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ABSTRACT: Machine-learned potential energy surfaces (PESs) for molecules with more
than 10 atoms are typically forced to use lower-level electronic structure methods such as
density functional theory (DFT) and second-order Møller−Plesset perturbation theory
(MP2). While these are efficient and realistic, they fall short of the accuracy of the “gold
standard” coupled-cluster method, especially with respect to reaction and isomerization
barriers. We report a major step forward in applying a Δ-machine learning method to the
challenging case of acetylacetone, whose MP2 barrier height for H-atom transfer is low by
roughly 1.1 kcal/mol relative to the benchmark CCSD(T) barrier of 3.2 kcal/mol. From a
database of 2151 local CCSD(T) energies and training with as few as 430 energies, we
obtain a new PES with a barrier of 3.5 kcal/mol in agreement with the LCCSD(T) barrier
of 3.5 kcal/mol and close to the benchmark value. Tunneling splittings due to H-atom
transfer are calculated using this new PES, providing improved estimates over previous
ones obtained using an MP2-based PES.

T here has been dramatic progress in using regression
methods from machine learning (ML) to develop

potential energy surfaces (PESs) for systems with more than
five atoms, based on fitting thousands of CCSD(T)
energies.1−4 However, the CCSD(T) method, because it scales
as N7, where N is the system size, is too computationally
demanding for PES fits of systems with more than 10 heavy
atoms. (This number of atoms is rightly not considered a
“large molecule” by many readers; however, it is used here as a
computational boundary for the CCSD(T) method.) One 10-
atom PES using the method we are aware of is the formic acid
dimer (HCOOH)2,

5 which contains 8 heavy atoms. This was a
major computational effort at the CCSD(T)-F12a/haTZ
(VTZ for H and aVTZ for C and O) level of theory. This
PES, which does not dissociate, was obtained with only 13 475
energies. A nine-atom PES for the chemical reaction of Cl +
C2H6 was recently reported using a composite MP2/
CCSD(T) method.6 Both of these PESs were fit using
permutationally invariant polynomial (PIP) regression. Exam-
ples of potentials for six- and seven-atom chemical reactions,
which are fits to tens of thousands or even 100 000 CCSD(T)
energies, have also been reported.1,3,4,7,8

The 10-atom CCSD(T) barrier is due both to the steep
scaling with N and the increasing dimensionality of the PES,
which requires larger data sets. Thus, given the intense interest,
and progress, in moving to larger molecules and clusters, where
high-level methods are prohibitively expensive, the use of
lower-level methods such as density functional theory (DFT)
and second-order Møller−Plesset perturbation (MP2) theory
is understandable. These methods also provide analytical
gradients, and this is an important source of data needed for

larger systems. Our group has made use of this approach for
PIP PESs of N-methylacetamide,9,10 glycine,11 and tropo-
lone.12

We also recently reported PIP and fragmented PIP PESs
(see below for some details) for 15-atom acetylacetone
(AcAc),13 using MP2 energies and gradients from Meuwly
and co-workers,14 supplemented by us with roughly 500
additional configurations. This PES has a barrier for symmetric
H-atom transfer of 2.13 kcal/mol (745 cm−1), in close
agreement with the direct MP2 value of 2.18 kcal/mol (763
cm−1). However, that value of the barrier is more than 1 kcal/
mol below the reported CCSD(T)/aug-cc-pVTZ barrier of 3.2
kcal/mol.15 It is expected that this error in the MP2-based PES
leads to a large overestimate of the tunneling splitting for the
ground vibrational state H-atom transfer. Nevertheless, the
splitting was obtained with the MP2-based PES, using full-
dimensional diffusion Monte Carlo calculations. The splitting
is 160 cm−1 with an uncertainty of 15 cm−1. Using a simple 1d
model, a splitting of 113 cm−1 was obtained for a barrier of 2.2
kcal/mol and 74 cm−1 for a scaled barrier of 3.2 kcal/mol. This
simple 1d estimate for the larger barrier is not expected to be
quantitative; however, it does confirm that a large decrease in
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the splitting upon increasing the barrier by 1 kcal/mol can be
expected.
This magnitude of the error in chemical barriers is typical for

