
Breaking the ICE - Finding Multicollisions in
Iterated Concatenated and Expanded (ICE)

Hash Functions

Jonathan J. Hoch and Adi Shamir

Department of Computer Science and Applied Mathematics
The Weizmann Institute of Science, Israel

Abstract. The security of hash functions has recently become one of
the hottest topics in the design and analysis of cryptographic primitives.
Since almost all the hash functions used today (including the MD and
SHA families) have an iterated design, it is important to study the gen-
eral security properties of such functions. At Crypto 2004 Joux showed
that in any iterated hash function it is relatively easy to find exponential
sized multicollisions, and thus the concatenation of several hash functions
does not increase their security. However, in his proof it was essential
that each message block is used at most once. In 2005 Nandi and Stin-
son extended the technique to handle iterated hash functions in which
each message block is used at most twice. In this paper we consider the
general case and prove that even if we allow each iterated hash function
to scan the input multiple times in an arbitrary expanded order, their
concatenation is not stronger than a single function. Finally, we extend
the result to tree-based hash functions with arbitrary tree structures.

Keywords: Hash functions, iterated hash functions, tree based hash
functions, multicollisions, cryptanalysis.

1 Introduction

The recent discovery of major flaws in almost all the hash functions proposed so
far ([18], [5], [1]) made the analysis of the security properties of these functions
extremely important. Some researchers (e.g., Jutla and Patthak [6]) proposed
clever ways to strengthen the internal components of standard hash functions in
order to make them provably resistant against some types of attacks. A differ-
ent line of research (which was extensively studied and formalized in Preneel’s
pioneering work [11]) considered the structural properties of various types of
hash functions, assuming that the primitive operations (such as compression
functions on fixed length inputs) are perfectly secure. This is similar to the
structural study of various modes of operation of encryption schemes, ignoring
their internal details.

One of the most surprising results in this area was the recent discovery by
Joux [5] of an efficient attack on Iterated Concatenated (IC) hash functions. An
iterated hash function has a constant size state, which is mixed with a constant

M.J.B. Robshaw (Ed.): FSE 2006, LNCS 4047, pp. 179–194, 2006.
c© International Association for Cryptologic Research 2006

180 J.J. Hoch and A. Shamir

size input by a compression function f to generate the next state. A message of
unbounded size is hashed by dividing it into a sequence of message blocks, and
providing them one by one to the compression function. The initial state is a
fixed IV, and the last state is the output of the hash function. A concatenated
hash function starts from several IV’s, applies a different compression function
to the original message in each chain, and concatenates the final states of all the
chains to get a longer output. To prove that multiple chains of compression func-
tions are not much stronger than a single chain, Joux showed how to generate a
2k−multicollision (i.e., 2k different messages which are all mapped to the same
output value by the hash function) with complexity k2

n
2 . This is only slightly

larger than the 2
n
2 complexity of finding one pairwise collision in the underlying

compression function via the birthday paradox, and much smaller than the 2k2n

complexity of finding such a multicollision in a random non-iterated hash func-
tion. He then showed how to use multicollisions in F1 in order to find collisions in
the concatenated hash function F1(M)‖F2(M) with complexity O(n2

n
2), which

is much smaller than the 2n complexity of the birthday paradox applied to the
2n−bit concatenated state. Other possible applications of multicollisions are in
the MicroMint micropayment scheme [14] and in distinguishing iterated hash
functions from random functions.

1IV

2IV

3IV

1m 2m 1m 2m

2m 1m 1m 2m

2m 1m

3f

2m

3f

1m

1h

2h

3h

1f

2f 2f 2f 2f

3f3f

1f1f1f

Fig. 1. An example of an ICE hash function, where the output is h1‖h2‖h3

One of the simplest ways to overcome Joux’s multicollision attack is to use
message expansion which forces the iterated hash function to process each mes-
sage block more than once. For example, the hash function can scan the original
message blocks forwards, then backwards, then the even numbered blocks, and
finally the odd numbered blocks, before producing the output. In addition, a
concatenated hash function can use a different expanded order with each com-
pression function, before concatenating their outputs (see Fig 1). We can assume
that the expansion phase increases the total number of message blocks by at most
a constant factor s, since higher expansion rates (e.g., quadratic) will make it too
expensive to hash long messages, and thus lead to impractical constructions. We
call such a generalized scheme an Iterated Concatenated and Expanded (ICE)

Breaking the ICE - Finding Multicollisions in ICE Hash Functions 181

hash function. Joux’s original technique could not handle such functions, since a
pair of message blocks which create a collision in a compression function at one
point is very unlikely to create another collision later when they are mixed with
a different state.

This difficulty was partially resolved in 2005 by Nandi & Stinson [10]. They
considered the special case of ICE hash functions in which each message block
is used at most twice in the expanded message, and extended Joux’s original
technique in a highly specialized way to handle this slightly larger class of hash
functions.

In this paper we consider the general case of an arbitrary expansion rate s,
and show how to find in any ICE hash function whose individual compression
functions have n−bit states an O(2n) sized multicollision, using messages whose
length is polynomial in n for any constant s. This shows that the Joux mul-
ticollision technique is much more powerful and the ICE hash construction is
considerably less secure than originally believed.

