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ABSTRACT

We have measured line-of-sight velocity profiles (VPs) in the EO galaxy NGC 6703
out to 2.6R,.. Comparing these with the VPs predicted from spherical distribution
functions (DFs), we constrain the mass distribution and the anisotropy of the stellar
orbits in this galaxy.

We have developed a non-parametric technique to determine the DF f(E, L?)
directly from the kinematic data. We test this technique on Monte Carlo simulated
data with the spatial extent, sampling, and error bars of the NGC 6703 data. We find
that smooth underlying DFs can be recovered to an rms accuracy of 12 per cent
inside three times the radius of the last kinematic data point, and the anisotropy
parameter 5(r) can be recovered to an accuracy of 0.1, in a known potential. These
uncertainties can be reduced with improved data.

By comparing such best-estimate, regularized models in different potentials, we
can derive constraints on the mass distribution and anisotropy. Tests show that, with
presently available data, an asymptotically constant halo circular velocity v, can be
determined with an accuracy of + <50 km s~ '. This formal range often includes
high-v, models with implausibly large gradients across the data boundary. However,
even with extremely high quality data some uncertainty on the detailed shape of the
underlying circular velocity curve remains.

In the case of NGC 6703, we thus determine the true circular velocity at 2.6R, to
be 250440 km s~' at 95 per cent confidence, corresponding to a total mass in
NGC 6703 inside 78 arcsec (13.5 h.,' kpc, where hy,=H,/50 km s~ ' Mpc™') of
1.6-2.6 x 10" hsy' M. No model without dark matter will fit the data; however, a
maximum stellar mass model in which the luminous component provides nearly all
the mass in the centre will. In such a model, the total luminous mass inside 78 arcsec
is 9x 10" M, and the integrated B-band mass-to-light ratio out to this radius is
Y,=5.3-10, corresponding to a rise from the centre by at least a factor of 1.6.

The anisotropy of the stellar distribution function in NGC 6703 changes from
near-isotropic at the centre to slightly radially anisotropic (f=0.3-0.4 at 30 arcsec,
f=0.2-0.4 at 60 arcsec) and is not well-constrained at the outer edge of the data,
where f= —0.5 to + 0.4, depending on variations of the potential in the allowed
range.

Our results suggest that also elliptical galaxies begin to be dominated by dark
matter at radii of ~ 10 kpc.

Key words: line: profiles — celestial mechanics, stellar dynamics — galaxies: elliptical
and lenticular, cD — galaxies: individual: NGC 6703 — galaxies: kinematics and
dynamics — dark matter.
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1 INTRODUCTION

Current cosmological models predict that, similarly to spiral
galaxies, elliptical galaxies should be surrounded by dark
matter haloes. The observational evidence for dark matter
in ellipticals is still weak, however. In a few cases, masses
have been determined from X-ray observations (e.g. Awaki
et al. 1994; Kim & Fabbiano 1995) or H 1 ring velocities
(Franx, van Gorkom & de Zeeuw 1994). In others it has
been possible to rule out constant M/L ratios from extended
velocity dispersion data (Saglia et al. 1993), absorption-line
profile measurements (Carollo et al. 1995; Rix et al. 1997)
or globular cluster or planetary nebula velocities (e.g. Arna-
boldiet al. 1994; Grillmair et al. 1994). Gravitational lensing
statistics (Maoz & Rix 1993) and individual image lens sepa-
rations (Kochanek & Keeton 1997) favour models with
extended dark matter haloes around ellipticals. Despite
this, the detailed radial mass distribution in elliptical
galaxies remains largely unknown. Similarly, although we
know from the tensor virial theorem that giant ellipticals are
globally anisotropic (Binney 1978), their detailed anisotropy
structure is only poorly known.

The origin of this uncertainty is a fundamental degen-
eracy — in general, it is impossible to disentangle the aniso-
tropy in the velocity distribution and the gravitational
potential from velocity dispersion and rotation measure-
ments alone (Binney & Mamon 1982; Dejonghe & Merritt
1992). Tangential anisotropy, for example, can mimic the
presence of dark matter. Recent dynamical studies have
indicated, however, that the anisotropy of the stellar distri-
bution function (DF) is reflected in the shapes of the line-
of-sight velocity profiles (VPs) in a way that depends on the
gravitational potential (Gerhard 1993, hereafter G93; Mer-
ritt 1993). G93 and Merritt (1993) argued that the extra
constraints derived from the VP measurements may be
enough to break the degeneracy and determine the mass
distribution.

If this is correct, it provides a new method with which to
investigate the properties of the dark matter haloes around
elliptical galaxies at intermediate radii: VPs can now be
estimated from high-quality absorption-line measurements
out to ~3 effective radii. Dynamical models are then used
to disentangle the effects of orbital anisotropy and potential
gradient on the VP shapes. In this paper, we implement
these ideas for the analysis of real data, analysing the EO
galaxy NGC 6703. This study is part of an observational and
theoretical program aimed at understanding the mass distri-
bution and orbital structure in elliptical galaxies. Prelimi-
nary accounts of this work have been given in Jeske et al.
(1996) and Saglia et al. (1997a).

We have obtained long-slit spectroscopy for NGC 6703,
and have measured VPs to ~2.6R, with the method of
Bender (1990). The results are quantified by a Gauss—Her-
mite decomposition (G93, van der Marel & Franx 1993) as
described by Bender, Saglia & Gerhard (1994, hereafter
BSG). These observations are described in Section 2. In
Section 3 we use simple dynamical models to describe the
variation of the VP shapes with anisotropy and potential,
generalizing the results of G93 for scale-free models. These
models, taken from a systematic study of the relation
between DFs and VPs in spherical potentials (Jeske 1995),
are described in Appendix A. In Section 4 we develop a non-

parametric method for inferring the DF and potential from
absorption-line profile measurements. Tests on Monte-
Carlo-generated data are used to determine the degree of
confidence with which the DF and potential can be inferred
from real data. In Section 5 we analyse the kinematic data
for NGC 6703. Comparison with the dynamical models
from Jeske (1995) already shows that no constant M/L
model will fit the data. The non-parametric method
developed in Section 4 is then used to derive quantitative
constraints on the mass distribution and anisotropy of this
galaxy. Finally, in Section 6 we present a discussion of the
results and our conclusions.

2 OBSERVATIONS OF NGC6703

NGC 6703 is an EO galaxy at a distance D =36 Mpc (Faber
et al. 1989) for H,=50 km s~ ' Mpc~'. From a B-band CCD
frame taken at the prime focus of the 3.5-m telescope on
Calar Alto and kindly provided by U. Hopp we have mea-
sured the inner surface brightness profile using the algo-
rithm by Saglia et al. (1997b): this follows an R"* law with
R,=30 arcsec=5.2 hg,' kpc, or a Jaffe model with r,=46.5
arcsec=38.1 hy' kpc, with small residuals (Fig. 1). A 3 per
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Figure 1. (a) Residuals of a Jaffe model fit to photometry for
NGC 6703. Full line: in surface brightness; dotted line: in the curve
of growth. The vertical dotted line marks the scaling Jaffe radius, r;.
(b) Folded mean velocity, (c) velocity dispersion, (d) &, and (e) h,
profiles. Crosses and filled circles refer to the two sides of the
galaxy and the major axis spectrum. The small dots refer to the un-
rebinned spectrum (see text). Open and filled triangles refer to the
two sides of the galaxy and the spectrum taken parallel to the minor
axis and shifted 24 arcsec from the centre. Open and filled squares
refer to the two sides of the galaxy and the spectrum taken parallel
to the minor axis and shifted 36 arcsec from the centre.
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cent increase of the sky value reduces the measured Jaffe
radius to 35.5 arcsec; a 1 per cent decrease of the sky values
increases it to 54 arcsec. Isophote shapes deviate little from
circles (£<0.05, |a,/a] <0.005) and show small twisting
(APA ~10°). From the Jaffe profile fit we derive a fiducial
(calibrated and corrected for Galactic absorption following
Faber et al. 1989) M,=—21.07, or luminosity
Ly=4.16%x10" hsy® L 5. Note that the values of R, and M,
derived here are slightly larger than those (R, =24 arcsec,
M,= —20.79) given by Faber et al. (1989).

The spectroscopic observations were carried out in 1994
October, 1995 May and 1995 August with the 3.5-m tele-
scope on Calar Alto, Spain. In all of the runs the same setup
was adopted. The Boller & Chivens long-slit twin spectro-
graph was used with a 1200 line mm ' grating, giving 36 A
mm ™' dispersion. The detector was a Tektronix CCD with
1024 x 1024 24-um pixels and a wavelength range
4760-5640 A. The instrumental resolution obtained using a
3.6-arcsec-wide slit was 85 km s~ '. We collected 1.5h of
observations along the major axis of the galaxy, 4 h of obser-
vations perpendicular to the major axis and shifted to the
north-east of the centre by 24 arcsec (0.8R,) and 13 h of
observations perpendicular to the major axis and shifted to
the north-east of the centre by 36 arcsec (1.2R,). Spectra
taken parallel to the minor axis and shifted from the centre
allow at the same time good sky subtraction and a symmetry
check of the data points.

The analysis of the data was carried out following the
steps described by BSG. The logarithmic wavelength cali-
bration was performed at a smaller step (Av=30 km s ")
than the actual pixel size (x50 km s™') to exploit the full
capabilities of the Fourier Correlation Quotient method. A
sky subtraction better than 1 per cent was achieved. The
heliocentric velocity difference between the 1995 May and
the 1994 September—1995 August frames was taken into
account before co-adding the observed spectra. The spectra
were rebinned along the spatial direction to obtain a nearly
constant signal-to-noise ratio larger than 50 per resolution
element. The effects of the continuum fitting and instru-
mental resolution were extensively tested by Monte Carlo
simulations. The residual systematic effects on the values of
the &, and h, parameters are expected to be less than 0.01.
The resulting fitted values for the folded velocity v, velocity
dispersion o, h, and h, profiles are shown in Fig. 1 as a
function of the distance from the centre, reaching ~2.6R..
The v and o profiles are folded antisymmetrically with
respect to the centre for the major axis spectrum, and sym-
metrically with respect to the major axis for the spectra
parallel to the minor axis. Template mismatching was mini-
mized by choosing the template star that gave the minimal
symmetric &, profile derived along the major axis of the
galaxy. The systematic effect resulting from residual mis-
matching on the derived h, values, estimated from the
remaining symmetric components, is less than 0.01.

