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Abstract

In this paper we study localised, traveling, solutions to a Ginzburg-Landau equa-
tion to which we have added a small, O("), 0 < " � 1, quintic term. We consider
this term as a model for the higher order nonlinearities which appear in the derivation
of the Ginzburg-Landau equation. By a combination of a geometrical approach and
an explicit perturbation analysis we are able to relate the family of Bekki & Nozaki
solutions of the cubic equation [1] to a curve of co-dimension 2 homoclinic bifurcations
in parameter space. Thus, we are able to interpret the hidden symmetry { which has
been conjectured to explain the existence of the Bekki & Nozaki solutions { from the
point of view of bifurcation theory. We show that the quintic term breaks this hidden
symmetry and that the one-parameter family of Bekki & Nozaki solutions is embedded
in a two-parameter family of homoclinic solutions which exist at a co-dimension 1 ho-
moclinic bifurcation. Furthermore, we show, mainly by geometrical arguments, that
the addition of the small quintic term can create large families of traveling localised
structures that cannot exist in the cubic case. These solutions exist in open subsets
of the parameter space and correspond to structurally stable multi- or N -circuit het-
eroclinic orbits in an ODE reduction and have a monotonically decreasing/increasing
amplitude, except for a number, N , of (relatively fast) `jumps'.

Keywords: nonlinear stability, modulation equations, singularly perturbed ODE, homo-
clinic bifurcations, heteroclinic orbits.

Mathematics subjects classi�cation: 34C23, 34C37, 34E15, 35Q35, 76E30.
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1 Introduction

The (cubic) Ginzburg-Landau equation governs the nonlinear evolution of perturbations
of a `simple' solution of a basic system of partial di�erential equations (in an unbounded
domain) at near-critical conditions, provided that this basic system satis�es some generic
conditions (see for instance [11]) Therefore, this equation appears in many �elds of science.
The asymptotic validity of the Ginzburg-Landau equation has been proved for large classes
of systems (see for instance [4], [14] and [3] for a review). However, the Ginzburg-Landau
equation is the product of an asymptotic expansion: the equation with only cubic terms
is only the O(1) part of a more extended equation (see for instance [12], [7]). In this
paper we will investigate the in
uence of these higher order terms on the behaviour of
the traveling solutions of the equation. As in [26], [27] and [30] we therefore consider an
extended Ginzburg-Landau equation of the following type:

ut = ru+ �uxx + �juj2u+ "
juj4u;(1.1)

where r 2 R corresponds to the bifurcation/control parameter in the original system and
�; � 2 C; � and � can be computed explicitly from the underlying system ([11]). The
higher order nonlinear e�ects are modeled by the quintic term "
juj4u where j"j � 1 and

 2 C. We emphasize here that in general one cannot derive an equation like (1.1) from a
`generic' basic system: although the quintic terms will appear as higher order corrections
to the cubic equation, we ignore here other higher order terms of the same, or of an even
a larger { but still o(1) { magnitude, such as uxxx, juj2ux, u2�ux ([12], [7]). However, as in
[26], [27], [30], we consider (1.1) as a suitable model by which we can study the in
uence
of the small, nonlinear higher order e�ects. Moreover, quintic equations like (1.1) have
been the subject of many studies. For instance, the quintic Ginzburg-Landau equation
has been analysed as a model to explain the behaviour of traveling patterns in binary 
uid
convection (see, for instance, [2] for experimental observations and [29] for references on
the analysis.).

In this paper we will restrict ourselves to the analysis of traveling waves to (1.1) of the
type

u(x; t) = U(�)eiwt; where � = x+ vt:

Thus, we reduce the partial di�erential equation to a three-dimensional set of ordinary
di�erential equations with two free parameters v and w (see section 2). Furthermore, we
will mainly focus on the existence of so-called localised, or coherent, structures. These are
solutions to (1.1) which approach a simple periodic solution of the type u(x; t) = Rei(�x+!t)

as x! �1 and therefore correspond to heteroclinic or homoclinic solutions in the ODE
reduction. Moreover, we only consider localised structures which connect stable, non-zero
periodic patterns at �1 (see subsection 2.3). These types of solutions have been, and
still are, the subject of both physical and mathematical research since they correspond
to patterns which have been observed in experiments (see for instance [2]) and in numer-
ical simulations (see [29] for an overview). Moreover, the mathematical analysis of the
existence and the stability of these solutions is closely connected to the development of
mathematical theories (see for instance [23], [17], [18], [9], [8]).
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A central role will be played by the so-called hidden, or inner, symmetry which has been
conjectured to exist in the cubic Ginzburg-Landau equation (see [29], [26], [27], [30]).
This conjecture is based on the existence of a one-parameter family of solutions to the
cubic Ginzburg-Landau equation, the Bekki & Nozaki solutions [1]. Bekki and Nozaki
constructed explicit solutions of the form

u(x; t) = [ei
1

2
q�F (�)G(�)�(1+i�)]eiwt; � = x+ vt;(1.2)

where F (�) = �(ek� + ze�k�) and G(�) = ek� + e�k�. Inserting this expression into (1.1)
(with " = 0) yields a (nonlinear) system of 8 equations for the 8 (real) parameters v,
w, q, �, �, k and z = zr + izi. However, if one solves this system `a miracle happens'
(see [1], [29], [6]): one of these equations turns out to be redundant. Thus, one �nds
a one-parameter family of traveling, localised solutions to the cubic Ginzburg-Landau
equation. Moreover, these solutions correspond to a one-parameter family of connections
between one-dimensional stable and one-dimensional unstable manifolds of critical points
in the three-dimensional ODE reduction ([29], [6]). This yields that the Bekki & Nozaki
solutions violate a simple geometrical counting argument [29]: a connection between two
one-dimensional manifolds in a three-dimensional space can generically only exist for dis-
crete values of the free parameters v and w. The existence of a `hidden' symmetry was
conjectured to explain the family of Bekki & Nozaki solutions. Moreover, we quote from
the paper by van Saarloos and Hohenberg ([29], page 339): "The existence of a family
of sources (= the Bekki & Nozaki solutions) in our view presents a serious challenge to
our understanding of phase space methods (= the ODE reduction) as applied to coherent
structures (= localised solutions)".

One of the main results of this paper is that the phase space methods/ODE reduction
is a very suitable `tool' to understand the hidden symmetry. By studying the ODE reduc-
tion of (1.1) in the context of bifurcation analysis, the hidden symmetry can be identi�ed
as being related to a co-dimension 2 homoclinic (that is: non-local) bifurcation. The main
idea behind this interpretation can be explained as follows. By a number of (re)scalings
one can reduce the number of parameters in the ODE reduction of (1.1) to (essentially)
three, V , W and P (sections 2 and 3). Parameter P corresponds to the quintic exten-
sion: P = 0 describes the cubic case. Thus, one can perform a bifurcation analysis in
the three-dimensional (V;W; P )-parameter space: a co-dimension 1 bifurcation, such as a
(local) saddle node bifurcation, corresponds to a surface, Csn, in this space at which such
a bifurcation occurs. Since we restrict ourselves to equations of the type (1.1) which are
`near' an integrable limit (that is either the real Ginzburg-Landau limit or the nonlinear
Schr�odinger limit, see section 2), we can explicitly show in section 3 that there is a close
relation between the creation/annihilation of structurally stable heteroclinic orbits and
the creation/annihilation of periodic solutions of the ODE by a homoclinic bifurcation
(see also [8]). Furthermore, we are able to determine the surface Ch of such co-dimension
1 homoclinic bifurcations explicitly by approximating a certain Poincar�e map (see sec-
tion 3). Generically one expects that the two surfaces Csn and Ch intersect along a curve
of co-dimension 2 `homoclinic/saddle node' bifurcations. In section 4 we show that out-
side this curve the periodic solutions and the heteroclinic solutions merge in a homoclinic
solution at the bifurcation on Ch. This homoclinic solution is a connection between a two-
dimensional stable/unstable manifold and a one dimensional unstable/stable manifold (see
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Figure 3). At the co-dimension 2 curve Csn \ Ch, the homoclinic orbit is replaced by a
heteroclinic orbit, which is the connection between two one-dimensional stable/unstable
manifolds (Figure 3). From a bifurcation theory point of view this is a very natural phe-
nomenon which can, for instance, be studied by the geometrical methods developed in [8]
(see section 4). Moreover, by the explicit expressions derived in section 3 we �nd that
Csn \ Ch consists of three branches, one of them is a curve in the fP = 0g-plane, which
corresponds to the cubic Ginzburg-Landau case. The strength of the geometrical interpre-
tation combined with the explicit perturbation analysis is that we can show in section 4
that the fP = 0g-branch of the curve Csn \ Ch corresponds directly to the family of Bekki
& Nozaki solutions (1.2) which `caused' the hidden symmetry. The other two branches
correspond to degenerate cases (for instance for parameter combinations such that there
is a simple, explicit symmetry present in the ODE reduction, see subsection 4.1)

Thus, the existence of the Bekki & Nozaki family can be understood in a very natu-
ral way: by the geometrical arguments we know that there must be a one-parameter curve
of heteroclinic connections between two one dimensional stable/unstable manifolds in the
three dimensional parameter space, related to the curve Csn \ Ch. Note however, that
although the geometrical interpretation enables us to study the Bekki & Nozaki solutions
(1.2) and their response to the perturbation P 6= 0, it does not tell us why (a branch
of) the curve Csn \ Ch can be found exactly in the fP = 0g-plane. Thus, the geometrical
approach does not explain the hidden symmetry in the cubic Ginzburg-Landau equation,
but it does enables us to study it in detail. Moreover, by considering P 6= 0 we can `break'
the hidden symmetry and consider the impact of the small quintic term in (1.1) within
the geometrical framework. As a consequence, we { for instance { are able (unlike in [26],
[27], [30]) to embed the one-parameter family of Bekki & Nozaki solutions (1.2) into a two
parameter family of homoclinic solutions (of the above described type): for every value of
P { and thus every 
 in (1.1) { there exists a one parameter family of homoclinic solutions
in (wave speed v, frequency w)-space; this family merges with the Bekki & Nozaki hete-
roclinic orbits (1.2) in the limit P ! 0 (in fact, it is a little bit more subtle: a homoclinic
solution merges with a heteroclinic cycle formed by the Bekki & Nozaki solution and a
part of a so-called slow manifold (see below, section 4 and Theorem 5.1).

The fact that we realise that the heteroclinic and homoclinic solutions { and thus the
localised structures { must be intersections of the two-dimensional stable and unstable
manifolds, W s(�) and W u(�), of a certain slow manifold � can be considered as the back-
bone of the geometrical approach (section 3 and 4). This slow manifold must exist since we
study the ODE reductions near an integrable limit which possesses a family of homoclinic
orbits (section 3, [13], [33]). This interpretation allows us to prove the existence of large
families of multi-circuit heteroclinic orbits which so far has not been noted in the literature.

The existence of these orbits follows from a theorem which was already proved in [8]
for a { fairly simple { model problem. In section 4 we prove an equivalent of the theorem
in [8] which is valid for the ODE reduction derived from (1.1) { near an integrable limit.
We show in subsection 4.2 thatW s(�) and Wu(�) can intersect in two essentially di�erent
ways. If there exist two critical points S and Ŝ on � and if their position is `correct' {
see subsection 4.2 { with respect to this intersection, there will be so-called a structurally
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stable 1-circuit heteroclinic connection 2 W s(�)\Wu(�) between S and Ŝ in both cases.
However, in the �rst case, (A), there cannot be any other higher order intersections, while
in the second case, (B), it is shown that there exist countably in�nitely many higher order
intersections of W s(�) and Wu(�). These intersections correspond to so-called multi- or
N -circuit heteroclinic orbits between S and Ŝ which are (also) structurally stable. Thus,
these connections exist for open regions in the parameter space. In the context of the
PDE (1.1), these solutions are localised structures connecting two di�erent stable periodic
`patterns' at x = �1 in a monotonic way (that is, juj increases/decreases monotonically)
except for a number, N (the same N), of `holes' or `jumps' where juj changes rapidly (see
subsection 5.2).

In section 5 we show (Theorems 5.2 and 5.3) that both types of heteroclinic solutions
exists in (1.1) { near an integrable limit { for open regions in the (V;W;P )-parameter
space. However, as was already noted in [8]: the cubic Ginzburg-Landau equation only
has structurally stable heteroclinic solutions of the case (A) type (see subsection 5.2, Fig-
ure 5). Thus, there are no `multi-jump' solutions of the above described type. The type
(B) multi-circuit heteroclinic orbits exist in Ginzburg-Landau equations to which the small
quintic term "
juj4u has been added, where 
 is such that P 2 (�15

11 + O(");�1
2 + O("))

(Theorem 5.3).