1.1 Outline of This Paper

The new proof technique is based on careful analysis of the structural properties
of sets of words of the form M ′ = mα1mα2 ...mαe which can be derived from
the original message M = m1m2...ml by replicating and reordering the message
blocks mi during the expansion phase, when e ≤ sl. The proof is quite involved,
and uses a series of combinatorial lemmas. To make it easier to follow, we first
give an overview of the various steps.

The first step is to show that the case of expansion by a total factor s can
be reduced to the case of an expansion in which each message block appears at
most q = 2s times. The next step of the proof is to reduce such expanded words
to the form π1(M)‖π2(M)...‖πk(M) where k ≤ q and each πi is a permutation
which contains each message block exactly once. We then show how to construct
arbitrarily large multicollisions when the expanded sequence consists of k suc-
cessive permutations of the message blocks. Finally we show how to use such
multicollisions in order to find collisions in the concatenation of several hash
functions defined by different sequences.

In section 2 we deal with expansion schemes which can be represented as a se-
quence of permutations. Section 3 generalizes the proof to any ICE hash function
with a constant expansion rate. Section 4 shows how to construct multicollisions
when the iterative compression structure is replaced by a tree-like compression
scheme. Section 5 summarizes our results and presents some open problems.

2 The Successive Permutations Case

Throughout the paper we denote the set of the first l integers by L = {1, 2, ..., l}
where l = |M | is the length of the original (unexpanded) message. Where no
message is clear from the context, l can be an arbitrary integer. We start by
proving a useful lemma:

182 J.J. Hoch and A. Shamir

Lemma 1. Let B and C be two permuted sequences of the elements of L. Divide
B into k consecutive groups of the same size (l

k) and name the groups B1, ..., Bk,
and divide C into k consecutive groups of the same size (l

k) and name the groups
C1, ..., Ck. Then for x > 0 and l ≥ k3x there exists a perfect matching of Bi’s
and Cj’s such that Bi

⋂
Cj ≥ x.

Proof. We will use the fact that B and C are partitioned into a small number
of large disjoint sets, which are likely to have large intersections. We construct
the following bipartite graph: V = {B1, ..., Bk, C1, ..., Ck} and (Bi, Cj) ∈ E iff
Bi

⋂
Cj ≥ x. According to Hall’s matching theorem it is enough to show that

any subset of Bi’s of size t has at least t neighbors in C, in order to prove that
there exists a perfect matching between B and C. Without loss of generality,
let A = B1

⋃
...

⋃
Bt be all the elements from a subset of Bi’s. Assume for the

sake of contradiction that this subset has at most t − 1 neighbors in C. This
means that at most t − 1 Cj ’s intersect these Bi’s with an intersection of x or
more. The maximal number of elements from A which are ‘covered’ by these
elements is (t − 1) l

k . In addition there are k − t + 1 Ci’s which intersect each of
the Bi’s in A by less than x. Since there are t Bi’s in A, the maximal number
of elements in A covered by the remaining Ci’s is less than (k − t + 1)tx. So
the total number of elements in A covered by any element from C is less than
(t−1) l

k +(k− t+1)tx. However, the total number of elements in A is t l
k . Taking

l ≥ k3x we have t l
k ≥ txk2 ≥ (t − 1)xk2 + (k − t + 1)tx for any t. Thus we have

a contradiction (not all the elements of A are ‘covered’) and we conclude that
any subset of t Bi’s must have at least t neighbors among the Cj ’s. Hence the
conditions from Hall’s theorem are fulfilled and there exists a perfect matching
between the Bi’s and the Cj ’s. ��

Definition 1. An interval I = [i1, i2] is a continuous set of indices 1 ≤ i1 ≤
i2 ≤ l. Then for any sequence α of elements from L, α[I] denotes the subsequence
of α defined by (αi1 , αi1+1, ..., αi2).

Definition 2. Let α be some sequence over L and let X ⊆ L α|X is constructed
as follows: First we take β to be the subsequence of α containing only elements
from X. Then we set all consecutive appearances of the same value to a single
appearance. For example, if α = 1, 2, 3, 3, 2, 4, 2, 3 and X = {2, 3} then we first
set β = 2, 3, 3, 2, 2, 3 and then set α|X = 2, 3, 2, 3.

We now state another useful lemma.

Lemma 2. Let α be a sequence over L and let X be a subset of elements of L.
If we can construct a 2k Joux multicollision against the hash function based on
α|X then we can construct a 2k Joux multicollision against the hash function
based on α.

