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Abstract

Background: Conventional pairwise sequence comparison software algorithms are being used to process much

larger datasets than they were originally designed for. This can result in processing bottlenecks that limit software

capabilities or prevent full use of the available hardware resources. Overcoming the barriers that limit the efficient

computational analysis of large biological sequence datasets by retrofitting existing algorithms or by creating new

applications represents a major challenge for the bioinformatics community.

Results: We have developed C libraries for pairwise sequence comparison within diverse architectures, ranging from

commodity systems to high performance and cloud computing environments. Exhaustive tests were performed using

different datasets of closely- and distantly-related sequences that span from small viral genomes to large mammalian

chromosomes. The tests demonstrated that our solution is capable of generating high quality results with a linear-time

response and controlled memory consumption, being comparable or faster than the current state-of-the-art methods.

Conclusions: We have addressed the problem of pairwise and all-versus-all comparison of large sequences in

general, greatly increasing the limits on input data size. The approach described here is based on a modular out-of-

core strategy that uses secondary storage to avoid reaching memory limits during the identification of High-scoring

Segment Pairs (HSPs) between the sequences under comparison. Software engineering concepts were applied to

avoid intermediate result re-calculation, to minimise the performance impact of input/output (I/O) operations and to

modularise the process, thus enhancing application flexibility and extendibility. Our computationally-efficient

approach allows tasks such as the massive comparison of complete genomes, evolutionary event detection, the

identification of conserved synteny blocks and inter-genome distance calculations to be performed more effectively.
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Background
The number of genome sequencing projects has grown

exponentially, in parallel with a drastic reduction in the

cost of sequencing. For example, at the turn of the mil-

lennium the cost of sequencing 1 Mbp of genomic DNA

(million DNA base pairs) was about 10 thousand US dol-

lars, compared to around 5 US cents at the time of writing

[1]. Scientists are continuing to develop faster and cheaper

methods that will allow the routine sequencing of indi-

vidual patient genomes, thus truly ushering in the era of

genetics-based personalised medicine.
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The human genome is not the only one of interest to

the research community, and the progression of sequenc-

ing technology also has huge consequences for studies

involving the genomes of other organisms. At present,

hundreds of different organisms, from all living king-

doms, have been sequenced and thousands more projects

are on-going. These developments have put Comparative

Genomics into the spotlight in order to provide the tools

for studying relationships within this flood of data.

Pairwise sequence comparison algorithms have been

implemented since the early days of bioinformatics. Orig-

inal algorithms for global [2] and local alignments [3]

were designed using dynamic programming techniques

that result in quadratic calculation time and memory con-

sumption proportional to the product of the total number

of bases analysed.
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When sequence analysis jumped from individual genes

and proteins to full genomes, new software appeared, such

as MegaBlast [4], MUMmer [5] and Gepard [6], the latter

of which has been reported to be able to compare more

than 300 Mbp of human chromosome-1 in approximately

1 h [6]. These software adopted some ideas introduced

by the heuristic sequence database searching algorithms

FASTA [7], and later BLAST [8]. These algorithms intro-

duced a computational space reduction strategy based on

the fast identification of matching points (hits) that are

in turn used as seed points for the extension of local

alignments. In FASTA, these matching points are per-

fect matches between K-mers (words of length k) from

each sequence, while BLAST allows certain mismatches,

thus enhancing its sensitivity. Other computational space

reduction strategies confine the search to the most prob-

able matching space (FASTA), or limit seed extension to

regions with a minimal concentration of hits (BLAST).

Additionally, some of the previous software adopted

other ideas coming from the string matching field such as

the Generalized Suffix Trees and Suffix Array data struc-

tures [9, 10] which reduce significantly the computational

complexity but still involves the use of significant mem-

ory resources (see Section 2.2 of the Additional file 1).

In order to overcome the mentioned memory issue, a

number of disk-based implementations were developed

[11–13]. Despite using customised strategies to minimize

the I/O operation overhead, they reported higher execu-

tion times for indexing theHuman genome (6 h in [12] and

11 h in [13]) compared to 3 h for our proposed indexing

strategy.

In general, the reference software was designed to deal

with genes, proteins and small genome sequences and

since are now used for much larger datasets than they

were originally designed for, they are now reaching their

limit in terms of memory capacity and efficient compu-

tation on single-CPU systems. Consequently, there is a

pressing need to design new software that tackles the

memory consumption problem caused by the analysis of

very large genome sequence datasets. A good strategy to

deal with this problem is tomove data that does not fit into

internal memory to external memory (i.e. hard disks), fol-

lowing what is known as an out-of-core strategy [14, 15].