We conclude that the in
uence of the higher order nonlinearities modeled by the quin-
tic terms in (1.1) can not be neglected, no matter how small one chooses ": due to the
higher order nonlinearities there exist localised solutions to (1.1) of the above described
`multi-jump' type which cannot exist in the cubic equation. Moreover, these solutions are
not O(") close to solutions of the cubic equation (for all x, t). Furthermore we conclude
that the geometrical approach of this paper { in combination with explicit perturbation
analysis { enables us to handle the hidden symmetry { or better: the Bekki & Nozaki
solutions { in the cubic Ginzburg-Landau equation and interpret it in terms of bifurcation
theory.

Remark 1.1 The structure of this paper is as follows: in section 2 we �rst derive two
ODE reductions, one near the real Ginzburg-Landau integrable limit, the other near the
nonlinear Schr�odinger limit. By scaling we reduce the amount of parameters considerably
and �nd that both integrable limits are in essence the same (in the ODE context). In
subsection 2.2 we mention some important properties of the integrable system which we
will use frequently. In subsection 2.3 we study the critical points of these systems, thereby
deriving the �rst two bifurcation manifolds in (V;W; P )-space, Csn and Cd. In subsection
3.1 we construct the approximation of a Poincar�e map by which we can study the existence
of periodic solutions. Thus we are able to determine an explicit expression of the homo-
clinic bifurcation manifold Ch. In subsection 3.2 we introduce the slow manifold � and its
stable and unstable manifolds W s(�) and Wu(�). We determine an explicit expression
for the �rst intersections of W s(�) and W s(�). Based on this expression we determine
a fourth bifurcation manifold Ct. In section 4 we present the geometric interpretation of
the hidden symmetry described above. We also discuss the degenerate, symmetrical, case
V = 0. Furthermore we formulate and prove the theorem described above which enables
us to distinguish between heteroclinic connections of type (A) and (multi-circuit) orbits
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of type (B). Section 5 can been seen as the combination of 3 and 4: here we combine the
explicit analytical results of section 3 with the geometrical approach of section 4. As a
consequence we are able to formulate and prove the above mentioned Theorems 5.1, 5.2
and 5.3. In section 6 we discuss some aspects of the relation of the results of this paper
with the literature.

Remark 1.2 In this paper we do not pay any attention to the large { that is O( 1p
"
)

{ solutions introduced by the quintic term of O(") in (1.1). These solutions are inconsis-
tent with the assumptions on which the derivation of the Ginzburg-Landau equation is
based (see [12], [7]).

2 The ODE reductions

2.1 The derivation

There are two di�erent integrable limits to (1.1): the real Ginzburg-Landau equation
(Im� = Im� = " = 0) { the stationary problem is integrable { and the nonlinear
Schr�odinger equation (r = Re� = Re� = " = 0). The �rst case appears generically
when the underlying system is re
ection symmetric, see [6] for a list of physical problems
{ such as convection problems { in which the (nearly) real Ginzburg-Landau equation
occurs naturally. The second case can not be connected that easily to a property of the
underlying system. In fact, the limit Re� ! 0 is degenerate from the derivational point of
view: Re� = 0 corresponds to a linearized stability problem in the underlying system with
a neutral curve that has a degenerate (that is non-quadratic) minimum [11]. Moreover, it
has been shown in [12] and [7] that the cubic Ginzburg-Landau equation must be extended
in the case Re� `small'. Thus, the nonlinear Schr�odinger limit is not a very natural limit
if one considers the Ginzburg-Landau equation only as a modulation equation. However,
near the nonlinear Schr�odinger limit one can consider (1.1) as a natural perturbation (see
also [30]). Note that { by rescaling { one can also obtain the nonlinear Schr�odinger equa-
tion from (1.1) by taking the limit Im�, Im� !1.

By scaling we can write (1.1) near the real Ginzburg-Landau (RGL) limit as

ut = u+ (1 + i"a)uxx � (1 + i"b)juj2u+ "(p+ iq)juj4u;(2.1)

where we made the classical assumptions r > 0 and Re� < 0; near the nonlinear Schr�odinger
(NLS) limit (1.1) can be scaled into

ut = "ru+ (�i+ "a)uxx + (�i+ "b)juj2u+ "(p+ iq)juj4u:(2.2)

As yet, we do not choose the signs of Im� and Im� in (2.2). Note that we assume in both
cases that all perturbations are of the same order (O(")) as the quintic term. Next we
start to look for traveling waves and set

u(x; t) = U(x+ vt)eiwt:(2.3)

In contrast with the parameters in (2.1) and (2.2) { which should be considered as given by
the physics of the underlying system { wave speed v and frequency w are `free' parameters.
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It can be shown [6] that near the RGL limit one must consider v = "v̂ and w = "ŵ (since
the traveling waves can be considered as being bifurcated from the unstable periodic
solutions of (2.1)). In the NLS case we do not make w O("), in order to introduce a O(1)
linear term in the equation for U . However, we do take v = "v̂ (see remark 2.1). Due to
the phase invariance of solutions to (1.1) it is natural to write U in polar coordinates

U(�) = �(�)e�(�) where � = x+ "v̂t:(2.4)

We substitute (2.3) and (2.4) into (2.1) and (2.2) and note that 
 = �2�� is an integral of
the " ! 0 limit in both cases: both systems yield a three-dimensional ODE in �, � = ��
and 
. Near the RGL limit this system is given by8><

>:
�� = �

�� = ��+ �3 + 
2

�3
+ "[v̂� � p�5] + O("2)


� = "[(ŵ + a)�2 + (b� a)�4 + v̂
� q�6] +O("2)

(2.5)

In the NLS limit we have to be a bit more careful: for " = 0 the equation for � reads:

�(��� � 
2

�3
)� wU � jU j2U = 0:

Thus, the integrable limit in the NLS case is (topologically) the same as the integrable
limit in the RGL case (that is " = 0 in (2.5)) if Im�Im� < 0 (and one chooses the sign
of the free parameter w correctly). All other combinations of sign(Im�), sign(Im�) and
sign(w) correspond to rather trivial unperturbed 
ows. Since changing the signs of both
Im� and Im� is the same as reversing time in the NLS equation we assume from now on
that Im� > 0, Im� < 0 and w < 0 (in the NLS case). Thus, we consider exactly the
same limit { the defocusing nonlinear Schr�odinger equation { as in [30]. The equation for
traveling waves near the NLS limit reads:8><

>:
�� = �

�� = w�+ �3 + 
2

�3
+ "[v̂


�
� q�5] +O("2)


� = "[(aw + r)�2 + (a+ b)�4 � v̂�� + p�6] +O("2)

(2.6)

Since we are only interested in the leading order e�ects of the perturbations, we do not
pay attention to the O("2) terms in (2.5) and (2.6). Thus, we neglect the O("2) terms
in the sequel. By rescaling we can reduce the amount of parameters in (2.5) and (2.6)
considerably. Introducing x, y, z and t instead of �, �, 
 and � we �nd in the RGL case:8><

>:
_x = y

_y = �x + x3 + z2

x3
+ "̂[V y +Qx5]

_z = "̂[Wx2 + x4 + Px6 + V z]

(2.7)

where

"̂ = (b� a)"; V =
v̂

b� a
; W =

ŵ + a

b� a
; P = � q

b� a
; Q = � p

b� a
:

In the NLS limit we �nd:8><
>:

_x = y

_y = �x + x3 + z2

x3
+ "̂[V z

x
+Qx5]

_z = "̂[Wx2 + x4 + Px6 � V xy]

(2.8)
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with

"̂ = (a+ b)"; V =
v̂

(a+ b)
p�w; W = � r + aw

w(a+ b)
; P = � pw

a+ b
; Q =

qw

a + b
:

Thus, in both systems there are only four parameters left: the free parameters V and W
and the parameters P and Q which originate from the quintic term in (1.1). Of course we
choose the rescalings in order to obtain as much similarity as possible between the systems
(2.7) and (2.8). In the sequel we drop the `hats' on the "'s.

Notice that (2.7) and (2.8) are exactly the same for V = 0, thus, the stationary prob-
lems { that is v = 0 in (2.3) { are essentially the same in (2.1) and (2.2)! Moreover, we
will �nd in section 3 that the parameter V has a negligible in
uence on the dynamics in
the NLS limit. Therefore, we will mainly study (2.7) in this paper: the NLS case can be
obtained from this analysis by taking V = 0 in (2.7). However, the systems (2.7) and (2.8)
become invariant under the symmetry t! �t, x! x, y ! �y, z ! �z when V = 0. See
(the end of) subsection 4.1 for a brief discussion of the additional phenomena created by
this symmetry.

Remark 2.1 The fact that V can be neglected in (2.8) is not so surprising if one re-
alises that v does not give rise to non-integrable e�ects in the NLS limit: if one allows for
waves moving with an O(1) speed in (2.2) with " = 0 one �nds that the equation for U
is still integrable. However, the integrals of this system are less easy to handle than the
integrals of (2.7) and (2.8) for " = 0. Since being able to control the behaviour of these
integrals is essential to understanding the dynamics of the perturbed systems we do not
consider the case v = O(1) in the NLS limit in this paper.
Parameter Q has also no `non-integrable' in
uence on the 
ows of (2.7) and (2.8): the
term `"Qx5' can be added to the second integral I (2.10). Therefore, we will �nd that Q
also does not play a role in the following sections.

Remark 2.2 We do not pay attention to the cases a � b = 0 in (2.1) or a + b = 0
in (2.2) in this paper. Above it is suggested that these cases are singular, but that's not
the case. The singularities are caused by the rescalings, one just has to choose other
scalings and then one will derive equations very similar to (2.7) and (2.8).

2.2 The integrable limit

The unperturbed system,

�x+ x� x3 � z2

x3
; _z = 0;(2.9)

has two integrals, z and

I = x2 + y2 � 1

2
x4 +

z2

x2
:(2.10)

For 0 < jz0j <
q

4
27 the system has a center and a saddle point in the fz = z0g-plane.

There is a homoclinic solution to the saddle point which is the limit of the family of
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periodic solutions encircling the center point. In Figure 1 we show the bounded region in
the phase space for which the solutions remain bounded for all t. Note that these solutions
remain bounded away from the singularity at x = 0 for z 6= 0. We de�ne E, the (bounded)
region in the (I; z)-plane for which the solutions are bounded, by its boundary @E:

@E = f(I; z) : z2 = X2 �X3; I = 2X � 3

2
X2; X 2 [0; 1]g:(2.11)

Note that X corresponds to the square of the x-coordinate of the critical points: for 0 <
X < 2

3 @E is given by the center points, 2
3 < X < 1 describes the saddle point/homoclinic

orbit part of @E; X = 2
3 corresponds to the saddle-center bifurcation at z =

q
4
27 (Figure

1). At z = 0 the system degenerates: solutions pass through the fx = 0g axis (recall
that x corresponds to � = juj (see also [5])). In this paper we will (try to) avoid both

degenerations { at z = 0 and z =
q

4
27 .

We now present some technical properties of system (2.9) which we will use in the next
sections. Especially in section 3 we will frequently use the periods of the solutions to (2.9):

Ti(I; z) =
I

X iq
1
2X

3 �X2 + IX � z2
dX; i = 1; 2; :::(2.12)

where the (complex) contour is taken around the bounded interval on which the denom-
inator of the integrand is de�ned. Note that T0(I; z) is the period of a periodic solution
(for (I; z) 2 E). All higher periods can be expressed in T0 and T1:

T2 =
4

3
T1 � 2

3
IT0; T3 =

2

5
(
16

3
� 3I)T1 +

4

5
(z2 � 4

3
I)T0; etc:(2.13)

These formulae can be obtained by evaluating the expressions

0 =
I

d

dX
(Xj

r
1

2
X3 �X2 + IX � z2)dX; j = 1; 2; :::

(see [6] for more details). As a consequence, it is useful to introduce

T (I; z) = Ti(I; z)

T0(I; z)
:(2.14)

Both T1 and T0 diverge as I ! Is, where Is is the value of I at the unperturbed homoclinic
orbit (see (2.11)). However, it is easy to verify that T ! Xs(z), the square of the x-
coordinate of the saddle point, as I ! Is. In [6] it is shown that T (I; z) is a monotonously

increasing function of I for given z in the interval (�
q

4
27 ;
q

4
27). Since we will mainly use

T (I; z) for I near Is the following approximation will be useful:

T (Is � �; z) = Xs � 1

4(3Xs � 2)j log �j + h:o:t: for 0 < � � 1;(2.15)

where Xs = Xs(z) 2 (23 ; 1). We (again) refer to [6] for the derivation.

