an inhibitor of mTOR and subsequently inducing the
autophagy of cancer cells [133].
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3.3. Natural Product-Based ADCs

Cancer immunotherapies, including chimeric antigen receptor T cells, immune check-
point blocks and vaccines, have been developed as promising treatments and have made
significant therapeutic progresses in recent years. In contrast to traditional therapies, cancer
immunotherapies have high accuracy, specificity and wide adaptability and significantly
improve patient survival rate [134]. Monoclonal antibodies target immune checkpoints,
which has revolutionized cancer treatment. Monoclonal antibodies can be used alone as
immune checkpoint inhibitors. Additionally, they can be conjugated with potent cytotoxic
agents and then deliver the cytotoxic agents precisely to the tumor cells.

Trastuzumab emtansine is a human epidermal growth factor receptor 2-targeted
monoclonal antibody conjugated to emtansine. Brentuximab vedotin is an anti-CD30
antibody conjugated to monomethyl auristatin E. Both of these drugs improve cancer
therapy efficacy by inhibiting microtubule generation via disrupting the polymerization
of tubulin [135,136]. Both inotuzumab ozogamicin and gemtuzumab ozogamicin consist
of a monoclonal antibody and a cytotoxic calicheamicin that bind DNA and subsequently
result in DNA breaks. The former is directly delivered to refractory or relapsed acute
lymphoblastic leukemia cells by anti-22 antibody and then induces DNA damage [137].
The latter is directly delivered to acute myeloid leukemia cells by anti-CD33 antibody.
In general, to a certain extent, ADCs reduce the toxicity of drugs to normal cells due to
their specificity and exhibit greater potential in cancer treatment than traditional therapy.
However, autoimmune response and side effects still exist, and treatment cost is high, all
of which hinder their widespread usage. Future developments in ADCs will focus on
identifying better targets, more effective cytotoxic payloads and better linkers to improve
the potency and safety of drugs.

3.4. Marine Natural Products

Compared with terrestrial plants, nonmarine microorganisms and animals, marine
organisms possess greater potential to produce novel and bioactive NPs with diverse
structures. They are considered to be the most recent sources of medicinal drugs. As of
2021, four marine NPs have been approved for cancer therapy.

The first marine anticancer drug to be approved was eribulin, which binds tubulin
and induces microtubule depolymerization in breast cancer and soft-tissue sarcoma [138].
In addition, there are two marine drugs targeting transcriptional regulation, trabectedin
and lurbinectedin. Trabectedin is produced from the marine animal Ecteinascidia turbinate.
It is used to treat specific soft tissue sarcomas, such as liposarcoma and leiomyosarcoma.
According to a clinical study, treatment with trabectedin produces better efficacy and a
longer survival time in soft-tissue sarcoma patients [139]. Aplidine is produced from the
marine microorganism Aplidium albicans, and it has curative effects in acute lymphoblastic
leukemia via oxidative stress-mediated JNK and p38 activation and ER stress-mediated
incorrect protein folding, triggering rapid apoptosis in cancer cells [140]. Lurbinectedin
is a synthetic alkaloid related to trabectedin. As a new second-line therapy option, it was
approved in 2021 for the treatment of metastatic small cell lung cancer. Lurbinectedin
acts as a transcription inhibitor by binding to the minor groove of DNA and subsequently
driving the accumulation of DNA breaks. Additionally, it can disrupt the interactions
between DNA and protein and thereby disrupt RNA transcription [141].

With the development of techniques for sample collection and spectrometry, significant
achievements have been made in the exploration of marine natural products. More than
32,900 marine NPs had been identified by 2020 [142–145]. The quantity of marine NPs is
relatively high compared to that of synthetic compounds. Thus, their clinical trials are
very promising.

3.5. Hormones and Other Natural Products

Hormones and their analogues suppress cancer development mainly by regulating an-
drogen or estrogen levels. For example, formestane and testolactone function as aromatase
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inhibitors and decrease the estrogen levels of breast cancer and unresectable desmoid
tumors, respectively [146,147]. Abiraterone acetate decreases the androgen level by acting
as an inhibitor of CYP17 [148]. However, only one hormone analogue has been approved
for cancer therapy. It seems that hormones are becoming less widespread in clinical use.