However, since there is a difference of several orders of

magnitude in access time between the twomemory layers,

special care must be taken in order to avoid performance

degradation. Some of these approaches have previously

been applied to bioinformatics [16], but not specifically

for pairwise genome comparison.

In this document we report on GECKO (GEnome Com-

parison with K-mers Out-of-core), a modular applica-

tion designed to identify collections of HSPs by pairwise

genome comparison procedures, that can then be used to

obtain gapped fragments. Our work improves on previous

methods by introducing controlled memory usage and

a modular design that allows further comparisons to be

performed without the need to recalculate intermedi-

ate results and thus without sacrificing performance. We

have benchmarked the application in terms of both per-

formance and results quality. We designed experiments

with datasets ranging from short sequences in the kilobase

range to larger sequences up to 200Mbp in length in order

to compare GECKO against the best currently available

software under both unfavourable and favourable condi-

tions respectively. In addition, we performed a massive

comparison exercise between mammalian chromosome

sequences in order to test one of the key improvements

of the application: the avoidance of intermediate result

re-calculation. In the tests with short sequences, GECKO

was slower compared to existing software, but with long

sequences, the results were comparable or superior in

terms of performance. The results quality in both cases

(short and long sequences) was superior. Binaries are

available from http://bitlab-es.com/gecko/. Source code

is available from: https://sourceforge.net/projects/gecko-

aligner/.

Methods
To overcome the limitations of existing sequence com-

parison methods we focused firstly on the application-

specific reduction of main memory and computational

space usage, and secondly on modularising the process

using classical software engineering concepts. In the next

sections, we explain how we reduce memory usage using

an out-of-core strategy designed to manage data struc-

tures that are too large to fit into main memory at one

time. Naturally, memory management could be delegated

to the Operating System using virtual memory concepts;

however poorer data locality can result in performance

degradation in memory intensive applications such as

large-scale sequence analyses. In addition, we explain the

strategies applied to the design of GECKO (see Fig. 1):

(a) Dictionary calculation, (b) Hits determination, (c) HSP

detection, and (d) HSP post-processing.

Memory consumption and computational space reduction

This section describes our approaches for dealing with

the memory usage problem with an out-of-core solu-

tion, while compensating for the slower access time of

secondary storage devices in several ways:

1. Sensitivity studies involve obtaining results for

differentK values (word sizes) and require computing

word dictionaries for each value. It is easy to realise

that a collection of words of length K contains all the

prefixes with K ′ < K (only the last K − K ′ K-mers at

the end of each sequence are lost). Regardless of word

length, the number of words is practically the same

http://bitlab-es.com/gecko/
https://sourceforge.net/projects/gecko-aligner/
https://sourceforge.net/projects/gecko-aligner/
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Fig. 1 Summary of GECKO’s modular design. The branches on the top represent dictionary computation using the binary tree for each sequence.

Once the dictionaries are calculated, perfect matches between words produce a set of seed points (hits). Afterwards, hits are sorted (by diagonal

and offset inside the diagonal) and filtered. Finally, the hits are extended to generate a set of HSPs (FragHits). An additional figure with a real

example is provided in Section 2.1 of the Additional file 1

(sequence length L−K +1; with L >> K ). Therefore

the dictionary is calculated only once using a large K
value (K = 32 by default). It is important to note that

although K is calculated with a value of 32, the value

of K ′ is selected by the user at the seed points step,

based on their knowledge of the sequences’ similarity.

2. Words are compressed on disk with a compression

rate of 4 by using 2 bits per letter. This is possible
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because the K-mers are strictly composed of the {A,

C, G, T} symbols of the DNA alphabet.

3. Larger K values produce a lower number of word

matches between sequences, mainly due to less

frequent repetitions, and result in a greatly decreased

number of potential seed points from which to

extend the alignment. On-the-fly dictionary analysis

of stored words (repetitions, low complexity regions,

etc.) help users select the most appropriate K value.

In some circumstances low complexity regions

(LCRs) can result in an excessive number of seed

points or hits that can severely affect performance.

GECKO includes a sampling procedure that limits

the maximum number of hits analysed in a given area

according to a user defined parameter. This

effectively limits the number of hits in repetitive

regions to a number of equally spaced “samples”,

thus reducing the processing impact of LCRs without

affecting normal sequences.

4. It is possible to further reduce the number of selected

hits by using a proximity criterion, whereby

additional seed points must be separated by a

minimum distance parameter from other hits in

order to be extended.

5. The computed K-word dictionaries remain available

for subsequent processing when comparing

genomes, which significantly reduces I/O load.