MP2 and DFT accuracy compared to benchmark CCSD(T)
results. In general, MP2 and DFT geometries and harmonic
frequencies are relatively more accurate than barrier heights.
Thus, there is a strong motivation to improve a PES based on a
lower-level method such as DFT and MP2 when the focus is
on barriers.
Recent approaches to do this, using ML, aim to bring a PES

based on a low-level of electronic structure theory to a higher
level. There are two approaches currently being investigated to
accomplish this goal. One is transfer learning (TL), which has
been developed extensively in the context of artificial neural
networks,16 and much of the work in that field has been
brought into chemistry.14,17−20 The basic idea of TL is that a
fit obtained from one source of data (perhaps a large one) can
be corrected for a related problem by using limited data and by
making small training alterations to the parameters obtained in
the first fit. Therefore, in the present context of PES fitting, an
ML-PES fit to low-level electronic energies/gradients can be
reused as the starting point of the model for an ML-PES with
the accuracy of a high-level electronic structure theory. As
noted, this is typically done with artificial neural networks,
where it is hoped that weights and biases trained on lower-level
data require minor changes in response to additional training
using high-level data.
The other approach is Δ-machine learning. In this approach,

a correction is made to a property obtained using an efficient,
low-level ab initio theory.18−21 The focus of most work on TL
or Δ-learning has been on developing transferable force fields,
with applications mainly in the thermochemistry and molecular
dynamics simulations.
Meuwly and co-workers applied TL using thousands of local

CCSD(T) energies to improve their MP2-based neural
network PESs for malonaldehyde, acetoacetaldehyde, and
acetylacetone (AcAc).14 We recently proposed and tested a
Δ-learning approach that uses a small number of CCSD(T)
energies to correct a PES based on DFT electronic energies
and gradients.22 The method was validated for PESs of small
molecules, CH4 and H3O

+ , and for 12-atom N-methylaceta-
mide. In all cases, the coupled cluster energies were obtained
over the same large span of configurations used to get the
lower-level PES. For N-methylacetamide, these included the cis
and trans isomers and the saddle points separating them.
Here we apply this Δ-learning approach to 15-atom AcAc,

C5H8O2. The approach is to construct a high-level, coupled-
cluster-level PES starting from a lower level MP2 one by using
a correction PES. This correction PES is a fit to a small number
of high-level ab initio energies that span the same range of
configurations used to obtain the lower-level PES. Explicitly,
the corrected high-level PES, denoted VLL→CC, is given by

= + Δ→ −V V VLL CC LL CC LL (1)

where VLL is the lower-level PES and ΔVCC−LL is the correction
PES. In the present application to AcAc, we calculated 2151
LCCSD(T)-F12/cc-pVTZ-F12 energies23 and performed
training on subsets of these ranging in size from 430 to
1935. By contrast, VLL was fit using a data size of 250 884 MP2
energies and gradients.
In the PIP approach to fitting,24 the potential V is

represented in compact notation by

∑=
=

V c px x( ) ( )
i

n

i i
1

p

(2)

where ci are linear coefficients, pi are PIPs, np is the total
number of polynomials for a given maximum polynomial
order, and x represents Morse variables. For example, xαβ is
given by exp(− rαβ/λ), where rαβ is the internuclear distance
between atoms α and β. The range (hyper) parameter, λ, was
chosen to be 2 bohr. The linear coefficients are obtained using
standard least-squares methods for large data sets of electronic
energies (and for large molecular gradients as well) at scattered
geometries.
For molecules of more than 10 atoms, the size of the PIP