Moreover, some other NPs can also inhibit cancer development by modulating the
immune system. Purine analogues and peptide analogues, such as cladribine and mifamur-
tide, have been shown to be active in a variety of B- and T cell malignancies [149,150]. They
can activate immune cells, inducing an effective immune response and resulting in protec-
tion against cancer. Some cancer cells, such as multiple myeloma cells, are sensitive to the
inhibition of the ubiquitin proteasome pathway induced by carfilzomib, since proteasome
inhibition leads to the accumulation of unfolded proteins, endoplasmic reticulum stress
and subsequent cell growth arrest [151]. As a modified epoxyketone, carfilzomib can bind
to the functional sites of the 20S proteasome, inhibiting cell proliferation [152].

Photodynamic therapy is another attractive treatment technology. Unlike standard
laser photocoagulation, photodynamic therapy enhances the antitumor effects by inducing
vascular shutdown [153,154]. Vascular shutdown serves as a promising target for anti-
cancer agents that bind to tubulin protein and lead to microtubule depolymerization [155]
(Figure 3C). Similarly, talaporfin sodium evokes vascular shutdown via the RhoA/ROCK
pathway, which directly mediates F-actin polymerization and subsequently destroys tumor
vessels [110,156] (Figure 3C). The trastuzumab emtansine-induced disruption of micro-
tubule dynamics summarized above can also block the formation of proplatelets and blood
vessels [135].

4. Synthetic Biology Strategies and Tools for Discovering Natural Products

Given the great potential of NPs in clinical applications, an increasing number of
pharmaceutical researchers have focused on NPs. Traditional methods are the primary
approaches for discovering NPs because they involve the direct collection of compounds
with biological activities from numerous organisms instead of genetic manipulation. Al-
though traditional methods have been successfully applied in identifying many bioactive
NPs, they have some limitations, such as being time-consuming, labor-consuming, having
poor efficiency and requiring repeated extraction of known compounds. With the rapid de-
velopment of sequencing, many genome sequences, RNA sequences and protein sequences
have been shared in databases, such as the National Center for Biotechnology Information
(NCBI) databases and UniProt. All these sequences light the avenues of bioinformatics,
genetic manipulation, protein engineering and subsequent synthetic biology.

4.1. Bioinformatics Analysis

Databases provide vast information for researchers. For example, PubMed contains
more than 26 million biomedical publications, which cover life science, chemical science,
biological engineering, physical science and so on [157]. Based on the literature, researchers
can extract target information that provides new insights for the therapeutic discovery and
improvement of NPs against cancers. In addition, a series of genome analysis, proteome
analysis and pathway analysis tools have been developed to discover hidden information.
For example, antiSMASH is updated frequently and is used to predict and analyze the
biosynthetic gene clusters (BGCs) of secondary metabolites in bacterial, fungal and plant
genome sequences [16,158–161] (Figure 4A). These tools are constantly being extended and
improved to help researchers identify unique and valuable metabolites.

High-throughput sequencing technologies are widely applied in genomics, transcrip-
tomics, proteomics, metabolomics, lipidomics and single-cell sequencing (Figure 4B). These
omics studies fill the knowledge gap regarding how many silent BGCs will yield novel
NPs and then break through the bottleneck in BGC characterization [162]. Multiomics
analysis provides crucial clues for revealing new insights into the biosynthetic mechanisms
of NPs by integrating multilayer molecular information [163,164]. On the other hand, with
the development of multiomics technologies and computer programs, there are enough
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genome sequences, RNA sequences, protein sequences and metabolites to be used for
computational modeling and the subsequent generation of predictive biological systems
and even metabolic reconstructions [165]. In a computational metabolic model, researchers
can obtain a simulation that resembles a real laboratory experiment and an approximate
outcome of the experiment by running a model in which researchers can adjust the pa-
rameters of every factor in the biosynthetic pathway to optimize the output of the end
product (Figure 4C). For example, Michael C et al. achieved a three-fold improvement in the
resveratrol titer in Escherichia coli (E. coli) by constructing a new probabilistic computational
model [166]. In addition to metabolic modeling, computational models are also used to
design cell factories to realize the optimal production of target molecules [167].
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4.2. Pathway Reconstruction or Engineering