To reduce computational space usage we followed a sim-

ilar strategy to that used by some existing solutions, which

depends on the identification of common K-mers present

in both sequences that are then used as seed points for

local alignments.

Modular design

As mentioned above, the second major improvement of

our design was to modularise the process. The application

is designed to be used for multiple genome data analysis,

allowing for parameter sensitive studies as well as all-

versus-all comparisons of genome collections. With the

aim of reducing dependencies and repetitive actions, we

organised the application workflow as follows (see Fig. 1):

1. One-off creation of a K-mer dictionary for each

genome or sequence. The dictionary is stored on disk

as a hash table, containing the words that appear in

the sequence together with their positions.

2. Once calculated, K-mer dictionaries are then used to

identify starting points (or hits) that will be used to

obtain the HSPs. These seed points correspond to all

possible matches produced between dictionary

words. It is worth noting that the K value is

parameterised at this point, with smaller K values

derived as prefixes from the same dictionary.

3. Next, the application produces a local alignment (i.e.

the HSPs) based on the calculated starting points,

extending them in forward and reverse directions.

From this point, all hits covered by a valid HSP are

not analysed further.

4. To illustrate possible post-processing steps, several

accessory modules have been developed such as HSP

visualisation (equivalent to the Mummerplot

application in the MUMmer suite); data format

converters to allow the use of other visualisation

software packages and further data analysis tools

such as the K-mer frequency analysis program.

With minimal performance losses several software

development features have been incorporated into

GECKO to enable the development of a set of multi-

platform applications. Examples include the usage of

generic data types with the same representations in 32 and

64 bit architectures, the implementation of data access

functions to read/write binary files in order to avoid Endi-

anness problems and buffering strategies to minimise I/O

operations and improve performance.

In the following sections we go into the details of each

step performed by the GECKO application in chronologi-

cal order.

Dictionary calculation

The dictionary calculation is based on the well-known

binary tree in computer sciences. Each tree node contains

a word (key) and its list of occurrences (values). Following

the behaviour of a binary tree, left hand side nodes of a

given tree come lexicographically before nodes on the

right hand side. To avoid memory consumption prob-

lems caused by the huge number of possible words (i.e.

a theoretical maximum of 4K different words, without

counting repetitions), we decided to split the calculation

in p steps (with p being a multiple of 4), thus reducing

the amount of memory used by the program by a factor

of p (assuming a normal distribution of words). To split

the dictionary and conserve its lexicographical order,

a prefix of length log4 p is used. This strategy requires

us to iterate p times over the whole sequence, using a

different lexicographically-organized prefix each time

to preserve word order. To avoid memory allocation

requests for each node, a single memory pool is reserved

at the beginning of the process. New memory pools are

then only reserved once the currently reserved memory

is used up. To obtain the final result we traverse the tree

in order, storing the word contained in the node together

with the list of occurrences. We considered other strate-

gies for this step, such as a prefix tree and a suffix array,

but found that they experience memory consumption

issues similar to the problems faced by existing software

approaches.
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Hits determination

The second section of the workflow corresponds to

the identification of the starting points or seeds for

the local alignment. If a word wi appears n times

in the first sequence at positions pj(j = 1...n); and

the same word wi appears m times in the second

sequence at positions pk(k = 1...m), a hit will occur

in all (pj, pk) coordinates producing the following set

h = {(1, 1), ...(1,m), (2, 1), ...(2,m), (n, 1), ...(n,m)}. All

these hits are then considered starting positions for pos-

sible local alignments. Depending on how similar the

sequences are and also on the K value used, the number of

resulting hits could be very high. It is highly recommended

to mask low complexity regions in order to reduce the hits

produced by repetitive sequences. To reduce the num-

ber of hits further we have applied a proximity approach,

by which those hits on the same diagonal, defined as

d = (pj − pk), and at a predefined distance are combined.

This can be achieved quickly and easily by sorting hits by

diagonal (and offset), what is performed using a threaded

version of the quicksort algorithm, and then combining

the hits that are within the distance parameter value.

HSP detection

The last calculation step consists of producing a set

of ungapped HSPs that conform to a local alignment.

An HSP is defined as a substring matching sequence

whose positive accumulated score cannot be increased by

extending the fragment at either of its extremes (i.e. until

it attains a local similarity maximum between sequences).