The galaxy shows very little rotation (~0 km s~' for
R <R_, ~20-30 km s~' for R >R,). The (cylindrical) rota-
tion measured parallel to the minor axis is slightly larger
(~35 km s~') along the 24-arcsec shifted spectrum, but
consistent with the peak velocity reached along the major
axis at R =22 arcsec. This is shown by the velocities derived
from the unbinned major axis spectra (dots in Fig. 1). The
velocity dispersion drops from the central ~190 km s™' to
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~ 140 km s~ at R_/2, slowly declining to about 110 km s™'
in the outer parts. The &, and h, values are everywhere close
to zero. The error bars are determined from Monte Carlo
simulations. Noise is added to template stars (rebinned to
the original wavelength pixel size) broadened following the
observed values of ¢ and h,, matching the power-spectrum
noise to the peak ratio of the galaxy spectra. The accuracy of
the estimated error bars (the rms of 30 replicas of the data
points) is about 20 per cent (determined from the scatter of
the estimated signal-to-noise ratios).

Data points at the largest distances for the different data
sets have a lower signal-to-noise ratio than the mean and
therefore have larger error bars. In addition, these data
points are expected to suffer more from the systematic
effects caused by the galaxy light contamination of the sky
subtraction (see the discussion in Saglia et al. 1993). They
are, in any case, consistent within the error bars with the
more accurate values derived from the other available
spectra.

The observed scatter is sometimes slightly larger than
expected from the error estimates. This excess could be real
and a result of the faint structures apparent in an unsharp
mask image of the galaxy. In particular, this applies to the
asymmetries observed in the &, profile in the central 5 arc-
sec. The negative h, values detected for the first data points
of the 24-arcsec shifted spectrum are also real. They are
detected in the unbinned major axis spectra at R ~22 arcsec
(dots in Fig. 1).

3 VELOCITY PROFILES IN SPHERICAL
GALAXIES

To better understand the relation between VP shape, aniso-
tropy and gravitational potential, we have constructed a
large number of anisotropic models for spherical galaxies in
which the stars follow a Jaffe (1983) profile. The gravita-
tional potential was taken to be either that of the stars (self-
consistent case) or one that had constant rotation speed
everywhere (‘halo potential’). The latter case corresponds
to a mass distribution with a dark halo that has equal density
to the stars at r~0.4r;, and equal interior mass at re~r,
where r; is the scale radius of the Jaffe model. Anisotropic
quasi-separable DFs g(E)h(E, L*) were calculated by the
method of Gerhard (1991, hereafter G91), but contrary to
G93 the circularity function (which specifies the distribution
of angular momenta on energy shells) was allowed to vary
with energy. These models include DFs in which the aniso-
tropy changes radially: from tangential to radial or vice
versa, from isotropic to radial to tangential, etc. (see Fig. 18,
later). For comparison, we have also constructed families of
Osipkov (1979)—Merritt (1985) models, which become
strongly radially anisotropic beyond a certain radius. Details
of this model data base and the properties of the VPs are
given in Appendix A and in Jeske (1995); here we only give
a brief summary relevant to the comparison with
NGC 6703.

The shapes of the observable VPs are most sensitive to
the anisotropy of the DF, but depend also on the potential
(G93). For rapidly falling luminosity profiles, the VPs are
dominated by the stars at the tangent point. Radially (tan-
gentially) anisotropic DFs then lead to more peaked (more
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flat-topped) VPs than in the isotropic case; in terms of the

Gauss—Hermite parameter h,, this corresponds to
h,>(h,),, and h,<(h,),, respectively (figs 8 and 9 in
G93).

Fig. 2 shows that these trends are also seen in the present
models in which both the luminosity density and the aniso-
tropy change with radius. An increase in radial (tangential)
anisotropy at intrinsic radius r is accompanied by an
increase (decrease) of h, at projected radius R~r The
correspondence is strongest in the outer parts of the
models, but is also seen to a lesser extent in the centre of a
Jaffe model, where p(r) ocr~?, in contrast to a homogeneous
core where radial orbits lead to broadened VPs (Dejonghe
1987). Quantitatively, the correspondence depends also on
the anisotropy gradient. Osipkov—Merritt models show a
reversal of this trend near their anisotropy radius r, because
of the large number of high-energy radial orbits turning
around near r,; this leads to flat-topped VPs in a small
radius range near r,. However, the properties of these
models are extreme and they are in general not very useful
for modelling observed VPs.

Fig. 2 and figs 8 and 9 in G93 also show that as the mass
of the model at large ris increased at constant anisotropy,
both the projected dispersion and A, increase. Increasing f§
at constant potential, on the other hand, lowers ¢ and
increases h,. This suggests that by modelling ¢ and A, both
mass M(r) and anisotropy f(r) can in principle be found.

Jaffe, self

4 MODELLING ABSORPTION-LINE
PROFILE DATA

Having seen the effect of anisotropy and potential varia-
tions on the line-profile parameters, we now proceed to
construct an algorithm by which the distribution function
and potential of a spherical galaxy can be constrained from
its observed ¢ and h, profiles. Such absorption-line profile
data contain a subset of the information given by the pro-
jected distribution function N (R, v,), which in the spherical
case is related to the full DF by

N(R, v) =J dz JJ dvdv, f(E, L?)

=J dz “ dvdo, f[30? + 307 + D(r), 7. (1)

Here the position on the sky is specified by R=(x, y); R =|R|.
Velocities in the sky plane are denoted by (v,, v,), z and
are the line-of-sight position and velocity, and v, and v, are
the intrinsic radial and tangential velocities. In spherical
symmetry, the DF f(E, L) is a function of energy and
squared angular momentum only.

Notice from equation (1) that the projected DF depends
linearly on f, but non-linearly on the potential ®(r). Thus f
will generally be easier to determine from N (R, v,) than O.

Jaffe, Halo
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Figure 2. Fitted projected velocity dispersion a;,, anisotropy parameter f§ and VP parameter h, for representative Jaffe models in self-
consistent (left) and halo potentials (right). The models shown are radially and tangentially anisotropic models constructed with the method
of G91 (dashed lines), the isotropic model (solid lines) and two Osipkov—Merritt models (dotted lines). Note that while f is a function of
three-dimensional radius r,, whereas o, h, are observed quantities depending on projected radius R, there is a close correspondence

between features in these profiles. See text.
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Moreover, while considerations like those in the last section
do suggest that, in spherical symmetry and for positive f(E,
L?), both the DF and the potential can be determined from
N(R, v, there is no theoretical proof that this is in fact true.
We only know that in a fixed spherical potential the DF is
uniquely determined from N (R, v)) (Dejonghe & Merritt
1992). For these reasons we have found it useful to split our
problem into two parts (see also Merritt 1993).

(1) We fix the potential ®, and from the photometric and
kinematic data determine the ‘best’ DF f for this potential.
As in practice the surface brightness (SB) profile is much
better sampled than the kinematic observations and also has
smaller errors, we treat it separately and determine the
stellar luminosity density j(r) at the beginning. The kine-
matic data are then used to determine the ‘best’ f for given
j(r) and ®(r), by approximately solving equation (1) as a
linear integral equation.

(2) We then vary @ to find the potential that allows the
best fit overall. At present, it is not practical in step (2) to
attempt to determine the potential non-parametrically.
Rather, we choose a parametrized form for @, and find the
region in parameter space for which the ‘best’ DF as deter-
mined in step (1) reproduces the data adequately.

In view of the modelling of NGC 6703 in Section 5, we
have considered the following family of potentials, including
a luminous and a dark matter component. The stellar com-
ponent is approximated as a Jaffe (1983) sphere, with scale
radius r; and total mass M,, so that

GM, r
O, (r)=——"1In .
1y r+un

2

The dark halo has an asymptotically flat rotation curve,

r
v(r) =vo ——, 3

so that its potential is
Byy(r) =205 In(* + 1), )

This is specified by the asymptotic circular velocity v, and
the core radius 7,. Both luminous and dark halo components
can be modified when needed, and need not be analytic
functions.

In testing our method below, we use parameters adapted
to NGC 6703. This galaxy is well-fitted by a Jaffe profile
(Section 2), so r; is known. This leaves three free param-
eters, the mass M, or mass-to-light ratio Y of the stellar
component and the halo parameters r, and v, If one
assumes that the central kinematics is dominated by the
luminous matter, Y can be determined; then only the two
halo parameters r, and v, are free. The assumption of maxi-
mum stellar Y is similar to the maximum disc assumption in
spiral galaxies.

In any of the potentials specified by equations (2)—(4), we
determine the DF by the algorithm described in Section 4.1
below. To assess the significance of the results obtained, we
test the algorithm on Monte-Carlo-generated pseudo-data
in Section 4.2. For kinematic data with the spatial extent
and observational errors measured for NGC 6703, the algo-
rithm recovers a smooth spherical DF ~70 per cent of the
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time to an rms level of ~12 per cent, taken inside three
times the radius of the outermost kinematic data point. In
Section 4.3, we investigate the degree to which the gravita-
tional potential can be constrained from similar data.

4.1 Recovering f from ¢ and h,, given ®

As discussed above, the projected distribution function N(r,
v,) suffices to determine DF f(E, L*) uniquely. In practice,
however, only incomplete and noisy data are available in
place of N(r, v)), and, contrary to the two-dimensional func-
tion N(r, v)), the observed o(R,) and h,(R,) contain only one-
dimensional information. This suggests that we can hope to
recover only the gross features of f from such kinematic
data. Indeed, the anisotropy parameter f(r) seems to be
essentially fixed from accurate s, measurements (e.g. figs 8
and 9 in G93). Local fluctuations in the DF will be inacces-
sible, but, as we will show, smooth DFs can be recovered
with reasonable accuracy from presently available data.