We will also need explicit formulae for the homoclinic solutions in (2.9). Although we
know that these solutions are Bekki & Nozaki solutions (1.2) { see [6] { we prefer another
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description which can be obtained directly from (2.9) by introducing X = x2 (and using
(2.10):

�X � 2I + 4X � 3X2 = 0:

This equation has solutions of the type A+B tanh2(�t) if I = Is. We �nd, by parametrizing
by Xs = Xs(z) (see (2.11):

xh(t; z) = [2(1�Xs) + (3Xs � 2) tanh2(
1

2

p
2(3Xs � 2)t)]

1

2 ; Xs 2 (
2

3
; 1):(2.16)

2.3 Critical points

The critical points to (2.7) and (2.8) correspond to `harmonic' periodic solutions of the
type u(x; t) = Rei(�x+!t) of (2.1) and (2.2). The stability of these solutions to the un-
perturbed Ginzburg-Landau equation is well-known (see for instance [31], [25]). In the
limit " ! 0 one �nds that the solutions to (2.1) or (2.2) that correspond to the center
points of (2.9) are unstable and that the saddles are stable. The degenerate points at

z = �
q

4
27 correspond to the so-called Eckhaus stability boundary [10]. One can distin-

guish between three di�erent types of critical points to (2.7) and (2.8): perturbed saddle
points, perturbed center points and points which are O(") close to the degenerate point at

z = �
q

4
27 . It is a straightforward job to check that the `saddles' are stable and that the

`centers' are unstable as solutions of (2.1) or (2.2). In this paper we focus on connections
between these perturbed saddles and neglect the other critical points. In the context of
the modulation equations this means that we search for traveling `localised' structures
which connect stable patterns at x! �1.

The critical points are determined (up to O(")) by

z2 = x4(1� x2) and Wx2 + x4 + Px6 + V z = 0(2.17)

in the RGL case; the NLS system yields the same equations with V = 0 (thus, V has
no O(1) in
uence on the critical points). There are two curves { Csn = Csn(P ) and
Cd = Cd(P ) { in the (V;W )-plane which decide about the number of perturbed saddle
points for a given parameter combination: at Csn two (perturbed) saddles merge in a

saddle node bifurcation and at Cd the x-coordinate of the saddle point becomes
q

2
3 :

the perturbed saddle approaches the degeneration at z = �
q

4
27 . These curves can be

computed explicitly:

Csn = f(V;W ) = (Vsn(X);Wsn(X)); X = Xs 2 (23 ; 1)g where(2.18)

Vsn(X) = �2(1 + 2PX)
p
1�X; Wsn(X) = �2 +X � PX(4� 3X);

the � corresponds to z = �Xp1�X (with X = x2, see (2.11));

Cd = f(V;W ) : V 2 =
1

27
(9W + 6 + 4P )2g:(2.19)

The curve Csn is tangent to Cd as X ! 2
3 . In section 5 we will study these, and other,

curves in more detail.
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Note that all perturbed saddle points are on the slow manifold � which exists O(") near
the curve of saddle points to the unperturbed system (see subsection 3.2, [13], [33]). The
direction of the 
ow on � is determined by _z and thus by the weak (O(")) eigenvalues
of the perturbed saddles. The slow manifold � is not in
uenced by the degeneration at
z = 0.

3 Perturbation analysis

3.1 The approximation of a Poincar�e map

Since we are only interested in solutions which remain bounded for t! �1 { recall that
t corresponds to the moving coordinate � = x+vt in (1.1) { we only study solutions of the
perturbed problems with values of the integrals I and z in an O(") neighbourhood of E
(see (2.11). In this region the 
ow is dominated by the periodic orbits of the unperturbed
system, thus it is natural to `average' this e�ect by constructing a return map P ,

P(I; z) def= (I +4I(I; z); z+4z(I; z));

where

4I(I; z) =
Z T"(I;z)

0

_I(
"(t))dt; 4z(I; z) =
Z T"(I;z)

0
_z(
"(t))dt

and 
"(t) = (x"(t); y"(t); z"(t)) is a solution of (2.7) or (2.8) with y"(0) = 0; z"(0) = z

and x"(0) such that I(0) = I and 0 < x"(0) < xc (xc = xc(z) is the x-coordinate of the
unperturbed center points); T"(I; z) is the return time (and is O(") close to T0(I; z) as long
as 
" is not too close to the unperturbed homoclinic orbits). We can now approximate

"(t) by the solution of (2.9) with the same initial conditions. This causes an O("2) error
since both _I and _z are O("):

4I(I; z) =

Z T0(I;z)

0

_I((x0(t); y0(t); z))dt+ O("2)

4z(I; z) =
Z T0(I;z)

0
_z((x0(t); y0(t); z))dt+O("2):

By (2.10) we can compute _I and change variables (introducing X = x2). We �nd in the
RGL case:

4rglI(z; I) = "

I
(IV + zW ) + (z � V )X + (12V + zP )X2q

1
2X

3 �X2 + IX � z2
dX + O("2)(3.1)

where the contour integral is taken around the interval [Xl(I; z); Xr(I; z)];
p
Xl and

p
Xr

are the x-coordinates of the intersections of the orbit (x0(t); y0(t)) with the y-axis. Using
(2.12) and (2.13) we can write (3.1) as

4rglI(z; I)

"
=

1

3
(�V +3z+4Pz)T1(I; z)+

1

3
(2IV � 2IPz+3Wz)T0(I; z)+O("):(3.2)
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Note that the parameter Q does not appear in (3.2): its in
uence has been `averaged out'.
Analogously we �nd, at leading order

4rglz(z; I)

"
=

1

30
[(20+(32�18I)P+15W )T1� (10I+16IP �15V z�12Pz2)T0]:(3.3)

If we perform the same calculations for the NLS limit we see that all terms involving the
parameters V and Q disappear by averaging , thus we conclude

4nlsI(z; I) = 4rglI(z; I)jV=0 + O("2); 4nlsz(z; I) = 4rglz(z; I)jV=0 +O("2):(3.4)

Note that 4nlsI(0; I)� O("2). We refer to [6] for more details on the Poincar�e map P .

We can use the map P for determining the periodic orbits of (2.7). Although the pe-
riodic orbits of (2.7) correspond to traveling quasi-periodic solutions to (2.1) we do not
consider these solutions for this reason. We study the periodic solutions mainly to be able
to take the limit towards the homoclinic bifurcation at which the period of the solution
becomes unbounded. We will use (3.2) and (3.3) to determine the curve Ch in the (V;W )-
plane at which those homoclinic bifurcations occur.

Note that the periodic orbits of (2.8) { the NLS case { are always O(") near the degenerate
fz = 0g-plane. Thus one has to be very careful in applying the above computations, since
solutions might escape to the fx < 0g-half space. We do not consider this problem in this
paper and refer to [16] and [5] where the same problem has been considered for stationary
solutions to the unperturbed Ginzburg-Landau equation (that is V = P = Q = 0 in (2.8)).

We only consider the simple `1-circuit' periodic orbits, which correspond to �xed points
of map P . Of course there might be more complex periodic orbits. Equating 4rglI and
4rglz to zero yields a linear 2� 2 system in V and W with coe�cients in T0 and T1. The
parameter P only appears in the inhomogeneous part of the 2� 2 system. Since both T0
and T1 diverge as I ! Is, that is if one approaches the surface of homoclinic solutions, we
divide both sides of the linear system by T0(6= 0). This way only T { see (2.14) { appears
in the linear system. The determinant D is then given by

D(I; z) = 1

3
T 2 � 2

3
IT + z2:(3.5)

This is exactly the same determinant as has been studied in [6] for the same problem in the
unperturbed Ginzburg-Landau equation (that is P = 0). There, it has been shown that
D 6= 0 for all (I; z) 2 E, see (2.11). Although we do not intend to consider periodic so-
lutions to (2.7) in detail in this paper, we can interpret this result in the following theorem:

Theorem 3.1 For every periodic solution, determined by the pair (I; z), of the integrable
system (2.9), there is a unique wave speed/frequency pair (V (I; z);W (I; z)) such that this
solution `survives' the perturbations of (2.7); that is, for this choice of V and W there is
a periodic solution to (2.7) which merges with the unperturbed (I; z) periodic solution in
the limit "! 0.

Notice that these periodic solutions correspond to (slowly) traveling quasi-periodic solu-
tions to (2.1) { since x in (2.7) corresponds to juj in (2.1). This theorem does not depend
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on P , since P does not appear in D. However, the boundaries of the (V;W )-region for
which these periodic solutions exist is certainly in
uenced by P . A part of this boundary
can be obtained by considering the the limiting values (V (I; z);W (I; z)) for I ! Is: this
way be determine the homoclinic bifurcation at which the period of the periodic solution
tends to 1. Another boundary can be obtained by determining the Hopf bifurcations at
which periodic solution are created by a local mechanism (see [6] for more details on this
for the cubic (P = 0) Ginzburg-Landau case).

The homoclinic bifurcations can be found by inverting the 2� 2 matrix, using approxima-
tion (2.15) of T (Is� �; z), and taking the limit � ! 0. These computations yield for every
P a curve in the (V;W )-plane, this is the curve Ch of homoclinic bifurcations:

Ch = f(V;W ) = (Vh(X);Wh(X)); X = Xs 2 (
2

3
; 1)g where(3.6)

Vh(X) = �2

5
(5 + 8P � 2PX)

p
1�X;

Wh(X) = �2 +X � 1

5
P (16� 20X + 9X2):

Crossing this curve at a point (Vh(X);Wh(X)) corresponds to creating or annihilating a
periodic solution in (2.7) at (or better: O(") near) the unperturbed homoclinic solution
in the fz = �Xp1�Xg-plane (see (2.11)). Of course (3.6) is only the leading order
approximation of Ch.

3.2 The stable and unstable manifolds of �

Map P can be used for the analysis of solutions which are not (too) near to the stable
and the unstable manifolds of the slow manifold �, W s(�) and Wu(�). The main goal
of this paper is to �nd heteroclinic connections 
het(t) between (perturbed) saddle points
S1 and S2 (these solutions correspond to traveling localised solutions to (1.1) which ap-
proach a stable pattern at x ! �1, subsection 2.1). Since S1;2 2 � it is clear that

het(t) 2 W s(�) \ Wu(�). Thus, understanding the behaviour of W s(�) and Wu(�) is
crucial in �nding the solutions 
het(t). These manifolds can be studied by the Melnikov
method method for systems with slowly varying parameters as is presented in [28] (cf.
[32]). However, �rst some attention should be paid to the de�nition of W s(�) and Wu(�).

The straightforward de�nition of W s(�) (resp. Wu(�)) is: W s(�) (Wu(�)) is the col-
lection of all orbits (of (2.7) or (2.8)) which approach � for t! 1 (resp. t! �1). The
problem with this de�nition is that it is not clear how and whether � extends beyond
the curve of saddle points of the integrable system. This can be illustrated by the exact
solution found in [15] for the Ginzburg-Landau equation: it is a (stationary) homoclinic
orbit to the degenerate critical point (0; 0; 0) of (2.7) { with P = V = 0 { which is O(")
near the curve of saddle points and to the curve of center points of the integrable limit,
so the 
ow on this curve is everywhere O(") slow (see [5] for the details, see Remark 3.1).
Thus, this curve coincides with � for this parameter combination. However, only near the
saddles there are strong (that is O(1)) stable and unstable directions to �. To avoid these
complications we only consider the part of � which is O(") near the curve of unperturbed
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saddles and more than a distance � { for some 0� "� � � 1 { away from the degenera-

tions at z = �
q

4
27 . Consider orbits 
d(t) with 
d(0) a distance > O(") away from �. The

stable manifold of � is now de�ned as the collection of orbits 
d(t) which are exponentially

{ that is O(e�
��

" ) for some O(1) constant � > 0 { close to � for 0 < �
"
< t < t1, where t1

is either 1 or such that the z-coordinate of 
d(t) equals
q

4
27 � � or �

q
4
27 + � at t = t1.

This way, 
d(t) has `traveled' at least a distance of O(�) exponentially close to � before
it reached an `endpoint' of � (if it reaches such an endpoint). Note that by this de�nition
W s(�) is not necessarily a two-dimensional surface, but can have an exponentially small

{ O(e�
��

" ) { thickness. Finally, we only consider that part of W s(�) which merges with
the surface of homoclinic solutions of the unperturbed system (Figure 1). The de�nition
of Wu(�) is analogous.

This modi�cation has no in
uence on the validity (or the proof) of the Melnikov method.
Moreover, the main application of this method will be for parts of � which are bounded by
critical points: then t1 =1 and W s(�) and Wu(�) are (unmodi�ed) two-dimensional sur-
faces between the strong stable and unstable manifolds of these perturbed saddles. Note
that { O(") near the fz = 0g-plane { there will be one degenerate `separatrix' solution on
W s(�) and one on Wu(�), which crosses through the fx = 0g plane (see [5]).