basis can become a computational bottleneck. This size
depends in a complicated and nonlinear way on the maximum
polynomial order, the number of Morse variables, and the
order of the symmetric group.24 While we have been able to
use a full PIP basis even for a 15-atom tropolone12 and AcAc,13

we have shown that the fragmented PIP, which can be applied
to larger molecules, performs very well and runs faster than the
full PIP basis.
The fragmented PIP basis is obtained by fragmenting a

molecule into groups of atoms. A PIP basis for each group can
be calculated rapidly and then combined with those of other
groups to provide a compact and still precise representation of
the PES.9 Indeed this has been verified for N-methylaceta-
mide,9,10 tropolone,12 and AcAc.13 Note that these PESs use
the most recent software that includes gradients in the fit and
produces gradients on output.25−27

The histogram of the MP2 database from our AcAc PES13 is
shown in Figure 1(a); it includes 5454 geometries. The MP2
energies are relative to the MP2 global minimum. The two
lowest bars of the histogram are primarily the 454 points added
by our group via an AIMD trajectory or random grids starting
from or centered on the global minimum (GM) and H-atom
transfer transition-state saddle point geometries but are not
specifically chosen to be along the reaction coordinate.
Hereafter, unless indicated otherwise, the H-atom transfer
saddle point is denoted as “SP”. The AIMD trajectory was run
at 400 cm−1 for 200 steps starting from the GM, and 50
geometries/energies were used. The grids were made from
taking the Cartesian coordinates of the GM and SP and
varying, for each geometry, all of the 45 coordinates by a
random number between the coordinate ± del . For each of
these starting points, approximately 75 geometries were
generated with del = 0.001 Å, and approximately 150
geometries were generated with del = 0.004 Å. In all, our
group calculated 454 points for the MP2 database. A majority
of the geometries and energies (5000 points) were kindly
provided to us by the Meuwly group on the basis of their
AIMD trajectories.
The database we used to calculate the difference potential,

ΔVCC−LL, is described by the energy histogram in Figure 1(b).
The LCCSD(T) energies are relative to the LCCSD(T)
energy at the MP2 global minimum structure. The database is
composed of the 500 geometries that are clustered near the
GM, as determined by choosing the RMS bond difference for
the 105 bond lengths to be less than 0.3 Å when comparing the
geometry to that of the GM, and another 1651 taken by (a)
choosing a random integer that indicated their position on a
list of the remaining MP2 points, (b) discarding choices whose
MP2 energies were more than 30 000 cm−1, and (c) stopping
the selection when the requisite number of choices had been
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made. Again, the aim was to produce a difference PES that
spans the same range of configurations as the original lower-
level PES, namely, one that includes points near the GM and
SP but not specifically chosen to be along the reaction
coordinate. The difference database shows a peak near a zero
energy difference with a distribution ranging from approx-
imately −1500 to 800 cm−1.
Figure 1(c) shows the correlation between the MP2 energies

and those of the difference potential (LCCSD(T)-MP2). Note
that the MP2 energies at which LCCSD(T) energies were
calculated span the range from 0 to about 30 000 cm−1. It is
clear that there is no systematic correlation between the MP2
energy and the difference energy. The largest energy
differences are for geometries whose MP2 energies are
between 10 000 and 20 000 cm−1, whereas small differences
are seen for MP2 energies of as large as 30 000 cm−1. The
scatter of energies makes it clear that the difference potential is
global in nature. Furthermore, as can be seen, the density of
points for the difference potential mirrors the density of MP2
energies. This is already an indicator that the difference
potential spans a very similar range of configurations as for the
original MP2 energies. Further support comes from looking at
the distribution of geometries discussed next.
Figure 2 shows that the distribution of geometries where

LCCSD(T) calculations were performed overlaps the dis-
tribution where MP2 calculations were performed, as it must in
order to construct a difference potential. The plot axes show
the two OH distances, where H is the transferring H atom.
The numbering of atoms is shown in the Supporting
Information (SI), and because the distribution is permutation-
ally symmetric, we have shown only the upper half by taking