Proof. Let h0 be the initial hash value. In a Joux multicollision, starting from
the initial hash we have a series of intermediate hash values (h1, h2, ..., hk) such
that hi is reachable from hi−1 by two different choices for the relevant message

Breaking the ICE - Finding Multicollisions in ICE Hash Functions 183

0
2m

0
3m

0h

1
2m

0
3

1
2mm

1
3m

1h

2h

h

1
3

0
2mm

'0
21mm

'' 0

3
0
3 mm

0h

1
21mm

''' 0
3

0
24

0
2 mmmm

'' 1
3

1
3 mm

'1h '2h 'h

''' 1
3

0
24

0
2 mmmm

Fig. 2. The Joux multicollision in α|X = 2, 3, 2, 3 (top part) and in α = 1, 2, 3, 3, 2, 4,
2, 3 (bottom part, where X = {2, 3}). Notice how the message blocks are different
in α|X and in α and that all message blocks not in X are set to a constant value.
The dotted and solid lines describe the two collision paths in the final 2-collision when
n = 2.

blocks. Now let J1, J2, .., Jk be the indices of the intervals of message blocks
used for the Joux multicollision such that F (hi−1, M(Ji)) = hi where M(Ji) is
the sequence of message blocks corresponding to the indices in the interval Ji.
The interval Ji in α|X corresponds to an interval Ii in the original sequence α
such that α[Ii]|X = α|X [Ji]. Now starting from J1, we have that there are at
least 2

n
2 different messages that can be constructed by changing the message

blocks indexed by the indices in J1, since I1 includes all of those indices, we can
set all other message blocks to a fixed constant and varying only the message
blocks indexed by J1, construct a collision in F (h0, I

i
1) = h′

1 with I0
1 and I1

1 .
The same goes for J2 and I2 and so on until Jk and Ik. The important thing to
notice is that even when the possible combinations that are used in Ji are not
all the combinations, i.e. there are some restrictions stemming from previous
use of the message blocks, we still have at least 2

n
2 possible combinations in

Ji (which is sufficient for finding a collision with high probability among the
different intermediate hash values) and therefore also in Ii. At the culmination
of this process we have constructed a 2k Joux multicollision in the hash function
based on α. ��

To ease the understanding of the general case of successive permutations, we first
give a proof for the special case of 3 successive permutations α = π1(L)‖π2(L)‖π3
(L) which is the simplest case which is not treated in [10]. We start by taking a
message M of length k3n2

4 . We now look at the message blocks π2(L) and group
them into consecutive groups of size k n2

4 . We call the first group B1 and the last

184 J.J. Hoch and A. Shamir

group Bk where 2k is the size of the multi-collision we are constructing. Similarly
we group the message blocks π3(L) into consecutive groups of the same size and
name the groups C1, ..., Ck. We use lemma 1 in order to pair each Bi with a
unique Cj such that Bi

⋂
Cj ≥ n2

4 . We now choose from each pair n2

4 message
block indices from the intersection and call the union of all the intersections
active indices, the rest of the message block indices will be called inactive indices.
Note that since π2 and π3 are permutations, each active index occurs in a single
pair of Bi and Cj . Let X be the set of all the active indices. According to
lemma 2 it suffices to show that we can construct a 2k Joux multicollision in
β = α|X . We construct a Joux multicollision on the message blocks indexed by
the first part of β (which is taken from π1(L)), starting from the initial IV. We
then construct a multicollision on the message blocks indexed by the section of
β which is taken from π2(L) using intervals containing n

2 message blocks each.
Finally we construct a multicollision in the message blocks indexed by the section
of β which is taken from π3(L) by using intervals containing n2

4 message blocks
(which correspond to the Ci’s). Notice that the final stage of the construction
works because the elements in a specific Ci are all contained in the same interval
Bj (and in no other Bt) and thus do not affect the intermediate hash values
outside this interval. While the basic idea of using larger and larger blocks in
not new (for example, it was used by Joux [5] to compute preimages in generic
hash functions), our results generalize the technique and show its real power.

)(1 M)(2 M)(3 M

1B
2B 3B 1C 2C 3C

Fig. 3. Multicollision in 3 successive permutations. The dotted lines represent the
matching between the Bi’s and the Cj ’s. The solid lines show the collisions built along
the way. The collisions in the leftmost section are collisions over single message blocks.
The collisions in the middle section are over intervals containing n

2 message blocks.
The collisions in the rightmost section are over intervals containing n2

4 message blocks.

Breaking the ICE - Finding Multicollisions in ICE Hash Functions 185

We now prove the general case of successive permutations, by using messages
whose length is polynomial in n for any constant expansion rate s.

Theorem 1. Let α be a sequence of the form π1(L)‖π2(L)...‖πq(L). We can
construct a 2k Joux multicollision against the hash function based on α whenever
l = |M | ≥ k3n3(q−3)+2.

Proof. We start by dividing the last two permutation copies, πq−1(L) and πq(L),
into k equal length intervals each. We then find a perfect matching between the
two sets of intervals as in the 3 permutations case. However, this time we seek
an intersection of size n3(q−3)+2. After we have our new set of active indices X
(which is the disjoint union of the indices from all the intersections), we turn
to look at α|X . In this new sequence we examine the permutations πq−2(L) and
πq−1(L). We divide them into kn intervals of equal length and use our lemma
to find a perfect matching with an intersection size of n3(q−4)+2. We then divide
the permutations πq−3(L) and πq−2(L) into kn2 intervals and find a perfect
matching with an intersection size of n3(q−5)+2. We continue downsizing our list
of active indices in the same manner until we have found a perfect matching
with an intersection size of n2 between π3(L) and π2(L). The size of X , the set
of active indices, starts with |X | = k3n3(q−3)+2. After the first step we have
kn3(q−3)+2 remaining active indices, after the second step we have kn segments,
each with n3(q−4)+2, and after q − 2 steps we have an intersection size of n2 for
each of the knq−3 segments.