To solve the inversion problem, we first compute a set of
self-consistent models f,(E, x) for the stellar density j(r), in
the fixed potential ®(r). The f,(E, x) are models of the kind
discussed in Section 2 and Appendix A; E and x are the
energy and circularity integrals of the motion. We then
write the DF as a sum over these ‘basis’ functions:

= afiE . (5)

k=1,K

We do not need to use a doubly infinite, complete set of
basis functions because most of the high-frequency struc-
ture represented by the higher order of basis functions in
such a set will be swamped by noise in the observational
data. It is sufficient to choose the number of basis functions,
K, and the f,(E, x) themselves such that the data can be
fitted with a mean y*~1 per data point. We have found it
advantageous to use the isotropic model plus tangentially
anisotropic basis models, because with these the anisotropy
of the final composite DF (5) can be varied in a more local
way than with radially anisotropic components. As the a,
can be negative, it is of course no problem to generate a
radially anisotropic DF from the isotropic model plus a set
of tangential basis models.

In Fig. 3 we illustrate the basis models that we have used,
by plotting radial profiles of the anisotropy parameter f(r)
for a subset of them. For these basis functions, f(r) can be
regarded as a measure of the extent of the DF in circularity
x at the energy E=®(r). The figure shows that the basis
resolves three steps in x in the limits »—0 and r—o0; at
intermediate energies it has much finer resolution. The
majority of the functions are used in resolving the energy
dependence, i.e. on placing the main gradient zones of the
functions f, in the (E, x) plane on a relatively dense grid in
energy. The main difference from using power-law compo-
nents (Fricke 1952; Dejonghe et al. 1996) is that our basis
models are already reasonable in the sense that they are
viable dynamical models for the density in question, and
that the superposition is used only to match the kinematics.
We have typically used K <20 such functions; this proved
sufficient even for analysing pseudo-data of much better
quality than we have for NGC 6703.
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r/r,

Figure 3. Anisotropy parameter f§ for a subset of basis functions f,
used in the self-consistent Jaffe potential (top) and in a mixed Jaffe
plus halo model (bottom). The top full line in each panel shows the
isotropic model. All other basis models are tangentially aniso-
tropic. Two values of asymptotic anisotropy as r— oo are used (full
and short-dashed lines). For illustration, the long-dashed lines
show the f profiles of the best-fitting DFs derived with these bases
from the NGC 6703 data, in both potentials.

Each of the f,(E, x) reproduces the stellar density distri-
bution j(r), so the g, satisfy

Y oa-=1 (6)

k=1,K

Moreover, the coefficients @, must take values such that

Y a.f(E, x)=0 (7)

k=1,K

everywhere in phase-space. In practice, these positivity con-
straints are imposed on a grid in energy and circularity
(E=E, x=x). Subject to these constraints, the g, are to be
determined such that the kinematics predicted from the DF
(5) match the observed kinematics in a minimum »” sense.

The comparison between model and data is not entirely
straightforward, however. As the measured (v, g, h,, h,) are
obtained by fitting to the line profile (the observational ana-
logue of the projected DF), they unfortunately depend non-
linearly on the underlying DF of the galaxy. We therefore
cannot use the observed v and ¢ in a linear least-squares
algorithm to determine the a, from the data — they cannot
be written as moments of f. In the fitting process, they have
to be replaced by quantities that do depend linearly on the
DF. Moreover, the error bars for these new quantities
generally depend not only on the observed error bars of v
and o, but also on the errors and the values of the line
profile parameters h, and h,. They must therefore be deter-
mined with some care.

We have investigated several schemes along these lines.
The following scheme seemed to perform best in recovering

a known underlying spherical DF from pseudo-data. From
the measured (o, h,), we compute an approximation to the
true velocity dispersion (second moment) G*(R,), by inte-
grating over the line profile (for negative s, only until it first
becomes negative). We also evaluate a new set of even
Gauss—Hermite moments s,(R;; ¢) from the data, using
fixed, fiducial velocity scales 6(R;) (G93; Appendix B). We
have found it convenient to take for these 6(R;) the velocity
dispersions g, (R;) of the isotropic model using the stellar
density of the galaxy, in the current potential ®(r).

The velocity-profile moments of the basis function
models are transformed to the same velocity scales G(R;).
The moments 6*(R,) and s,(R;; &) of the composite DF then
depend linearly on the corresponding moments of the basis
function models. For a regularized model they are smooth
functions of R, of which the (noisy) observational moments
are assumed to be a random realization within the respec-
tive errors.

To determine the best-fitting coefficient a, we minimize
the sum over data points i for all

0 2

X?x.iEWi(Ri) (_72(Ri)_ Z ak(_rzk(Ri):| (8)
L k=1.K

and
[ 2

In i =WaR)[s,(R: ) — ), asP(R;; 5)} , 9
L k=1.K

for n=2, 4. These equations make use of the fact that all the
f. are self-consistent models for the same j(r), so that all
surface density factors p,(R;) = u(R;) cancel.

To determine the weights w, and w,,, we have performed
Monte Carlo simulations to study the propagation of the
observational errors Ao and Ah,. Based on the results of
these simulations, we have chosen

W, '(R)=246(R)[6(R)/a(R)]Ac(R,) (10)
wy '(R) =0.7Ac(R))/5(R)), (11)
wy '(R) =0.95¢Ah,. (12)

The coefficients are representative in the range of values
taken by the observed error bars and the measured %,. In the
presently-used fitting procedure, the additional dependence
on i, and the respective ‘other’ error bar are neglected — the
tests below show that this leads to satisfactory results. As to
first order the s, moment thus measures the shift from o to
g, the parameter o in equation (13) will be near a~2. We
have fixed o by requiring that the distributions of %2 and Xi,
have equal width (see below); this results in «=1.7.
Finally, we assume that the DF underlying the observed
kinematics is smooth to a degree that is compatible with the
measured data. Clearly, unless such an assumption is made,
it is impossible to determine a function of two variables, f(E,
L?), from a small number of data points with real error bars.
One way to ensure that the DF is smooth is to use only a
small number of terms in the expansion (5). However, this is
not a good way of smoothing as it biases the recovered DF
towards the functional forms of the few f, that are used in
the sum. A better way of smoothing is the method of reg-
ularization, as recently discussed by Merritt (1993) in a
similar context. Regularization has a tradition in other
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branches of science, and different variants exist; for refer-
ences see Press et al. (1986) and Merritt’s paper (1993). In
the algorithm here, regularization is implemented by taking
the number of basis functions that are large enough (typi-
cally 16-20) for the data to be modelled in some detail, and
then constraining the second derivatives of the composite
DF to be small. In other words, we also seek to minimize

A, =wE)

[(D ﬂ) +2<DE o ) +<a—f)] a3
OE* OE0x ) |ppy ey

on a grid of points (E;, x;) in the energy and circularity
integrals. Here we normalize to the isotropic DF to ensure
that fluctuations in the composite DF are penalized equally
at all energies; i.e. w(E) =1/f,(E). The constant D is pro-
portional to the range in potential energy in the respective
model.

To find a regularized spherical DF for given kinematic
data in a specified potential, we thus minimize the quan-
tity

1
AZEZ {Xfm*‘ Z /,2,,}4'/12/\(]‘),, (14)
i=1 n=24 ij
for a given regularization parameter A, subject to the
equality and inequality constraints (6) and (7). For the
actual numerical solution we have used the NETLIB routine
Lsel by Hanson and Haskell (1981). Once the best model is
found, we redetermine its quality by evaluating its devia-

tions from the actually measured data:

2=1"" 2 [6(R) — P (R)T/(Ac)(R)), (15)

i=1

Zi=1"" 3 [hi(R) — hP(R)V/(AR)*(R)). (16)

i=1

The parameters ¢”’(R,) and h{(R,) are determined by fit-
ting a Gauss—Hermite series to the velocity profiles of the
best-fitting model; [ is the number of kinematic data
points.

4.2 Tests with model data

We have tested this method by applying it to kinematic data
sets generated in the following Monte-Carlo-like way. First,
velocity dispersions and i, parameters are calculated from a
theoretical DF of specified anisotropy in a known potential,
and are interpolated to the radii R,/r, at which observed
data points are available for NGC 6703. Error bars at these
R; are taken to be either the measured error bars for
NGC 6703 (a realistic data set), or independent of radius
with Ac=3 km s~ ' and Ah,=0.01 (an idealized data set).
Pseudo-data are then generated from the model values of
and h, at R, by adding Gaussian random variates with 1a
dispersion corresponding to the respective Ag or Ah, error
bar at this point. Figs 4 and 5 show data sets generated in
this way from a radially anisotropic model in a potential of
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Figure 4. Model analysis of pseudo-data generated from a radially
anisotropic model DF with the sampling and the measured error
bars of NGC 6703 (see text). The full curves show the true profiles
of projected velocity dispersion, line-of-sight velocity distribution
parameter h, and anisotropy parameter f§ of the underlying DF.
The dashed and dotted lines show the o, h, and f profiles of five
regularized composite DFs which were computed by the method of
Section 4.1 with A=10"* One of the four curves in each panel
corresponds to the data points actually shown in this figure; the
other three curves derive from statistically identical kinematic data
sets with randomly different values for ¢ and A, within the same
(Gaussian) errors.

a self-consistent Jaffe sphere with r,=46.5 arcsec,
GM,/r;=272 km s~ ', and a dark halo with v,=220 km s~ ',
r,=>56 arcsec. This potential was chosen because it lies in the
middle of the range of acceptable potentials for NGC 6703
(see Section 5.2), so that any systematic errors in our analy-
sis will be similar for this model and the galaxy itself.

We have used the regularized inversion algorithm
described in the last subsection to analyse several such
pseudo-data sets, and have determined composite DFs as a
function of the regularization parameter 4. The algorithm
was given 16 basis function models. These included the
isotropic model and a variety of tangentially anisotropic
models with different anisotropy radii and circularity func-
tions, but not, of course, the radially anisotropic model from
which the data are drawn (see Fig. 3 and Appendix A). For
each composite model returned by the algorithm, we have
determined two diagnostic quantities. The first is the mean
%’ per o and h, data point, XfH,M, which measures the level at
which this model fits the data from which it was derived. The
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Figure 5. Model analysis of pseudo-data generated from the same
radially anisotropic model DF as in Fig. 4, but assuming radially
constant error bars Ac=3 km s~' and Ah,=0.01. The full curves
again show the true o, h, and f profiles of the underlying DF. The
dashed lines show the projected ¢ and h, profiles derived by the
method of Section 4.1 from four sets of pseudo-data, with
J=6x 107> The results obtained for these projected quantities
from statistically identical data sets are now nearly identical. The
dotted curves show the uncertainties that remain in the depro-
jected quantity f# even with such small error bars.

second is the rms deviation between the returned DF and
the true DF of the model from which the data were drawn,
in some specified energy range.