O2−H1 to be larger than O3−H1. Here, H1 is the hydrogen
atom transferred and O2 and O3 are the symmetric oxygens to
which it can be bonded. Note that other distances are changing
as well, and this is indicated schematically by the structures
shown in the figure. As seen, the LCCSD(T) set is sparse and
dispersed. Note also that the clustering observed in both panels
is due to the selection procedures adopted by the Meuwly
group in the construction of their data set.
In addition to the LCCSD(T)-F12 energies calculated for

the PES database, we performed two benchmark calculations at
the global minimum and at the saddle point for H-atom
transfer. These two calculations found the optimum geometries
and energies and also determined the harmonic vibrational
frequencies and normal coordinates. While the LCCSD(T)-
F12 calculations for just the energy at a single geometry took
approximately 30 min using 12 cores of the 2.4 GHz Intel
Xeon processors, the full optimization and frequency
calculations took on the order of 73 days using the same
number of processors. This computational cost certainly
underscores the infeasibility of doing even LCCSD(T)
calculations for an AcAc PES.
The fit to the difference potential has to take account of the

small data set (i.e., a maximum of 2151 energies). Therefore,
the number of terms in the PIP basis has to be significantly less
than this number to avoid overfitting. With this is mind, we

Figure 1. Energies of MP2 and difference fits. (a) Histogram of MP2
energies for the MP2-based PES. The bin size is 500 cm−1. (b)
Histogram of difference between the LCCSD(T) and MP2 energies
used in the ΔVCC−LL fit. The bin size is 80 cm−1. (c) Correlation
between MP2 energies in (a) and the LCCSD(T)-MP2 energies in
(b).

Figure 2. (a) MP2 database points showing representative structures.
(b) LCCSD(T) database points using all points near the GM (green)
and other random scattered points (blue), as explained in the text.
TS(H) denotes the H-transfer saddle point, which in the text is
referred to as “SP”.
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used a PIP basis of maximum polynomial order of 2 and a
symmetry designation of {1, 2, 5, 7}. The numbering scheme
for this fit is shown in Figure S1 of the SI, along with an
explanation of the meaning of the symmetry designation. This
basis contains just 85 PIPs and thus 86 linear coefficients to be
determined by standard least-squares regression. This is the
smallest PIP we have ever used, and the bonus is that we can
examine small training data sets without concerns about
overfitting. Furthermore, the evaluation of such a small PIP
basis is fast.
We note that in order to test the performance of the PES on

configurations outside the training set, the largest training set
consists of only 90% of the total 2151 LCCSD(T) data points
(N = 1935 shown in Table 1); the remaining 10% (every 10th

point in the full data set of 2151 points) is reserved for testing.
Three smaller data sets are also used to fit the PES: for N =
1075, 717, and 430, every kth point among the 2151 ones is
picked as a training point, where k = 2, 3, and 4 for N = 1075,
717, and 430, respectively, while the remaining points not
included in the training set are for testing.
Numerous metrics of the performance of the Δ-ML

approach are given in Table 1. Beginning with training and
testing errors of the ΔVCC−LL PESs using training sets of
different sizes, we note again that the testing set consists of
points not used for training, and the testing error is for the
differences between LCCSD(T) and MP2 electronic energies.
It can be seen that the testing error increases monotonically as
the number of training points decreases due to smaller
coverage by the training data, as expected. However, this
increase in the testing error is relatively small.
Next we consider the equilibrium geometries and normal-

mode frequencies of both the global minimum and the saddle
point to H transfer as well as the barrier height. For
geometries, we computed the root-mean-square (RMS)
difference between the 105 internuclear distances from the
PES and direct LCCSD(T)-F12-optimized geometries. For
harmonic frequencies, we calculated the mean absolute error
(MAE) by comparing frequencies from PESs with direct
LCCSD(T)-F12 frequencies. All of these are listed in Table 1
for four PESs with different training sets as well as for the low-
level MP2 PES. We get excellent agreement for the geometries:
in all four Δ-ML PESs, the RMS differences of the 105