The Melnikov method for slowly varying systems measures the distance, as function of
z, between the �rst intersections P(�) and P�1(�) of Wu(�) (resp. W s(�)) with the
(half-)plane fy = 0; x < xcg { where xc = xc(z) is the x-coordinate of the unperturbed
center point (see Figure 2, section 4; note that the P in P(�) and P�1(�) corresponds
with only half of the P de�ned in section 3.1). We de�ne xu" and xs" as the intersec-
tions of P(�) (resp. P�1(�)) with fz = z0g, where we assume that z0 6= 0 { due to the
modi�ed de�nitions of Wu(�) and W s(�) these points are not uniquely determined, but
up to an exponentially small `error'. Solutions 
u" (t) = (xu"(t); y

u
" (t); z

u
" (t)) in Wu(�) and


s"(t) = (xs"(t); y
s
"(t); z

s
"(t)) in W s(�) of (2.7) or (2.8) are determined by the initial condi-

tion 
u;s" (0) = (xu;s" ; 0; z0); 
0(t) = (xh(t); yh(t); z0): see (2.16), the homoclinic solution to
the unperturbed system (2.9) with 
0(0) = (xm(z0); 0; z0), where 0 < xm =

p
2(1�Xs) is

the intersection of 
0 with the x-axis (which does not exist for z0 = 0, see (2.16), Figure
1). We de�ne the following time-dependent weighted distance function ([28])

4�(t; z0) =

 
@
@"
[xu" (t)� xs"(t)]j"=0

@
@"
[yu" (t)� ys"(t)]j"=0

!
^
0
@ yh(t)

�xh(t) + x3h(t) +
z2
0

x3
h
(t)

1
A ;

where the wedge denotes the standard planar cross product. Thus, 4�(0; z0) measures
the O(") part of the distance between P(�) and P�1(�) on the fz = z0g axis. Note that
4�(0; z0) > 0 yields that xu" � xs" > 0. Using the expression for the Melnikov function
derived in [28] we �nd that, near the RGL limit

4�rgl(0; z) = �
Z 1
�1

yh[V yh +Qx5h +
2z

x3h

@z

@"
]dt;(3.7)

where

d

dt

�
@z

@"

�
= Wx2h + x4h + Px6h + V z and

@z

@"
= 0 at t = 0:(3.8)
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By (2.16) it is possible to determine an explicit expression for 4�rgl , which we again
parametrise by X = Xs(z):

� 15

4

p
24�rgl (0; z) = 5V � [27PX2� (15+56P )X+(15W +20+32P )]

p
1�X;(3.9)

where the � is again caused by z = �Xp1�X, see (2.11). The derivation of (3.9) is not
completely straightforward and is therefore sketched in an appendix. Analogous to (3.4)
we have

4�nls(z) = 4�rgl (z)jV=0;(3.10)

Note that all expressions are independent of Q: we can conclude that Q does not have
any leading order e�ect on the 
ow generated by (2.7) or (2.8). The same is true for V in
the NLS limit. Therefore, (2.8) can be considered as a subcase of (2.7) since the systems
coincide at V = 0.

Based on a completely di�erent point of view it is now possible to once again deter-
mine Ch. The periodic orbit `needs' at least one critical point on � in order to `disappear'
as its period tends to 1 (the orbit itself remains bounded, thus the speed along the orbit
must go to zero at at least one point). As a consequence, the orbit also merges with both
W s(�) and Wu(�) as one crosses Ch in the parameter plane. Therefore, Ch can be derived
by combining 4�rgl (0; z) = 0 with (2.17). Instead of doing so, we can also use (3.6) to
check (3.9) { or vice versa: 4�rgl (0; z) must be equal to 0 for all X 2 (23 ; 1) if we substitute
Vh(X) and Wh(X) (3.6) into (3.9).

Expression (3.9) measures the relative position of W s(�) and Wu(�). One expects drastic
changes in the global 
ow induced by (2.7) if the number of zeros of4� = 0 changes. Two
such zeros are created/annihilated when an extremum of the curve (3.9) becomes tangent
to the X-axis: W s(�) and Wu(�) intersect non-transversely at this bifurcation. We de�ne
the curve Ct(P ) in the (V;W )-plane on which this bifurcation occurs:

Ct = f(V;W ) = (Vt(X);Wt(X)); X = Xs 2 (
2

3
; 1)g where(3.11)

Vt(X) = �2

5
(�15� 56P + 54PX)(1�X)

p
1�X;

Wt(X) =
1

15
(�50� 144P + 45X + 276PX � 135PX2):

Another way to annihilate zeros of 4� is by letting a zero approach the boundary X = 2
3

(that is z = �
q

4
27) of �. This way, one �nds a bifurcation curve which coincides exactly

with Cd (2.19), the curve at which critical points approach the same boundary! Thus, it
seems that the bifurcation of critical points at X = 2

3 is coupled to the bifurcation of zeros
of 4�rgl (0; z) at the same point. One should perform a detailed analysis of the 
ow of
(2.7) near this degenerate point in order to understand this phenomenon. We will not do
so in this paper.

Remark 3.1 The slow manifold solution constructed in [15], which is close to the curve
of all { saddle and centre { critical points of the unperturbed system { see Figure 1 {
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has been studied in [20] in the context of the cubic Ginzburg-Landau equation. There it
is shown that the dynamics near this 1-pulse solution, for instance, can be described by
a shift map. Thus, many N -pulse solutions exist. Although this analysis in completely
independent of the analysis in this paper, it strongly indicates that �, or solutions which
are exponentially close to it, will be connected to the degenerate critical point (0; 0; 0)
of (2.7) for certain parameter combinations, thus yielding `pulse' or `front' solutions of
increasing complexity.

4 A geometrical approach

4.1 Homoclinic bifurcations and the hidden symmetry

In this (sub)section we develop a geometrical interpretation of the hidden symmetry in
the (cubic) Ginzburg-Landau equation { as described in the Introduction { and study its
relation to the homoclinic bifurcations described in section 3. There is a strong connection
between the hidden symmetry { or better: the Bekki & Nozaki solutions (1.2) { and the
intersections of the two bifurcation surfaces Csn(P ) and Ch(P ) in the (V;W;P ) parameter
space. Generically, these surfaces will intersect at a (number of) co-dimension 2 bifurca-
tion curve(s). Equivalently, if P is kept �xed, one expects a (�nite number of) intersection
point(s) of Csn(P ) and Ch(P ). Now, we observe that for P = 0 Csn(P ) = Ch(P )! Thus,
the case P = 0 { that is, the cubic Ginzburg-Landau equation { is degenerate in the sense
that the homoclinic bifurcations seems to be `coupled' to the saddle-node bifurcations.
However, one has to be aware of the fact that both Csn and Ch are only known up to O(").
Thus, the co-dimension 2 curve in (V;W; P )-space is not necessarily at P � 0. Moreover,
Csn and Ch do not intersect but are tangent at P = 0 (see also section 5). In this sub-
section we investigate the implications of this co-dimension 2 `coupling' of the homoclinic
and saddle-node bifurcations and determine its relation with the hidden symmetry and/or
the Bekki & Nozaki solutions. Our main conclusions will be:

All homoclinic bifurcations are of co-dimension 2 in the (cubic) Ginzburg-Landau case.
The Bekki & Nozaki solutions are the heteroclinic solutions which exist at such a bifurca-
tion.

In order to understand the relation between the intersections of Csn and Ch and the Bekki
& Nozaki solutions (1.2) we need a geometrical framework by which we can study the 
ow
governed by (2.7) at, and near, the homoclinic bifurcation. Before doing so, we observe
that Ch and Csn cannot intersect transversely at the co-dimension 2 bifurcation. As in
subsection 3.2 we note that there must be at least one critical point `near' the periodic
orbit as one approaches the homoclinic bifurcation through parameter space. Hence, there
cannot be a homoclinic bifurcation when this critical point has disappeared by a saddle-
node bifurcation: Csn and Ch cannot intersect transversely, unless the system has more
than two critical points and the homoclinic bifurcation occurs at a critical point which is
not involved in the saddle-node bifurcation. Such a transverse intersection is not a true
co-dimension 2 phenomenon (this actually happens for certain P , see section 5).

Consider two (perturbed) saddle points S1 = (x1; y1; z1) and S2 = (x2; y2; z2) on �. A het-
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eroclinic connection between these points is an orbit 
(t) in the intersection of the unstable
(resp. stable) manifold of S1, W

u(S1) (W
s(S1)), and the stable (unstable) manifold of S2,

W s(S2) (W
u(S2)). Note that, since S1;2 2 �, Wu(S1;2) � Wu(�) and W 2(S1;2) � W s(�),

thus 
(t) 2Wu(�)\W s(�) (see Figure 2). The geometrical structure of these intersections
can be studied by the intersections of 
(t), Wu(�) and W s(�) with the fy = 0; x < xcg-
plane. As in subsection 3.2 we de�ne P(�) (resp. P�1(�)) as the �rst intersection ofWu(�)
(W s(�)) with fy = 0; x < xcg (Figure 2). We now assume that P(�)\P�1(�) 6= 0 { that is
we assume that4�rgl (0; z) = 0 for a certain z = zint(0) with z2 < zint(0) < z1 { and de�ne

int(t) 2 Wu(�) \W s(�) such that 
int(0) = (xint(0); 0; zint(0)) = P(�) \ P�1(�). Orbit

int(t) is structurally stable, since it is an intersection of two two-dimensional manifolds.
Furthermore, since z2 < zint(0) < z1, 
int(t) is a so-called 1-circuit heteroclinic connection
between S1 and S2: it consists of a part O(") near the unperturbed homoclinic orbit in the
fz = zint(0)g-plane and two parts `above' and `below' fz = zint(0)g, exponentially close to
�. (Figure 2). It depends on the direction of the 
ow on � between S1 and S2 whether

int(t) goes, for increasing t, from S1 to S2 or vice versa. In Figure 2 we choose _z < 0 on
� between S1 and S2, thus 
int(t) = Wu(S1) \W s(S2) and limt!�1 = S1, limt!1 = S2.
Note that Wu(S1) 6= W u(�) and Wu(S1) 6= Wu(�): Wu(S1) is bounded from below by
Wu(S2) { a one-dimensional manifold { and W s(S2) has W s(S1) as (one-dimensional)
upper-boundary (Figure 2). These boundaries are no subsets of the two-dimensional man-
ifolds. The relative positions of z2, zint(0) and z1 changes if one varies the parameters in
the problem. By subsection 3.2 we know that the homoclinic bifurcation appears as one
of the saddles S1;2 approaches the fz = zint(0)g-plane.

We can now see how the homoclinic solution is created from the heteroclinic solution
at the homoclinic bifurcation: as S1;2 approaches the fz = zint(0)g-plane 
int(t) ap-
proaches a boundary of the two-dimensional stable/unstable manifolds of S1;2. In the
case represented by Figure 2 there is a homoclinic bifurcation either as 
int(t) = Wu(S2)
or 
int(t) = W s(S1). In the former case 
int(t) has become a homoclinic solution to S2
and is the intersection of a two-dimensional manifold W s(S2) and a one-dimensional man-
ifold Wu(S2), in the latter case 
int(t) 2 Wu(S1) \W s(S1), also a non-structurally stable
homoclinic orbit. Both homoclinic orbits can be seen as the product of a co-dimension 1
bifurcation. Note that this really is the homoclinic bifurcation as described in subsection
3.1: at the bifurcation, 
int(t) is the limit of the `disappearing' periodic solution.

These structurally stable heteroclinic solutions 
int(t) of the above type also exist for
(V;W ) in a certain (open) region of the parameter plane in the cubic Ginzburg-Landau
case (P = 0). This can be concluded by combining (2.17) and (3.6) for P = 0 which will be
done in detail in subsection 5.2. It can be checked that { unlike in Figure 2 { the 
ow on
� goes from S2 to S1, in this case. Thus, 
int(t) is a (structurally stable) heteroclinic con-
nection between S2 and S1: 
int(t) 2 W s(S1)\Wu(S2). One expects homoclinic orbits at
(some of) the boundaries of this region of structurally stable heteroclinic solutions. There
are two co-dimension 1 homoclinic bifurcations possible in this situation: either 
int(t)
becomes a homoclinic solution to S1 as jz1 � zint(0)j becomes O(") and 
int(t) merges
with the one-dimensional manifold Wu(S1), a boundary of Wu(S2), or, 
int(t) becomes a
homoclinic solution to S2 as jzint(0)� z2j becomes O(") and 
int(t) = W s(S2), a boundary
of W s(S1) (Figure 3).
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In both co-dimension 1 cases we have to assume that the other saddle is O(1) away from
the plane in which the bifurcation occurs. This assumption is crucial: `in between' both
co-dimension 1 situations is the co-dimension 2 `homoclinic/saddle-node' bifurcation at
which both S1 and S2 are O(") near the fz = zint(0)g-plane. At this bifurcation 
int(t) is
both on a boundary ofWu(S2) and on a boundary ofW s(S1): 
int(t) = Wu(S1) = W s(S2),
a connection between two one-dimensional manifolds (Figure 3); 
int(t) still is a hetero-
clinic connection between S1 and S2, but that it now goes the other way, from S1 to S2.
This is the co-dimension 2 bifurcation that occurs as Ch and Csn are (at least) O(") close
(since jz1 � z2j = O("), see Remark 4.1). Note that in this case the periodic orbit merges
at Ch with the heteroclinic cycle formed by 
int(t) and the part of � between S1 and S2
(see [6]). Near such a co-dimension 2 point in parameter space one �nds all three orbits
sketched in Figure 3. The existence of this bifurcation is not in
uenced by the direction
of the 
ow on � between S1 and S2: Figure 3 has an equivalent which corresponds to the
situation sketched in Figure 2.