The use of these diagnostic quantities requires some fur-
ther comments. As usual, the number of degrees of freedom
in such a regularized inversion problem is not well-deter-
mined. For near-zero 4, in the case at hand we can adjust 16
coefficients a, and an overall mass scale. The total number
of ¢ and h, data points is 70; thus in this limit the number of
degrees of freedom is 53. For large 4, on the other hand, the
recovered DF will be linear in both E and x and the values
of the a, are essentially fixed. The number of degrees of
freedom then approaches 69. In both cases, the number of
degrees of freedom is of the order of the number of data
points, hence the use of x>, , per ¢ and h, data point instead
of a reduced y°.

The second diagnostic measuring the accuracy of the
recovered DF must clearly depend on the range in energy
over which it is calculated. Typically, a kinematic measure-
ment at projected radius R, contains information about the
DF in a range of energy above the energy of the circular

T T T T T T T T T T [ T

lg (DF, g XZina)
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Figure 6. Model results as a function of the regularization param-
eter /, for the two pseudo-data sets shown in Figs 4 and 5. The two
data sets are flagged by triangles (Fig. 4) and pentagons (Fig. 5).
The upper two curves marked by the open symbols show the total
y° per ¢ and h, data point of regularized composite models with 16
basis functions. The lower two curves marked by the filled symbols
show the rms deviation between the recovered composite model
DFs and the true DF from which the data sets were generated. This
rms deviation was evaluated on a grid in energy and angular
momentum corresponding to radii <3 times the radius of the
outermost data point.

orbit at radius R,. The precise upper end of this range is
model-specific; it depends on the potential, the kinematic
properties of the DF itself, and, through the projection
process, also on the stellar density profile. The use of the
outermost kinematic data points thus contains, explicitly or
implicitly, assumptions on the radial smoothness of these
quantities. In a typical elliptical galaxy problem, the DF
must be known fairly accurately at around 3R, for the pro-
jected kinematics at R, to be securely predicted, and for
radially anisotropic models even the values of the DF near
10R; can make some difference. The rms residuals in the
recovered DF given below have therefore been calculated in
a range of energies extending from ®(r=0) to ®(r=3R,),
where the last kinematic data point in the data sets used is
located at R,,=1.68r,.

Fig. 6 shows these quantities as a function of the regular-
ization parameter A for the two pseudo-data sets shown in
Figs 4 and 5. For small values of /, the composite models fit
the data accurately, but the recovered DF is not very accu-
rate because it contains large spurious oscillations depend-
ing on the particular values of the data points. For large
values of /4, the models are so heavily smoothed that they
neither fit the data well nor represent a good approximation
to the true DF. The optimal regime lies where the smooth-
ing is large enough to damp out the spurious oscillations,
but still permits the important structures in the underlying
DF to be resolved. For values of 4 in this regime, the fit to
the data is still satisfactory, and the representation of the
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DF is optimal. Fig. 6 shows that the rms residuals of the DF
go through minima at values of 2~2 x 10~ for the pseudo-
data in Fig. 4 and A~5x 107’ for those in Fig. 5 (when
D, =1, see below equation 13).

The shapes of the x>, , (1) curves were found to be always
similar to the upper curves in Fig. 6. The shapes of the
corresponding lower curves in Fig. 6 are more variable. The
resulting optimal values for A can vary, depending on the
random realization of the data within the assumed Gaussian
errors, as well as on the distribution function and potential
from which the model values are drawn. We have therefore
investigated 100 realizations of data generated from each of
several model DFs and potentials. Based on these experi-
ments, we have fixed optimal values of A=1x10"* and
4=6x 107" for data with error bars like those in Figs 4 and
5, respectively, for all models that include a dark halo
component.

We have performed similar experiments with a self-con-
sistent model that is radially anisotropic near the centre and
tangentially anisotropic in its outer parts, such as might be
relevant in tests for dark matter at large radii. In these tests
we have used 20 basis functions. To match the correspond-
ing pseudo-data with similar accuracy requires smaller opti-
mal values of 2 (~3x107°), so as to compensate for the
larger derivatives in equation (13).

Fig. 7 shows the cumulative distributions of Xiwu and the
rms residual in the DF, as described, for the dynamical
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Figure 7. Top: the cumulative distribution of the total normalized
%+ np for dynamical models recovered from 100 random Gaussian
data sets derived from the underlying true DF and the observa-
tional errors in Figs 4 (solid line) and 5 (dashed line). Bottom:
cumulative distribution of residuals between true and recovered
distribution functions, evaluated on a grid extending to three times
the radius of the last data point, for the same 100 data sets from
both models. Also shown in the top panel are the cumulative x>,
distributions for data drawn from radially anisotropic models in the
two potentials corresponding to two of the extreme solid lines in
Fig. 11, with the same error bars as in Fig. 4 (dot—dashed lines),
and for a self-consistent model with more complicated anisotropy
structure (dotted line).
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models recovered from several such sets of Monte Carlo
data. From the top panel it is seen that our fitting algorithm
will match kinematic data in a known potential with
Zoin, <1 about 60-70 per cent of the time, and with
%>, >1.28 only <35 per cent of the time. These numbers
are similar to those expected from a y” distribution with 70
degrees of freedom (for Gaussian data), which should
describe the statistical deviations of the Monte Carlo data
points from the underlying true DF. If in modelling the data
for NGC 6703 a level of Xf,“u < 1.28 cannot be reached, the
assumed potential is not correct with 95 per cent confi-
dence.

The bottom panel of Fig. 7 shows the distribution of
residuals in the recovered DF for one model. There are
three factors that limit the degree to which a given under-
lying DF can be recovered. The first is determined by the
data, i.e. the size of the error bars, the sampling, the fact
that there are no measurements at large radii, etc. The
second is the level of detail that can be resolved by the
modelling, given the finite number and the particular form
of the basis functions. The third is the fraction of small-scale
gradients in the model itself. Figs 6 and 7 show that, if the
potential is known, data like those for NGC 6703 (Fig. 4)
permit the recovery of reasonably smooth DFs to an rms
level of <12 per cent inside R,, about 60—70 per cent of the
time. Data with much smaller error bars but the same
sampling (Fig. 5) would give an rms level of <10 per cent
(<8 per cent for the other two halo models shown in the top
panel of Fig. 7). In the radial-tangential self-consistent
model the DF to 3R, is recovered with an rms accuracy of
16 and 35 per cent for data with error bars like those in Figs
5 and 4, respectively. These comparisons and the results of
Fig. 7 show that the former values are dominated by the
measurement uncertainties rather than the resolution of the
modelling. This conclusion would be different for highly
corrugated true DFs. However, we would not be able to
recover such DFs from realistic data in any case.

The kinematics of the regularized composite DFs derived
from pseudo-data with the chosen optimal A values are
shown in Figs 4 and 5. (For brevity, such model DFs
obtained with near-optimal A will henceforth be denoted as
‘best-estimate models’). The good match to the data points
is apparent. The differences in the intrinsic anisotropy
parameter f§ between the recovered models and the true
model are larger. For the data set generated with the
observed error bars of NGC 6703, the recovered f values
are uncertain by A~ +0.1, and a slightly larger value at the
largest radii where the observational errors are large. For
the pseudo-data with the small error bars in Fig. 5, this
uncertainty is reduced.

4.3 Constraining ®

So far, we have shown the stellar DF can be recovered from
VP data in a known spherical potential. In this section we
return to the discussion of Section 3 and investigate the
degree to which the gravitational potential itself can be
constrained. Eventually, it will clearly be important to
answer the theoretical question of whether, in principle, the
gravitational potential is nearly or even uniquely deter-
mined from the projected DF N(r, v). However, we shall
not attempt to do this here; previous theoretical work sug-
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gests that the range of potentials consistent with ideal data
is small (G93; Merritt 1993; see Section 3). More relevant at
the moment perhaps is the more practical question of how
well the potential can be constrained from real observa-
tional data with realistic error bars, finite radial extent and
limited sampling. What is the range of pairs (f, ®) that
correspond to the same data? How does this range shrink as
the data improve?

Here we investigate these questions with a view to the
analysis of the NGC 6703 data below. We again use the
model underlying Figs 4 and 5; this is a radially isotropic DF
in the potential of a self-consistent Jaffe sphere and a dark
halo with parameters GM,/r;=272 km s~', r./r,=1.2 and
ve/(GM,/1r,) =0.808. As before, random Gaussian data sets
were generated from this model, with the positions and
error bars of the data points (i) as in Fig. 4, and (ii) as in Fig.
5. The last data point is at R,, =1.68r;, as for the NGC 6703
data, well beyond two effective radii. However, contrary to
Section 4.2, the data sets used in the following were specially
selected such that y>~1 and ;{242 1. (It turns out that the
data points shown in Fig. 4 have less than 5 per cent prob-
ability according to Fig. 7.)

For these pseudo-data we have determined best-estimate
DFs in a number of assumed potentials, including the
underlying true potential. The potentials were chosen such
that (i) they correspond to approximately constant mass-to-
light ratio for r << r;, and (ii) they form a sequence of vary-
ing true circular velocity v(R,,) at the radius of the last data
point. The sequence, with the slightly different velocity nor-
malizations appropriate for NGC 6703, is shown in Section
5. For each potential, specified by the selected values of the
parameters r,/r, and v/(GM,/r,), we determined the good-
ness-of-fit x>, as a function of the velocity scale GM,/r,
from the corresponding best-estimate models. Finally, we
computed the .., of the best-estimate DF for the opti-
mum velocity scale. This optimal velocity scale is usually
found to be slightly different for the two pseudo-data sets.

Fig. 8 shows the goodness of fit ., of the optimal
sequence of best-estimate models as a function of v, (R,,), as
determined for both model data sets. The underlying true
potential has v(R,,) =242 km s~' with the adopted param-
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Figure 8. Goodness of fit >, for best-estimate DFs derived in a
sequence of luminous plus dark matter potentials. The sequence of
potentials, with rotation curves similar to those shown in Fig. 11, is
here parametrized by the total circular velocity at the last observa-
tional radius, v.(R,,). The DFs were fitted to pseudo-data generated
from a model with v (R,)=242 km s '. Solid pentagons: data
points with error bars as in Fig. 4. Open pentagons: data points
with error bars as in Fig. 5.

eters. Fig. 8 shows that only potentials with v (R,) <230 km
s~' can be ruled out (they have less than 5 per cent prob-
ability according to Fig. 7) from the data with ‘realistic’
error bars. This conclusion is not surprising, given how large
these error bars are. However, the surprise is that with
‘idealized’ data there also remains a range of potentials with
larger v (R,) than the true value, in which these data can be
fitted no worse than in the true potential: formally, 235 km
s ' <wv(R,) <285 km s~ ' with 95 per cent confidence.