internuclear distances between PES and direct LCCSD(T)
geometries are around 0.008 and 0.004 Å for GM and SP,
respectively, and the RMS differences between VLL and
LCCSD(T) geometries are 0.0115 and 0.0026 Å for GM
and SP, respectively. Therefore, the geometry of GM is slightly
improved using the Δ-ML approach, and the SP geometry is
still in good agreement with the LCCSD(T)-F12 geometry
despite a slightly increased RMS difference (only 0.0014 Å). A
plot of VLL→CC internuclear distances vs direct ab initio
distances is shown in Figure S2 of the SI. It is perhaps worth
noting that the largest distances (nearly 7 Å) are between the
H atoms in the two methyl rotors.
The barrier height of the H-transfer motion on all four

corrected PESs, each based on a different training set, is
around 1218 cm−1 (3.49 kcal/mol), in excellent agreement
with the direct LCCSD(T)-F12 value of 1234 cm−1 (3.54
kcal/mol). The best estimate of this barrier height is 1148
cm−1 (3.29 kcal/mol), based on CCSD(T)-F12/aug-cc-pVTZ
single-point calculations at the LCCSD(T)-optimized geo-
metries. Therefore, the Δ-ML PES slightly overestimates the
barrier height; nevertheless, it is a significant improvement
over the MP2-based PES,13 which has a barrier height of 745
cm−1 (2.13 kcal/mol).
The energies of seven low-lying stationary points (including

the GM and SP) are shown in Table 2. TS(T)-I/II/III

represents three transition state saddle points with respect to
the torsion of the two methyl rotors, and TS(HT)-I/II
represents two higher-order saddle points with imaginary
frequencies in both H-transfer motion and methyl torsion. In
nearly all cases, the energies of the stationary points are better
captured by the VLL→CC PESs than by the VLL PES.
The harmonic frequencies of the global minimum and H-

transfer saddle point from the MP2 PES (VLL), the corrected
PES (VLL→CC) using 1935 training points, and direct
LCCSD(T)-F12 calculations are listed in Table S1 of the SI.
For most of the modes, the differences between VLL and
VLL→CC frequencies are small, but for mode 32 of GM (OH
stretch) and the imaginary-frequency mode of the H-transfer
SP, the improvement in the Δ-ML PES is significant. Again,
the four Δ-ML PESs based on different training sets achieved
similar MAE in frequencies (around 13 cm−1 for GM and 25
cm−1 for the H-transfer SP; see Table 1), and that is a
significant improvement over the low-level PES, which has
MAEs of 17.3 and 35.6 cm−1 for GM and the H-transfer SP,
respectively.

Table 1. Indicated RMS Errors of the ΔVCC−LL PESs Using
Training Sets of Different Sizes (N)a

N = 1935 N = 1075 N = 717 N = 430 VLL

training RMS 99.6 94.7 98.8 79.3

testing RMS 107.5 113.7 123.0 155.9

barrier height 1218 1217 1219 1219 745

RMS (GM
Geom)

0.0081 0.0076 0.0078 0.0070 0.0115

RMS (TS(H) SP
geom)

0.0041 0.0041 0.0041 0.0036 0.0026

MAE (GM freq) 12.2 12.1 13.3 13.7 17.3

MAE (TS(H) SP
freq)

24.7 24.8 26.2 25.9 35.6

aTraining and testing RMSs refer to energies, the barrier height is for
symmetric H-transfer, and the RMS errors in internuclear distances
are given for the global minimum (GM) and H-atom transfer saddle
point (TS(H)-SP). The mean absolute errors (MAE) are given for
harmonic frequencies relative to benchmark LCCSD(T) results.
Energies and frequencies are in cm−1, and distances are in angstroms.