The score is calculated either by adding or subtracting a

given weight value (usually on the basis of DNA identity)

depending on if a match or mismatch is given, respec-

tively. The fragment starts from a hit with a positive score

(the seed points identified in the previous section), and is

extended along the sequence modifying the overall HSP

score until it becomes negative or the end of one of the

sequences is reached (or both simultaneously). Fragment

boundaries are positions that give the highest accumu-

lated score at both ends as HSPs are extended in both

directions along the sequence (forward and backward).

The algorithm continues searching for HSPs within the

next hit in the diagonal or the first one of the next diago-

nal. If the next hit in the same diagonal has been covered

by extension of the previous HSP, it would not be used

because it will result in a redundant sub-HSP within the

previous one. GECKO outputs a set of identified HSPs

that are defined by starting and ending coordinates in both

sequences, together with HSP length, score and identity

levels.

HSP post-processing

Almost all existing methods provide a way of graphically

representing local alignments after computation. GECKO

incorporates its own visualisation procedure that gen-

erates a PNG file as well as the ability to output its

analyses in formats that can be processed by the visualisa-

tion methods included with existing analysis programs. In

addition, GECKO includes post-processing applications

that enable tasks such as the ability to apply additional

filters to HSP collections or generate gapped alignment

constructions based on ungapped ones.

Results

Dataset

The selected test dataset contains sequences of differ-

ent sizes in order to thoroughly compare GECKO with

other state-of-the-art methods under both favourable

(large sequences) and unfavourable (short sequences) sit-

uations. Specifically, the dataset is composed of short

(virus), medium (bacteria and fly), and large (mam-

malian) sequences (see Table 1 for sequence names and

their GenBank accession numbers). The large mam-

malian sequences will also be used for an all-versus-all

experiment.

Infrastructure and reference software

GECKO performance will be compared against equivalent

state-of-the-art applications such as Gepard [6], MUM-

mer [5], Mauve [17], LASTZ [18] and LAST [19–21].

Either the source code or pre-compiled binaries were

downloaded from the sources provided in the cor-

responding manuscripts. GECKO was compiled using

GNU C Compiler (GCC) version 4.8.2, with “-O3” and

“-D_FILE_OFFSET_BITS=64” compiling options (in the

same way reference software packages were compiled). All

the reference software was used in their command line

versions in order to do a fair comparison with GECKO

which is also executed through the command line (more

details about execution parameters in the Section 3.3 of

the Additional file 1).

The tests reported in this document were performed

using an Openstack cloud instance configured with 4 Intel

Xeon E312xx (Sandy Bridge) 2.0GHz equivalent cores,

8GB of RAM and the Ubuntu 12.04 LTS 64-bit oper-

ating system. For storage, a 300GB Openstack volume

was used. The underlying physical disks of the Openstack

setup were conventional ones (500GB, 16MB buffer, SATA

3, 7200 RPM). The cloud instance was deployed within

the RISC Software GmbH cloud facilities in Hagenberg,

Austria. Due to the inability of some current software to

run in the mentioned infrastructure with large sequences

(see the notes of Table 2), we additionally used Picasso

shared memory multiprocessor located at the University

of Málaga (Málaga, Spain). It contains 7 nodes, each with

eight Intel E7-4870 processors which delivers 96 Gflop/s

each, giving a peak performance of 5 Tflop/s. Each node

has 2 TB of RAM giving an aggregate memory of 14 TB.
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Table 1 Dataset information. From left to right: Type of comparison for which the sequence is going to be used, species name, strand