Fig. 9 shows the predicted kinematics and the intrinsic
anisotropy of the four models in Fig. § that match the ‘ide-
alized’ data set with X§+,14: 1. The best-estimate DFs in the
potentials with higher v(R,) than that of the true potential
achieve their good fit to the data by the following means.
Inside r;, they compensate for the higher circular speed of
the potential by a larger radial anisotropy, which leads to
slightly larger h, values (cf. Section 3). This effect is too
small to be detected even with the small error bars. Outside
15, they compensate by a radially increasing tangential aniso-
tropy. In this way, the velocity dispersions near the edge of
the model can be lowered, because the number of high-
energy orbits coming in from outside is reduced. Such orbits
would contribute large line-of-sight velocities near their
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Figure 9. Model fits to pseudo-velocity dispersion and 4, data with
‘idealized’ error bars (see text and Fig. 5). The full line shows the
kinematics of the model from which these pseudo-data were gener-
ated. The dashed lines show the kinematics of best-estimate DFs in
a sequence of potentials with increasing halo circular velocity, all of
which fit the data perfectly with Xiwuﬁ 1. The intrinsic anisotropy
of these models (dotted lines) and of the true model is shown in the
bottom panel.
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pericentres. The &, values in the region concerned are also
only barely affected, because the extra tangential orbits near
radius r and the lack of higher energy radial orbits from
beyond r nearly compensate.

Clearly, this mechanism will work less well when both the
difference between the true and attempted circular velocity
curves increase and the radial extent, sampling, and quality
of the data points improve. With data even better and more
extended than those in Fig. 5, some of the potentials consist-
ent with the presently used model data could probably be
ruled out. Thus it appears that if the asymptotic circular
velocity is constant, then the value of that constant can be
determined accurately with sufficiently high-quality data.

On the other hand, the potentials we have used are very
simply parametrized functions. There might well exist more
complicated potential functions, the circular velocity curves
of which differ in only a restricted range of radii, that would
be impossible to distinguish even with extremely good data.
To test this, we have constructed a truly idealized data set of
2 x 70 data points with ‘idealized’ small error bars as in Fig.
5, evenly spaced in radius and extending to 6r,. A model
with potential differing only in the halo core radius (66 per
cent of the true value) was found to fit even these data with
X§+h4:0'97’ while for a model with different halo core
radius and different asymptotic circular velocity (by 30 km
s~') a satisfactory fit could not be found.

We draw the following conclusions from these experi-
ments.

(1) Velocity profile data with presently achievable error
bars contain useful information on the gravitational poten-
tials of elliptical galaxies. In particular, constant M/L
models are relatively easy to rule out once the data extend
beyond 2R.. The examples that we have studied in detail,
tuned to the NGC 6703 data, certainly belong to the less
favourable cases, because the dispersion profile is falling.

(ii)) The detailed form of the true circular velocity curve
is much harder to determine. Conspiracies in the DF are
possible, which minimize the measurable changes in the line
profile parameters. A good way to parametrize the results is
in terms of the circular velocity at the radius of the outer-
most data point. With presently available data, this can be
determined to a precision of about + 50 km s

(iii) Better results can be expected from higher quality
data, of the sort one would expect from the new class of
10-m telescopes. However, even with such data some uncer-
tainty on the detailed circular velocity curve will remain,
regardless of whether or not, in theory, the potential is
uniquely determined from the projected DF N(r, v)). The
combination of the type of analysis presented here with
other information (e.g. from X-ray data) will therefore give
the most powerful results.

S THE ANISOTROPY AND MASS
DISTRIBUTION OF NGC6703

5.1 Constant M/L model fits

The SB profile of NGC 6703 is well fitted by a Jaffe model.
The largest local residuals are <15 per cent around R ~25
arcsec, <10 per cent around R ~40 arcsec and smaller else-
where, in particular at R > 60 arcsec. A non-parametric
inversion of the surface brightness profile showed that the
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deviations from a Jaffe density law are not significantly
larger than those quoted in SB. In the curve of growth,
which measures the total luminosity inside R, the residuals
are everywhere less than ~2 per cent (Fig. 1). As the poten-
tial O(r) is determined by the total mass M( <r), we can
thus to a good approximation use a Jaffe model for the
gravitational potential of the stars. This enables us also to
compare our kinematic data with a large set of self-consist-
ent dynamical models from Jeske (1995).

We have fitted all models from this data base to the
observational data for NGC 6703, taking the fitted Jaffe
radius r;,=46.5 arcsec. All data points from Fig. 1 were
included and weighted equally with their individual error
bars, except for two adjustments: (i) the error bars of the
three h, points near 25 arcsec have been set equal to their
standard deviation, and (ii) the error bars of the innermost
11 h, points have been set to twice the measured values.
These modifications prevent the total y; from being domi-
nated by these points, which are of no consequence for the
halo of NGC 6703. Moreover, systematic effects may play a
role for the innermost data points (Section 2).

The velocity scale of each model is matched to optimize
the fit to the o profile; that to the h, profile is already fixed
with no extra assumption. The resulting values of }5%4, %2 are
normalized by the number of fitted data points. In Fig. 10
we plot a Xir%i diagram for all self-consistent models from
Jeske (1995). The x> values are again normalized to the
number of data points. Also plotted on the figure are best-
estimate models in a number of potentials, constructed with
the technique described in Section 4. The optimized self-
consistent model (the filled circle) lies on the bounding
envelope of the self-consistent models; it has y>=2.6,
% =1.3. The squares show the normalized y* values for
several models with a dark halo, the rotation curves of which
are shown by the full lines in Fig. 9. For most of these,
2~1.3, 1,214:0.8.

Fig. 10 shows that no self-consistent model will fit the data:
all self-consistent models are clearly separated by a curved
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Figure 10. y; —y. diagram produced by fitting dynamical models to
the kinematic data for NGC 6703. The crosses show fitting results
for a variety of anisotropic, self-consistent models of a Jaffe sphere,
the density profile of which is a good approximation for the lumin-
ous matter in NGC 6703. They fall upwards and to the right of a
curved envelope that separates them clearly from a perfect fit,
showing that no self-consistent model can simultaneously fit both
the dispersion and line profile shape data. The filled circle is the
best-estimate self-consistent model in the stars-only potential,
obtained with the method of Section 4. The squares show a number
of dynamical models with a dark halo; these are consistent with the
data.
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envelope from the lower left-hand corner of the diagram,
which corresponds to a perfect fit. Either the velocity dis-
persion profile is matched reasonably well, but the line pro-
files cannot be reproduced, or when the &, profile is fitted
accurately the dispersion profile is poorly matched. The
cure for the discrepancy is to raise both ¢ and h, at large
radii. Thus, according to Section 3 above, we require extra
mass at large » NGC 6703 must have a dark halo.

5.2 Dynamical models with dark halo

We will now derive constraints on the gravitational poten-
tial of NGC 6703 within the framework of the parametric
mass model of equations (2)—(4). In doing this, we have in
mind the following working picture. The stellar component
is assigned a constant mass-to-light ratio Y, chosen maxi-
mally such that the stars contribute as much mass in the
centre as is consistent with the kinematic data. The model
for the halo incorporates a constant-density core, and its
parameters are chosen such that the halo adds mass mainly
in the outer parts of the galaxy if that is necessary. This is
similar to the maximum-disc hypothesis in the analysis of
disc galaxy rotation curves. Within this framework we can
determine the maximum stellar mass-to-light ratio, ask
whether it is reasonable, and constrain the halo param-
eters.

Determining the two potential parameters 7, and v,
together with the model velocity scale (equivalent to the
stellar mass-to-light ratio) is a three-dimensional problem,
and therefore we will proceed in steps. Fig. 11 shows circu-
lar rotation curves for the first sequence of mass models for
NGC 6703 that we have investigated. In all these models the
halo contribution becomes significant only outside 20 arcsec
<R.. The corresponding halo core radii mostly lie between
1.2 and 1.77;, i.e. 55 and 80 arcsec. These values are rela-
tively large because of the falling dispersion curve in
NGC 6703. This implies that we can determine only one of
the halo parameters for this galaxy reliably.
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Figure 11. Rotation curves for a sequence of gravitational poten-
tials (stars plus dark halo) used in the analysis of NGC 6703. The
full lines show rotation curves that are consistent with the
NGC 6703 kinematic data inside the 95 per cent confidence bound-
aryat =107 (open symbols in Fig. 12). The other line styles show
rotation curves inconsistent with the data; among these is the con-
stant M/L model with no dark halo (short-dashed line).

We have chosen the circular velocity v (R,,) at the radius
R, of the last kinematic data point as this parameter. The
sequence in Fig. 11 was constructed so as to vary v(R,) and
the rotation curve outside ~R,, while leaving the central
rotation curve nearly invariant. However, when the model
velocity scales are optimized in the determination of the
best-estimate DFs, the optimal velocity scale is found to
correlate inversely with v (R,). The rotation curves in Fig.
11 are plotted with their optimal scaling; the central rota-
tion curves are then no longer identical, but become scaled
versions of each other.

In each of the corresponding potentials, we have con-
structed the best-estimate DF with optimal velocity scaling,
as described in Section 4. We first fit a composite DF to the
velocity dispersion and line-profile shape data for a series of
values of the unknown velocity scale. From this sequence of
models, we determine the optimal value of the velocity scale
of the model in this potential, and then recompute the best-
estimate model with this velocity scale. In the following,
when speaking of the best-estimate DF for a given potential
we will always imply that the velocity scale has been opti-
mized in this way. In the fitting procedure we have used a
regularization parameter A=10"" in Section 4.2 this was
found to be appropriate for the error bars and sampling of
the NGC 6703 data. Compared with the tests in Section 4,
we have included a few extra basis functions (total K=20) to
resolve the (possibly not real, cf. Section 2) high-frequency
structure in the centre of NGC 6703.