Table 2. Energies (in cm−1) of the Seven Stationary Points,
Relative to the Global Minimum (GM), Using Indicated
Methodsa

stationary points LCCSD(T) VLL→CC (1935) VLL→CC (430) VLL

GM 0 0 0 0

TS(H)-SP 1234 1218 1219 745

TS(T)-I 123b 165 154 160

TS(T)-II 488b 477 481 399

TS(T)-III 581b 627 623 541

TS(HT)-I 1434b 1299 1306 820

TS(HT)-II 1645b 1359 1374 864
aThe numbers in parentheses for the two Δ-ML PESs refer to the size
of the training data set. bLCCSD(T)-F12 calculations at MP2-
optimized geometries.
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These results show that the Δ-ML approach indeed
improves the PES and brings it closer to coupled-cluster
level of accuracy. This approach significantly improves the
barrier height of H transfer, moderately improves the harmonic
frequencies of GM and H-transfer SP, and slightly improves
the optimized geometries of GM. More importantly, even with
a training set as small as 430 points, the corresponding VLL→CC

PES is almost as good as the one fitted to 1935 points.
Nevertheless, the fit using 1935 points is still our best one in
terms of coverage of configurations and testing error, so the
results for zero-point energy (ZPE) and H-transfer tunneling
splitting shown next are based on this fit.
Diffusion Monte Carlo (DMC) calculations were employed

to compute the ground-state tunneling splitting of AcAc.
Specifically, the simple unbiased algorithm28,29 was used to
calculate the ground-state energy, while DMC with a fixed-
node approximation30 was used to calculate the energy of the
excited state with respect to the H-transfer motion.
In the simple unbiased algorithm we use, an ensemble of

random walkers is used to represent the nuclear wave function
of the molecule. At each step, a random displacement in each
degree of freedom is assigned to each walker, and this walker
may remain alive (and may give birth to new walkers) or be
killed by comparing its potential energy, Ei, with a reference
energy, Er. For the ground state, the probability of birth or
death is given as

τ= [− − Δ ] − <P E E E Eexp ( ) 1( )i ibirth r r (3)

τ= − [− − Δ ] >P E E E E1 exp ( ) ( )i ideath r r (4)

where Δτ is the step size in imaginary time. In a fixed-node
approximation for excited states, in addition to the process
described above, any walker that crosses a node is instantly
killed. In most cases, the node is unknown in Cartesian
coordinates, but for certain modes such as H-transfer in a
symmetric double well, a very reasonable approximation can be
made for the node as described in detail below.
After removing all dead walkers, the reference energy is

updated using the equation

τ τ α

τ

= ⟨ ⟩ −
−

E V
N N

N
( ) ( )

( ) (0)

(0)
r

(5)

where τ is the imaginary time; ⟨V(τ)⟩ is the average potential
over all the walkers that are alive; N(τ) is the number of live
walkers at time τ; and α is a parameter that can control the
fluctuations in the number of walkers and the reference energy.
Finally, the average of the reference energy over the imaginary
time gives an estimate of ZPE (or the energy of the excited
state in a fixed-node calculation).
DMC calculations were performed in Cartesian coordinates

in full dimensionality. For fixed-node calculations, we assume
that the node is rH1O2 = rH1O3 (using the numbering scheme
shown in Figure S1 of the SI). Initially, the H1 atom is closer
to one O, say O3, so if rH1O3 of a walker becomes larger than
rH1O2, then that walker crosses the node and would be instantly
removed. An additional correction was made for the excited
state by taking recrossing into account.30