and/or chromosome of origin, GenBank accession number and size in Mbp

Test type Species Strain / Chromosome Accession number Mbp

Pairwise comparison

Tomato Yellow Leaf Curl Virus TYLCV GenBank:AM409201.1 0.004

Tomato Yellow Leaf Curl Virus TYLCV-lr2 GenBank:EU085423.2 0.004

Buchnera aphidicola APS (Acyrthosiphon pisum) GenBank:NC_002528.1 0.636

Buchnera aphidicola 5A (Acyrthosiphon pisum) GenBank:NC_011833.1 0.640

Escherichia coli K-12 GenBank:NC_000913.2 4.596

Escherichia coli O157:H7 Sakai GenBank:NC_002695.1 5.448

Drosophila melanogaster chromosome 2R GenBank:NT_033778.3 20.948

Drosophila pseudoobscura strain MV2–25 chromsome 3 GenBank:NC_009006.2 19.604

Multiple comparison

Homo sapiens chromosome 1 GenBank:NC_000001.11 246.600

Pan troglodytes chromosome 1 GenBank:NC_006468.3 226.172

Macaca mulata chromosome 1 GenBank:NC_007858.1 226.092

Pongo abelii chromosome 1 GenBank:NC_012591.1 227.768

Gorilla gorilla chromosome 1 GenBank:NC_018424.1 227.336

Mus musculus chromosome 1 GenBank:NC_000067.6 193.624

Rattus norvegicus chromosome 1 GenBank:NC_005100.3 287.344

Bos taurus breed Hereford chromosome 1 GenBank:AC_000158.1 156.840

Canis lupus familiaris breed Boxer chromosome 1 GenBank:NC_006583.3 121.516

Sus scrofa breed mixed chromosome 1 GenBank:NC_010443.4 312.336

Results shown in this section (Table 2) correspond to

sequential (one core) execution of each module except for

the hit sorting method that used 8 threads running on one

4 core CPU. Further benchmarks using diverse collections

of additional data are available in the Additional file 1.

Pairwise tests

Multiple tests of the proposed out-of-core implementa-

tion have been designed within the simple pairwise com-

parison framework to evaluate memory consumption as a

function of sequence length.

Table 2 Execution time in seconds for the comparison of the sequences listed in Table 1 under “pairwise comparison” (lowest execution

time and memory consumption of each row are highlighted in bold). The comparison of mammalian chromosomes was also included

to test the ability of GECKO and reference software packages to function when analysing very large datasets. The dictionary calculation

time is included in the reported times, since the dictionary were not pre-calculated. “n.a.” indicates that resource problems prevented

analysis execution and the presence of (*1) after some execution times indicates that the time was measured in a bigger machine

because in such cases they were using more than 8GB of memory (more details of these cases in the Additional file 1 Section 3.3)

Gepard MUMmer Mauve

Comparison Time Memory Time Memory Time Memory

TYLCV-TYLCV-lr2 0.84 52824 0.00 2944 0.06 2800

BuchneraAPS-BuchneraBp 2.56 74808 0.44 11100 6.73 14304

E.colik12-E.coliO157 33.12 378412 10.63 79212 45.92 99880

D.Melanogaster-D.Pseudoobscura 238.34 716244 45.99 355272 294.92 379912

H.Sapiens-Chr1-P.Troglodytes-chr1 7084.00∗1 49788208 23226.00∗1 15747168 >604800.00 n.a.

LASTZ LAST GECKO

Comparison Time Memory Time Memory Time Memory

TYLCV-TYLCV-lr2 0.04 67388 0.00 3024 0.36 1564816

BuchneraAPS-BuchneraBp 0.46 71244 46.20 475912 1.60 1564816

E.colik12-E.coliO157 1.83 95884 109.00 1972028 17.20 1564816

D.Melanogaster-D.Pseudoobscura 19.64 190448 1593.00 5436716 48.72 1564816

H.Sapiens-Chr1-P.Troglodytes-chr1 78360.00 5782352 n.a. 312065840 11848.15 1564816
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Multiple comparison tests

This exercise was designed to test the advantages of saving

intermediate results to disk. The test involves comparing

human (Homo sapiens) chromosome 1 against the same

chromosome in several other species. Figure 2 displays the

visualisation of the resulting HSPs for P. troglodytes, M.

mulatta, P. abelii, G. gorilla,M.musculus, R. norvegicus, B.

taurus, C. familiaris and S. scrofa. It is worth noting, that

only execution times of some methods are shown, due to

the inability of the rest to run these tests in the mentioned

infrastructure.

In all cases, we took into account the execution time of

the full pipeline, as this test was designed to evaluate the

worst-case situation. As explained in theMethods section,

GECKO only needed to obtain the dictionaries once for

the previous set of comparisons. For the sake of under-

standing the impact of this step and to aid comparisons

with other methods, GECKO dictionary calculation times

are shown in Table 3 and the total time is shown in Table 4.

Results quality

Although the performance aspects of GECKO’s design are

crucial, the production of high quality results is equally

important. In this section we explain how we evaluated

the quality of the results produced by our algorithm ver-

sus the other applications using the same parameters. The

rationale behind our evaluation was to compare the cov-

erage of the HSPs detected by each algorithm. To avoid

biases in the evaluation we decide to obtain a consensus

set of reference HSPs. This set is composed of those HSPs

reported by at least half of the reference algorithms. The

HSPs produced by GECKO were then mapped over the

reference HSPs and the percentage of coverage recorded

as a measurement of result quality. This means that

matching positions reported by the consensus HSP ref-

erence and not reported by GECKO will push down the

quality and vice versa. There are more sophisticated ways

of comparing the results, such as only considering coding

regions, or by qualifying and weighting matches depend-

ing on sequence type or section. However, we decided not

to use these methods as they can incorporate noise or

biases into the evaluation.