However, 90% of the NPs are in the dark, as they are produced at only low levels or
not at all due to their silent BGCs. The rapid development of DNA sequencing technology
has stimulated genetic manipulation, which is crucial for identifying and engineering
novel and valuable NPs. Multiple-step biosynthetic pathways are known to be involved
in NP biosynthesis, and these pathways contain diverse genes and their control elements.
Researchers will be better able to discover these high-hanging fruits if these genes and
their elements are optimally assembled into operational pathway(s). Therefore, new DNA
assembly and engineering tools are arising constantly.

Pathway construction through DNA assembly in vivo or in vitro remains a fast and
efficient method [168] (Figure 5A). Type II restriction enzyme-directed assembly of multiple
DNA fragments in vitro and its derived technologies have various advantages due to
their short cycle and convenient operations. On the other hand, the assembly of multiple
overlapping DNA fragments based on homologous recombination in vitro or in vivo, as
with Gibson Assembly, In-Fusion Snap Assembly and other assembly kits, is also popular
in the laboratory because it can achieve seamless assembly. It can even realize a seam-
less construct of an entire bacterial genome (total size of 583 kb) or even a 900 kb DNA
product with high efficiency [169]. However, errors may be introduced during in vitro
recombination. Thus, homologous recombination in vivo, such as in yeast and E. coli, is
powerful. It has not only high efficiency but also a low error rate. Additionally, pathway
construction by direct cloning has gradually developed and matured (Figure 5B). The
classic and widely used direct cloning method is genome library construction, which is
completed by digesting the genome using restriction endonucleases and then ligating the
genome fragments into expression vectors using T4. Bacterial artificial chromosome (BAC)
libraries and transformation-associated recombination (TAR) are commonly used for NP
discovery in the laboratory [170]. However, these methods are aimless, time-consuming
and labor-intensive. Cas9-assisted targeting of chromosome segments (CATCH), a cloning
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technology that is designed based on CIRSPR-Cas9-mediated targeting digestion and Gib-
son assembly-mediated ligation, makes up for the shortcomings of seamless assembly [171].
This approach can be used to clone target genomic DNA sequences with a size of up
to 100 kb. Another technology, RecET direct cloning, bypasses library construction and
screening and directly clones large genomic DNA fragments into expression vector via
RecET-mediated homologous recombination and Redαβ-mediated recombination [20,172].

Molecules 2022, 27, x FOR PEER REVIEW 13 of 24 
 

 

cloning, bypasses library construction and screening and directly clones large genomic 
DNA fragments into expression vector via RecET-mediated homologous recombination 
and Redαβ-mediated recombination [20,172]. 

Pathway engineering via single base or module editing based on CRISPR systems is 
a powerful strategy for discovering NPs and their derivatives and for improving NP titers 
(Figure 5C). Limited enzyme activity and poor protein stability are bottlenecks in the 
biosynthesis of NPs. Thus, researchers have focused on random or site-directed 
mutagenesis to improve enzyme activity and protein stability. Chen H et al. increased the 
titer of lycopene in Saccharomyces cerevisiae by 2.53 times by improving the catalytic 
activity of isopentenyl diphosphate isomerase via random mutation [173]. CRISPR/Cas-
mediated base editing, an efficient technology for precise single-base editing of the 
genome in vivo, can precisely convert a C:G base pair to a T:A base pair by ligating a 
cytidine deaminase to a dead Cas (dCas) protein or convert an A:T base pair to a G:C base 
pair by ligating an adenosine deaminase to a dCas protein [174–176]. Gene deletion or 
insertion is another highly efficient method for NP discovery and titer improvement. The 
deletion of some negative regulators, competitive pathways or negative feedback 
pathways can lead to significant accumulation of an NP [177–179]. On the other hand, 
increasing the expression levels of key synthetic enzymes, rate-limiting enzymes or 
positive transcription regulators can also prominently improve NP production [180–182]. 
The production of spinosad showed a 1000-fold increase compared to its original 
production after overexpressing rate-limiting proteins by introducing strong promoters 
upstream of rate-limiting genes [183]. Among the NP biosynthetic enzymes, the sequences 
in modular NRPS or PKS show high similarities. Thus, engineering NRPS or PKS modular 
enzymes, including repeating the target functional modules and replacing a functional 
module with another functional or replacing the module with a heterologous module, will 
provide a platform to generate almost any desired derivative. Kudo K et al. obtained 19 
rapamycin derivatives by editing modular polyketide synthase genes of rapamycin. 
CRISPR-Cas9, CRISPR-Cas12a and their derived tools are widely used to accurately edit 
single nucleotides, modules, genes or gene clusters [183]. 