The next stage is to build a Joux 2k multicollision in the hash function based
on β = α|X where X is the final (smallest) set of indices. As in the three
permutations case, we start by constructing a Joux multicollision on the π1(L)
part of the sequence. We then use intervals of n message blocks to construct a
multicollision in the π2(L) part and in general use intervals of size ni−1 in the
i-th permutation. Since we have k blocks of size nq−1 in the last permutation,
the process terminates with a 2k multicollision in the hash function based on β.
Using lemma 2, we get a 2k multicollision in the hash function based on α as
required. ��

3 Solving the General Case

We now show how to reduce the general case to the successive permutations
case. First we state some definitions and prove a useful lemma.

Definition 3. Let α be a sequence over L:

freq(x, α) = |{i : αi = x}| (1)

freq(α) = max{freq(x, α) : x ∈ L} (2)

186 J.J. Hoch and A. Shamir

Definition 4. Let T = t1, ..., tt be a (not necessary contiguous) sequence of
indices in α. Then :

α[T] = αt1 , ..., αtt (3)

In particular if T = [t1, t2] is an interval then the definition coincides with
definition 1.

Definition 5. Given any subsequence α[T] of α, we define

S(α[T]) = |{x ∈ L : freq(x, α[T]) ≥ 1}| (4)

Definition 6. A set of disjoint intervals I1, ..., Ij is called independent over α if
there exists a set of distinct elements x1, ..., xj in α such that all the appearances
of xi in α are in α[Ii].

We will call a set x1, ..., xj of distinct elements in α independent if there exist
independent intervals I1, ..., Ij such that all appearances of xi are in α[Ii].

Definition 7. Ind(α) is the largest j such that there exists a set I1, ..., Ij which
is independent over α.

For example α = 1, 2, 1, 3, 2, 4, 2, 4 has Ind(α) = 3 by taking the independent
elements 1, 3, 4. We can see for example that the smallest interval containing all
the appearances of 4 does not contain either 1 or 3. However, we cannot chose
1, 2, 3, 4 as independent elements since they are interleaved in α.

Definition 8. A left-end interval is an interval of the form I = [1, i] for some
integer i.

In Nandi and Stinson’s paper[10] the authors proved and used the following
lemma (translated into our notation):

Lemma 3. Let α be a sequence of elements from L with freq(α) ≤ 2 and
S(α) = l. Suppose that l ≥ MN . Then at least one of the following holds:

1. Ind(α) ≥ M , or
2. there exists a left-end interval I such that Ind(α[I]) ≥ N .

The generalization we wish to prove in order to handle arbitrary ICE hash
functions is as follows:

Lemma 4. Let α be a sequence of elements from L with freq(α) ≤ q and S(α) =
l. Suppose that l ≥ MN . Then at least one of the following holds:

1. Ind(α) ≥ M , or
2. there exists a left-end interval I and a subset X ⊆ L s.t. freq(β) ≤ q − 1

and S(β) ≥ N
q−1 where β = α[I]|X .

Proof. The proof follows the same general lines as in [10], and uses induction on
l. For the left-end interval I = [1, N] either freq(α[I]) ≤ q − 1 or there exists an
element x1, which appears q times in the sequence α[I]. If the former holds then

Breaking the ICE - Finding Multicollisions in ICE Hash Functions 187

we have N elements in α[I] and each one of them can occur at most q − 1 times,
and thus the number of distinct elements S(α[I]) is at least N

q−1 . We set X = L

and β = α[I]|X = α[I] and we are done. So we assume that there exists an
element x1, which appears q times in the sequence α[I]. We remove all elements
from α which appear in α[I] and call the new sequence α1 = α[I1] for some set
of indices I1.

Note that S(α1) ≥ MN − N = (M − 1)N since we have removed at most N
distinct elements from α. By the induction hypothesis, either Ind(α1) ≥ M−1 or
there exists a left-end interval J and a subset X of L such that freq(β[J]) ≤ q−1
and S(β[J]) ≥ N

q−1 where β = α[J]|X . In the latter case we simply take X and
β as provided from the lemma and set the interval I to be the shortest left-end
interval containing J . In the former case let I2, ..., IM be an independent set of
intervals over α1 containing the independent indices x2, .., xM . These intervals
can be mapped to independent intervals J2, ..., JM over α where Ji is the minimal
interval containing all the occurrences of xi for i = 2, .., M . Notice that x1 /∈ Ji

for i = 2..M since all appearances of x1 are before the first index of α1 so we
can add an interval J1 = 1..N to the list of independent intervals and now we
have that Ind(α) ≥ M as required. ��

Now we prove one final lemma before turning to prove our main theorem. We
want to prove by induction on q the following claim:

Lemma 5. For any integer x, given a sequence α with freq(α) ≤ q and S(α)
large enough, we can find a subset of indices X, |X | ≥ x such that α|X is in the
form of up to q successive permutations over the same set of indices X.