Based on the above geometrical arguments one expects a curve of these co-dimension
2 bifurcations in the three-dimensional (V;W;P ) parameter space. By the observations
at the beginning of this section { Ch = Csn(+O(")) at P = 0 { we know that P must
be O(") to �nd this curve. Thus, we know that there must be a curve of homoclinic
co-dimension 2 bifurcations in the (V;W; P )-space O(") near the fP = 0g-plane. For
parameter combinations (V;W; P ) on this curve there exists in (2.7) a heteroclinic orbit
which is the connection of two one-dimensional manifolds. We can now use the results of
[6] to conclude that P must be � 0 at this curve: in [6] it has been show that the periodic
solutions merge with a Bekki & Nozaki solution (1.2) at Ch (in the cubic Ginzburg-Landau
case). Note that it is conceptually simple to achieve this: one just has to use the explicit
expressions for the Bekki & Nozaki solutions (1.2) and show that these solutions exist at
Ch at the correct position in the phase-space { that is `near' the `disappearing' periodic
solution. Therefore, we do not repeat these computations here.

Thus we can once more conclude that the homoclinic bifurcations are of co-dimension
2 in the (cubic) Ginzburg-Landau equation; the Bekki & Nozaki family of connections be-
tween two one-dimensional manifolds (see the introduction,[29], [6]) represents exactly this
curve of co-dimension 2 homoclinic bifurcations.

This geometrical approach does not give a complete explanation of the hidden symmetry
as described in [29], since it does not explain why a curve of co-dimension 2 bifurcations
occurs exactly for P = 0, the cubic Ginzburg-Landau case. However, the hidden symme-
try can now be interpreted { and fully analysed { as a natural phenomenon occurring in
bifurcation analysis. From the bifurcation theory point of view it is clear that the curve of
co-dimension 2 homoclinic bifurcations must exist in (V;W; P )-space. The fact that P = 0
has no in
uence on the investigation of this curve.

Finally, one would like to answer the question: can there be heteroclinic solutions of
the Bekki & Nozaki type { that is: heteroclinic orbits which connect a one-dimensional
unstable manifold of a saddle S to a one-dimensional stable manifold of a saddle Ŝ { for
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P 6= 0? This question can partly be answered by determining the full set Csn \ Ch. By
(2.18) and (3.6) we �nd that this set consists of three branches: the Bekki & Nozaki
branch in the fP = 0g-plane, a branch at V = 0 with X � 1 and a branch with X � 2

3
(see section 5.1 for explicit formulae ((5.2), (5.3)). Note that these two new branches are
degenerate, in the sense that they are related to bifurcations in (or near) the degenerate

planes fz = 0g and fz = �
q

4
27g. The behaviour near the latter branch must be extremely

singular since the entire branch is a subset of Csn \ Ch \ Cd \ Ct (see section 5). Moreover,

the slow manifold � is, strictly speaking, not de�ned near fz = �
q

4
27g (see subsection

3.2) and the unperturbed system is degenerate at X = 2
3 (see Figure 1). Therefore, we do

not pay any attention to this branch in the paper.

In contrast to this it is possible to analyse the 
ow governed by the system near the
real Ginzburg-Landau limit, (2.7), and the system near the nonlinear Schr�odinger limit,
(2.8), on the fV = 0g-branch of Csn \ Ch. First we recall that these systems are identical
for V = 0, then we note that there is a simple symmetry in the systems:

x! x; y ! �y; z ! �z; t! �t:(4.1)

This symmetry can be used to handle the degenerations near the fz = 0g-plane and to
construct symmetric, degenerate heteroclinic orbits which connect one-dimensional stable
manifolds to one-dimensional unstable manifolds. In a sense one can interpret symme-
try (4.1) as the explicit version of the hidden symmetry conjectured by van Saarloos and
Hohenberg [29]. Moreover, the existence of the symmetric, degenerate heteroclinic orbits
does not necessarily violate the geometric counting arguments of [29] for V = 0, due to
symmetry (4.1). On the contrary: the construction of these orbits is based on the symme-
try. The existence of these degenerate heteroclinic orbits can be shown using the methods
developed in [23] and [5]. In these papers systems are studied which are very similar to
(2.7) with V = 0. In both papers the existence is shown of symmetric orbits connecting
the fast unstable manifold of a saddle S with the fast unstable manifold of its symmetric
counterpart Ŝ. Moreover, it is shown that for any N > 0 there is such a degenerate het-
eroclinic orbit which makes N excursions through the fast �eld (see also subsection 4.2).
The methods of [23] and [5] can be applied to derive similar results for systems (2.7) and
(2.8) with V = 0. However, in this paper we will not study the details of the construction
of these degenerate symmetrical orbits.

We conclude this subsection by noting that we found that there cannot be non-symmetric
co-dimension 2 homoclinic bifurcations of the above type for P 6= 0. In other words: There
are no heteroclinic solutions of the Bekki & Nozaki type for P 6= 0. Thus, the introduction
of a small quintic term in the cubic Ginzburg-Landau equation (as in (1.1)) truly breaks
the hidden symmetry. These results will formulated as a Theorem and a Corollary in
subsection 5.2.

Remark 4.1 In [6] it is shown that Csn and Ch are actually O("2) apart for P = 0: there
is a strip of O("2) width between Csn and Ch where there are two (perturbed) saddles, but
there is no heteroclinic connection between these points (yet).
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4.2 In�nitely many structurally stable heteroclinic orbits

A traveling solution of localised structure to (2.1) or (2.2) corresponds to a heteroclinic
solution 
het(t) to (2.7) or (2.8). Such a solution 
het(t) exists if the following conditions
are satis�ed:

(i) W s(�)\Wu(�) 6= ;.
(ii) There are at least two perturbed saddles S1;2 = (x1;2; y1;2; z1;2) 2 �, with z2 < z1.
(iii) z2 < zint(0) < z1 and jzint(0) � z1;2j � ", where zint(0) = the z-coordinate of

P(�) \ P�1(�).
Note that we distinguish between 
int(t), the �rst intersection of W s(�) and Wu(�) {
which is not necessarily a heteroclinic orbit ((ii), (iii)) { and 
het(t). Condition (ii) can
be weakened slightly since we also want to take into account homoclinic orbits to a saddle
point. Note however, that such orbits can only exist at a global bifurcation (subsection
4.1), while it is clear from the above conditions that 
het(t) is, in general, a structurally
stable orbit (see subsection 4.1 and Figure 2). To avoid degenerations we assume that

zint(0) is not O(") close to either 0 or �
q

4
27 .

By the results of section 3 { and in particular the expressions for the bifurcation curves
Csn, Cd, Ch and Ct { it is a rather straightforward job to determine for every P the regions
in the (V;W ) parameter plane where (2.7) satis�es these conditions. We will do so in
section 5. In this (sub)section we consider in more detail the implications of the above
conditions for the structure of W s(�)\Wu(�), where we pay special attention to the { so
far neglected { higher order intersections.

Consider an intersection point (xint(0); zint(0)) = P(�) \ P�1(�) (Figure 2). Such a
point corresponds to a zero of 4�rgl (0; z). We assume that the system is not close to a
homoclinic bifurcation, thus zint(0) is not O(") close to the z-coordinate of a saddle point.
One must now distinguish between two di�erent relative positions of P(�) and P�1(�)
near (xint(0); zint(0)) (P(�) is to the right/left of P�1(�) for z (just) above zint(0)). Fur-
thermore, the 
ow on � might go up ( _z > 0) or down ( _z < 0) at z = zint(0). Hence, there
are four di�erent situations. However, we are only concerned with the existence of the
connections 
het(t), not with the direction of the 
ow on 
het(t). Thus, by reversing the
time t ! �t we transform P(�)! P�1(�) and _z ! � _z and obtain a reduction to two {
we will �nd { structurally di�erent situations:

(A) W s(�) is outside Wu(�) for ~z (just) above zint(0) and _zjz=~z > 0
(or W s(�) is inside W u(�) for ~z (just) above zint(0) and _zjz=~z < 0),

(B) W s(�) is outside Wu(�) for ~z (just) above zint(0) and _zjz=~z < 0
(or W s(�) is inside W u(�) for ~z (just) above zint(0) and _zjz=~z > 0)

(see Figure 4). Note that it is necessary to use the addition `just' in the above descrip-
tions since there might be another zero of 4�rgl (0; z) above zint(0). As we shall see in
subsection 5: the cubic Ginzburg-Landau case (P = 0) is of type (A). In the formulation
and the proof of the theorem below we shall assume that W s(�) is outside Wu(�) for ~z
(just) above zint(0) in both cases.
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Theorem 4.2 Suppose the system (2.7) satis�es conditions (i), (ii) and (iii) for a given
parameter combination (V;W; P ) then

case (A): There is a unique (structurally stable) heteroclinic orbit 
het(t) = 
int(t) =
W s(�) \ W u(�) with limt!�1 
het(t) = S2 and limt!1 
het(t) = S1 if
jzint(0)� z1j � O("j log "j).

case (B): There are countably many structurally stable multi-circuit heteroclinic or-
bits 
het(t) = 
Nint(t), N = 1; 2; 3; ::: with limt!�1 
het(t) = S1 and
limt!1 
het(t) = S2; 


N
int(t) makes N excursions through the fast �eld, O(")

close to a homoclinic solution of the unperturbed 
ow; 
int(t) = 
1int(t): the
1-circuit orbit.

Note that the part of � between S1 and S2 can be considered as a 0-circuit heteroclinic
connection (in both cases).

A similar result for a model problem has been proven in [8] (cf. Theorem 4.3). The
geometrical aspects of the arguments are in essence the same for both { the model prob-
lem and the perturbed Ginzburg-Landau { vector �elds. However, due to a somewhat
more precise perturbation analysis of the system in case (A), the above uniqueness result
is a little stronger than its counterpart in [8]. Moreover, in Remark 4.5 we will show that
the "j log "j condition in case (A) can be deleted depending on the behaviour of the map
P in the fast �eld { subsection 3.1 { near (xint(0); zint(0)). In the proof, an important role
will be played by the strong stable and unstable manifolds, W ss(S1;2) and Wuu(S1;2), of
the critical points S1;2. These are the one-dimensional manifolds which correspond to the
O(1) eigenvalues of S1;2. We de�ne P(S1;2) (resp. P�1(S1;2)) as the (�rst) intersection of
Wuu(S1;2) (W

ss(S1;2)) with fy = 0; x < xcg, see Figure 4.

Proof: Both in case (A) and in case (B) 
int(t) is a structurally stable heteroclinic orbit
between S1 and S2. However, in case (A): limt!�1 
int(t) = S2 and limt!1 
int(t) = S1,
while limt!�1 
int(t) = S1 limt!1 
int(t) = S2 in case (B). This di�erence is completely
caused by the 
ow on �: in both cases 
int(t) is O(") close to the homoclinic orbit to the
unperturbed system (2.9) at z = zint(0) during its circuit through the fast �eld.