Fig. 12 shows, as a function of v(R,,), the average y* per
o and h, data point of the respective DFs so obtained. The
connected solid symbols represent the sequence of poten-
tials corresponding to Fig. 11. The potential with constant
mass-to-light ratio appears in the upper left-hand corner in
Fig. 12; it is inconsistent with the data by a large margin
even for the optimum velocity scale (seeFig. 7). The best-
fitting potential with a completely flat rotation curve has an
optimal value of v,=v(R,)=254 km s~ " and y.,, =1.17;
thus it does not provide the best possible fit but is consistent
with the data. Of the stars plus dark halo models illustrated
in Fig. 11, those models in the sequence with v (R,)=210-
285 km s~' have Xf_+,,4< 1.28. This is consistent with the
results of Section 4.3, from which we would expect that the
NGC 6703 data can be fitted by a range of gravitational
potentials. Models in the sequence outside this range of
v.(R,) are inconsistent with the kinematic data at the 95 per
cent confidence level (cf. Fig. 7).

In a second step we have analysed a more complete set of
potentials in a suitable part of the (v,, r.) plane (Fig. 13).
The fitting results in these potentials are shown by the iso-
lated filled symbols in Fig. 12. Combining these with the
previous results allows us to investigate the range of accept-
able potentials for NGC 6703 more fully than with the one-
dimensional sequence in Fig. 11.

Fig. 13 shows contours of constant X§H,4 in the (v,, r.)
plane. The most probable potentials lie in a band extending
from low v, and low r, to high v, and high r.. As already
discussed above, it is thus not possible to determine both
halo parameters in the NGC 6703 case. However, potentials
in the band of most probable (v,, .) all have circular veloci-
ties v(R,,) in the same range, 250 +40 km s~ ', as before.

In fact, the best-fitting velocity scales of all models in Fig.
13 are found to be such that the resulting values of v (R,,)
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Figure 12. Quality with which the kinematics of NGC 6703 can be fitted in different potentials. The figure shows the average y* per ¢ and
h, data point, of the best-estimate distribution function fitted to the velocity dispersion and line profile data, as a function of the circular
rotation velocity of the assumed potential at the observed radius of the last kinematic data point. Filled symbols show best-estimate models
derived with the optimal A=10"" determined in Section 4.2; open symbols represent models derived with A =10"". The self-consistent (M/
L =constant) and v, =constant models are marked separately. The horizontal dashed line shows the 95 per cent confidence boundary derived

from Fig. 7.
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Figure 13. The (v,, r.) halo parameter plane. Values of , are scaled
with respect to r;,=46.5 arcsec. The luminous plus dark matter
models investigated are shown as plus signs. The contours show
lines of constant ., ,, obtained by interpolating between the model
values. Acceptable potentials lie in a band extending from low v,
and low r, to high v, and high r.. Models at the upper left are ruled
out because they do not contain enough mass at large radii. Models
at the lower right are ruled out because no satisfactory fit can be
found for any constant value of the stellar mass-to-light ratio.

are in the range [189,318] km s~'. The fitting procedure
tends to move v, (R,,) into the correct range even when no
satisfactory DF can be found. For example, some models in
the lower right of Fig. 13 with X§+,l4: 1.5 appear in Fig. 12 at
U(R,,) =250-300 km s~ ', some with z,,, 2.4 (not shown)
at v(R,,) =280-340 km s~'. All models shown in the upper
left of Fig. 13 fall near the line defined by the sequence of
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models discussed at the beginning of this section. The fact
that v.(R,,) varies relatively little for a wide range of lumin-
ous matter plus dark halo models suggests that our results,
when expressed in terms of this parameter, are not sensitive
to the choice of halo model in equations (3) and (4).

From Fig. 12 we conclude that the true circular velocity of
NGC 6703 at 78 arcsec is v(R,,) =250+40 km s~' (this is
the formal 95 per cent confidence interval obtained from
the filled symbols, according to Fig. 7). In Section 4.3 we
found, however, that most of this indeterminacy is towards
large circular velocities, at least for a galaxy with a disper-
sion curve like that of NGC 6703. By contrast, in potentials
with lower values of v,(R,,) than the true circular velocity, it
quickly becomes impossible to find a satisfactory DF. Based
on these results, the lower values in the quoted range of
v(R,)=250+40 km s~' appear to be the more probable
ones.

The open symbols in Fig. 12 show that the range of poten-
tials consistent with the data is enlarged only slightly when
the DF is allowed to be less smooth. These points are from
best-estimate models derived in the sequence of potentials
of Fig. 11 with A=10"" instead of the optimal 2=10"*. The
resulting curve that connects the A=10"" models in Fig. 12
surrounds the corresponding A=10"* curve. Generally, it
appeared that, in the models obtained with A =107, the DF
came close to zero more easily and more often. The last two
facts, when taken together, suggest that, in addition to the
data themselves, the positivity constraints on the DF play an
important role in determining the boundary of the region in
(f, @) space that is consistent with given kinematic data.

Fig. 14 shows best-estimate models in some of the poten-
tials consistent with the kinematic data (at 2=10""*). The
three full lines are models with v (R,,) =(218, 231, 242) km
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Figure 14. Dynamical models for the kinematics of NGC 6703 in
several luminous plus dark matter potentials, compared with pro-
jected velocity dispersion (top panel) and VP shape parameter 4,
(middle panel). The bottom panel shows the intrinsic anisotropy
parameter f(r) of the models, with the same line styles: self-con-
sistent model (stars only; long-dashed line), v,=constant model
(short-dashed line), three models with v,(78 arcsec) in the lower
part of the acceptable range (solid lines) and two models with v (78
arcsec) in the upper part of this range (dotted lines).

s~', the two dotted lines are models with v (R,,) = (253, 277)
km s~'. Also shown is the best-estimate model in the poten-
tial of only the stars with constant M/L (long-dashed line),
and that in the best potential with v, =constant =254 km s~
(short-dashed line).

The dispersion profile of the best-estimate self-consistent
model clearly falls below the data at both intermediate and
large radii, as does its h, profile. From the discussion in
Section 3, this is a clear sign of extra mass at large radii. The
models including dark halo contributions differ mainly in
the outermost parts of the velocity dispersion profile. As
expected, those with the highest velocity dispersions at large
radii correspond to the potentials with the largest asympto-
tic circular velocities. This again suggests that with smaller
error bars at large radii, and with spatially more extended
data, we will be able to significantly narrow down the uncer-
tainties in the halo parameters. The model with constant
rotation speed everywhere is constrained tightly by the kine-
matic data in the central parts, where the poc ~r~> profile is
presumably dominated by the stars. It then has some diffi-
culties both with the &, values at intermediate radii and the
velocity dispersions at large radii.

The lower part of Fig. 14 shows that, in order to match the
observed kinematics in a potential with large circular velo-
city, the DF must become rapidly tangentially anisotropic at
the radii of the last data points and beyond. As discussed in
Section 4, this is different from the better-known effect of
increasing the projected dispersions in a potential that does
not have enough mass at large radii, by making the DF more
tangentially anisotropic. Here, without the tangential aniso-
tropy, our models would predict values of the velocity dis-
persion that are too high, because too much mass at large
radii is implied. The tangential anisotropy at radii outside
those reached by the observations reduces the number of
orbits that come into the observed range, orbits which
would contribute relatively large line-of-sight velocities near
their turning points. In this way, the velocity dispersions can
be reduced down to the observed values. Clearly, more
spatially extended data would reduce this freedom.

From Fig. 14 we conclude that the stellar distribution
function in NGC 6703 is near-isotropic at the centre and
then changes to slightly radially anisotropic at intermediate
radii (f=0.3-0.4 at 30 arcsec, f=0.2—-0.4 at 60 arcsec). It is
not well-constrained near the outer edge of the data, where
formally f= —0.5— + 0.4, depending on the correct poten-
tial in the allowed range. However, the models with large
asymptotic halo circular velocities shown in Fig. 14 appear
less plausible, because they are the models with the most
rapidly increasing velocity dispersions outside R ~60 arcsec.
The same models also show the most rapid increase in
tangential anisotropy at and beyond R =78 arcsec, which
again appears a priori implausible, because it implies rapid
changes in the DF just outside the observed range. The
combined signature of both effects is strongly reminiscent of
Fig. 9, where it was clearly an artefact of the limited radial
range of the data. If this assumption is correct, one would
again conclude that lower v(R,,) models in the formal range
are favoured. Fig. 15 shows the recovered DF for the poten-
tial with v(R,,) =231 km s~' in Fig. 14. Note, however, that
all models shown in Fig. 14 except the self-consistent one
are formally consistent with the presently available data.

From the constraints on the circular velocity,
v(R,)=210-290 km s~', the range in mass inside
R, =13.5hy" kpc is

M(<R,)=1.6-2.6x10"hy,' M, (17)

m

where h,,=H,/50 km s~' Mpc~'. The total mass in stars
inside this radius is 8—9 x 10" M, assuming constant mass-
to-light ratio Y and a maximum stellar mass model, and
taking an average value from the models that is consistent
with the kinematic data. The radial run of the luminous,
dark, and total mass is shown in Fig. 16 for the models that
span the allowed range according to Fig. 12. After dividing
by the luminosity L, (7) for the stars, the mass-to-light ratios
shown in Fig. 17 result. Between the centre and the last data
point r=78 arcsec~2.6 R,, the mass-to-light ratio of
NGC 6703 rises by a factor of 1.6-3.

5.3 Uncertainties

There are a number of possible sources of systematic error
that would affect the mass-to-light ratio derived for
NGC 6703. Most of the errors so introduced are probably
small compared with the considerable uncertainty arising
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Figure 15. Distribution function in the energy-circularity plane
derived for NGC 6703, in the luminous plus dark matter potential
with v(R,,) =231 km s~ ' shown as the middle solid line in the upper
panel of Fig. 14. Energy is specified by the value of r(E), where
E = ¢(r), in units of the fitted Jaffe radius r,, and the DF is given in
arbitrary logarithmic units. The last measured kinematic data point
is located at log r(E)/r;=0.23.

from the kinematic measurement errors and limited radial
sampling, discussed above. One systematic error on the
absolute mass-to-light ratios in NGC 6703 comes from the
uncertainty in the distance, although this does not change
the ratio of outer to central values. A further systematic
effect on this ratio can be introduced by the sky brightness
level. If this increased by 2—3 per cent, the fitted r; decreases
to 35 arcsec. To the extent that the outermost kinematic
data point at 78 arcsec (which then moves to large 7/r;) is in
the flat part of the circular rotation curve, the inferred M/L
changes only to second order because the luminosity inside
78 arcsec remains essentially unchanged. The same is true if
the sky value is decreased by 1 per cent, in which case the
fitted r; increases to 54 arcsec.