Proof. Let fq(x) be the minimal alphabet size of a sequence α with freq(α) ≤ q
that ensures that there is a subset of indices X , |X | ≥ x such that α|X is in the
form of successive permutations. We will prove that fq(x) ≤ Cqx

Dq , for some
constants Cq, Dq which increase with q.

We start by claiming that f1(x) = x (i.e., C1 = D1 = 1), since any sequence
α with S(α) = x and freq(α) = 1 is a single permutation of all the indices
that occur in α. For notational purposes we will define f0(x) = 0 for all x. Now
assume that we have proven the inequality fk(x) ≤ CkxDk for all k < q. Given
a sequence α such that S(α) ≥ x(q − 1)fq−1(f1(x) + f2(x) + ... + fq−1(x)), we
apply lemma 4 with M = x and N = (q − 1)fq−1(f1(x) + f2(x) + ... + fq−1(x)).
There are now two cases. In the first we have Ind(α) ≥ x, and let X be the set
of all independent indices. By definition we have |X | = Ind(α) ≥ x and α|X is a
single permutation of the indices in X (since freq(α|X) = 1). In the second case
we have a left-end interval I and a subset X ′ such that freq(α[I]|X′) ≤ q − 1
and S(α[I]|X′) ≥ N

q−1 = fq−1(f1(x) + ... + fq−1(x)). Now using the inductive
hypothesis on α[I]|X′ we get a subset X ′′ such that |X ′′| ≥ f1(x) + ... + fq−1(x)
and α[I]|X′′ is in successive permutations form with at most q −1 permutations.
Using the pigeonhole principle we see that there must exist an 0 ≤ i ≤ q−1 such
that at least fi(x) indices appear exactly i times in the remainder of α|X′′ . We
set X ′′′ to be that subset of indices and apply our induction hypothesis on the
remainder of α|X′′′ (after the interval I). We remain with a subset X , |X | ≥ x

188 J.J. Hoch and A. Shamir

such that α|X is in successive permutations form with at most i permutations.
Now notice that each index appeared at most q times in α so the number of
permutations is at most q. We have shown that

fq(x) ≤ x(q − 1)fq−1(f1(x) + f2(x) + ... + fq−1(x)) (5)
≤ x(q − 1)fq−1((q − 1)fq−1(x)) (6)

≤ x(q − 1)fq−1((q − 1)Cq−1x
Dq−1) (7)

≤ x(q − 1)Cq−1(q − 1)Dq−1C
Dq−1
q−1 xD2

q−1 = Cqx
Dq (8)

for Cq = (q − 1)Dq−1+1C
Dq−1+1
q−1 and Dq = D2

q−1 + 1. This proves the induction
hypothesis for q. ��

Finally we put all the building blocks together to prove the theorem:

Theorem 2. Let α be any sequence over L with |α| ≤ sl (where l = |L| and s
is the constant expansion factor). Then we can compute a 2k multicollision in
the hash function based on α with time complexity O(poly(n, k)2

n
2).

Proof. We start with a sequence α over L of length at most sl. There must
be a subset of l

2 indices, each appearing at most q = 2s times in α. Since
otherwise we would have more than l

2 indices each appearing at least 2s times,
giving more than l

22s = sl elements in the sequence. Let X be the set of these
indices. According to lemma 2 it is enough to show that we can construct a Joux
multicollision against the hash function based on α|X . Notice that freq(α|X) ≤
q. We now apply lemma 5 and we get a subset X ′, |X ′| ≥ k3n3(q−3)+2 such
that α|X′ is in successive permutations form and freq(α|X′) ≤ q. According to
theorem 1, we can now construct a 2k multicollision in the hash function based
on α|X′ and according to lemma 2, we can construct a multicollision in the hash
function based on α. ��

3.1 Constructing a Collision in an ICE Hash Function

Constructing a collision in a concatenation of two iterated and expanded func-
tions is done by following the recipe presented by Joux. We first construct a 2

n
2

multicollision in the first function and then rely on the birthday paradox to find
a collision among the 2

n
2 values of the second hash function on the messages used

in the multicollision. However, generalizing the result for 3 or more functions is
not as easy.

As you recall the intermediate hash values of an iterated and expanded hash
function based on a sequence α are calculated by hi = f(hi−1, mαi). However, we
have not used in our proof the fact that the compression function f is the same
in each step. In fact, we do not need this fact and can generalize the calculation
of the intermediate hash values to hi = f(i, hi−1, mαi). We will now show how to
construct a collision in an ICE hash function based on three sequences α1, α2, α3
and corresponding hash functions F1, F2, F3. The construction we show is easily
generalized to an arbitrary number of hash functions.