We now consider the second intersection, P(P(�)) def
= P2(�) with return map P as in

subsection 3.1, of Wu(�) and fy = 0; x < xcg. First, we observe that the return map is
only de�ned for points on those parts of P(�) which are inside W s(�), that is, to the right
of P�1(�) (Figure 4). We consider an open segment L � P(�) bounded from below by
(xint(0); zint(0)). Thus P(L) exists. Moreover, the image of a point p 2 L arbitrarily close
to (xint(0); zint(0)) can be deduced by following 
int(t). In case (A) the orbit 
p through p
follows 
int(t) `upwards' to S1 and then leaves � along with Wuu(S1). We �nd

lim
p!(xint(0);zint(0))

P(p) = P(S1):

Note that, due to the slow 
ow along �, kp�P(p)k = O(1). Analogously, we deduce that
p is mapped downwards in case (B):

lim
p!(xint(0);zint(0))

P(p) = P(S2):
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Now, consider a point p 2 L which is at a distance of O(") of (xint(0); zint(0)), and not
closer than that. By assumption (iii) we know that p is below P(S1). The orbit 
p fol-
lows 
int(t) and approaches � up to an O(

p
") distance. By the linearized 
ow near � we

�nd that 
p remains a time interval of length O(j log "j) near �. Thus, as 
p returns to
fy = 0; x < xcg it has moved an O(") distance by the fast �eld { subsection 3.1 { and an
O("j log(")j) by the slow �eld near �. Note that here we assumed that 
p has not come
close a critical point on � (if that's the case the distance traveled along � will(can) be less
than O("j log "j)). In case (A) the latter is upwards, thus, P(p) is above the fz = zint(0)g
level (here we used that jzint(0) � z1j � O("j log "j)). The orbit 
p remains longer near
� if p gets closer to (xint(0); zint(0)), which yields that P(p) will be further away from
fz = zint(0)g. If the distance of p to (xint(0); zint(0)) is larger than O(") the in
uence of
the fast �eld on P(p) increases but, since this e�ect is always O("), P(p) will be more
than O(") away from fz = zint(0)g. We conclude that P(L) \ fz = zint(0)g = ; in case
(A). As a consequence we observe that P2(�) \ P�1(�) = ; (see Figure 4a). Exactly
the same arguments can be applied for the 
ow with reversed time and we conclude:

P�1(P�1(�)) def
= P�2(�) remains below fz = zint(0)g and thus P�2(�) \ P(�) = ; and

P�2(�) \ P2(
) = ; in case (A) (Figure 4a).

Due to the downward direction on � P2(�) (and P�2(�)) must behave completely di�erent
in case (B). The images of points p 2 L close enough to (xint(0); zint(0)) will be outside {
that is to the left of { P�1(�). In contrast with this, we deduce, by the above arguments,
that P(p) is inside (right) of P�1(�) if the distance between p and (xint(0); zint(0)) is
large enough. Thus P2(�) \ P�1(�) 6= ; and { by reversing time: P�2(�) \ P(�) 6= ;,
P�2(�) \ P2(�) 6= ; (Figure 4b). Thus there exists an orbit 
2int(t) with limt!�1 = S1
which is exponentially close to � except for two circuits through the fast �eld: during the
�rst circuit it passes through P(�) \ P�2(�) on fy = 0; x < xcg, after which it is again
close to �, until the second circuit during which it passes through P2(�) \ P�1(�); then
it returns to � and approaches S2 as t ! 1. This is the �rst structurally stable { 
2int(t)
is an intersection of two two-dimensional manifolds { `multi'-circuit heteroclinic solution
as presented in the theorem.

Next, we consider the third, etc. intersections of Wu(�) and W s(�) (for reversed time)
with fy = 0; x < xcg. We note that in both cases the distance between a point on P2(�)
(resp. P�2(�)) and P(�) (P�1(�)) cannot exceed O(").

First, we study case (A). We observe that the minimum M2 of the P2(�)-`tongue' is
O("j log "j) above fz = zint(0)g. Thus, the orbit through M2, 
M , will come O(

p
") close

to � O("j log "j) above fz = zint(0)g. The slow 
ow on � will again `lift' 
M O("j log "j).
The same is true for for points O(") close to M2, thus, P3(�) will also be a tongue,
`stitched' to P2(S1) (the second intersection of Wuu(S1) with fy = 0; x < xcg) with a
minimum M3 O("j log "j) above M2 (Figure 4a). The same arguments can be applied to
P4(�), P�3(�) etc., thus we conclude that Wu(�) and W s(�) have a unique intersection:
the heteroclinic orbit 
het(t) = 
int(t).

In case (B), we �rst note that only orbits through the part of P2(�) to the right of
P�1(�) will have a next intersection with fy = 0; x < xcg. This part of P2(�) is bounded
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from below by 
2int(0), the second intersection of 
2int(t) with fy = 0; x < xcg. By letting

2int(t) play the role of 
int(t) (for t > 0) we see that we can repeat the arguments by
which we derived the structure of P2(�): P3(�) is also stitched to P(S2) and intersects
P�1(�) in a point below 
2int(t). This point, 
3int(0), is the last intersection point of the
(structurally stable) 3-circuit heteroclinic orbit 
3int(t) with fy = 0; x < xcg. The other
two intersection points are P(�)\P�3(�) { the structure of P�3(�) can be obtained along
the above lines (Figure 4b) { and P2(�)\P�2(�). The higher order intersections PN(�),
N = 4; 5; ::: all intersect P�1(�), which yields that there must be a (countably) in�nite
collection of (structurally stable) N -circuit heteroclinic orbits 
Nint(t) 2 Wu(�) \ W s(�)
which all connect S1 to S2. 2

In the next section we will investigate for which values of P there exist parameter com-
binations (V;W ) such that the system satis�es (i), (ii) and (iii) so that we can apply
Theorem 4.2. In this paper we do not pay much attention to the fate of the higher order
intersections of W s(�) and W u(�) as zint(0) approaches S1 or S2. These bifurcations has
been studied in [8] { for a model problem { and it has been show there that in�nitely
many orbits 
Nint of case (B) are created at once, that is, at the bifurcation there is a ho-
moclinic explosion. Analogously, the unique intersection 
int(t) can be seen as the result
of a homoclinic implosion. These results will also hold for the 
ow induced by (2.7), since
the arguments are in essence of a geometrical nature.

Note that if there is a third saddle Ŝ1 on � above S1 and if Ch has been crossed so
that zint(0) has passed z1, one can apply Theorem 4.2 to the intersection(s) of W s(�)
and Wu(�) between Ŝ1 and S1. Since the direction of the 
ow on � must be opposite to
the direction of the 
ow between S1 and S2 we �nd that a case (A) situation has been
changed into a case (B) situation by crossing Ch and vice versa. This explains why we can
interpret the unique intersection 
int(t) in case (A) as the result of an implosion. Since we
will encounter this phenomenon frequently in section 5 we formulate it as a corollary:

Corollary 4.3 Let there be three critical points S1 = (x1; y1; z1), S2 = (x2; y2; z2) and
S3 = (x3; y3; z3) on �, with z1 > z2 > z3 and not O("j log "j) close, and let 4�rgl (0; z)
have a zero z4 between z3 and z1. If z2 and z4 pass each other as Ch is crossed in the
(V;W ) plane, then the type of the heteroclinic orbit(s) 
het(t) described in Theorem 4.2
has changed from case (A) to (B) or vice versa.

Remark 4.4 Note that an intersection of Wu(�) and W s(�) of type (B) also induces
higher order intersections if zint(0) is not bounded from above and below by z1;2 (cf. (ii)).
These intersections can be regarded as (multiple-circuit) homoclinic solutions to �. The
behaviour of these solutions in the limits t! �1 is completely coupled to the behaviour

of � outside the z-interval [�
q

4
27 + �;

q
4
27 � �] (see Remark 3.1).

Remark 4.5 In [8] a distinction has been made between four instead of two cases: if
one studies case (A) and case (B) near the explosive/implosive bifurcation one �nds that
the accumulated in
uence of the fast �eld during one circuit causes an important di�er-
ence. This can be seen by reconsidering the condition jzint(0)� z1j � O("j log "j) in case
(A) of the theorem. This condition is necessary because if zint(0) gets nearer to z1 the
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slow �eld induces less than an O("j log "j) lift for orbits which start O(") near 
int(t) in
fy = 0; x < xcg, so the in
uence of the fast �eld might create an intersection of P2(�) with
fz = zint(0)g and thus: P2(�) \ P�2(�) 6= ;. This will not happen if the fast �eld also
has an upwards e�ect. Since O(") changes in the initial condition do not have a leading
order e�ect on the fast �eld part of return map P { subsection 3.1 { we know that the
fast �eld has an upwards e�ect near the bifurcation if the z-coordinate of P(S1) is larger
than z1, the z-coordinate of S1. If this is the case it can be shown quite easily { the proof
will be very similar to that for the model problem in [8] { that the homoclinic implosion
occurs exactly at Ch, the curve at which the periodic solution merges with a homoclinic
solution. If this is not the case, the bifurcation is more complicated: there will be (in-
�nitely many) intersections of W u(�) and W s(�) { related to heteroclinic orbits which
make many excursions through the fast �eld { and secondary implosions (or explosions)
before one crosses Ch. These bifurcations have not been studied in detail yet, and will be
the subject of future research.

Remark 4.6 The distinction between the (A) and (B) case has { in essence { already
been made in [21]. However, in this paper no attention has been paid to the interac-
tions between these global phenomena and the critical points on the slow manifold or the
(non)existence of the higher order intersections.

Remark 4.7 Kopell and Howard used the existence of the symmetric N -circuit hete-
roclinic orbits constructed in [23] to show that the Poincar�e map associated to the three-
dimensional ODE has an invariant set on which the map acted as a shift map. The
heteroclinic orbits constructed in [23] are symmetric connections between one-dimensional
manifolds, and thus degenerate from our point of view (see subsection 4.1). However, it
is interesting to analyse whether the construction of a horseshoe near an N -circuit hete-
roclinic orbit of [23] can also be applied to the heteroclinic orbits found in Theorem 4.2.
We will not pursue this subject in this paper.

5 The combination of the perturbation analysis and the

geometrical approach

In this section we study { as a function of P { the curves Csn (2.18), Cd (2.19), Ch (3.6) and
Ct (3.11), the intersections of these curves (that is, the bifurcations of higher co-dimension)
and { of course { the changes in the 
ow of (2.7) caused by crossing of one these curves
in the (V;W )-plane. We only know the position of these curves with an O(1) accuracy,
we must be aware that all the critical values we �nd for P in this section are only valid
up to O("). We will soon see that there are many complicated situations possible, so we
will mostly focus on the main themes: P = 0 versus P 6= 0: the breaking of the hidden
symmetry and the application of Theorem 4.2. We will consider some of the other phe-
nomena, but leave their analysis to future research.

It should be noted, however, that in this paper we only pay attention to the charac-
teristics of the 
ow near � and its stable and unstable manifolds, W s(�) and Wu(�). To
get a more complete picture we should also derive expressions for the curve CHopf { at
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which periodic solutions are created/annihilated by a Hopf bifurcation { the curve Ccn {
at which perturbed center points merge { etc. These bifurcations { and others (such as:
bifurcation curves related to changes in the stability type of the periodic solution, or to
the creation of heteroclinic connections between perturbed saddles and perturbed centers)
{ have been considered in [8] for a model problem. The analysis of this model problem is
much easier: for instance, � is not bounded and 4�(0; z) always only changes sign once,
thus Cd and Ct do not exist in this model problem. The curves CHopf and Ccn have been
derived for the cubic, P = 0, Ginzburg-Landau case in [6]. In principle, these phenomena
can also be analysed for (2.7): as for the model problem in [8], a combination of the geo-
metrical approach and the `tools' developed in section 3 must be su�cient. However, we
decided to focus on the solutions to (2.7) which correspond to traveling localised structures
which connect stable patterns at �1 in (2.1). Thus, we only need to consider the 
ow of
(2.7) near � [W s(�) [Wu(�) and only to study the in
uence of the curves Csn, Cd, Ch
and Ct.

Since we will derive a number of critical values of P , corresponding to structural changes in
the parameter plane (V;W ), and thus in the 
ow induced by (2.7) we recall the de�nitions
of P , W and V :

P = � q

b� a
; W =

ŵ + a

b� a
; V =

v̂

b� a
;

where "a, "b and "q are the (small) imaginary parts of the coe�cients of the perturbed
Ginzburg-Landau equation (2.1) and v = "v̂, w = ŵ the (slow) wave speed and frequency
of its solutions u (2.3). Thus, a critical value of P corresponds to a critical combination
of the imaginary parts of the coe�cients in front of the terms uxx, juj2u and juj4u in the
perturbed Ginzburg-Landau equation.

5.1 The bifurcation curves Csn, Cd, Ch and Ct

First, we note that there is an useful symmetry in (2.7) (and in (2.8)):

x! x; y ! �y; z ! �z; t! �t and V ! �V:(5.1)

Thus, we see that we can avoid the `�' in (2.18), (3.6) and (3.11) by considering the system
in the (W;V 2) parameter plane.