In the previous analysis, we have ignored a possible small
rotation in the outer parts of NGC 6703 (perhaps ~20-30
km s~' at R 250 arcsec, but the errors are large; cf. Fig. 1).
The simplest possible estimate of the effect of this rotation
on the derived masses is to replace ¢~105 km s~' in this
radial range by (¢ +v°)"?~110 km s~". This gives a factor
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Figure 16. Luminous, dark, and total mass as a function of radius
for the range of acceptable models of NGC 6703, according to Fig.
12 (short-dashed, dotted and dash—dashed or full lines, respec-
tively). Mass distributions in which a DF with xi“ug 1.12 (includ-
ing 87 per cent of the distribution in Fig. 7, 1.5¢) are coded by full
lines, those with x>, <1.28 (including 95 per cent, 2.00) by dash—
dashed lines. The vertical line denotes the position of the last
kinematic data point. At this radius, the luminous mass fails by at
least a factor of 1.6.
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Figure 17. The B-band mass-to-light ratio of NGC 6703. The solid
and dash—dashed lines (coding as in Fig. 16) are derived from the
dynamical models that span the range of acceptable v (R,,) in Fig.
12. The central mass-to-light ratio is Y'=3.3, while that at the
position of the last kinematic data point at 78 arcsec (vertical bar)
is in the range Y =5.3-10.

of 1.1, neglecting changes in the model structure that would
result because the central kinematics remain unchanged.

Next we consider the possibility that NGC 6703 may con-
tain a face-on extended disc (see de Vaucouleurs, de Vau-
couleurs & Corwin 1976). From an RY law plus disc
decomposition, we estimate that the contribution of such a
disc in the region where we model the kinematics could be
up to 10-20 per cent. In this case we expect the velocity
dispersion to be decreased and the h, coefficient to become
more positive where the disc contributes significant light
(Dehnen & Gerhard 1994; see NGC 4660 as an example in
BSG), most likely in the outer parts.
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Similarly, it is conceivable that NGC 6703 is in reality
slightly triaxial, and is seen from a special direction so as to
appear EO. The likelihood of this is less the more triaxial the
intrinsic axial ratios are; thus slightly triaxial shapes are the
most plausible ones. Again, this will imply some extra loop
orbits seen nearly face-on, similarly increasing h, and
decreasing o.

In both cases, we therefore expect the spherical compo-
nent in NGC 6703 to have lower &, and larger ¢ than the
measured values. A similar analysis of such kinematics
would, according to the discussion in Section 3, lead to a
model with greater tangential anisotropy at large radii, with
the mass distribution less affected. Recall that decreasing
the mass at large r in a spherical model lowers both ¢ and
h,.

6 DISCUSSION AND CONCLUSIONS

This study is part of an observational and theoretical pro-
gramme aimed at understanding the mass distribution and
orbital structure in elliptical galaxies. In the following we
first discuss general results on potential and anisotropy
determination, and then proceed to the specific case of
NGC 6703.

6.1 Velocity profiles, anisotropy and mass

The analysis of the VPs of simple dynamical models in
Section 3 has broadly confirmed the conclusions of G93. At
large radii, where the luminosity profile falls rapidly, the
VPs are dominated by the stars at the tangent point.
Radially (tangentially) anisotropic DFs can then be recog-
nized by more peaked (more flat-topped) VPs with more
positive (negative) h, than for the isotropic case. Increasing
B at constant potential thus lowers ¢ and increases /,. On
the other hand, increasing the mass of the system at large r
at constant anisotropy increases both the projected disper-
sion and h,. This suggests that by modelling ¢ and &, both
mass M(r) and anisotropy f(r) can be constrained.

In practical applications, such an analysis is complicated
by a number of factors. Radial orbits at large radii may lead
to increased central velocity dispersions and flat-topped
central VPs (already pointed out by Dejonghe 1987). The
former effect can be compensated for by a decrease in the
stellar mass-to-light ratio. The latter effect is independent
of this, but can be compensated for by changes to the distri-
bution function in the inner parts of the galaxy (as in a
number of cases studied in Sections 4 and 5). A more ser-
ious uncertainty is introduced by the possibility of signifi-
cant gradients in the orbit population across the radii of
interest. For example, a population of high-energy radial
orbits with pericentres in a limited radial range may mimic
tangential anisotropy there. In many cases it will be possible
to exclude such a population of orbits by examining its
effects on the VPs at exterior radii, i.e. by simultaneously
analysing a number of observed VPs. This is least possible,
however, at precisely the largest observed radii, where mass
determination is most interesting. Thus this chain of argu-
ment suggests (correctly — see below) that the largest uncer-
tainty in determining masses and anisotropies in ellipticals
from VP data is the finite radial extent of these data.

To analyse realistic data we have constructed an algo-

rithm by which the distribution function and potential of a
spherical galaxy can be constrained directly from its
observed o and h, profiles. To assess the significance of the
results obtained, we have tested the algorithm on Monte-
Carlo-generated data sets tuned to the spatial extent, sampl-
ing and observational errors as measured for NGC 6703.
From such data, the present version of the algorithm
recovers a smooth spherical DF, ~70 per cent of the time,
to an rms level of better than ~ 12 per cent inside three
times the radius of the outermost kinematic data point.

We have used this algorithm to study quantitatively the
degree to which the gravitational potential can be deter-
mined from such data. Our main conclusion is that velocity
profile data with presently achievable error bars already
constrain the gravitational potentials of elliptical galaxies
significantly. In particular, constant M/L models are rela-
tively easy to rule out once the data extend beyond 2R,. The
examples that we have studied in detail, tuned to the
NGC 6703 data, certainly belong to the less favourable
cases, because in this galaxy the dispersion profile is fall-
ing.

A good way to parametrize the results is in terms of the
true circular velocity v(R,,) at the radius of the outermost
data point, R . With the presently available data, v (R,,) can
be determined to a precision of about + <50 km s~'. This
will improve when high-quality data at several R, become
available, of the kind expected from the new class of 10-m
telescopes. Apart from the fact that smaller error bars will
decrease the formally allowed range in v (R,,), tests show
that this range often includes high v.(R,) models, which
become rapidly tangentially anisotropic just outside the
data boundary. These (not very plausible) models can be
eliminated with data extending to larger radii.

On the other hand, the detailed form of the true circular
velocity curve is much harder to determine than v(R,).
Conspiracies in the DF are possible that minimize the meas-
urable changes in the line profile parameters. Our tests
showed that two potentials differing by just the value of the
halo core radius could not be distinguished even with very
good data out to 6R.. Some uncertainty will therefore
remain in practice, regardless of whether or not in theory
the potential is uniquely determined from the projected DF
N(r, v).

A similar picture holds for the related determination of
the anisotropy of the DF. For the present error bars in the
data, f(r) is relatively well-determined out to about half the
limiting radius of the observations. Near the edge of the
data, uncertainties can be large, depending on the gravita-
tional potential [recall that in a fixed spherical potential the
DF is uniquely determined by the complete projected DF
N(r, v)]. Again, the unknown nature of the orbits beyond
the last data point has a large part in this uncertainty.

Because the largest uncertainties in determining masses
and anisotropies from VPs occur near the outer radial limit
of these data, the combination of the type of analysis pre-
sented here with other information (e.g. from X-ray data)
will be particularly powerful.

6.2 The dark halo of NGC 6703

Fig. 10 shows that no self-consistent model will fit the kine-
matic data for NGC 6703. Our non-parametric best-esti-
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mate self-consistent model is inconsistent with the data at
the > 99 per cent level (Figs 7 and 12). With self-consistent
models, either the velocity dispersion profile is matched
reasonably well, but then the line profiles cannot be repro-
duced, or, when the A, profile is fitted accurately, the disper-
sion profile is poorly matched. The cure for the discrepancy
is to raise both ¢ and h, at large radii. Thus, as discussed
above, we require extra mass at large » NGC 6703 must
have a dark halo.

We have next derived constraints on the parameters of
this halo as follows. The luminous component is assigned a
constant mass-to-light ratio Y, chosen maximally such that
the stars contribute as much mass in the centre as is consist-
ent with the kinematic data. Our parametric model for the
halo incorporates a constant-density core, and its param-
eters (core radius r, and asymptotically constant circular
velocity v,) are chosen such that the halo adds mass mainly
in the outer parts of the galaxy if that is necessary. We call
these models maximum stellar mass models (analogous to
the maximum disc hypothesis in the analysis of disc galaxy
rotation curves).

We find that maximum stellar mass models in which the
luminous component provides nearly all the mass in the
centre fit the data well. In these models, the total luminous
mass inside the limiting observational radius R, =78 arc-
sec=13.5h3," kpcis 9 x 10'°hs,' M, corresponding to a cen-
tral B-band mass-to-light ratio Y=3.3h,, M_//L,.
According to Worthey’s (1994) models, this is a rather low
value for the stellar population of an elliptical galaxy and
would point to a relatively low age (5 Gyrs) and/or low
metallicity (less than solar). However, the galaxy has a col-
our (B—V),=0.93 and a central line index Mg,=0.280
(Faber et al. 1989) which are typical for ellipticals of similar
velocity dispersion.

A larger value of H, could increase the M/L value and
alleviate the demands on the stellar populations. However,
the distance used here (36 Mpc) includes a correction for
the larger inferred peculiar velocity of the galaxy. If we had
used a distance based on the larger radial velocity in the
cosmic microwave background (CMB) frame, our derived
M/L would be even lower. It is also implausible that the low
central value of M/L stems from the contribution of a young
stellar population in a disc component, which we estimate
cannot be larger than 20 per cent of the total light (see
above). We therefore conclude that the dark halo in
NGC 6703 is unlikely to have higher central densities than
inferred from our maximum stellar mass models, because
otherwise the M/L of the stellar component would be
reduced to implausibly small values.