Ten DMC simulations were performed for each state, and in
each simulation, 30 000 walkers were equilibrated for 5000
steps and then were propagated for 50 000 steps to compute
the energy, with a step size of 5.0 au. Thus in these simulations,
∼1010 potential energy evaluations are required; clearly these
cannot be done without an efficient PES.
The zero-point energy of the corrected PES using 10 DMC

calculations is 26 741 ± 7 cm−1, while the energy of the excited
state for the H-transfer motion from 10 fixed-node DMC
calculations is 26 773 ± 10 cm−1. Therefore, the tunneling
splitting is 32 cm−1 with an uncertainty of roughly ±10 cm−1.
As a comparison, the splitting using the MP2-based PES (i.e.,
VLL) is 160 cm−1. Such a significant decrease in the tunneling
splitting is expected because the barrier height of VLL→CC, 1218
cm−1, is significantly higher than the barrier height of VLL, 745
cm−1.
The ground-state wave function of hydrogen from DMC

calculations using the new PES is shown in Figure 3. It can be
seen that the largest magnitude of the transferring H atom is
closer to one of the O atoms, which is a character of the GM.
However, the orientations of the two methyl rotors are the
same as for the H-transfer SP. On the basis of the DMC wave
function, we cannot draw a definitive conclusion as to whether
the ground state of AcAc has a Cs or C2v structure. In fact, the
ground-state structure of AcAc is under debate. Meuwly et al.
finds a slight preference for the Cs structure by the inclusion of
a MP2 ZPE difference in the CCSD(T) electronic energies of

Figure 3. Ground-state wave function of hydrogens from the DMC calculations.
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GM and H-transfer SP,15 while the microwave experiments by
Caminati and Grabow support a C2v structure.

31

We also performed DMC calculations for the singly
deuterated isotopologue of AcAc, but the energies of the
ground state and excited state are so close that the splitting is
smaller than the uncertainty in the DMC calculations.
Therefore, we could not obtain a reliable estimate of the
tunneling splitting for the deuterated AcAc using DMC.
We also applied an approximate 1d approach to obtain the

tunneling splittings. This method has been described in detail
previously.32 It was used in our work on AcAc based on the
MP2 PES (VLL).

13 Briefly, a 1d potential, denoted V(Qim),
which is the minimum-energy path as a function of the
imaginary-frequency mode (Qim) of the H-transfer saddle
point, was obtained by optimizing all of the other coordinates
at fixed Qim values using the VLL→CC PES except for the methyl
rotors, which cannot be described using rectilinear normal
coordinates. These are held fixed at the saddle point values all
the way along the path. Because of the fixed methyl orientation
and fitting error, the barrier height of this 1d Qim path is 1055
cm−1 and it is 179 cm−1 lower than the LCCSD(T) value.
Therefore, we “morphed” this 1d potential using the same
strategy as described previously13 so that it gives the correct
barrier height (1234 cm−1). The two mass-scaled 1d potentials
employed (one for H and the other for D transfer) are shown
in Figure 4.

The splittings are obtained simply using 1d-DVR calcu-
lations33 of the energies of the ground and first excited states
on the morphed V(Qim) paths, and thus the splitting. We note
that this same approach was applied to obtain the tunneling
splittings of H-atom and D-atom transfer in malonaldehyde.32

The results were within roughly 10% of the rigorous diffusion
Monte Carlo splittings.
Using this 1d approach, the ground-state tunneling splittings

are 37.9 and 8.2 cm−1 for H and D, respectively. The H-
splitting is in reasonably good agreement with the 32 cm−1

obtained from the DMC calculation, and the D-splitting is also
consistent with the fact that it is smaller than the uncertainty of
the DMC calculations.
It is clearly seen that the Δ-ML approach can indeed bring

the PES closer to the coupled-cluster level of accuracy,
especially as applied to the barrier height of the H-atom
transfer. The improvements in geometries and harmonic

frequencies are relatively smaller, as the MP2 results are
already quite close to the new LCCSD(T) ones presented
here.
Of course these improvements are not achieved without

extra cost. First, there is an extra cost to compute the
LCCSD(T)-F12 energies for 2151 configurations. A single-
point calculation of the energy takes about 30 min using 12
cores of the 2.4 GHz Intel Xeon processor, and all 2151 points
can be completed within 1 week using 7 nodes for these
computations. As we have shown above, far fewer points can
be used to obtain a high-quality correction PES, so this cost is
affordable and minor.
Perhaps of more importance is the extra cost in evaluating