Following this procedure, we performed quality eval-

uation on sets of both closely- and remotely-related

sequences in order to thoroughly study the results of

GECKO. In the case of closely-related sequences, our

evaluation determined that GECKO detected 3 % more

HSPs than the consensus set. Moreover, GECKO obtained

a larger dataset while maintaining identity values over

65 %, thus representing the identification of additional

statistically-significant HSPs. For both short and long

remotely-related sequences, GECKO again obtained an

average of 3 % more HSPs with identity values above 65 %.

In addition to the coverage study, we also evaluated the

identity values of the HSPs reported by GECKO compared

to those of LASTZ. This test produced similar results for

the twomethods albeit with slightly better values reported

by GECKO (details of this evaluation can be found in

Sections 5.1, 5.2 and 5.3 of the Additional file 1).

Visualisation

Strictly speaking GECKO is not intended for dotplot-like

visualisation. However, we provide two alternatives: (1)

two different programs able to generate 2D representa-

tions, one for single pairwise comparison results, capable

of analysing forward and reverse HSPs (see Fig. 2); and

the second for multiple comparisons whereby all compar-

isons are projected over one of the sequences selected as

the reference. Obviously, any of the compared sequences

can be used as the reference; (2) small plugins that allow

GECKO results to be converted into formats compatible

with commonly used visualisation methods.

Discussion
Considering that GECKO’s implementation was designed

primarily for very large sequence comparisons, it com-

pares surprisingly well with the reference software pack-

ages when analysing short sequences. It is as fast

as Gepard even when the dictionaries were not pre-

calculated. Gepard reports 33 s for 5 Mbp genomes,

compared with 17 s for our implementation. In the cases

of MUMmer, LAST and LASTZ, our execution time was

greater, due to the different strategy we are following

compared to the suffix array indexing they are using,

but still the difference is acceptable since the execution

time is not that high. However, for longer sequences, our

method strongly outperforms existing methods. GECKO

needed less than 2 h in average to compare chromosome 1

from different species (all possessing more than 120Mbp)

against the 3 h and a half in average of Gepard andMUM-

mer and the 29 h of LASTZ (average values extracted from

Table 4). Since all the reference software packages manage

data structures in core memory, their good performance

with short sequences was predictable, but this also means

that their performance degrades as sequence size grows,

entering into starvation when no more computational

resources are available. This is due in part to the use of the

Suffix Array data structure which in one side reduces the

computational complexity but in the other increases the

memory consumption up to 9 times the length of the input

sequence in the most efficient implementations. For com-

parison purposes and to prove the mentioned Suffix Array

memory consumption, we implemented a Suffix Array

version of the program which significantly reduces the

computation time compared with our actual dictionary

strategy, but as mentioned is using more memory (more

details can be seen in the Additional file 1 Section 2.2

“Alternative dictionary calculation using Suffix arrays”).
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Fig. 2 Separate dotplot-like representations of Human chromosome 1 (X-axis) compared to equivalent chromosomes from several other mammalian

species: (1) Pan troglodytes, (2) Macaca mulata, (3) Pongo abelii, (4) Gorilla gorilla, (5) Mus musculus, (6) Rattus norvegicus, (7) Bos taurus, (8) Canis

familiaris and (9) Sus scrofa. Red colour indicates forward strand fragments and black the reverse strand ones. Plots indicate that there are closely-

related (from 1 to 5) and remotely-related (from 6 to 9) sequences. This is caused by the fact of that chromosome numbering was based on their

length and not their content. For example, human chromosome 1 is present in several chromosomes of Bos Taurus (but not in the first chromosome,

as can be deduced from sub-figure 7). An image with the first five sub-plots projected over one sequence is provided in the Additional file 1

The results of these comparisons are shown in Table 2.

and more details are available in the Additional file 1 at

Section 3.3.

GECKO’s implementation showed real-world perfor-

mance gains ranging from 133 % versus Gepard for

TYLCV comparison, to 3269 % versus LAST in the case of

Drosophila comparison (see Table 2).