In a recent preprint, Rix et al. (1997) have analysed the
velocity profiles of the EO galaxy NGC 2434 with a linear
orbit superposition method. This galaxy provides an
interesting contrast to NGC 6703 because it has an essen-
tially flat dispersion profile. Its kinematics are likewise
inconsistent with a constant M/L potential, but are well-
fitted by a model with v, =constant. This can be interpreted
as a maximum stellar mass model in the sense defined
above, in which the luminous component with maximal Y
contributes most of the mass inside R,. The kinematics of
NGC 2434 are also well-fitted by a range of specific, cosmo-
logically motivated mass models which, if applicable, would
imply lower Y and significant dark mass inside R.. In
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NGC 6703, a model with v, =constant is formally consistent
with the present data (within 2¢), but it is not a very plau-
sible fit at large R and requires large anisotropy gradients,
between 40 and 70 arcsec. It will be interesting to see
whether future studies confirm differences between the
shapes of the true circular velocity curves of elliptical
galaxies.

Because of the falling dispersion curve in NGC 6703, we
can determine only one of the halo parameters. (The halo
parameters of the most probable potentials lie in a band
extending from low v, and low 7, to high v, and high r,). The
circular velocity v (R,,) at the data boundary is relatively
well-determined for all these models, however. We there-
fore find (Fig. 12) that the true circular velocity of
NGC 6703 at 78 arcsec is v.(R,,) =250+40 km s~' (formal
95 per cent confidence interval). Tests on pseudo-data have
shown that this range often includes high v(R,) models,
which become rapidly tangentially anisotropic just outside
the data boundary. Such models may not be very plausible,
so the lower values in the quoted range of v (R,,) =250+40
km s~' may be the more probable ones.

At R, =78 arcsec=13.5h5,' kpc the total mass enclosed is
therefore M(<R,)=1.6-2.6 x10"hs,' M, and the inte-
grated mass-to-light ratio out to this radius is Y =5.3-10,
corresponding to a rise from the centre by at least a factor of
1.6. We have already noted that NGC 6703 is an unfavour-
able case because of its falling dispersion curve. The fact
that relatively small variations in Y can nonetheless be
detected shows the power of the method. Note that a
scheme based on the analysis of the line-of-sight velocity
dispersions alone (Binney, Davies & Illingworth 1990; van
der Marel 1991) would conclude that constant mass-to-light
ratio models can provide good fits.

The stellar distribution function in NGC 6703 is near-
isotropic at the centre and then changes to slightly radially
anisotropic at intermediate radii (f=0.3-0.4 at 30 arcsec,
$=0.2-0.4 at 60 arcsec). It is not well-constrained near the
outer edge of the data, where formally f= —0.5 to +0.4,
depending on the correct potential in the allowed range.
Models near the lower end of this range may be consistent
with the data only because of the limited radial extent of the
measurements.

6.3 Conclusions

In summary, we have shown that the mass distribution M(r)
and anisotropy structure f(r) for spherical galaxies can both
be constrained from VP and velocity dispersion measure-
ments. NGC 6703 must have a dark halo, contributing about
equal mass at 2.6R, to that from stars. The circular velocity
at the last kinematic data point (78 arcsec) is constrained to
lie in the range 250440 km s~ ' at 95 per cent confidence.
The anisotropy of the stellar orbits changes from near-iso-
tropic at the centre to slightly radially anisotropic at inter-
mediate radii, and may be either radially or tangentially
anisotropic at 78 arcsec. With more extended and more
accurate data it will be possible to narrow down these uncer-
tainties considerably.

If the results for this galaxy are typical, they suggest that
also in elliptical galaxies the stellar mass dominates at small
radii, and the dark matter begins to dominate at radii
around 10 kpc. It is important to obtain extended kinematic
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data and to perform a similar analysis for a number of
elliptical galaxies. When we know the systematics and the
spread in the circular velocity curves and anisotropy profiles
for a sample of ellipticals, we will have an important new
means for testing the currently popular formation
theories.
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APPENDIX A: LIBRARY OF ANISOTROPIC
SPHERICAL DISTRIBUTION FUNCTIONS

To understand the connection between anisotropy structure
and observable line profile shapes we have constructed a
number of spherical distribution functions of the quasi-
separable form (Gerhard 1991, hereafter G91)

J(E, L) =g(E)h(x), (AD)

where the variable x depends on both energy and angular
momentum:

L
= (A2)
Ly+L(E)

L, is an angular momentum constant, or, equivalently, an
anisotropy radius times a characteristic velocity; L (E) is the
angular momentum of the circular orbit at energy E. DFs of
the form given by equation (A1) have the following
properties.

(i) The circularity function h(x) has the effect of shifting
stars between orbits of different angular momenta on sur-
faces of constant energy, while g(E) controls the distribu-
tion of stars between energy surfaces.

(ii)) For most bound stars L <L (E) < L,; the model
therefore becomes isotropic in the centre unless L,=0.

(iii) For loosely bound stars L ~L(E)>L,, ie. the
angular momentum distribution becomes a function of cir-
cularity L/L(E), which is one-to-one related to orbital
eccentricity. Outside the anisotropy radius, the DF (Al)
therefore corresponds to an energy-independent orbit dis-
tribution with constant anisotropy, radial or tangential.

In these models, 4 (x) is an assigned function built into the
model to achieve the desired anisotropy (orbit distribution).
Radially biased distribution functions correspond to circu-
larity functions h(x) decreasing with x; for example

h(x)=h,(x)=(1 —x)" (A3)

The family can also be used to construct tangentially aniso-
tropic models, such that

he(x)y=c+(1—c)[1—1—x)". (A4)

In these tangentially anisotropic models, one cannot choose
h(0) =0unless L,=0, otherwise the density at r=0 would be
zero. Of course, other forms for #(x) are possible, such as
Gaussians.

Given the assigned function h(x), the integral equation
for p(r) in terms of f(E, L?) is solved for the derived func-
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tion g(E); see G91 and Jeske (1995). Fig. 2 shows line
profile shape parameters for representative DFs con-
structed in this way. Fig. 3 shows the anisotropy profiles of
two sets of tangentially anisotropic models. Here the density
of stars has been taken to be that of a Jaffe sphere, and the
potential in which the stars orbit is either the self-consistent
potential or one of the mixed stars plus halo potentials used
in Sections 4 and 5. Sequences like that in Fig. 3 are used as
basis functions in the non-parametric analysis in Section 5.

Models, the anisotropy of which changes from radial to
tangential or vice versa, were constructed by linearly com-
bining the above circularity functions with energy-
dependent coefficients. In this way one obtains DFs of the
more general form

J(E, L) =g(E)h(E, x). (A5)

For self-consistent Jaffe models we used energy-dependent
coefficients u(E) of the following form:

1 1 k E*—E*
,LL(E)=5+; arctan 57 (A6)

EZ

The parameters E and k determine the orbital energy near
which the anisotropy transition occurs, and the width of the
transition. A similar function u(E) was used for models in
halo potentials. Figure A1 shows the intrinsic and projected
properties of a number of DFs of this kind, constructed in
the self-consistent potential of a Jaffe sphere. Notice the
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Figure Al. Anisotropy parameter f3(r), projected velocity disper-
sion ¢, and line profile shape parameter h, for several families of
anisotropic DFs. Left: scale-free radially anisotropic (dotted lines)
and tangentially anisotropic (dashed lines) models in the potential
of a self-consistent Jaffe sphere. For these models, circularity func-
tions of the type (A3) and (A4) were used, with different « and c,
respectively. The isotropic model is shown for reference (solid
line). Right: families of models with anisotropy changing from
radial to tangential (dotted lines) or from tangential to radial
(dashed lines). These were constructed from the same circularity
functions and weight factor as in equation (A6).
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wide variety of kinematical profiles that can be constructed
in this way.

APPENDIX B: TRANSFORMING TO LINEAR
KINEMATIC DATA

In velocity line profile measurements, the depth of an
absorption line in a spectral resolution element is assumed
to be proportional to the number of stars with line-of-sight
velocities corresponding to this wavelength interval. The
line-of-sight velocity distribution measured from the line
profiles is a discretized function linearly related to the
underlying DF (cf. equation 1). This linearity is lost when
line profile measurements are represented by the quantities
v, 0, hy, h,: these quantities are obtained by a least-squares
fit of a Gauss—Hermite series to the observed line profile.

To re-express the observed kinematics in terms of quanti-
ties that depend linearly on f we proceed as follows. Consist-
ent with the assumption of spherical symmetry, we set the
mean streaming velocity ¢ and all odd velocity-profile
moments to zero. Next, we obtain an estimate for the velo-
city dispersion (second moment), 7, by integrating over the
line profile specified by (o, h,); for negative h, until it first
becomes zero. For small h,, the linear correction formula
o=0(1 +\/5h4) holds (van der Marel & Franx 1993); this
correction results in ¢ > ¢ for peaked profiles with s, > 0.
The numerical correction from integrating over the velocity
profile also has this property (BSG).

From the measured A,(R;), we compute new even Gauss—
Hermite moments s,(R;; 6) by expanding the series

LR,v)=%, Y h(R)H(x) exp(—x*/2) (B1)
j=0,4

(ho=1, hy=h,=h,;=0) with x=v,/5(R)) as

L(R,v)= )Y  N,,H,/(% exp(—%/2), (B2)

n=0,2,4,..

where X=v,/6(R,). Here H, are Hermite polynomials, the
N, are normalization constants (G93) and 6(R,) are fiducial
scaling velocities, generally different from & (R,). In prac-
tice, we have found it convenient to take for 6(R,) the
velocity dispersions a,,(R;) of the isotropic model in the
given potential ®(r) with the same stellar density as the
galaxy being analysed. The s,(R,. ¢) are estimates for the
Gauss—Hermite moments, related to the true velocity pro-
file by

s, (R; G) =(2""'n)"?
x J duH,(v,/6) exp(—v;/26*)Z (R, v).  (B3)

For a theoretical model, we obtain corresponding
moments by inserting the projected DF N (R,, v) from equa-
tion (1) into equation (B3) instead of £ (R;, v), using the
same 6(R,). Clearly, the new s, moments of the composite
model are linear in q,, i.e.

(R 8)= ) a4 (R;d), (B4)

k=1,K

with the s& corresponding to the respective f,.