 
Figure 5. Tools for pathway reconstruction or engineering of natural product. (A) DNA assembly 
tools for assembling multiple DAN fragments of biosynthetic gene cluster in vivo or in vitro. (B) 
Capturing biosynthetic gene clusters of natural products by direct cloning. (C) Genome editing for 
improving natural products through single-base editing, gene deletion, gene insertion and module 
editing using CRISPR tools. 

4.3. Cell Factory 
Host organisms are critical in the heterologous production of NPs because their 

metabolic efflux greatly influences NP production directly. Generally, natural producers 
are imperfect hosts for the production of NPs due to the lack of sufficient precursors or 
efficient genetic engineering techniques, slow growth rates or environmental 

Figure 5. Tools for pathway reconstruction or engineering of natural product. (A) DNA assembly tools
for assembling multiple DAN fragments of biosynthetic gene cluster in vivo or in vitro. (B) Capturing
biosynthetic gene clusters of natural products by direct cloning. (C) Genome editing for improving
natural products through single-base editing, gene deletion, gene insertion and module editing using
CRISPR tools.

Pathway engineering via single base or module editing based on CRISPR systems
is a powerful strategy for discovering NPs and their derivatives and for improving NP
titers (Figure 5C). Limited enzyme activity and poor protein stability are bottlenecks
in the biosynthesis of NPs. Thus, researchers have focused on random or site-directed
mutagenesis to improve enzyme activity and protein stability. Chen H et al. increased
the titer of lycopene in Saccharomyces cerevisiae by 2.53 times by improving the catalytic
activity of isopentenyl diphosphate isomerase via random mutation [173]. CRISPR/Cas-
mediated base editing, an efficient technology for precise single-base editing of the genome
in vivo, can precisely convert a C:G base pair to a T:A base pair by ligating a cytidine
deaminase to a dead Cas (dCas) protein or convert an A:T base pair to a G:C base pair by
ligating an adenosine deaminase to a dCas protein [174–176]. Gene deletion or insertion is
another highly efficient method for NP discovery and titer improvement. The deletion of
some negative regulators, competitive pathways or negative feedback pathways can lead to
significant accumulation of an NP [177–179]. On the other hand, increasing the expression
levels of key synthetic enzymes, rate-limiting enzymes or positive transcription regulators
can also prominently improve NP production [180–182]. The production of spinosad
showed a 1000-fold increase compared to its original production after overexpressing rate-
limiting proteins by introducing strong promoters upstream of rate-limiting genes [183].
Among the NP biosynthetic enzymes, the sequences in modular NRPS or PKS show high
similarities. Thus, engineering NRPS or PKS modular enzymes, including repeating the
target functional modules and replacing a functional module with another functional or
replacing the module with a heterologous module, will provide a platform to generate
almost any desired derivative. Kudo K et al. obtained 19 rapamycin derivatives by editing
modular polyketide synthase genes of rapamycin. CRISPR-Cas9, CRISPR-Cas12a and their
derived tools are widely used to accurately edit single nucleotides, modules, genes or gene
clusters [183].
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4.3. Cell Factory

Host organisms are critical in the heterologous production of NPs because their
metabolic efflux greatly influences NP production directly. Generally, natural producers
are imperfect hosts for the production of NPs due to the lack of sufficient precursors or
efficient genetic engineering techniques, slow growth rates or environmental perturbations.
Thus, heterologous hosts are needed to ensure the highly efficient expression of NPs.