In- or out-of-core implementations andmodularity

Traditionally, bioinformatics programs, in common

with conventional software development practices, are

designed to perform calculations with the data loaded

in main memory. This is in order to take advantage of

the difference in access time between main and external

memory, which is in the range of several orders of mag-

nitude. However, the growth rate of available data has

been even greater than the growth of the typical amount

of RAM memory available. Although some specialised

infrastructures offer TB quantities of RAM, such facilities

are not yet routinely available to the global research

community, while the quantity of available sequence data

continues to spiral.
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Table 3 Dictionary calculation execution time in seconds for the

sequences listed in Table 1 under the multiple comparison test

type

Sequence (chr1) Time

Homo sapiens (HS) 747.53

Pan troglodytes (PT) 630.07

Macaca mulata (MM) 649.26

Pongo abelii (PA) 628.81

Gorilla gorilla (GG) 712.68

Mus musculus (MMu) 537.45

Rattus norvegicus (RN) 857.28

Bos taurus breed Hereford (BT) 451.83

Canis lupus familiaris breed Boxer (CF) 293.36

Sus scrofa breed mixed (SS) 980.99

Clearly, in the era of Big Data it is increasingly imprac-

tical to keep all the data in core. Consequently there is

a pressing need to re-design trusted software packages,

as well as to develop brand new software strategies to

tackle this problem. It is valid to exploit the particular

data flow of each specific application, but generic solu-

tions that can be applied to new problems as they emerge

should ideally be the final target of developers. In this

sense, our work here explores how both approaches can

be combined to better exploit their advantages. The out-

of-core implementation used in GECKO has the following

advantages:

1. It removes any dependence on K-mer size, giving rise

to the possibility of using small prefixes for short

sequences and bigger values for larger ones. We have

identified 32 as a maximum K value that gives the

exact matches that are useful for this type of

application, especially while comparing distantly-

related sequences. Greater K values did not produce

enough seed points for a meaningful comparison

(even with chromosome or genome-sized datasets).

2. Working in disk allows word dictionaries computed

by previous program instances to be preserved in

secondary storage, thus reducing the time required

for multiple comparison studies. As can be seen in

Tables 3 and 4, the time saved by dictionary

pre-calculation is around 65 % of total elapsed time

for remotely related sequences and 7 % for closely

related ones. For all-versus-all studies, with

n ∗ (n − 1)/2 comparisons, the time reduction is

even greater since we save repeating

dictionary-recalculation n − 1 times. This is one of

the drawbacks of current methods. It is important to

note, that the time to access the dictionary from disk

is less than the combined time to access the sequence

from disk and re-build the dictionary, what confirms

the improvement of storing it in disk.

3. The modular implementation of GECKO stores

intermediate results to disk, which facilitates the

development of small and simple software

components that allow the exhaustive analysis of the

program’s final output, as well as intermediate data

such as word frequencies, word structure,

comparative studies, extreme frequency analysis,

functional genomics annotation and data

visualisation. This method for organising execution

even allows interactive analysis, with the possibility

of re-executing specific parts of the analysis with

different parameters.

K-mer size parameter

It is not difficult to deduce from all of the above that the

time needed to complete each analysis is determined by

word size (K), and strongly affected by both noise and

the algorithm’s seed point detection sensitivity. K-mers

are stored as K = 32 to avoid having a large collection

of dictionaries for each K value. K = 32 contains all the

K-mers for K ′ < K with no additional processing, values

that are especially useful to obtain enough exact matches

for distant sequences. The software is designed such that

it can be used with K values greater than 32 in case

that future sequences and/or applications require such a

change. Using an incorrect K value will degrade perfor-

mance due to the large number of K-mers repetitions. To

avoid starvation GECKO uses a sampling scheme for very

common repetitions.

Parallel execution

Although this work did not specifically address the issue

of parallel execution, it is interesting to make some obser-

vations concerning this topic. Most of the processes

described in the procedure are appropriate for parallel

execution. A simple dataset-splitting process would allow

the distribution of partial components from computation

by different processors, followed by the collection and

reassembly of results. For instance, it would be possible to

distribute the processing of K-mers by the first program

by sending words starting with a given prefix to different

processors. Each process would produce a partial dictio-

nary of words with a given prefix that can then be used

by separate processes to calculate the seed points shar-

ing the same prefix. For example, there are 64 different

3-letter prefixes, assuming a 4-letter DNA alphabet, which

would produce 64 sub-dictionaries for each sequence and

64 comparisons to calculate seed points.