Breaking the ICE - Finding Multicollisions in ICE Hash Functions 189

We will look at the sequence α = α1‖α2. The first step is to find a set X such
that α2|X is in successive permutations form. We then find a subset X ′ ⊆ X
such that α1|X′ is in successive permutations form. Notice that α2|X′ will still
be in successive permutations form. We now construct a 2

n
2 Joux multicollision

in the sequence α|X′ which is also in successive permutations form (as the con-
catenation of two such sequences). The important point is that the sequence
of intervals I1, ..., Ik which form the multicollision, does not have any interval
which spans the border between α1 and α2. Taking this sequence of intervals
we can now construct a 2

n
2 simultaneous multicollision in the hash functions

F1 and F2. With such a large multicollision we can find with high probability
a pair of messages which hash to the same value also under F3. Thus we have
found a collision in the ICE hash function F1(M)‖F2(M)‖F3(M) with com-
plexity O(poly(n)2

n
2) instead of the expected 2

3n
2 from the birthday paradox.

A simple extension of the idea can handle the concatenation of any constant
number of hash functions.

4 Tree Based Hash Functions

We now turn our attention to a more general model for constructing hash func-
tions which we call TCE (Tree based, Concatenated, and Expanded). As in the
iterated case we will base our analysis on the model presented in [10]. A tree
based hash function uses a binary tree G = (V, E) where the leaves are at the
top and the root at the bottom. The leaves are labeled by message block indices
or constant values. Given a message M , FG(M) is computed as follows: the la-
bel for each non-leaf x is computed by applying the compression function f to
the two nodes directly above x. The label of the root is the output of the hash
function. Note that tree based hash functions include iterated hash functions
as a special case, by using trees with a single IV to root path, and hanging all
the messages blocks off this path. In [10] the authors treated the special case in
which every index appears at most twice in the leaves of the tree. We generalize
this result to any constant number of appearances.

Definition 9. Let v ∈ V be a vertex in G, W (v) is the set of all leaves in the
subtree rooted at v.

Definition 10. If v is a leaf then ρ(v) is its label (the index of the corresponding
message block), and ρ(v1, ..., vk) is the sequence ρ(v1)...ρ(vk).

In the following definitions we redefine some of the notations used in the iterated
case to apply to trees. When using the definitions we will sometimes abuse
notation and use interchangeably a tree G and its root r. For example we write
Ind(v) when meaning Ind(G′) where G′ is the subtree rooted at v.

Definition 11. Let r be the root of G. An independent vertex sequence is an
ordered sequence of vertices v1, ..., vk such that there exists a sequence of leaves
w1, ..., wk satisfying the following conditions:

190 J.J. Hoch and A. Shamir

1m 2m 1m 0IV 3m 1IV

h - The output of
the hash function

),(13 IVmf
),(21 mmf

)),(),,((1301 IVmfIVmff

),(01 IVmf

Fig. 4. A example of a TCE

1. All appearances of ρ(wi) are in ρ(W (vi))
2. j < i =⇒ ρ(wi) /∈ ρ(W (vj))
3. vk = r

The maximal length of an independent vertex sequence in G is denoted Ind(G).

Definition 12. Let r be the root of G.

1. S(G) is the number of distinct labels in ρ(W (r))
2. freq(G) = freq(ρ(W (r))) where ρ(W (r)) is treated as a sequence.

Definition 13. Let G be a tree with a whose leaves are labeled by elements from
L and let X ⊆ L. G|X is the pruned tree resulting from the following process:

1. Delete from G all the original leaves which have labels not in X.
2. Repeatedly delete from G any newly created leaf which is unlabeled.

Before we start the technical proof, we will give an overview of what is coming
and show the correspondence between the proof of the tree-based case and the
proof of the iterated case. As in the previous proof, we first want to reduce the
general case to a case equivalent to the successive permutations case.

Definition 14. A tree G is in ‘successive permutations’ form (with r ‘permuta-
tions’) if we have a set of vertices v1, ..., vr s.t. S(v1) = ... = S(vr) = S(G) and
Ind(W (vi) \

⋃
j<i W (vj)) = S(G).

Each vertex vi corresponds to a permutation in the iterated case, and contains
in its leaves all the variables. Furthermore, if we look at the subtree rooted
at vi and remove all smaller subtrees rooted at vj , then we can construct an
independent sequence using all the indices with the root at vi. The definition is

Breaking the ICE - Finding Multicollisions in ICE Hash Functions 191

best understood if we think about the iterated case as a special case of a tree
with a single path from IV to the root.

The next step is to show that we can construct a multicollision in this special
tree structure. The proof will be very similar to the one in the iterated case but
with one additional component. In a tree we have to ensure that when taking a
set of indices and trying to get a collision by changing their values, they actually
have a common root which is compatible with the other groups of indices. We
will later prove a lemma to this effect, and use it to prove the tree version of
lemma 4 and then the tree version of lemma 5.
We start by proving the reduction from the general case to the ‘successive per-
mutations’ case.