The cell factory, a self-replicating minimal cell, provides an optimal metabolic back-
ground for the biosynthesis of NPs. In the cell factory, genome mining is generally per-
formed (Figure 6A). The nonessential genes or gene clusters are deleted from the genome
to reduce the number of competing pathways; at the same time, extra integration sites are
inserted into the genome to allow additional integration of multiple copies of a heterol-
ogous gene cluster [184,185]. Additionally, genetic regulation is an effective approach to
optimize the cell factory. A series of regulators have been characterized and proven to
be functional in NP biosynthesis [177,186]. Moreover, promoter engineering [187], tran-
scription factor engineering [188], synthetic RNA switch and CRISPR-Cas systems [189]
are also widely used to regulate gene expression and subsequent NP production in cell
factories. Protein engineering has also become an increasingly popular method to improve
protein activity, increase protein stability, maximize carbon flux through limiting steps,
expand NP spectra and improve NP production [22]. A more complex issue is that the cell
factory should be able to synthesize its own essential nutrients instead of acquiring them
from the environment [190]. Therefore, understanding the minimum requirements and
designing the cell factory from scratch are necessary. Metabolism engineering, including
primary and secondary metabolism engineering, significantly increases the product path-
way flux of target products due to the accumulation or balance of metabolic precursors,
cofactors and energy. Metabolism engineering provides an optimal metabolic background
for heterologous expression.
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Microorganisms are the most popular cell factories, as they are easy to culture and
genetically manipulate. E. coli and Saccharomyces cerevisiae (S. cerevisiae) are widely used due
to their fast growth rates, easy genetic manipulations and high productivities [24]. More-
over, as the second family in which NPs were discovered, the Streptomycetaceae family has
attracted much attention for its prolific drugs [191]. Streptomyces strains, especially Strepto-
myces coelicolor and Streptomyces albus [184], have rich cofactors and precursors. They are
widely reengineered to construct efficient cell factories. For example, Myronovskyi M et al.
constructed a cluster-free Streptomyces albus chassis strain by deleting these unessential gene
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clusters and introducing an additional phage phiC31 attB site to increase the copy number
of heterologous gene clusters. In the last, the authors significantly improved the produc-
tion of six compounds including pyridinopyrone A, aloesaponarin II and didesmethyl-
mensacarcin [184]. Moreover, E. coli and yeast strains have already been metabolically
redesigned and engineered to overproduce intermediates of paclitaxel [192–194]. Although
microorganisms exhibit many advantages, they have some limitations. For example, not all
plant NPs, animal NPs and marine NPs can be expressed in microorganism hosts, as they
lack efficient biosynthetic pathways or enzymes. To overcome these limitations, more and
more plant cell factories [195], cyanobacteria cell factories and other cell factories have been
developed. These heterologous plant or marine hosts provide alternative and sustainable
avenues for the production of NPs that are not suitable for expression in microbial hosts.

4.4. Artificial Intelligence

With the rapid development of artificial intelligence, robotics and integrated software
are also widely used to automate standard workflows, in which researchers write programs
and robots complete the experiments according to the programs (Figure 6B). This workflow
significantly improves the efficiency of synthetic biology and subsequently improves the
speed of researchers to explore and create active compounds. Synthetic biology is a type of
“on-demand manufacturing” composed of a variety of nonlinear workflows. However, the
heterogeneity and dynamics of biological experiments make the workflows more complex
due to the differences among batches [196]. In recent years, biological foundries have been
developed with the integration of the automatic design–build–test engineering cycle, which
solves several difficult problems in the processes of bioengineering, such as slow speed,
high expense and low repeatability [197]. Mohammad H. et al. reported an application of
an integrated robot system combined with a machine learning algorithm; this application
completes the design, construction, testing and learning process of a fully automated
biological system [198]. The fully automated robotic platform IOAutomata evaluated
slightly less than 1% of the possible variation, which was 77% higher than that achieved by
random screening. The authors also successfully used the robotic platform to optimize the
biosynthesis of lycopene.