Although the processing times achieved by GECKO for

the test analyses reported here were acceptable even when

calculated using a single processor core, there are clear

advantages to developing sequence analysis algorithms
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Table 4 The numbers in the upper diagonal refer to the combined execution time for total HSP calculation, hit sorting and all-vs-all comparison of both strands (forward and reverse)

in seconds (acronyms as described in Table 3). The charts in the bottom part are symmetric visual representations of the corresponding cell in the upper diagonal (bar colour legend:

blue=GECKO; orange=Gepard; grey=Lastz; and yellow=MUMmer). The total execution time (in seconds) for all the comparisons were: GECKO - 318591, Gepard - 576889, Lastz -

4752315 and MUMmer - 558360. The total time for GECKO represents a dummy execution, the actual execution time (executing the dictionary calculation once) was of 142954

Method HS PT MM PA GG MMU RN BT CF SS

HS

GECKO 19190 2438 11282 11433 9358 11367 3768 2944 5875

Gepard 6152 2581 12973 2861 8644 11478 5850 5540 14880

Lastz 158874 140255 117398 105912 108312 96593 63294 70904 157619

MUMmer 13891 2536 7519 11083 31164 10566 2127 3277 10170

PT

GECKO 2932 10567 9287 9686 10800 3766 2939 5909

Gepard 15662 22242 26400 27394 9113 11362 10445 12856

Lastz 135093 191012 181386 210949 164312 171510 146315 115160

MUMmer 6214 23434 43301 27051 9640 1594 2836 10384

MM

GECKO 3322 5432 5306 7558 4461 3294 6387

Gepard 16356 16675 15573 9349 8663 7111 13517

Lastz 141032 128324 136632 128874 72552 57393 133667

MUMmer 4512 6669 17013 25387 1736 6005 10423

PA

GECKO 31137 10012 5907 3770 3081 5879

Gepard 28282 25929 11305 11727 11680 14778

Lastz 148768 167206 135357 82444 63000 157305

MUMmer 15115 36458 19321 3330 3170 11564

GG

GECKO 9703 5957 5206 5294 7895

Gepard 25819 9960 13355 13250 13244

Lastz 137351 63414 44411 28089 66732

MUMmer 36614 11729 6869 30429 45431

MMU

GECKO 5908 5159 5170 5873

Gepard 10229 12219 11360 13493

Lastz 58823 44641 32046 92761

MUMmer 8546 1307 2756 10128

RN

GECKO 5930 5894 5935

Gepard 8143 6458 17278

Lastz 47869 39163 79895

MUMmer 1979 4702 15277
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Table 4 The numbers in the upper diagonal refer to the combined execution time for total HSP calculation, hit sorting and all-vs-all comparison of both strands (forward and

reverse) in seconds (acronyms as described in Table 3). The charts in the bottom part are symmetric visual representations of the corresponding cell in the upper diagonal (bar colour

legend: blue=GECKO; orange=Gepard; grey=Lastz; and yellow=MUMmer). The total execution time (in seconds) for all the comparisons were: GECKO - 318591, Gepard - 576889,

Lastz - 4752315 and MUMmer - 558360. The total time for GECKO represents a dummy execution, the actual execution time (executing the dictionary calculation once) was of

142954 (continued)

BT

GECKO 3777 5914

Gepard 6574 9827

Lastz 21861 56029

MUMmer 717 1608

CF

GECKO 5889

Gepard 8302

Lastz 51778

MUMmer 2777

SS

GECKO

Gepard

Lastz

MUMmer
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that take advantage of multi-core systems. In the context

of ever increasing sequence dataset sizes, the development

of parallel-processing implementations of sequence anal-

ysis software will be particularly important for multiple

genome comparison studies.

Conclusions
This document presents GECKO, a pairwise genome

comparison application based on an enhanced reduction

of memory consumption and computational space, com-

bined with a modular out-of-core implementation with

several important advantages, including K value indepen-

dence, complexity reduction, high performance and high

results accuracy.

Additionally, software components can be easily added

to this application to extend its capabilities in the spirit

of software developer collaboration. New modules can be

added without needing any change to the current archi-

tecture. Example programs currently available include:

K-mer frequency calculation, analysis of over- and under-

represented word sets, pre-visualisation monitoring tools

and full construction of local ungapped fragments includ-

ing their alignment.

A set of benchmarks demonstrates the effectiveness of

GECKO’s implementation, even on a single CPUmachine.

GECKO does not require custom software or libraries

to run. It can be executed within a variety of computing

environments, from simple desktop PCs to more complex

architectures such as clusters.

This software aims to facilitate massive comparisons of

genome-sized sequences, as well as more complex evo-

lutionary studies. Currently the output provided by this

program is being used to identify evolutionary events such

as inversions, transpositions and gene duplications. These

studies have already provided new insights into evolu-

tionary models of populations and species [22], as well as

comparative metagenomic studies [23].

Ongoing work is focused on three main lines. The first

is to develop additional modules to improve and extend

the results generated by GECKO. The second is the par-

allelisation of the full pipeline and the last is to provide

user-friendly environments on desktop and mobile plat-

forms to make using GECKO as easy and accessible as

possible.
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