The curves Csn, Ch and Ct are bounded. The boundaries can be obtained by taking X = 1
or X = 2

3 . We observe:

D11
def
= (Wsn(1); V

2
sn(1)) = (Wh(1); V

2
h (1)) = (�(1 + P ); 0);(5.2)

D12
def
= (Wt(1); V

2
t (1)) = (� 1

15
(5 + 3P ); 0):

Thus: X ! 1 yields V ! 0. This is not completely surprising: symmetry (5.1) becomes
symmetry (4.1) for the total 
ow induced by (2.7), or (2.8), if V = 0 (see subsection 4.1).
Furthermore, z ! 0 as X ! 1 (2.11) and fz = 0g is a plane of symmetry for V = 0. We
(again) refer to [16], [5] and [6] for more details on the relation z = 0 $ V = 0 in the

25



cubic Ginzburg-Landau equation (P = 0). At the other boundary we have:

Dd
def
= (Wsn(

2

3
); V 2

sn(
2

3
)) = (Wh(

2

3
); V 2

h (
2

3
))(5.3)

= (Wt(
2

3
); V 2

t (
2

3
)) = (�4

3
(1 + P );

4

27
(3 + 4P )2) 2 Cd;

thus, the behaviour near the degenerate planes fz = �
q

4
27g indeed seems to be quite

complicated. Moreover, we can check that all curves are tangent to each other and to Cd
at X = 2

3 .

We now consider only some of the properties of Csn, Ch and Ct as function of a decreasing
P . As observed in the introduction of this section: all critical values of P given below are
only known up to O(") corrections. We only pay attention to the qualitative changes in
the curves, not to their changes in magnitude. We refer to the next subsection for plots
of (parts of) Csn, Ch and Ct (Figures 5, 6, 7 and 8).

Saddle-node bifurcation curve Csn develops a cusp as P decreases through �1
2 :

d
dX

Vsn =
d
dX

Wsn = 0 for X = (4P � 1)=(6P ); this value of X must be 2 (23 ; 1), thus we conclude
that Csn is `cusped' for P < �1

2 (see Figure 6). In the next subsection we will see that the
creation of this cusp { as P decreases from 0 { yields heteroclinic solutions of type (B) in
Theorem 4.2.

Homoclinic bifurcation curve Ch has a somewhat more complicated behaviour, although it
is not cusped. For P > �5

8 there are no points on Ch with either d
dX

Wh = 0 or d
dX

V 2
h = 0

(Figure 5). This changes at P = �5
8 (Figure 7). At P = �3

4 , Ch becomes tangent to
fV = 0g (Figure 8). This minimum on the axis only disappears as P decreases through
�5

6 . In the next subsection we will see that the disappearance of this minimum is directly
related to the disappearance of the type (B) heteroclinic orbits. However, the most inter-
esting behaviour of Ch occurs in the P -interval [�10

13 ;�49
64 ] since Ch has self-intersections

for these P values. This means that there are parameter combinations (W;V 2) such that
there are two homoclinic bifurcations { near di�erent z-planes { occurring in (2.7). These
two bifurcations merge { that is, appear near the same z-plane (fz=0g!) { if P ! �10

13
(see Figure 8 for a plot of Ch before and after this interval of self-intersections).

The curve Ct is also cusped for P 2 (�15
2 ;�15

32). However, this cusp does not have much
in
uence on the 
ow of (2.7) since it is always outside the parabola Cd in a region where
there are no critical points on �. So, inside a certain area created by the cusp, 4�rgl (0; z)
can have �ve zeros, but none of them can induce a heteroclinic orbit (for this reason the
cusp of Ct does not appear in Figures 5, 6, 7, 8). Related to the cusp is a minimum on
fV = 0g which exists for P 2 (�15

2 ;�3
4) (Figure 8). There are also self-intersections for

P 2 (�15
2 ;�2085

4598� 675
4598

p
5) { where the latter number is � �0:781::: (Figure 8). We will see

in subsection 5.2 that the creation of this self-intersection immediately yields the existence
of the case (A) heteroclinic solutions described in Theorem 4.2. These self-intersections
take place in a region without critical points for P < �60

53 .
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5.2 The bifurcations

We found in the above subsection that the structure of the curves Csn, Ch and Ct changes
considerably as function of P . However, much more important to the behaviour of the

ow induced by (2.7) are changes in the con�guration of all 4 curves { Csn, Cd, Ch and
Ct { in the (W;V 2)-plane as function of P . New con�gurations yield new regions in the
(W;V 2)-plane bounded by the bifurcation curves. For instance, we will see that the re-
gion of type (A) heteroclinic connections disappears (temporarily) as P decreases through
�3

5(+O(")) since the minimum of Cd passes through the X = 1 endpoint of Csn and Ch
on the fV = 0g-axis, D11 { see (2.19) and (5.2). The characteristics of the 
ow of (2.7) {
near � [W s(�) [Wu(�) { in a certain region in (W;V 2; P )-space do not change as long
as the parameter combinations remain bounded away from the bifurcation curves/surfaces.

First, we formulate the main theorems of this section. We refer in the formulation of
these theorems to `type (A)' and `type (B)' heteroclinic connections. These characteriza-
tions are presented as case (A) or (B) in subsection 4.2 and Theorem 4.2.

Theorem 5.1 The non-symmetric co-dimension 2 homoclinic bifurcations only appear
for P = 0. Thus, heteroclinic orbits of the Bekki & Nozaki type only exist for P = 0.
There exist homoclinic orbits to a critical point on � for (W;V ) 2 Ch(+O(")), for all
P 6= 0.

This theorem is but a reformulation of the main results of subsection 4.1. Note that
it is argued at the end of subsection 4.1 (by [23] and [5]) that there will be symmetric
(4.1) co-dimension 2 homoclinic bifurcations in the special case V = 0.

Theorem 5.2 Structurally stable (and unique) heteroclinic orbits of type (A) connect-
ing two (perturbed) saddles on � exist in open regions of the (V;W ) parameter plane for

P > �3
5 + O(") and P < PA + O(") where PA = �215

369 � (15055)5
1
3

1476(�1050233+76014
p
309)

1
3

+

5
2
3 (�1050233+76014

p
309)

1
3

1476 � �0:716:::

Theorem 5.3 There exist countably many structurally stable multi-circuit heteroclinic
orbits of type (B) in open regions of the (V;W ) parameter plane for �15

11 + O(") < P <

�1
2 + O(").

Thus, there are two P -intervals { (�3
5 ;�1

2) and (�15
11 ; PA) { where type (A) and (B) het-

eroclinic solutions exist simultaneously. In the former interval the corresponding (V;W )-
regions do not intersect, in the latter interval there are two or even three zeros of4�rgl (0; z)
between two saddles on � in certain regions in the (V;W )-plane: the type (A) and (B)
heteroclinic solutions exist for the same choices of V and W and are connections between
the same perturbed saddles.

We remark that the cubic Ginzburg-Landau case, P = 0, does not appear in Theorem 5.3
and conclude:
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Corollary 5.4 Adding a small quintic term "
juj4u to the cubic Ginzburg-Landau equa-
tion breaks the hidden symmetry and creates families of traveling multi-circuit solutions
to (2.1) which do not exist for 
 = 0.

It is fairly easy to obtain a picture of the N -circuit solutions as solutions of the PDE
(1.1), or (2.1), (2.2). The 0-circuit solution, that is, the part of � between the two (per-
turbed) saddles (see subsection 4.2) corresponds to a localised structure which `smoothly'
connects the two periodic patterns { corresponding to S1 and S2 at x = �1. This can
be seen by noticing that x and t in (2.7) correspond to juj and x+ vt in the PDE context
(see section 2). Thus, juj decreases or increases slowly and monotonically for the localised
structure corresponding to the 0-circuit orbit. These solutions are called weak shocks in
[18]. A 1-circuit orbit remains close to � except for one `detour' through the fast �eld.
For the corresponding localised structure this means that there is the same monotonic
and slow behaviour as for the 0-circuit orbit except for one fast 'hole' where juj jumps
away and returns. The localised structures which correspond to an N -circuit heteroclinic
orbit have N of these fast `holes' or `jumps' in juj. Notice also that the multi-circuit or
multi-jump solutions are only close to solutions of the cubic Ginzburg-Landau equation
for �nite intervals of time/space: there are no solutions to the cubic equation which are
O(") close to a multi-circuit/jump solution for all x and t.

The proofs of Theorems 5.2 and 5.3 should consist of a detailed study of all structurally
di�erent con�gurations of Csn, Cd, Ch and Ct as P is varied. For every con�guration we
should check the (number of) critical points on �, the number of zeros of 4�rgl (0; z), the
relative positions { with respect to the z direction { of these points and the direction of
the (slow) 
ow on �. Based on this, we can see in which regions of the (W;V 2)-plane
Theorem 4.2 can be applied. In a sense this is a straightforward { but very cumbersome
{ job. Therefore, we will mostly focus on the following �ve critical cases: P near 0, �1

2 ,
�3

5 , PA and �15
11 and make some short remarks on the bifurcations which occur for other

values of P .

P = 0, P near 0 and P positive.
It is easy to check that 4�rgl (0; z) (3.9) always has a unique zero outside the Cd parabola
for jW j large enough and has no zeros inside this parabola for V large enough. The op-
posite is true for the (perturbed) saddles on � (2.17): they do not exist outside the Cd
parabola for jW j large enough and there is a unique critical point inside this parabola
for V large enough. Thus, independent of P , we can only expect interesting behaviour in
regions of the (W;V 2) in the neighbourhood of the bounded curves Csn, Ch and Ct. We
have plotted Csn = Ch, Cd and Ct for P = 0 in Figure 5: if we �x V at a value below the
V -coordinate of the mutual X = 2

3 boundary, Dd (5.3), we observe for increasing W : a
saddle-node bifurcation, immediately (O("2), remark 4.1) followed by the co-dimension 2
homoclinic bifurcation at which a Bekki & Nozaki solution exists (subsection 4.1), thus en-
tering a region bounded by Ch, Cd and fV = 0g in which 4�rgl (0; z) has one zero between
the two critical points on �. By a simple check we �nd that this is a case (A) situation
(Theorem 4.2): there is one unique heteroclinic connection 
het(t). Since this is the only
area in the (W;V 2) plane in which there is more than one critical point of perturbed saddle
type, there is no need to search for other heteroclinic connections between (perturbed)
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saddles (Figure 5).

For P > 0 there is essentially only one major di�erence: Csn and Ch become discon-
nected { Csn is to the left of Ch { such that the type (A) orbits 
het(t) are now created by
an ordinary co-dimension 1 homoclinic bifurcation { subsection 4.1 { if W increases and V
is kept �xed. The structures of Csn, Cd, Ch, Ct and their intersections remain topologically
the same for all P > 0. If P becomes negative there is one additional phenomenon which
eventually leads to the disappearance of the type (A) region: again Csn is to the left of Ch,
but now there is an intersection of Ch and Cd below Dd (this intersection approaches Dd

as P " 0). Thus, the intersection Ch \ Cd, and not Dd, is the `top' of the type (A) region
bounded by Ch, Cd and fV = 0g. This point comes down to the V -axis as P decreases.
Note that the Csn(P ) and Ch(P ) surfaces are tangent at P and do not really intersect
(non-transversely), as was already explained in subsection 4.1.

P near �1
2 : a cusp on Csn.

This cusp is created as P decreases through �1
2 . Above P = �1

2 Csn has no interior
extrema, this has changed dramatically as P < �1

2 : coming from Dd Csn �rst has a mini-
mum on the V -axis, then intersects Ch and returns to this axis { as X ! 1 { by the cusp
(see Figure 6). Thus, the cusp created two `new' regions in the (W;V 2) plane: above or
below Ch, inside the cusp (that is, in the region bounded by the cusped part of Csn and
fV = 0g, Figure 6, P = �0:55). Note that the cusp takes a piece from the type (A) region
described above. So, entering the inside of the cusp from the type (A) region yields the
creation of two new perturbed saddles on �: although this might in
uence the behaviour
of 
het(t) for t! �1 it does not change the type of the heteroclinic connection. However,
if one again crosses Ch inside this cusp (Figure 6), then the system is in the situation
as described by Corollary 4.3: the type (A) situation changes into a type (B) situation:
countably in�nitely multi-circuit heteroclinic solutions exist in the (initially tiny) region
inside the cusp, bounded by Csn, Ch and fV = 0g. This yields the �rst critical value of P
given in Theorem 5.3.

P approaches �3
5 .

As P decreases further both the intersection Ch \ Cd { the top of the type (A) region
{ and the endpoints of Csn and Ch { (�1 � P; 0) (5.2) { approach the minimum of Cd
{ (�2

3 � 4
9P; 0). In Figure 6 we plotted Csn and Ch for P = �0:55, �0:57 { the cusp

passes through Cd at P = � 9
16 { and the critical value �3

5 at which these three points
have merged. Thus, the region of type (A) heteroclinic orbits disappears as P # �3

5 . As
a consequence, there are no type (A) heteroclinic orbits as P has decreased below �3

5
(Theorem 5.2). The type (B) region has grown, at P = �3

5 it is bounded by Csn, Ch and
fV = 0g, inside the cusp (Figure 6).