5. Conclusions and Future Perspectives

NPs have great potential in clinical cancer treatment due to their diverse structures and
bioactivities. An increasing number of NPs, especially marine drugs and ADCs, have been
applied in cancer treatment. With the emerging demand for novel natural drugs, effective
methods for discovering NPs are needed. Although traditional approaches have been
successfully applied to identify a large number of bioactive NPs, these approaches remain
limited, as they are time-consuming, labor-intensive, “low-hanging” and inconsistent. With
the conspicuous progress in genetic manipulation approaches and detection technologies,
NP discovery and production improvement have become more promising.

Synthetic biology greatly promotes the exploitation of NPs. From traditional sam-
ple collection to complex genetic manipulation, and then to artificial intelligence, the
exploitation rates and quantity of NPs are gradually increasing. For example, complex and
powerful genetic manipulation greatly optimizes biosynthetic pathways and metabolic
networks and provides an optimal background for target NP biosynthesis. Moreover, with
synthetic biology, known compounds can also be modified through targeted design to
obtain analogues with better activity and less toxicity or even new compounds. Specifi-
cally, through the application of artificial intelligence, more and more fully automated and
multifunctional robotic platforms have been built and integrated. These systems overcome
the above limits in the processes of bioengineering and greatly improve their efficiency and
accuracy. Thus, efforts in synthetic biology will help NP discovery continue to thrive in
the future.

Among the approved anticancer NPs, marine and antibody-conjugated NPs have
rapidly emerged in the last decade (Figure 1D). These 32,900 marine natural products are
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only the tip of the iceberg. The organisms in the deep oceans have undergone the longest
evolutionary period, and the harsh marine conditions have endowed them with a wide
range of unique molecules. Thus, the potential of marine NPs in future drug discovery and
clinical cancer treatment is immeasurable.

Additionally, smart drug delivery systems show strong competitiveness in cancer
treatment. Smart delivery can improve the permeability, stability and solubility of drugs,
promote the continuous controlled release of drugs and increase the therapeutic effects. In
these smart delivery systems, the NPs are precisely delivered to target cancer cells, resulting
in high toxicity to cancer and reduced side effects on the human body [199]. Although
various drug delivery strategies have been explored to deliver chemotherapeutic drugs
more directly to tumors, the most important transformation progresses have appeared in
the field of ADCs. As an immune therapy, NP-derived ADCs represent novel biological
systems for target treatment. Moreover, some NPs directly interact with and activate
immune cells or pathways, often inducing protection against cancer [15]. Therefore, NPs
also realize their clinical significance via immunotherapy in cancer treatment.

Furthermore, the complexity of refractory diseases has greatly weakened the therapeu-
tic potential of existing treatment schemes. Therefore, clinical treatment has changed from
monotherapy to combination therapy, which is now becoming accepted as an effective way
to optimize efficacy while minimizing adverse effects [200]. Polatuzumab vedotin was first
approved for the treatment of hematological malignancies, and combination therapy with
rituximab produces a more significant efficacy than monotherapy in diffuse large B-cell
lymphoma [201]. In addition to chemotherapy, polatuzumab vedotin can also be used
with immunomodulatory therapy, which is promising for relapsed/refractory follicular
lymphoma [202].

In summary, considering their various structures and bioactivities, the potential of
NPs in clinical cancer treatment is highly promising. Specifically, emerging marine NPs and
ADCs provide more choices of medications with higher efficacy and safety. Furthermore,
combination therapy not only increases therapeutic efficacy but also helps to address
drug resistance [203]. With the innovation of various technologies and popularization of
artificial intelligence, a large number of NPs are being brought to our sights, providing
more candidate clinical medications.
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