Lemma 6. Given a tree G with S(G) ≤ 2MN and freq(G) ≤ q, at least one
of the following claims is true:

1. Ind(G) ≤ M or
2. there exists a node v and a subset X such that freq(G|X(v)) ≤ q − 1 and

S(G|X(v)) ≤ N

Proof. We extend the proof of a similar lemma from [10]. We first note that
in any binary tree G such that S(G) ≥ 2N , there exists a vertex v such that
N ≤ S(v) ≤ 2N . We now prove the result by induction on l = S(G). For the
basis of the induction we take M = 1 and we have that Ind(G) ≥ 1 is always
true. Now assume that we have proved the lemma for all values less than l. Since
S(G) ≥ 2MN ≥ 2N we know from the observation above that there exists a
vertex v such that N ≤ S(v) ≤ 2N . Now if freq(v) ≤ q − 1 then we are done,
since we set X = L and we have that S(G|X(v)) ≥ N and freq(G|X(v)) ≤ q−1.
Otherwise we have an element x1 such that x1 appears q times in ρ(W (v)). We
define G′ = G \ {v} (removing the subtree rooted at v) and set X to be ρ(G′).
S(G′) ≥ 2MN − 2N = 2(M − 1)N , so by the induction hypothesis we have that
either Ind(G′) ≥ M − 1 or there exists v′ and X ′ such that S(G′|X′(v′)) ≥ N
and freq(G′|X′(v′)) ≤ q−1. If the later happens then we simply set X = X ′ and
v = v′ and we are done. Otherwise we have an independent sequence x2, ..., xM

in G′ but since x1 appears only in W (v), we can add x1 to our list of independent
indices and have Ind(G) ≥ M . ��

One of the differences between the iterated case and the tree case is that in a
tree it is not sufficient to find a group of message blocks which can be varied
independently in order to find a collision. In a tree these blocks must have a
common root in which the collision will be formed. In the following lemma we
prove that we can always find suitable groups of message blocks in the tree.

Lemma 7. Given a tree G s.t. freq(G) = 1 and S(G) ≥ (2k − 1)x we can
find k distinct nodes, v1, ..., vk, such that W (vi) � W (vj) whenever i > j, and
S(W (vi) \

⋃
j<i W (vj)) ≥ x.

Proof. We prove the claim by induction on k. For k = 1 we have a tree G
with freq(G) = 1 and S(G) ≥ x, and setting v1 to the root of G satisfies

192 J.J. Hoch and A. Shamir

the lemma. Now we assume that we have proved the lemma for all positive
integers less than k. Given a tree G with S(G) ≥ (2k − 1)x ≥ 2x we find a
node v′ with x ≤ S(v′) ≤ 2x. Let G′ be the subtree rooted at v′ and let the
tree G′′ = G \ G′ be the result of removing all nodes of G′ from G. Notice that
S(G′) ≥ 2(k − 1)x− 2x = (2(k − 1)− 1)x. Using the induction hypothesis on G′′

we have k − 1 vertices v2, ..., vk such that W (vi) � W (vj) whenever i > j and
S(W (vi) \

⋃
j<i W (vj)) ≥ x. Now setting v1 = v′ we get a full set v1, ..., vk as

required since S(G′) ≥ x. ��

Theorem 3. Given a tree based hash function FG based on the tree G, we can
find a 2k multicollision whenever G is in ‘successive permutations’ form and
S(G) ≥ 2

q(q−1)
2 k3n3(q−3)+2.

Proof. The idea of the proof is the same as in the iterated case, the only difference
is that we have to make sure that when choosing a group of message blocks, they
indeed have a common root (high enough in the tree) where they can form a
collision. The main step in the iterated case was finding a perfect matching
between two permutations. In the tree case we also need to make sure that each
segment of indices has a common root which doesn’t interfere with the other
segments of indices. After finding the first matching, we have to find k distinct
nodes as in lemma 7 in each ‘permutation’ copy. We start by finding such a
sequence in the first ‘permutation’ copy, and this reduces the number of active
indices by a multiplicative factor of 2. From the remaining indices we need to
find a vertex sequence in each of the other ‘permutation’ copies such that all
the variables will be the same. This way we lose a total factor of 2q for the q
‘permutations’. In the second step we have kn segments in the matching. This
time however we don’t care what happens in the last permutation since we only
need the larger structure of k segments. So this time we lose a factor of 2q−1

to make sure that all the segments of indices have the required common roots.
Continuing for the q − 1 steps we see that we lose a factor of 2

q(q−1)
2 . So the

required size of S(G) is the same as in the iterated case except for a factor of
2

q(q−1)
2 . Once we have S(G) ≥ 2

q(q−1)
2 k3n3(q−3)+2 we can carry out the same

construction as in the iterated case, where between the steps we use lemma 7 to
ensure that the remaining indices have the required structure.

As in the iterated case we need a lemma saying that it is ok to set unselected
message blocks to constants.

Lemma 8. Let G be a tree over L, and let X be a subset of indices. If we can
construct a 2k Joux multicollision against the hash function based on G|X then
we can construct a 2k Joux multicollision against the hash function based on G.

The proof of this lemma follows the same lines as in the iterated case. We have
one more lemma to prove in order to create all the building blocks needed for
the general case.