the corrected PES. In the Δ-ML approach, the extra cost is the
calculation of the energy correction, ΔVCC−LL. For AcAc, the
ΔVCC−LL PES uses a maximum polynomial order of 2 and costs
about 10% of the VLL PES, but this additional cost is also a
small price to pay for bringing about the accuracy of the PES,
especially the barrier height for the H-atom transfer, to near
the coupled-cluster level.
The success in bringing an MP2-based full-dimensional PES

for 15-atom acetyacetone to coupled-cluster quality is very
encouraging. Given that a small number (around 500 to 2000)
of coupled-cluster energies were needed for the correction
makes it clear that the approach should be readily applicable to
molecules with more than 10 atoms. The coupled-cluster
approach used was the relatively efficient local method
LCCSD(T) available in the 2015 version of Molpro that we
use.34 Other efficient CCSD(T) methods are also available in
both Molpro and other software packages.
Overall, the success of the current application of the Δ-ML

method to 15-atom AcAc and the applications reported earlier
on smaller molecules and application to cis and trans-N-
methylacetamide suggests that the method can have wide
applicability and ease of use. Since the correction PES is not
localized around a minimum or a reaction path, it can be used
in general anharmonic vibrational analyses of polyatomic
molecules. The present application to full-dimensional DMC
calculations is already evidence of this.
Finally, it is also worth commenting on the current Δ-ML

approach and the recent application of transfer learning (TL)
by Meuwly and co-workers14 to MP2-based PESs for AcAc.
The MP2-based PES we reported used a slightly extended
database of MP2 energies and gradients from that group. Thus,
the PES we reported is not the same as the earlier one.
However, they are similar (e.g., the H-atom transfer barrier
heights are 2.13 and 2.17 kcal/mol for the PIP PES and the
neural-network (NN) PES, respectively). These are in very
good agreement with the direct MP2 result of 2.18 kcal/mol.
Several TL NN models, based on random training data sets

(PNO-LCCSD(T) energies) of different sizes, were consid-
ered by Meuwly and co-workers.14 In Table 3 of that paper,
results both from a single TL NN model and from an average
of several TL NN models were given at the optimized
geometries of each model. A TL-NN model gave a barrier
height of 0.92 kcal/mol using 100 high-level energies, 2.4 kcal/
mol from a single TL-NN model, 1.80 kcal/mol averaged from
several TL-NN models with 1000 energies, and 2.66 kcal/mol
from a single TL-NN model using 5000 energies. Barrier
heights of 3.31 and 3.32 kcal/mol were obtained with a single
and multiple TL-NN models using 15 000 energies; these are
in excellent agreement with the benchmark barrier height of
3.25 kcal/mol. From these results, two apparent conclusions

Figure 4. One-dimensional V(Qim) path for H and D transfer in
AcAc. The barrier heights have been “morphed” to agree with the
LCCSD(T)-F12 value.
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emerge. The first is that the TL-NN may produce a worse
result (i.e., a lower barrier height) than the original NN PES,
and the second is that roughly 15 000 high-level energies are
needed to obtain a TL-NN PES with an accurate barrier
height. (These authors did note some improvement in the TL-
NN model using 1000 energies by the addition of 100 energies
along the minimum-energy path (i.e., the barrier height
increased from 1.8 to 2.72 kcal/mol).
Thus, on the basis of the above, it appears that the Δ-ML

approach performs well and is a reasonable alternative to TL
for this example. However, unlike the TL-NN approach, the Δ-
ML approach we applied does not produce worse results than
the low-level PES. We attribute this to the fact that the
difference potential is small relative to the low-level and high-
level potentials. If this is not true (and this can be checked, of
course), then the current approach would probably require a
larger database of high-level energies to achieve a satisfactory
result. These are early conclusions, and more work on both
approaches is clearly warranted.
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