P near PA: the in
uence of Ct.
So far, Ct did not appear in or near regions where Theorem 4.2 could be applied. This
changes as the point Dh�t of tangent intersection of Ch and Ct { which exists at X =
(5+24P )=(18P ) for P 2 (�5

6 ;� 5
12) { comes down to fV = 0g. In Figure 7 we plotted the

relevant parts of Csn, Cd, Ch and Ct and the points D11, Dd and Dh�t for P = �0:67. Note
the structural di�erences with the cubic Ginzburg-Landau case P = 0 (Figure 5). One
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can in essence apply the same arguments as for the intersections of Csn and Ch (subsection
4.1) to explain that Ch and Ct must intersect non-transversely: Ch `needs' at least one zero
of 4�rgl (0; z) (again, a transversal intersection can occur if the bifurcations take place
at di�erent values of X , see Figure 8, P = �0:79). At a tangent intersection, the two
zeros of 4�rgl (0; z) are created O(") near the z-coordinate of a critical point on �. The
co-dimension 2 point Dh�t passes through the curve Csn at the value PA given in Theo-
rem 5.2. Here, we do not study the details of this co-dimension 3 phenomenon, but only
consider the e�ect of it as P < PA: a new region bounded by Csn, Ch and Ct { with Dh�t
as `tip' where W is at its maximum (Figure 8). Inside this region, there are three critical
points on � and two zeros of 4�rgl ; these two intersections of W s(�) and Wu(�) are be-
tween two of the three perturbed saddles. Thus, inside this new region Theorem 4.2 can
be applied both for case (A) and for case (B): there exists two 1-circuit heteroclinic orbits

het(t) { one for each zero of 4�rgl { and one family of type (B) multi-circuit solutions.
The type (A) heteroclinic solutions have returned (Theorem 5.2), but are now coupled
to the type (B) orbits. Note that Dh�t passes through Cd shortly below P = PA (Fig-
ure 8), however, this bifurcation does not in
uence the type (A) and (B) heteroclinic orbits.

Following Dd as P decreases further.
As we said at the beginning of this proof of Theorems 5.2 and 5.3 (and at the beginning
of this section): there are many interesting phenomena which won't be studied in detail.
However, we can get an impression of some of them by considering the structure of the
bifurcation curves near Dd as function of P . At P = �3

4 , Dd 2 fV = 0g (see Figure 8): a
number of `new' regions are created as P becomes smaller than �3

4 since both Ch and Ct
now have a minimum on fV = 0g { the former to the right of the minimum of Cd, the latter
to the left (see Figure 8, P=-0.79). The most interesting new region is bounded Cd, Ch and
fV = 0g { with the minima of Cd and Ch as left/right-`tips': there are three zeros of 4�rgl

all between two critical points on �. Thus, for choices of (V;W ) in this region Theorem
4.2 can be applied three times, once for case (B) and twice for case (A). This region will
grow and only disappear at P = �15

11 . However, before P reaches that value much more
has happened: �rst we pass through the region [�10

13 ;�49
64 ] � [�0:769:::;�0:765:::] where

Ch has self-intersections (subsection 5.1): many bifurcations occur, but we do not study
these here. Then, Dd passes through Ct { at P = �2085

4598 � 675
4598

p
5 � �0:781::: { thereby

creating a self-intersection of Ct (subsection 5.1) and a new region above Ct, bounded by
Cd, Csn and Ct with Dd as top (see Figure 8, P = -0.79). In this region there is one (A)
type zero of 4�rgl between two critical points on �. Thus, the `isolated' type (A) 
het(t)
has reappeared. This region will grow as P decreases further and will never disappear.
Moreover, the Ct boundary will eventually { at P = �15

11 { be replaced by fV = 0g). This
concludes the proof of Theorem 5.2. 2

P near �15
11: the type (B) heteroclinic orbits disappear.

The type (B) heteroclinic orbits only exist in (sub)regions of the region to the right and
outside the Cd parabola and below Ct (and, of course, above fV = 0g). As long as P > �5

6
this region has Ch as fourth boundary to the right (see Figure 8). However, as P decreases
through �5

6 , the (tangent) intersection of Ch and Ct, Dh�t, merges with the X = 1 end-
points of these curves, D11, D12 (5.2), and Ch becomes a curve above Ct. What remains
is a region (bounded by Cd, Ct and fV = 0g) which was created at P = �3

4 (see above):
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in it, two type (A) heteroclinic orbits coexist with a type (B) family of heteroclinic or-
bits. This region shrinks as P decreases further: its three tips coalesce at P = �15

11 . Thus,
the type (B) heteroclinic orbits disappear at P = �15

11 and Theorem 5.3 has been proved. 2

P below �15
11 .

As P decreases further not much happens. The isolated type (A) region keeps on growing.
The cusp, the self-intersection and the minimum of Ct exist as long as P > �15

2 , thus
`keeping alive' (tiny) regions where 4�rgl (0; z) can have up to �ve zeros. However, there
are no critical points on � in these regions. Thus, the `fate' of the solutions corresponding
to these intersections is coupled to the behaviour of � outside the O(") neighbourhood of
the curve of unperturbed saddle points (see Remark 3.1). The structures of Csn, Cd, Ch,
Ct and their intersections remain topologically the same for all P < �15

2 .

6 Discussion

The existence of the hidden symmetry can have far-reaching consequences for the study
of pattern formation at near-critical conditions by the (cubic) Ginzburg-Landau equation.
As in [26], [27] and [30] we have shown that the higher order nonlinear e�ects modeled by
the small quintic term in (1.1) break this hidden symmetry. Thus, the hidden symmetry
is a property of the cubic Ginzburg-Landau equation itself and is not related to properties
of the underlying system on which the Ginzburg-Landau equation is based. However, this
means that one should be careful in using the cubic Ginzburg-Landau equation { especially
when one is interested in traveling waves { since one introduces a non-generic phenomenon
into the equation by neglecting the higher order terms. Furthermore, we have shown that
these higher order terms do have an essential in
uence on the structure of the solutions:
the `multi-jump' heteroclinic solutions found in this paper do not exist in the cubic case.

So, one can say that the above observations { in some sense { justify the use of Ginzburg-
Landau equations with quintic terms in the theoretical study of traveling patterns such
as those observed in [2] (see [29] for references). However, from a derivational point of
view the higher order nonlinearities should be small compared to the cubic term, while in
most studies of `extended' Ginzburg-Landau equations all terms are considered to be of
the same magnitude (we again refer to [29] for a list of references, see also [9], [17], [19]).
This `gap' between, on one side, the Ginzburg-Landau equation as modulation equation
derived from an underlying system and, on the other side, as model equation has, of course,
been noticed by many authors (see also [22] for a more general discussion). The existence
of a co-dimension 2 phenomenon in the cubic equation once more indicates that this gap
should, at least, be the subject of further investigations. A �rst step has already been made
in [12] and [7], but there the authors had to assume that the real part of the coe�cient
of the cubic term { � in (1.1) { is small compared to the other terms in the cubic equation.

After section 2 we did not pay much attention to the nonlinear Schr�odinger limit. This
was motivated by the observation that this limit induces an ODE reduction which can be
seen as subcase of the ODE reduction of the real Ginzburg-Landau limit (compare (2.8)
to (2.7), moreover, V does only have an O(") in
uence in the nonlinear Schr�odinger limit
(2.8) { section 3). However, the nonlinear Schr�odinger subcase, V = 0, is strongly related
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to the degenerations in the fz = 0g-plane which we avoided as much as possible in this
paper (except for a short discussion in subsection 4.1). Thus, it is a natural next step

to analyse the degenerations of the ODE reductions { at z = 0 and z = �
q

4
27 { in the

context of the nonlinear Schr�odinger limit. This can be done by the methods developed in
this paper combined with the use of the extra symmetries in this case (subsection 4.1, see
also [23], [16] and [5]). Furthermore, one must be able to use the ideas presented in [20]
to study � { and curves near it { when it is not close to the curve of unperturbed saddles
(at least in a special region in the parameter plane). The extra information obtained from
this `slow manifold approach' can then be compared with the results of [30].

The slow manifold approach enabled us to �nd large families of localised solutions which
exist in open regions of the parameter space, that is r 2 R, �; �; 
 2 C in (1.1) and v; w
from (2.3). These solutions consist of distinguished `slow' and `fast' parts, therefore, it is
unlikely that an explicit formula can be obtained for any of these solutions. It's probably
for this reason that none of these structurally stable heteroclinic orbits { not even the type
(A) orbits in the cubic Ginzburg-Landau case { have been found in [29] and [24], where
the attention is focused on exact solutions. Moreover, the solutions found in this paper
are not close to a solution of the integrable limit for all � (= x + vt) and therefore can-
not be found by a more straightforward perturbation analysis (as for instance in [29], [30]).

In this paper we did not pay any attention to the stability of the constructed localised
structures as solutions of the partial di�erential equation (1.1). Of course this is a nec-
essary next step. This can be done by numerical simulations combined with arguments
obtained by perturbation analysis { see [29], [27], [26]. However, there also exist math-
ematical methods especially developed to study rigorously the stability of heteroclinic
solutions which are related to a slow manifold. The results of [18] indicate that { under
some conditions { the `0-jump' solutions are stable as `weak shocks' in the PDE. These
solutions correspond to the 0-circuit heteroclinic orbits on � between the saddles S and Ŝ
(subsection 4.2).
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A The derivation of 4�rgl(0; z)

First we note that xh(t) is even and yh(t) = _xh(t) is odd as function of t (2.16). This
immediately yields that the terms involving Q `average out'. The same is true for the
terms involving V in the NLS limit. Since 2yh

x3
h

= � d
dt

1
x2
h

we can write (3.7) as

4�rgl(0; z) = �2 lim
L!1

Z L

0
f[V y2h + z(W + x2h + Px4h) + V

z2

x2
h

](A.1)

� z

x2h(L)
[Wx2h + x4h + Px6h + V z]gdt:

We can now use (2.10) to transform (A.1) into

4�rgl(0; z) = �2 lim
L!1

Z L

0
f[V I + Wz � V z2

x2h(L)
] + [z � V � Wz

x2h(L)
]x2h(A.2)

+ [Pz +
V

2
� z

x2h(L)
]x4h �

Pz

x2h(L)
x6hgdt:

Next, we introduce H(t) = x2h(t)�Xs: limt!1H(t) = 0, exponentially fast (2.16). Since
the integral cannot grow faster than linear as function of L we are thus allowed to substitute
X(= Xs) for x

2
h(L) in (A.2) and observe by (2.10) that all linear terms disappear from

(A.2). We now can express 4� as the sum of three convergent integrals:

4�rgl(0; z) = 2[z + PXz +
Wz

X
+ V � V X ]IH1 + 2[2Pz +

z

X
+
V

2
]IH2 +

2Pz

X
IH3 ;(A.3)

where

IHj =

Z 1
0

Hj(t)dt =
p
2(3X � 2)j�1

Z 1
0

(tanh2 s� 1)jds

for j = 1; 2; 3 (2.16). These integrals can be evaluated explicitly:

IH1 = �
p
2; IH2 =

2

3

p
2(3X � 2); IH3 = � 8

15

p
2(3X � 2)2:

Combining these results with (A.3) and (2.11) yields (3.9).
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Figure captions

Figure 1:

The bounded solutions of the integrable system (2.9) for 0 < z <
q

4
27 .

Figure 2:
The intersection 
int(t) of W

u(�) and W s(�) as heteroclinic orbit between the perturbed
saddle points S1 and S2 on �.

Figure 3:
The intersection 
int(t) at the two co-dimension 1 homoclinic bifurcations and at the in-
termediate co-dimension 2 bifurcation.

Figure 4:
A sketch of the intersections P(�) and P�1(�) of Wu(�) and W s(�) with fy = 0g and
their higher order iterates in case (A) and case (B); �, 
int(t), W

ss(S1),W
uu(S1), W

ss(S2)
and Wuu(S2) have been added as `schematic projections'.

Figure 5:
The curves Csn = Ch, Cd and Ct and their endpoints D11, D12 and Dd (5.2), (5.3) in the
(W;V 2) plane for P = 0; the type (A) heteroclinic connections exist in the region bounded
by Csn = Ch, Cd and fV = 0g.

Figure 6:
Parts of the curves Csn, Ch and Cd for P = �0:55, �0:57 and �0:60.

Figure 7:
The (relevant parts of) Csn, Cd, Ch and Ct for P = �0:67. Type (B) multi-circuit hetero-
clinic orbits exist in the region bounded by Csn, Ch and fV = 0g, `inside' the Csn cusp.

Figure 8:
The curves Csn, Cd, Ch and Ct for P = �0:75 and �0:79.
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