Lemma 9. Given a tree G with freq(G) ≤ q we can find a subset of indices X
such that G|X is in the form of ‘successive permutations’.

Breaking the ICE - Finding Multicollisions in ICE Hash Functions 193

The proof is practically the same as in the sequential case and is omitted here
due to space limitations. The only difference is that lemma 6 is used instead of
lemma 4. We can now sketch the proof for the general case.

Theorem 4. Given a tree based hash function FG based on the tree G. We can
find a 2k multicollision whenever there exists a constant q such that freq(G) ≤ q
and S(G) ≥ polyq(n, k) in time complexity O(poly(n, k)2

n
2).

Proof. We start with a tree G over L with freq(G) ≤ q. We now apply lemma
9 and we get a subset X , |X | ≥ 2

q(q−1)
2 k3n3(q−3) such that G|X is in ‘successive

permutations’ form and freq(G|X′) ≤ q. We can now construct a 2k Joux mul-
ticollision in the hash function based on G|X′ and according to lemma 8, we can
construct a Joux multicollision in the hash function based on G. ��

Due to space limitations we omit the full description of finding a collision in
a TCE hash function, which is a concatenation of the outputs of several trees.
However we can use a procedure analogous to the one used in the iterated case
to show that we can find a collision in a general TCE hash function in time
O(poly(n)2

n
2).

5 Summary

We have shown that a large class of natural hash functions (ICE and its gen-
eralization TCE) is vulnerable to a multicollision attack, and we hope that the
techniques developed here will help in creating multicollision attacks against
even more complicated types of hash functions. For example, a different type of
message expansion which would be interesting to examine can use linear mixing
of the message blocks, instead of pure repetition of the message blocks. Other
research directions are to find other countermeasures against the Joux multicolli-
sion attack such as the scheme suggested by Lucks [9], or finding additional uses
of multicollisions as building blocks in more general attacks as in [5], [7] and [8].

Acknowledgments

The authors would like to thank Mridul Nandi and Douglas Stinson whose
paper[10] motivated our research and contributed to its development. In ad-
dition, we would like to thank the anonymous referees for helping clarify the
presentation and pointing out some minor errors.

References

1. E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet & W. Jalby, Collisions of
SHA-0 and Reduced SHA-1, Eurocrypt 2005

2. J. Daemen, R. Govaerts & J. Vandewalle, A Framework for the Design of One-Way
Hash Functions Including Cryptanalysis of Damgrd’s One-Way Function Based on
a Cellular Automaton, Asiacrypt 1991

194 J.J. Hoch and A. Shamir

3. A. De Santis & M. Yung, On the Design of Provably Secure Cryptographic Hash,
Eurocrypt 1990

4. H. Gilbert & H. Handschuh, Security Analysis of SHA-256 and Sisters, Selected
Areas in Cryptography 2003 NIST Cryptographic Hash Workshop 2005

5. A. Joux, Multicollisions in Iterated Hash Functions, Crypto 2004.
6. C. Jutla & A. Patthak, A Simple and Provably Good Code for SHA Message Ex-

pansion, IACR preprint archive
7. J. Kelsey & B. Schneier, Second Preimages on n-bit Hash Functions for Much Less

than 2n Work, Eurocrypt 2005.
8. J. Kelsey & T. Kohno, Herding Hash Functions and the Nostradamus Attack, NIST

Cryptographic Hash Workshop 2005
9. S. Lucks, Design Principles for Iterated Hash Functions IACR preprint archive

10. M. Nandi & D. R. Stinson, Multicollision Attacks on a Class of Hash Functions ,
IACR preprint archive

11. B. Preneel, Analysis and design of cryptographic hash functions, PhD thesis,
Katholieke Universiteit Leuven (Belgium), 1993.

12. B. Preneel, R. Govaerts & J. Vandewalle, Hash Functions Based on Block Ciphers:
A Synthetic Approach, Crypto 1993

13. B. Preneel, Design Principles for Dedicated Hash Functions, Fast Software Encryp-
tion 1993

14. R. Rivest & A. Shamir, PayWord and MicroMint: Two simple micropayment
schemes, CryptoBytes, volume 2, number 1

15. P. Rogaway & T. Shrimpton, Cryptographic Hash-Function Basics: Definitions, Im-
plications, and Separations for Preimage Resistance, Second-Preimage Resistance,
and Collision Resistance, Fast Software Encryption 2004

16. X. Wang, X. Lai, D. Feng, H. Chen & X. Yu, Cryptanalysis of the Hash Functions
MD4 and RIPEMD, EUROCRYPT 2005

17. X. Wang, H. Yu & Y. Yin, Efficient Collision Search Attacks on SHA-0 ,Crypto
2005

18. X.Wang, Y. Yin & H. Yu, Finding Collisions in the Full SHA-1 Collision Search
Attacks on SHA1, Crypto 2005

	Introduction
	Outline of This Paper

	The Successive Permutations Case
	Solving the General Case
	Constructing a Collision in an ICE Hash Function

	Tree Based Hash Functions
	Summary

